2005年浙江省高考数学试卷及答案(文科)

合集下载

2005年高考试题及答案

2005年高考试题及答案

2005年高考文科数学全国卷Ⅲ试题及答案本试卷分第I 卷(选择题)和第II共150分. 考试时间120第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k (1-P)n -k一、选择题:(本大题共12个小题,每小题5分,共60只有一个答案是正确的) (1)已知α为第三象限角,则2α所在的象限是(A )第一或第二象限 (B )第二或第三象限(C )第一或第三象限 (D )第二或第四象限(2)已知过点A(-2,m)和B(m ,4)的直线与直线2x+y-1=0平行,则m 的值为(A )0 (B )-8 (C )2 (D )10 (3)在8(1)(1)x x -+的展开式中5x 的系数是(A )-14 (B )14 (C )-28 (D )28(4)设三棱柱ABC-A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1、CC 1上的点,且PA=QC 1,则四棱锥B-APQC 的体积为(A )16V (B )14V (C )13V (D )12V (5)设137x =,则 (A )-2<x<-1 (B )-3<x<-2 (C )-1<x<0 (D )0<x<1 (6)若ln 2ln 3ln 5,,235a b c ===,则 (A)a<b<c (B)c<b<a (C)c<a<b (D)b<a<c (7)设02x π≤<,sin cos x x =-,则(A) 0x π≤≤ (B)744x ππ≤≤(C) 544x ππ≤≤ (D) 322x ππ≤≤ (8)22sin 2cos 1cos 2cos 2αααα⋅=+ 球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径(A) tan α (B) tan 2α (C) 1 (D)12(9)已知双曲线2212y x -=的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅= 则点M到x 轴的距离为(A )43 (B )53(C (D(10)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是(A )2 (B )12(C )2 (D 1 (11)不共面的四个定点到平面α的距离都相等,这样的平面α共有(A )3个 (B )4个 (C )6个 (D )7个(12)计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个例如,用十六进制表示:E+D=1B ,则A ×B=(A )6E (B )72 (C )5F (D )B0第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16(13)经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度,其中执“一般”态度的比“不喜欢”态度的多12人,按分层抽样方法从全班选出部分学生座谈摄影,如果选出的5位“喜欢”摄影的同学、1位“不喜欢”摄影的同学和3位执“一般”态度的同学,那么全班学生中“喜欢”摄影的比全班人数的一半还多 人(14)已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,则k=(15)曲线32y x x =-在点(1,1)处的切线方程为 (16)已知在△ABC 中,∠ACB=90°,BC=3,AC=4,P 是AB 上的点,则点P 到AC 、BC 的距离乘积的最大值是三、解答题:(17)(本小题满分12分)已知函数2()2sin sin 2,[0,2].f x x x x π=+∈求使()f x 为正值的x 18)(本小题满分12分)照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125, (Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少; (19)(本小题满分12分)在四棱锥V-ABCD 中,底面ABCD 是正方形,侧面V AD 是正三角形, 平面V AD ⊥底面 1)求证AB ⊥面V AD ;2)求面VAD 与面VDB(20)(本小题满分12分)在等差数列{}n a 中,公差0d ≠,2a是1a 与4a 的等差中项,已知数列1a ,3a ,1k a ,2k a , ……,n k a ,……成等比数列,求数列{}n k 的通项n k(21) (本小题满分12分)用长为90cm,宽为48cm 的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?(22) (本小题满分14分)设1122(,),(,)A x y B x y 两点在抛物线22y x =上,l 是AB 的垂直平分线, (Ⅰ)当且仅当12x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论; (Ⅱ)当121,3x x ==-时,求直线l 2005年高考全国卷Ⅲ数学试题及答案一、DBBCA ,CCBCD ,DA 二、13.3,14.23-,15.x+y-2=0,16.3 三、解答题:(17)解:∵()1cos 2sin 2f x x x =-+……………………………………………2分1)4x π=-………………………………………………4分()01)04f x x π∴>⇔->sin(2)42x π⇔->-…………………………………………6分 5222444k x k πππππ⇔-+<-<+……………………………8分 34k x k πππ⇔<<+………………………………………………10分 又[0,2].x π∈ ∴37(0,)(,)44x πππ∈⋃………………………………………………12分 另法:22()2sin sin 22sin 2sin cos 2sin (sin cos )f x x x x x x x x x =+=+=+()f x 为正值当且仅当sin x 与sin cos x x +同号,在[0,2]x π∈上,若sin x 与sin cos x x +均为正值,则3(0,)4x π∈; 若sin x 与sin cos x x +均为负值,则7(,)4x ππ∈所以所求x 的集合为37(0,)(,)44πππ (18)解:(Ⅰ)记甲、乙、丙三台机器在一小时需要照顾分别为事件A 、B 、C ,……1分则A 、B 、C 相互独立, 由题意得:P (AB )=P (A )P (B )=0.05 P (AC )=P (A )P (C )=0.1P (BC )=P (B )P (C )=0.125…………………………………………………………4分 解得:P (A )=0.2;P (B )=0.25;P (C )=0.5所以, 甲、乙、丙每台机器在这个小时内需要照顾的概率分别是0.2、0.25、0.5……6分(Ⅱ)∵A 、B 、C 相互独立,∴AB C 、、相互独立,……………………………………7分 ∴甲、乙、丙每台机器在这个小时内需都不需要照顾的概率为()()()()0.80.750.50.3P A B C P A P B P C ⋅⋅==⨯⨯=……………………………10分∴这个小时内至少有一台需要照顾的概率为1()10.30.7p P A B C =-⋅⋅=-=……12分(19)(本小题满分12分)四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面1)求证AB⊥面VAD;2)求面VAD与面VDB所成的二面角的大小.证法一:(1)由于面VAD是正三角形,设AD的中点为E,则VE⊥AD,而面VAD⊥底面ABCD,则VE⊥又面ABCD是正方形,则AB⊥CD,故AB⊥面(2)由AB⊥面VAD,则点B在平面VAD内的射影是A,设VD的中点为F,连AF,BF由△VAD是正△,则AF⊥VD,由三垂线定理知BF⊥VD,故∠AFB是面VAD与面VDB设正方形ABCD的边长为a,则在Rt△ABF中,,AB=a, AF=23a,tan∠AFB =33223==aaAFAB故面VAD与面VDB所成的二面角的大小为332arctan证明二:(Ⅰ)作AD的中点O,则VO⊥底面ABCD.…………1分建立如图空间直角坐标系,并设正方形边长为1,………2分则A(12,0,0),B(12,1,0),C(-12,1,0),D(-12,0,0),V(0,02),∴1(0,1,0),(1,0,0),(,0,)22AB AD AV===-……3分由(0,1,0)(1,0,0)0AB AD AB AD⋅=⋅=⇒⊥…………4分1(0,1,0)(022ABAV AB AV⋅=⋅-=⇒⊥……5分又AB∩AV=A ∴AB⊥平面VAD…………………………6分(Ⅱ)由(Ⅰ)得(0,1,0)AB=是面VAD的法向量……………………7分设(1,,)n y z=是面VDB的法向量,则110(1,,)(,1,0(1,1,230(1,,)(1,1,0)03xn VB y znzn BD y z=-⎧⎧⎧⋅=⋅-=⎪⎪⎪⇒⇒⇒=-⎨⎨⎨=-⋅=⎪⎪⎪⎩⋅--=⎩⎩……9分∴(0,1,0)(1,cos,73AB n⋅-<>==-,……………11分又由题意知,面VAD 与面VDB所成的二面角,所以其大小为arccos7……12分 (II )证法三:由(Ⅰ)得(0,1,0)AB =是面VAD 的法向量…………………7分设平面VDB 的方程为mx+ny+pZ+q=0,将V.B.D 三点的坐标代入可得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+-=++023021021q p q m q n m 解之可得⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-==q p q n q m 3222令q=,21则平面VDB 的方程为x-y+33Z+21=0 故平面VDB 的法向量是)33,1,1(-=n ………………………………9分∴(0,1,0)(1,cos ,73AB n ⋅-<>==-,………………11分又由题意知,面VAD 与面VDB所成的二面角,所以其大小为arccos 7……12分 (20)解:由题意得:2214a a a =………………………………1分 即2111()(3)a d a a d +=+…………………………………………3分 又0,d ≠∴1a d =……………………………………………………4分 又1a ,3a ,1k a ,2k a ,……,n k a ,……成等比数列, ∴该数列的公比为3133a d q a d===,………………………6分 所以113n n k a a +=⋅…………………………………………8分又11(1)n k n n a a k d k a =+-=…………………………10分∴13n n k +=所以数列{}n k 的通项为13n n k +=……………………………12分(21)解:设容器的高为x ,容器的体积为V ,……………………1分 则V=(90-2x )(48-2x )x,(0<V<24)…………………………………5分=4x 3-276x 2+4320x∵V ′=12 x 2-552x+4320……………………………………………7分 由V ′=12 x 2-552x+4320=0得x 1=10,x 2=36 ∵x<10 时,V ′>0, 10<x<36时,V ′<0, x>36时,V ′>0,所以,当x=10,V 有极大值V(10)=1960………………………………10分 又V(0)=0,V(24)=0,…………………………………………………11分所以当x=10,V 有最大值V(10)=1960……………………………………12分 (22)解:(Ⅰ)∵抛物线22y x =,即22y x =,∴14p =, ∴焦点为1(0,)8F ………………………………………………1分 (1)直线l 的斜率不存在时,显然有12x x +=0……………3分 (2)直线l 的斜率存在时,设为k , 截距为b即直线l :y=kx+b 由已知得:12121212221k bk y y x x y y x x ⎧++⎪=⋅+⎪⎨-⎪=-⎪-⎩………………………………5分 2212122212122212222k b k x x x x x x x x ⎧++=⋅+⎪⎪⇒⎨-⎪=-⎪-⎩22121212212k b k x x x x x x +⎧+=⋅+⎪⎪⇒⎨⎪+=-⎪⎩…………………………………7分 2212104b x x ⇒+=-+≥14b ⇒≥即l 的斜率存在时,不可能经过焦点1(0,)8F ………………………8分 所以当且仅当12x x +=0时,直线l 经过抛物线的焦点F …………9分 (Ⅱ)当121,3x x ==-时,直线l 的斜率显然存在,设为l :y=kx+b ……………………10分 则由(Ⅰ)得:22121212212k b k x x x x x x +⎧+=⋅+⎪⎪⎨⎪+=-⎪⎩12102122k b k x x +⎧⋅+=⎪⎪⇒⎨⎪-=-⎪⎩………………………………11分14414k b ⎧=⎪⎪⇒⎨⎪=⎪⎩……………………………………………13分所以直线l 的方程为14144y x =+,即4410x y -+=………………14分。

2005年高考数学试卷 全国文科

2005年高考数学试卷    全国文科

2005年普通高等学校招生全国统一考试文科数学(全国卷Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3到10页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

3.本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 334R V π= n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径()(1)k K n k n n P k C P P -=-一、 选择题(1) 函数 |cos sin |)(x x x f +=的最小正周期是(A ) 4π (B) 2π (C) π (D)2π (2)正方体 ABCD-A 1B 1C 1D 1中P 、Q 、R 分别是AB 、AD 、B 1C 1的中点,那么,正方体的过P 、Q 、R 的截面图形是(A )三角形 (B)四边形 (C)五边形 (D)六边形(3)函数 )0(12≤-=x x y 反函数是 (A)1+=x y )1(-≥x (B)y = -1+x )1(-≥x(C)y =1+x )0(≥x (D)y =-1+x )0(≥x(4)已知函数wx y tan =在)2,2(ππ-内是减函数,则 (A)10≤<w (B)01<≤-w (C)1≥w (D)1-≤w(5)抛物线y x 42=上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为(A) 2 (B) 3 (C) 4 (D) 5 (6)双曲线19422=-y x 的渐近线方程是 (A) x y 32±= (B) x y 94±= (C) x y 23±= (D)x y 49±= (7)如果数列||n a 是等差数列,则(A) 1345a a a a ++< (B)1345a a a a +=++(C)1345a a a a +>+ (D)1345a a a a = (8)10)2(y x -的展开式中46y x 项的系数是 (A)840 (B)-840 (C)210 (D) -210(9)已知点)0,3(),0,0(),1,3(C B A 设BAC ∠的平分线AE 与BC 相交于E,那么有λ=其中λ等于(A) 2 (B) 21 (C)-3 (D)31- (10)已知集合2{|47},{|60}M x x N x x x =-≤≤=-->则N M ⋂为(A){|4237}x x x -≤<-<≤或 (B){|4237}x x x -<≤-≤<或(C){|23}x x x ≤->或 (D){|23}x x x <-≥或(11)点P 在平面上作匀速直线运动,速度向量)3,4(-=v (即点P 的运动方向与v 相同,且每秒移动的距离|v |个单位).设开始时点P 的坐标为(-10,10),则5秒后点P 的坐标为(A)(-2,4) (B)(-30,25) (C)(10,-5) (D)(5,-10)(12)△ABC 的顶点B 在平面a 内,A 、C 在a 的同一侧,AB 、BC 与a 所成的角分别是30°和45°,若AB=3,BC=24 ,AC=5,则AC 与a 所成的角为(A)60° (B)45° (C)30° (D)15°第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上。

2005年高考文科数学(全国卷Ⅰ)试题及答案

2005年高考文科数学(全国卷Ⅰ)试题及答案

2005年高考文科数学(全国卷Ⅰ)试题及答案第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑擦干净后,再选涂其它答案标号不能答在试题卷上3.本卷共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径kn kkn n P P C k P --=)1()(一、选择题(1)设直线l 过点)0,2(-,且与圆122=+y x 相切,则l 的斜率是(A )1± (B )21± (C )33±(D )3±(2)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是(A )Φ=⋃⋂)(321S S S C I (B )123I I S C S C S ⊆⋂() (C )Φ=⋂⋂)321S C S C S C I I I(D )123I I S C S C S ⊆⋃()(3)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为(A )π28(B )π8(C )π24(D )π4(4)函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =(A )2 (B )3 (C )4 (D )5(5)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为(A )32 (B )33(C )34 (D )23(6)已知双曲线)0( 1222>=-a yax 的一条准线为23=x ,则该双曲线的离心率为(A )23 (B )23 (C )26 (D )332(7)当20π<<x 时,函数xxx x f 2sin sin82cos 1)(2++=的最小值为(A )2(B )32 (C )4 (D )34(8))21( 22≤≤-=x x x y 反函数是(A ))11( 112≤≤--+=x x y (B ))10( 112≤≤-+=x x y(C ))11( 112≤≤---=x x y (D ))10( 112≤≤--=x x y(9)设10<<a ,函数)22(log )(2--=xx a a a x f ,则使0)(<x f 的x 的取值范围是(A ))0,(-∞(B )),0(+∞ (C ))3log,(a -∞(D )),3(log+∞a(10)在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为(A )2 (B )23 (C )223 (D )2(11)在ABC ∆中,已知C B A sin 2tan=+,给出以下四个论断:①1cot tan =⋅B A ②2sin sin 0≤+<B A③1cossin22=+B A④C B A 222sin coscos=+其中正确的是 (A )①③(B )②④(C )①④(D )②③(12)点O 是三角形ABC 所在平面内的一点,满足OA OC OC OB OB OA ⋅=⋅=⋅,则点O 是ABC ∆的(A )三个内角的角平分线的交点(B )三条边的垂直平分线的交点 (C )三条中线的交点(D )三条高的交点第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上2.答卷前将密封线内的项目填写清楚3.本卷共10小题,共90分二、本大题共4小题,每小题4分,共16分,把答案填在题中横线上(13)若正整数m 满足m m 102105121<<-,则m = )3010.02l g ≈(14)8)1(xx -的展开式中,常数项为 (用数字作答)(15)从6名男生和4名女生中,选出3名代表,要求至少包含1名女生,则不同的选法共有 种(16)在正方形''''D C B A ABCD -中,过对角线'BD 的一个平面交'AA 于E ,交'CC 于F ,① 四边形E BFD '一定是平行四边形 ② 四边形E BFD '有可能是正方形③ 四边形E BFD '在底面ABCD 内的投影一定是正方形 ④ 四边形E BFD '有可能垂直于平面D BB '以上结论正确的为 (写出所有正确结论的编号)三、解答题:本大题共6小题,共74分解答应写出文字说明,证明过程或演算步骤 (17)(本大题满分12分)设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线=x(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间; (Ⅲ)画出函数)(x f y =在区间],0[π上的图像(18)(本大题满分12分)已知四棱锥P-ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90 底面ABCD ,且PA=AD=DC=21AB=1,M 是PB 的中点(Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC 所成二面角的大小(19)(本大题满分12分)已知二次函数)(x f 的二次项系数为a ,且不等式x x f 2)(->的解集为3,1( (Ⅰ)若方程06)(=+a x f 有两个相等的根,求)(x f 的解析式; (Ⅱ)若)(x f 的最大值为正数,求a的取值范围(20)(本大题满分12分)9粒种子分种在甲、乙、丙3个坑内,每坑3粒,每粒种子发芽的概率为5.0,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种(Ⅰ)求甲坑不需要补种的概率;(Ⅱ)求3个坑中恰有1个坑不需要补种的概率; (Ⅲ)求有坑需要补种的概率(精确到01.0)(21)(本大题满分12分) 设正项等比数列{}n a 的首项211=a ,前n 项和为n S ,且0)12(21020103010=++-S S S (Ⅰ)求{}n a 的通项; (Ⅱ)求{}n nS 的前n 项和n T(22)(本大题满分14分)已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与(3,1)a =-共线(Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R OB OA OM ∈+=μλμλ,证明22μλ+为定值。

2005年高考数学文科全国卷2 试题及答案

2005年高考数学文科全国卷2 试题及答案

【试题答案】2005年普通高等学校招生全国统一考试文科数学试题(必修+选修I)参考答案一. 选择题:1. C2. D3. B4. B5. D6. C7. B 8. A 9. C 10. A 11. C 12. C二. 填空题:13. 216 14.15. 192 16. ①,④三. 解答题:17. 本小题主要考查有关角的和、差、倍的三角函数的基本知识,以及分析能力和计算能力。

满分12分。

解法一:为第二象限的角,,所以所以为第一象限的角,,所以所以解法二:为第二象限角,,所以为第一象限角,,所以故所以18. 本小题主要考查相互独立事件概率的计算,运用概率知识解决实际问题的能力,满分12分。

解:单局比赛甲队胜乙队的概率为0.6,乙队胜甲队的概率为1-0.6=0.4(I)记“甲队胜三局”为事件A,“甲队胜二局”为事件B,则所以,前三局比赛甲队领先的概率为(II)若本场比赛乙队3:2取胜,则前四局双方应以2:2战平,且第五局乙队胜,所以,所求事件的概率为19. 本小题主要考查等差数列、等比数列的基本知识以及运用这些知识的能力。

满分12分。

(1)证明:成等差数列,即又设等差数列的公差为d,则这样从而这时是首项,公比为的等比数列(II)解:所以20. 本小题主要考查直线与平面垂直、直线与平面所成角的有关知识,及思维能力和空间想象能力,考查应用向量知识解决数学问题的能力。

满分12分。

方法一:(I)证明:连结EPDE在平面ABCD内,又CE=ED,PD=AD=BC为PB中点由三垂线定理得在中,又PB、FA为平面PAB内的相交直线平面PAB(II)解:不妨设BC=1,则AD=PD=1为等腰直角三角形,且PB=2,F为其斜边中点,BF=1,且与平面AEF内两条相交直线EF、AF都垂直平面AEF连结BE交AC于G,作GH//BP交EF于H,则平面AEF 为AC与平面AEF所成的角由可知由可知与平面AEF所成的角为方法二:以D为坐标原点,DA的长为单位,建立如图所示的直角坐标系(1)证明:设E(a,0,0),其中,则C(2a,0,0),A(0,1,0),B(2a,1,0),P(0,0,1),F(a,,)又平面PAB,平面PAB,平面PAB(II)解:由,得可知异面直线AC、PB所成的角为又,EF、AF为平面AEF内两条相交直线平面AEF与平面AEF所成的角为即AC与平面AEF所成的角为 21. 本小题主要考查导数的概念和计算,应用导数研究函数性质的方法及推理和运算能力,满分12分。

2005年高考浙江文科数学试题及答案

2005年高考浙江文科数学试题及答案

2005年高考浙江文科数学试题第Ⅰ卷 (选择题 共60分)一、选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有一项是符合题目要求的(1)函数sin(2)6y x π=+的最小正周期是A .2πB .πC .2πD .4π (2)设全集{}1,2,3,4,5,6,7U =,{}1,2,3,4,5P =,{}3,4,5,6,7Q =,则()U P Q u ð=A .{}1,2B .{}3,4,5C .{}1,2,6,7D .{}1,2,3,4,5 (3)点(1,-1)到直线10x y -+=的距离是( )(A)21 (B) 32(C) 2 (D)2(4)设()1f x x x =--,则1()2f f ⎡⎤=⎢⎥⎣⎦( )(A) 12- (B)0 (C)12(D) 1(5)在54(1)(1)x x +-+的展开式中,含3x 的项的系数是( )(A)5- (B) 5 (C) -10 (D) 10(6)从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码统计结果如下:则取到号码为奇数的频率是 A .0.53 B .0.5 C .0.47 D .0.37(7)设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β. 那么(A) ①是真命题,②是假命题 (B) ①是假命题,②是真命题(C) ①②都是真命题 (D) ①②都是假命题(8)已知向量(5,3)a x =-,(2,)b x =,且a b ⊥,则由x 的值构成的集合是A .{}2,3B .{}1,6-C .{}2D .{}6 (9)函数31y ax =+的图象与直线y x =相切,则a =A .18B .14C .12D .1(10)设集合{}(,)|,,1A x y x y x y --=是三角形的三边长,则A 所表示的平面区域(不含边界的阴影部分)是( )(A) (B) (C) (D)第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分把答案填在答题卡的相应位置11.函数2xy x =+(x ∈R ,且x ≠-2)的反函数是_________. 12.设M 、N 是直角梯形ABCD 两腰的中点,DE ⊥AB 于E (如图).现将△ADE 沿DE 折起,使二面角A -DE -B 为45°,此时点A 在平面BCDE 内的射影恰为点B ,则M 、N 的连线与AE所成角的大小等于_________.13.过双曲线22221x y a b-=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.14.从集合{P ,Q ,R ,S }与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母Q 和数字0至多只能出现一个的不同排法种数是_________.(用数字作答).三、解答题:本大题共6小题,每小题14分,共84分解答应写出文字说明,证明过程或演算步骤15.已知函数()2sin cos cos 2f x x x x =+(Ⅰ) 求()4f π的值;(Ⅱ) 设α∈(0,π),()2f α=sin α的值.16.已知实数,,a b c 成等差数列,1,1,4a b c +++成等比数列,且15a b c ++=,求,,a b c17.袋子A 和B 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是31,从B 中摸出一个红球的概率为p .(Ⅰ) 从A 中有放回地摸球,每次摸出一个,共摸5次求(i )恰好有3摸到红球的概率;(ii )第一次、第三次、第五次均摸到红球的概率. (Ⅱ) 若A 、B 两个袋子中的球数之比为1:2,将A 、B 中的球装在一起后,从中摸出一个红球的概率是25,求p 的值.18.如图,在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =12PA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC .(Ⅰ)求证OD ∥平面PAB(Ⅱ) 求直线OD 与平面PBC 所成角的大小;19.如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1.(Ⅰ)求椭圆的方程;(Ⅱ)若点P 在直线l 上运动,求∠F 1PF 2的最大值.20.函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2=2x .(Ⅰ)求函数g (x )的解析式; (Ⅱ)解不等式g (x )≥f (x )-|x -1|. (Ⅲ)若()()()1h x g x f x λ=-+在[]1,1-上是增函数,求实数λ的取值范围2005年高考浙江文科数学试题参考答案一、选择题:本题考查基本知识和基本运算每小题5分,满分50分(1)B (2)A (3)D (4)D (5)C (6)A (7)D (8)C (9)B (10)A二、填空题:本题考查基本知识和基本运算每小题4分,满分16分(11)()2,11xy x R x x=∈≠-且;(12)90︒;(13)2;(14)5832 三、解答题:(15)本题主要考查三角函数的倍角公式、两角和的公式等基础知识和基本的运算能力满分14分解:(Ⅰ)∵()sin 2cos 2f x x x =+∴sin cos 1422f πππ⎛⎫=+=⎪⎝⎭(Ⅱ) cos sin 22f ααα⎛⎫=+= ⎪⎝⎭∴1sin ,cos 424ππαα⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭ 13226sin sin 442ππαα⎛⎫=+-=⨯= ⎪⎝⎭∵()0απ∈,, ∴sin 0α>, 故sin α=(16)本题主要考查等差、等比数列的基本知识考查运算及推理能力14分解:由题意,得()()()()()()2151221413a b c a c b a c b ⎧++=⎪⎪+=⎨⎪++=+⎪⎩由(1)(2)两式,解得5b = 将10c a =-代入(3),整理得213220211,2,5,811,5, 1.a a a a a b c a b c -+=========-解得或故或经验算,上述两组数符合题意。

2005年全国高考文科数学试题及答案(卷Ⅲ)

2005年全国高考文科数学试题及答案(卷Ⅲ)

2005年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P(A)+P(B) 如果事件A 、B 相互独立,那么P (A ·B )=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:每小题5分,共60分. 1.已知α为第三象限角,则2α所在的象限是 ( )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限2.已知过点A(-2,m)和B(m ,4)的直线与直线2x+y-1=0平行,则m 的值为( )A .0B .-8C .2D .10 3.在8)1)(1(+-x x 的展开式中5x 的系数是( )A .-14B .14C .-28D .284.设三棱柱ABC-A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1、CC 1上的点,且PA=QC 1,则四棱锥B-APQC 的体积为 ( )A .16V B .14V C .13V D .12V 5.设713=x,则( )A .-2<x<-1B .-3<x<-2C .-1<x<0D .0<x<1 6.若ln 2ln 3ln 5,,235a b c ===,则( )A .a <b<cB .c<b<aC .c<a <bD .b<a <c球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径7.设02x π≤≤,sin cos x x =-,则 ( )A .0x π≤≤B .744x ππ≤≤C .544x ππ≤≤ D .322x ππ≤≤8.αααα2cos cos 2cos 12sin 22⋅+ =( )A .tan αB .tan 2αC .1D .129.已知双曲线1222=-y x 的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到 x 轴的距离为( )A .43 B .53C D 10.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是 ( )A B C .2 D 111.不共面的四个定点到平面α的距离都相等,这样的平面α共有 ( ) A .3个 B .4个 C .6个 D .7个12.计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数A .6EB .72C .5FD .B0第Ⅱ卷二.填空题:每小题4分,共(16分)13.经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度,其中执“一般”态度的比“不喜欢”态度的多12人,按分层抽样方法从全班选出部分学生座 谈摄影,如果选出的5位“喜欢”摄影的同学、1位“不喜欢”摄影的同学和3位执“一 般”态度的同学,那么全班学生中“喜欢”摄影的比全班人数的一半还多 人. 14.已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,则k= .15.曲线32x x y -=在点(1,1)处的切线方程为 .16.已知在△ABC 中,∠ACB=90°,BC=3,AC=4,P 是AB 上的点,则点P 到AC 、BC的距离乘积的最大值是 三.解答题:共74分. 17.(本小题满分12分)已知函数].2,0[,2sin sin 2)(2π∈+=x x x x f 求使()f x 为正值的x 的集合.18.(本小题满分12分)设甲、乙、丙三台机器是否需要照顾相互之间没有影响。

2005年浙江省高考数学试卷及答案(文科)

2005年浙江省高考数学试卷及答案(文科)

绝密★考试结束前2005年普通高等学校招生全国统一考试(浙江卷)数学(文科)本试题卷分选择题和非选择题两部分。

全卷共5页,选择题部分1至3页,非选择题部分4至5页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

参考公式 台体的体积公式11221()3V h S S S S =++其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高 柱体体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式13V Sh = 其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式24S R π=球的体积公式343V R π=其中R 表示球的半径 如果事件,A B 互斥 ,那么()()()P A B P A P B +=+一.选择题: 本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.函数sin(2)6y x π=+的最小正周期是A .2πB .πC .2πD .4π 2.设全集{}1,2,3,4,5,6,7U =,{}1,2,3,4,5P =,{}3,4,5,6,7Q =,则P ICUQ=A .{}1,2B .{}3,4,5C .{}1,2,6,7D .{}1,2,3,4,5 3.点(1,-1)到直线10x y -+=的距离是( )A .21 B . 32C .22D .3224.设()1f x x x =--,则1()2f f ⎡⎤=⎢⎥⎣⎦( )A . 12-B .0C .12D .1 5.在54(1)(1)x x +-+的展开式中,含3x 的项的系数是( )A .-6B .6C .-10D .106.从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码统计结果如下:卡片号码 1 2 3 4 5 6 7 8 9 10 取到的次数138576131810119则取到号码为奇数的频率是A .0.53B .0.5C .0.47D .0.377.设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么 A .①是真命题,②是假命题 B .①是假命题,②是真命题 C .①②都是真命题 D .①②都是假命题8.已知向量(5,3)a x =-r ,(2,)b x =r ,且a b ⊥r r,则由x 的值构成的集合是A .{}2,3B .{}1,6-C .{}2D .{}69.函数y=ax 2+1的图象与直线y x =相切,则a =A .18B .14C .12D .110.设集合{}(,)|,,1A x y x y x y --=是三角形的三边长,则A 所表示的平面区域(不含边界的阴影部分)是( )121112oyx121112oyx121112oyx121112oyxA .B .C .D .非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

2005年浙江高考数学试题及答案(文)

2005年浙江高考数学试题及答案(文)

浙江省2005年高考数学(文科)一.选择题(共10题,每题5分,共50分)1.设集合A 、B ,则“A ∪B=∅”是“A ∩B=∅”的(A) 充分但不必要条件 (B) 必要但不充分条件 (C) 充分必要条件 (D) 既不充分也不必要条件 2.已知20个样本:12 8 15 12 13 10 12 10 14 9 10 13 14 12 14 12 11 12 13 14 那么频率为0.1的范围是(A )7.5~9.5 (B )9.5~11.5 (C )11.5~13.5 (D )13.5~15.5 3.函数log 12(1-2x +x 2)的大致图像是下列各图中的,则此函数f (x )=(4.一个等差数列的项数为n ,若它的前3项与最后3项之和等于123,所有项之和为328,则n =(A) 14 (B)15 (C)16 (D)175.已知(x -y )n 展开式中第6项系数与第13项系数之和这0,若第k 项的系数最小,则k = (A )8 (B)9 (C)10 (D)116.关于x 的不等式(x -a )(x -b )(x -c ) ≥0的解集{x |-1≤x <2,或x ≥3},则点(a +b ,c )位于(A)第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限7.如图,已知正方体ABCD —A 1B 1C 1D 1中,则B 1C 1与平面A 1C 1D 所成的角为(A) π4 (B) π3(A) arccos 63 (D) arccos 338.设F 1, F 2是椭圆x 28+y 24=1的焦点,P 是椭圆上的点,|PF 1|·|PF 2|=5,则cos ∠F 1PF 2=(A) -35 (B) -110 (C) 110 (D) 359.( 3 +cot110°)cos50°=(A) 1 (B) 12 (C) 2 (D) 3210.下列四个函数中,满足|f (x )|≤|x |的是(A) f (x )=tan x (B) f (x )=1-cos x (C) f (x )=x (sin x +cos x) (D) f (x )= cos xA C 1二.填空题(共4小题,每小题4分,共16分)11.设a →=(2, cos α), b →=( sin α,14) ,若a →⊥b →,则tan α= _________.12.直线l 经过抛物线y 2=8x 的焦点的与抛物线交于点A 、B ,若|AB |=16,则AB 中点的横坐标为_____.13.已知OA 、OB 、OC 两两垂直,OA =OC =1,O 到平面ABC 的距离为33,则体积V 0-ABC =______.14.现有八盏灯排成2行,每行4盏,每盏灯显示红、绿颜色中的一种,则恰有两列上下颜色相同的排法共有__________种(用数字作答). 三.解答题(共6小题,每小题14分,共84分) 15. 已知函数f (x )=(k -1)x 3+x 2+2(k -1)x 是偶函数(Ⅰ)求实数k 的值;(Ⅱ)解不等式f (x ) +2 x <3(|x +1|-1). 16.已知函数f (x )=32 sin2 x +sin 2 x -12, x 为实数. (Ⅰ)求函数f (x )的单调区间;(Ⅱ)求函数f (x )在[0,34π]上的最大值和最小值.17.如图直三棱柱ABC —A 1B 1C 1中,已知AC ⊥BC , AC =BC =CC 1=1,点D ,E 分别是AC 1、A 1B 1的中点. (Ⅰ)求异面直线AE 与BD 所成的角; (Ⅱ)求二面角E —AD —B 的大小.18.在一次游戏中,甲乙两组向一个气球射击,每给两人,甲组每人的命中率为0.75,乙组每人的命中率为0.6,游戏规则是:第一次由甲组射击,若第一次不中,再由乙组进行第二次射击.(Ⅰ)求气球被甲组击中的概率; (Ⅱ)求气球没有被击中的概率.19.如图,ABCD 是菱形,且|AC |=4,|BD |=2, 椭圆与鞭形四边都有一个公共点,长轴在AC 上,且离心率为 12.设AB 、AD 与椭圆的公共点分别为PQ ,PQ 交x 轴于F 点.(Ⅰ)求椭圆和方程;过点A 作任一直线交椭圆与M 、N 两点,(Ⅱ)求证PQ 平分∠MFN .20.已知数列{x n },n ∈N *,满足x n 2+x n -1=0, x(Ⅰ)nn 1)1(-+≤x n <nn +1;(Ⅱ)数列{x n }是单调递增的.ABCA 1B 1C 1 DE数学试题(文科)参考答案一.选择题:本题考查基本知识和基本运算。

2005年全国高考文科数学试题及答案(卷 Ⅲ)

2005年全国高考文科数学试题及答案(卷 Ⅲ)

2005年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参阅公式: 如果事件A 、B 互斥,那么P (A+B )=P(A)+P(B) 如果事件A 、B 相互独立,那么P (A ·B )=P(A)·P(B)如果事件A 在一次试验中发生的概率乃是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k nP k (1-P)n -k一、选择题:每小题5分,共60分. 1.已知α为第三象限角,则2α所在的象限乃是( )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限2.已知过点A(-2,m)和B(m ,4)的直线与直线2x+y-1=0平行,则m 的值为( )A .0B .-8C .2D .10 3.在8)1)(1(+-x x 的展开式中5x 的系数乃是( ) A .-14 B .14 C .-28 D .284.设三棱柱ABC-A 1B 1C 1的体积为V ,P 、Q 分别乃是侧棱AA 1、CC 1上的点,且PA=QC 1,则四棱锥B-APQC 的体积为 ( )A .16V B .14V C .13V D .12V 5.设713=x,则( )A .-2<x<-1B .-3<x<-2C .-1<x<0D .0<x<1球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径6.若ln 2ln 3ln 5,,235a b c ===,则( )A .a <b<cB .c<b<aC .c<a <bD .b<a <c7.设02x π≤≤,sin cos x x =-,则 ( )A .0x π≤≤B .744x ππ≤≤C .544x ππ≤≤ D .322x ππ≤≤8.αααα2cos cos 2cos 12sin 22⋅+ =( )A .tan αB .tan 2αC .1D .129.已知双曲线1222=-y x 的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到 x 轴的距离为( )A .43 B .53C .3D 10.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率乃是 ( )A .2 B .12C .2D 111.不共面的四个定点到平面α的距离都相等,这样的平面α共有 ( ) A .3个 B .4个 C .6个 D .7个12.计算机中常用十六进制乃是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号,这些符号与十进制的数的对应关系如下表:例如,用十六进制表示:E+D=1B ,则A ×B=( )A .6EB .72C .5FD .B0第Ⅱ卷二.填空题:每小题4分,共(16分)13.经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度,其中执“一般”态度的比“不喜欢”态度的多12人,按分层抽样方法从全班选出部分学生座 谈摄影,如果选出的5位“喜欢”摄影的同学、1位“不喜欢”摄影的同学和3位执“一 般”态度的同学,那么全班学生中“喜欢”摄影的比全班人数的一半还多 人. 14.已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,则k= . 15.曲线32x x y -=在点(1,1)处的切线方程为 .16.已知在△ABC 中,∠ACB=90°,BC=3,AC=4,P 乃是AB 上的点,则点P 到AC 、BC的距离乘积的最大值乃是 三.解读回答题:共74分. 17.(本小题满分12分)已知函数].2,0[,2sin sin 2)(2π∈+=x x x x f 求使()f x 为正值的x 的集合.18.(本小题满分12分)设甲、乙、丙三台机器乃是否需要照顾相互之间没有影响。

2005年全国高考文科数学试题及答案-全国3

2005年全国高考文科数学试题及答案-全国3

2005年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么 P (A+B )=P(A)+P(B) 如果事件A 、B 相互独立,那么 P (A ·B )=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k (1-P)n -k一、选择题:每小题5分,共60分.1.已知α为第三象限角,则2α所在的象限是( )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限2.已知过点A(-2,m)和B(m ,4)的直线与直线2x+y-1=0平行,则m 的值为( )A .0B .-8C .2D .10 3.在8)1)(1(+-x x 的展开式中5x 的系数是 ( )A .-14B .14C .-28D .284.设三棱柱ABC-A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1、CC 1上的点,且PA=QC 1,则四棱锥B-APQC 的体积为 ( )A .16V B .14V C .13VD .12V5.设713=x,则( )A .-2<x<-1B .-3<x<-2C .-1<x<0D .0<x<1 6.若ln 2ln 3ln 5,,235a b c ===,则( )A .a <b<cB .c<b<aC .c<a <bD .b<a <c球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π,其中R 表示球的半径7.设02x π≤≤,且sin cos x x =-,则( )A .0x π≤≤B .744x ππ≤≤C .544x ππ≤≤D .322x ππ≤≤8.αααα2cos cos 2cos 12sin 22⋅+ =( )A .tan αB .tan 2αC .1D .129.已知双曲线1222=-yx 的焦点为F 1、F 2,点M 在双曲线上且120,M F M F ⋅=则点M 到x 轴的距离为( )A .43B .53C 3D10.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是 ( )A .2B .2C .2-D 111.不共面的四个定点到平面α的距离都相等,这样的平面α共有 ( )A .3个B .4个C .6个D .7个12.计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数 符号,这些符号与十进制的数的对应关系如下表:A .6EB .72C .5FD .B0第Ⅱ卷二.填空题:每小题4分,共(16分)13.经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度,其中执“一般”态度的比“不喜欢”态度的多12人,按分层抽样方法从全班选出部分学生座 谈摄影,如果选出的5位“喜欢”摄影的同学、1位“不喜欢”摄影的同学和3位执“一 般”态度的同学,那么全班学生中“喜欢”摄影的比全班人数的一半还多 人.14.已知向量(,12),(4,5),(,10)O A k O B O C k ===-,且A 、B 、C 三点共线,则k= .15.曲线3=在点(1,1)处的切线方程为.y-2xx16.已知在△ABC中,∠ACB=90°,BC=3,AC=4,P是AB上的点,则点P到AC、BC 的距离乘积的最大值是三.解答题:共74分.17.(本小题满分12分)已知函数].=x+x∈f求使()xx2,2,0[sinsin)2(2πf x为正值的x的集合.18.(本小题满分12分)设甲、乙、丙三台机器是否需要照顾相互之间没有影响。

2005年全国统一高考数学试卷(文科)(全国卷ⅰ)

2005年全国统一高考数学试卷(文科)(全国卷ⅰ)

2005年全国统一高考数学试卷Ⅰ(文)一、选择题(本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设直线l过点(﹣2,0),且与圆x2+y2=1相切,则l的斜率是()A.±1 B.C.D.2.设I为全集,S1、S2、S3是I的三个非空子集,且S1∪S2∪S3=I,则下面论断正确的是()A.∁I S1∩(S2∪S3)=∅B.S1⊆(∁I S2∩∁I S3)C.∁I S1∩∁I S2∩∁I S3=∅D.S1⊆(∁I S2∪∁I S3)3.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为()A.B.C.D.4.函数f(x)=x3+ax2+3x﹣9已知f(x)在x=﹣3时取得极值,则a= ()A.2 B.3 C.4 D.55.如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE、△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A.B.C.D.6.已知双曲线的一条准线为,则该双曲线的离心率为()A.B.C.D.7.当0<x<时,函数的最小值为()A.2 B.C.4 D.8.反函数是()A.B.C.D.9.设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),则使f(x)<0的x的取值范围是()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,log a3)D.(log a3,+∞)10.在直角坐标平面上,不等式组所表示的平面区域面积为()A.B.C.D.311.在△ABC中,已知tan=sinC,给出以下四个论断:①tanA•cotB=1,②1<sinA+sinB≤,③sin2A+cos2B=1,④cos2A+cos2B=sin2C,其中正确的是()A.①③B.②④C.①④D.②③12.点O是三角形ABC所在平面内的一点,满足•=•=•,则点O是△ABC 的()A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点二、填空题(共4小题,每小题5分,满分20分)13.若正整数m满足10m﹣1<2512<10m,则m=.(lg2≈0.3010)14.(x﹣)4的展开式中的常数项为.15.从6名男生和4名女生中,选出3名代表,要求至少包含1名女生,则不同的选法共有种.16.在正方体ABCD﹣A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则:①四边形BFD′E一定是平行四边形;②四边形BFD′E有可能是正方形;③四边形BFD′E在底面ABCD内的投影一定是正方形;④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为.(写出所有正确结论的编号)三、解答题(共6小题,满分70分)17.(10分)设函数f(x)=sin(2x+φ)(﹣π<φ<0),y=f(x)图象的一条对称轴是直线.(Ⅰ)求φ,并指出y=f(x)由y=sin2x作怎样变换所得.(Ⅱ)求函数y=f(x)的单调增区间;(Ⅲ)画出函数y=f(x)在区间[0,π]上的图象.18.(12分)已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中点.(Ⅰ)证明:面PAD⊥面PCD;(Ⅱ)求AC与PB所成的角;(Ⅲ)求面AMC与面BMC所成二面角的大小.19.(12分)已知二次函数f(x)的二次项系数为a,且不等式f(x)>﹣2x的解集为(1,3).(Ⅰ)若方程f(x)+6a=0有两个相等的根,求f(x)的解析式;(Ⅱ)若f(x)的最大值为正数,求a的取值范围.20.(12分)9粒种子分种在甲、乙、丙3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.(Ⅰ)求甲坑不需要补种的概率;(Ⅱ)求有坑需要补种的概率.(精确到0.001)21.(12分)设正项等比数列{a n}的首项a1=,前n项和为S n,且210S30﹣(210+1)S20+S10=0.(Ⅰ)求{a n}的通项;(Ⅱ)求{nS n}的前n项和T n.22.(12分)已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与=(3,﹣1)共线.(Ⅰ)求椭圆的离心率;(Ⅱ)设M为椭圆上任意一点,且=λ+μ(λ,μ∈R),证明λ2+μ2为定值.。

浙江省2005年高三年级五校联考数学(文)

浙江省2005年高三年级五校联考数学(文)

浙江省2005年高三年级五校联考数学试卷(文科)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第I 卷(选择题,共50分)注意事情项:每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,不能答在试题卷上。

一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的中四选项中,只有一项是符合题目要求的) 1.已知全集U=R ,集合)(},021|{},1|{N M C x x x N x x M U 则≥-+=≥= ( )A .{x |x <2}B .{x |x ≤2}C .{x |-1<x ≤2}D .{x |-1≤x <2}2.若αααααcos sin cos 3sin ,2tan +-=则的值是( )A .31-B .-35C .31 D .35 3.已知等比数列{a n }的前n 项和是S n ,S 5=2,S 10=6,则a 16+a 17+a 18+a 19+a 20=( )A .8B .12C .16D .244.已知b OB a OA ==, ,C 为线段AB 上距A 较近的于个三等分点,D 为线段CB 上距C 较近的一个三等分点,则用、表示的表达式为 ( )A .)54(91+ B .)79(161+ C .)2(31+ D .)3(41+ 5.已知y=f (x )是定义在R 上的奇函数,当x >0时,f (x )=x -1,那么不等式f (x )<21的解集是 ( )A .{x |0<x <23}B .{x |-21<x <0}C .{x |-21<x <0或0<x <23} D .{x |x <-21或0≤x <23}6.直线052)3(057)3()1(2=-+-=-+-++y x m m y m x m 与直线垂直的充要条件是( ) A .2-=m B .3=m C .31=-=m m 或 D .23-==m m 或7.设函数f (x )是偶函数,且对于任意正实数x 满足f (2+x )=-2f (2-x ),已知f (-1)=4,那么f (-3)的值是 ( ) A .2 B .-2 C .8 D .-88.如图正面四体ABCD 中,E 为棱AD 的中点,则CE 与平面BCD 所成角的大小为( )A .30°B .32arcsinC .60°D .36arccos9.已知点M(m,n)在直线l :A x +By+C=0(AB ≠0) 的右下方,则Am+Bn+C 的值( )A .与A 同号,与B 同号 B .与A 同号,与B 异号C .与A 异号,与B 同号D .与A 异号,与B 异号10.已知点A(1,2),过点(5,-2)且斜率为k 的直线与抛物线y 2=4x 交于点B 、C ,那么△ABC的形状是 ( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .与k 的值有关第Ⅱ卷(非选择题,共100分)注意事项:用钢笔或圆珠笔直接答在试题卷上。

2005年高考文科数学(全国卷Ⅰ)试题及答案

2005年高考文科数学(全国卷Ⅰ)试题及答案

2005年高考文科数学(全国卷Ⅰ)试题及答案(河北、河南、安徽、山西、海南)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分1至2页第Ⅱ卷3到10页考试结束后,将本试卷和答题卡一并交回第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑如需改动,用橡皮擦干净后,再选涂其它答案标号不能答在试题卷上3.本卷共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的 参考公式:如果事件A 、B 互斥,那么 球是表面积公式如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径一、选择题(1)设直线l 过点)0,2(-,且与圆122=+y x 相切,则l 的斜率是(A )1±(B )21±(C )33±(D )3±(2)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是(A )Φ=⋃⋂)(321S S S C I (B )123I I S C S C S ⊆⋂() (C )Φ=⋂⋂)321S C S C S C I I I(D )123I I S C S C S ⊆⋃()(3)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为(A )π28(B )π8(C )π24(D )π4(4)函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =(A )2(B )3(C )4(D )5(5)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCFADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为(A )32(B )33(C )34(D )23(6)已知双曲线)0( 1222>=-a y a x 的一条准线为23=x ,则该双曲线的离心率为(A )23 (B )23 (C )26 (D )332 (7)当20π<<x 时,函数x xx x f 2sin sin 82cos 1)(2++=的最小值为(A )2(B )32(C )4(D )34(8))21( 22≤≤-=x x x y 反函数是(A ))11( 112≤≤--+=x x y (B ))10( 112≤≤-+=x x y(C ))11( 112≤≤---=x x y (D ))10( 112≤≤--=x x y(9)设10<<a ,函数)22(log )(2--=xx a a a x f ,则使0)(<x f 的x 的取值范围是(A ))0,(-∞ (B )),0(+∞ (C ))3log ,(a -∞(D )),3(log +∞a(10)在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为(A )2(B )23(C )223 (D )2(11)在ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断: ①1cot tan =⋅B A②2sin sin 0≤+<B A③1cos sin 22=+B A④C B A 222sin cos cos =+其中正确的是 (A )①③(B )②④ (C )①④ (D )②③(12)点O 是三角形ABC 所在平面内的一点,满足OA OC OC OB OB OA ⋅=⋅=⋅,则点O 是ABC ∆的(A )三个内角的角平分线的交点(B )三条边的垂直平分线的交点 (C )三条中线的交点(D )三条高的交点第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上 2.答卷前将密封线内的项目填写清楚 3.本卷共10小题,共90分二、本大题共4小题,每小题4分,共16分,把答案填在题中横线上(13)若正整数m 满足m m 102105121<<-,则m = )3010.02≈(14)8)1(xx -的展开式中,常数项为 (用数字作答)(15)从6名男生和4名女生中,选出3名代表,要求至少包含1名女生,则不同的选法共有 种(16)在正方形''''D C B A ABCD -中,过对角线'BD 的一个平面交'AA 于E ,交'CC 于F ,① 四边形E BFD '一定是平行四边形 ② 四边形E BFD '有可能是正方形③ 四边形E BFD '在底面ABCD 内的投影一定是正方形 ④ 四边形E BFD '有可能垂直于平面D BB '以上结论正确的为 (写出所有正确结论的编号)三、解答题:本大题共6小题,共74分解答应写出文字说明,证明过程或演算步骤 (17)(本大题满分12分)设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8=x(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间; (Ⅲ)画出函数)(x f y =在区间],0[π上的图像(18)(本大题满分12分)已知四棱锥P-ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90底面ABCD ,且PA=AD=DC=21AB=1,M 是PB 的中点 (Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC 所成二面角的大小(19)(本大题满分12分)已知二次函数)(x f 的二次项系数为a ,且不等式x x f 2)(->的解集为3,1((Ⅰ)若方程06)(=+a x f 有两个相等的根,求)(x f 的解析式; (Ⅱ)若)(x f 的最大值为正数,求a 的取值范围(20)(本大题满分12分)9粒种子分种在甲、乙、丙3个坑内,每坑3粒,每粒种子发芽的概率为5.0,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种(Ⅰ)求甲坑不需要补种的概率;(Ⅱ)求3个坑中恰有1个坑不需要补种的概率; (Ⅲ)求有坑需要补种的概率(精确到01.0) (21)(本大题满分12分) 设正项等比数列{}n a 的首项211=a ,前n 项和为n S ,且)12(21020103010=++-S S S (Ⅰ)求{}n a 的通项; (Ⅱ)求{}n nS 的前n 项和n T(22)(本大题满分14分) 已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与(3,1)a =-共线(Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R OB OA OM ∈+=μλμλ,证明22μλ+为定值2005年高考文科数学(全国卷Ⅰ)试题参考答案(河北、河南、安徽、山西、海南)一、选择题(本题考查基本知识和基本运算,每小题5分,满分60分)1.C 2.C 3.B 4.D 5.A 6.D 7.C 8.B 9.C 10.B 11.B 12.D 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分13.155 14.70 15.100 16.①③④ 三、解答题17.本小题主要考查三角函数性质及图像的基本知识,考查推理和运算能力,满分12分解:(Ⅰ))(8x f y x ==是函数π的图像的对称轴,,1)82sin(±=+⨯∴ϕπ(Ⅱ)由(Ⅰ)知).432sin(,43ππϕ-=-=x y 因此 由题意得所以函数.],85,8[)432sin(Z k k k x y ∈++-=πππππ的单调增区间为 (Ⅲ)由知)32sin(π-=x y故函数上图像是在区间],0[)(πx f y =18.本小题主要考查直线与平面垂直、直线与平面所成角的有关知识及思维能力和空间想象能力.考查应用向量知识解决数学问题的能力满分12分 方案一:(Ⅰ)证明:∵PA ⊥面ABCD ,CD ⊥AD , ∴由三垂线定理得:CD ⊥PD. 因而,CD 与面PAD 内两条相交直线AD ,PD 都垂直, ∴CD ⊥面PAD.又CD ⊂面PCD ,∴面PAD ⊥面PCD. (Ⅱ)解:过点B 作BE//CA ,且BE=CA ,则∠PBE 是AC 与PB 所成的角.连结AE ,可知AC=CB=BE=AE=2,又AB=2,所以四边形ACBE 为正方形. 由PA ⊥面ABCD 得∠PEB=90° 在Rt △PEB 中BE=2,PB=5, .510cos ==∠∴PB BE PBE (Ⅲ)解:作AN ⊥CM ,垂足为N ,连结BN.在Rt △PAB 中,AM=MB ,又AC=CB , ∴△AMC ≌△BMC,∴BN ⊥CM ,故∠ANB 为所求二面角的平面角 ∵CB ⊥AC ,由三垂线定理,得CB ⊥PC , 在Rt △PCB 中,CM=MB ,所以CM=AM.在等腰三角形AMC 中,AN ·MC=AC AC CM⋅-22)2(, 5625223=⨯=∴AN . ∴AB=2,322cos 222-=⨯⨯-+=∠∴BN AN AB BN AN ANB 故所求的二面角为).32arccos(-方法二:因为PA ⊥PD ,PA ⊥AB ,AD ⊥AB ,以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为A (0,0,0)B (0,2,0),C (1,1,0),D (1,0,0),P (0,0,1),M (0,1,)21.(Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=⋅==所以故又由题设知AD ⊥DC ,且AP 与与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD. 又DC 在面PCD 上,故面PAD ⊥面PCD(Ⅱ)解:因),1,2,0(),0,1,1(-==PB AC由此得AC 与PB 所成的角为.510arccos(Ⅲ)解:在MC 上取一点N (x ,y ,z ),则存在,R ∈λ使,MC NC λ= 要使.54,0210,==-=⋅⊥λ解得即只需z x MC AN MC AN ANB MC BN MC AN MC BN MC AN ∠⊥⊥=⋅=⋅所以得由.,0,0为所求二面角的平面角.19.本小题主要考查二次函数、方程的根与系数关系,考查运用数学知识解决问题的能力.满分12分解:(Ⅰ)).3,1(02)(的解集为>+x x f 因而且.0),3)(1(2)(<--=+a x x a x x f.3)42(2)3)(1()(2a x a ax x x x a x f ++-=---=①由方程.09)42(06)(2=++-=+a x a ax a x f 得 ②因为方程②有两个相等的根,所以094)]42([2=⋅-+-=∆a a a ,即 .511.01452-===--a a a a 或解得由于51.1,0-==<a a a 将舍去代入①得)(x f 的解析式(Ⅱ)由aa a a a x a a x a ax x f 14)21(3)21(2)(222++-+-=++-= 及.14)(,02aa a x f a ++-<的最大值为可得 由⎪⎩⎪⎨⎧<>++-,0,0142a a a a 解得 .03232<<+---<a a 或 故当)(x f 的最大值为正数时,实数a 的取值范围是).0,32()32,(+----∞ 20.本小题主要考查相互独立事件和互斥事件有一个发生的概率的计算方法,考查运用概率知识解决实际问题的能力. 满分12分(Ⅰ)解:因为甲坑内的3粒种子都不发芽的概率为81)5.01(3=-,所以甲坑不需要补种的概率为 .875.087811==-(Ⅱ)解:3个坑恰有一个坑不需要补种的概率为 .041.0)81(87213=⨯⨯C (Ⅲ)解法一:因为3个坑都不需要补种的概率为3)87(, 所以有坑需要补种的概率为 .330.0)87(13=-解法二:3个坑中恰有1个坑需要补种的概率为,287.0)87(81213=⨯⨯C 恰有2个坑需要补种的概率为 ,041.087)81(223=⨯⨯C 3个坑都需要补种的概率为 .002.0)87()81(0333=⨯⨯C所以有坑需要补种的概率为 .330.0002.0041.0287.0=++21.本小题主要考查等比数列的基本知识,考查分析问题能力和推理能力,满分12分解:(Ⅰ)由 0)12(21020103010=++-S S S 得 ,)(21020203010S S S S -=- 即,)(220121*********a a a a a a +++=+++ 可得.)(220121*********10a a a a a a q +++=+++⋅因为0>n a ,所以 ,121010=q 解得21=q ,因而 .,2,1,2111 ===-n q a a n n n (Ⅱ)因为}{n a 是首项211=a 、公比21=q 的等比数列,故则数列}{n nS 的前n 项和 ),22221()21(2n n nn T +++-+++=前两式相减,得122)212121()21(212+++++-+++=n n n n n T 12211)211(214)1(++---+=n n n n n 即 .22212)1(1-+++=-n n nn n n T 22.本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分14分(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+则直线AB 的方程为c x y -=,代入12222=+by a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221ba b a c a x x b a c a x x +-=+=+ 由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与a 共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,即232222cba c a =+,所以36.32222ab ac b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x OM =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ 22239322c c c =-+=0 又222222212133,33b y x b y x =+=+,代入①得.122=+μλ 故22μλ+为定值,定值为1。

2005年高考文科数学(全国)卷(Ⅱ)

2005年高考文科数学(全国)卷(Ⅱ)

2005年高考文科数学(全国)卷(Ⅱ)一、选择题:1. 函数f (x )=|sin x +cos x |的最小正周期是 ( )A.4π B. 2π C. π D. 2π 2. 正方体ABCD —A 1B 1C 1D 1中,P 、Q 、R 分别是AB 、AD 、B 1C 1的中点. 那么,正方体的过P 、Q 、R 的截面图形是 ( )A. 三角形B. 四边形C. 五边形D. 六边形3. 函数)0(12≤-=x x y 的反函数是 ( )A. )1(1-≥+=x x yB. )1(1-≥+-=x x yC. )0(1≥+=x x yD. )0(1≥+-=x x y 4. 已知函数)2,2(tan ππω-=在x y 内是减函数,则 ( ) A. 0<ω≤1B. -1≤ω<0C. ω≥1D. ω≤-15. 抛物线y x 42=上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( )A. 2B. 3C. 4D. 56. 双曲线19422=-y x 的渐近线方程是 ( )A. x y 32±=B. x y 94±=C. x y 23±=D. x y 49±=7. 如果数列}{n a 是等差数列,则 ( )A. 5481a a a a +<+B. 5481a a a a +=+C. 5481a a a a +>+D. 5481a a a a =8. 10)2(y x -的展开式中46y x 项的系数是 ( )A. 840B. -840C. 210D. -2109. 已知点A (3,1),B (0,0)C (3,0).设∠BAC 的平分线AE 与BC相交于E ,那么有λλ其中,→=→CE BC 等于 ( )A. 2B.21 C. -3D. -3110. 已知集合为则N M x x x N x x M ⋂>--=≤≤-=},06|{|},74|{2( )A. }7324|{≤<-<≤-x x x 或B. }7324|{<≤-≤<-x x x 或C. D.11. 点P 在平面上作匀速直线运动,速度向量)3,4(-=v (即点P 的运动方向与v 相同,且每秒移动的距离为|v |个单位)。

2005年高考数学试题(全国1文)及答案

2005年高考数学试题(全国1文)及答案

2005年普通高等学校招生全国统一考试文科数学(全国卷Ⅰ)第Ⅰ卷参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n kk n n P P C k P --=)1()( 一.选择题(1)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是(A )Φ=⋃⋂)(321S S S C I(B )123I I S C S C S ⊆⋂() (C )Φ=⋂⋂)321S C S C S C I I I(D )123I I S C S C S ⊆⋃()(2)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为(A )π28 (B)π8 (C)π24 (D )π4 (3)函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =(A )2 (B )3 (C )4 (D )5 (4)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为(A )32(B )33 (C )34 (D )23(5)已知双曲线)0( 1222>=-a y ax 的一条准线为23=x ,则该双曲线的离心为(A)23 (B )23 (C )26(D )332(6)当20π<<x 时,函数xx x x f 2sin sin 82cos 1)(2++=的最小值为(A)2 (B )32 (C)4 (D )34(7))21( 22≤≤-=x x x y 反函数是(A ))11( 112≤≤--+=x x y ; (B))10( 112≤≤-+=x x y ;(C))11( 112≤≤---=x x y ; (D ))10( 112≤≤--=x x y(8)设10<<a ,函数)22(log )(2--=x x a a a x f ,则使0)(<x f 的x 的取值范围是(A ))0,(-∞(B )),0(+∞(C ))3log ,(a -∞(D )),3(log +∞a(9)在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为(A )2 (B )23 (C )223 (D )2(10)在ABC ∆中,已知C BA sin 2tan =+,给出以下四个论断:①1cot tan =⋅B A ;②2sin sin 0≤+<B A ;③1cos sin 22=+B A ;④C B A 222sin cos cos =+,其中正确的是(A )①③ (B )②④ (C )①④ (D)②③(11)点O 是三角形ABC 所在平面内的一点,满足OA OC OC OB OB OA ⋅=⋅=⋅,则点O 是ABC ∆的 (A )三个内角的角平分线的交点 (B )三条边的垂直平分线的交点(C )三条中线的交点(D )三条高的交点(12)设直线l 过点)0,2(-,且与圆122=+y x 相切,则l 的斜率是(A )1±(B )21±(C)33±(D )3±第Ⅱ卷二.填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★考试结束前2005年普通高等学校招生全国统一考试(浙江卷)数学(文科)本试题卷分选择题和非选择题两部分。

全卷共5页,选择题部分1至3页,非选择题部分4至5页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

参考公式 台体的体积公式121()3V h S S =其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高 柱体体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式13V Sh = 其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式24S R π=球的体积公式343V R π=其中R 表示球的半径 如果事件,A B 互斥 ,那么()()()P A B P A P B +=+一.选择题: 本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.函数sin(2)6y x π=+的最小正周期是A .2πB .πC .2πD .4π 2.设全集{}1,2,3,4,5,6,7U =,{}1,2,3,4,5P =,{}3,4,5,6,7Q =,则()U P Q =A .{}1,2B .{}3,4,5C .{}1,2,6,7D .{}1,2,3,4,5 3.点(1,-1)到直线10x y -+=的距离是( )A .21 B . 32C .2D .24.设()1f x x x =--,则1()2f f ⎡⎤=⎢⎥⎣⎦( )A . 12-B .0C .12D .1 5.在54(1)(1)x x +-+的展开式中,含3x 的项的系数是( )A .5-B .5C .-10D .106.从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码统计结果如下:则取到号码为奇数的频率是A .0.53B .0.5C .0.47D .0.377.设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么 A .①是真命题,②是假命题 B .①是假命题,②是真命题 C .①②都是真命题 D .①②都是假命题8.已知向量(5,3)a x =-,(2,)b x =,且a b ⊥,则由x 的值构成的集合是 A .{}2,3 B .{}1,6- C .{}2 D .{}69.函数31y ax =+的图象与直线y x =相切,则a =A .18B .14C .12D .110.设集合{}(,)|,,1A x y x y x y --=是三角形的三边长,则A 所表示的平面区域(不含边界的阴影部分)是( )A .B .C .D .非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色自拟的签字笔或钢笔描黑。

二.填空题:本大题共4小题,每小题4分,共16分。

11.函数2xy x =+(x ∈R ,且x ≠-2)的反函数是_________. 12.N是直角梯形13.过双曲线22221x y a b-=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________. 14.从集合{P ,Q ,R ,S }与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母Q 和数字0至多只能出现一个的不同排法种数是_________.(用数字作答).三.解答题:本大题共6小题,每小题14分,共84分。

解答应写出文字说明,证明过程或演算步骤。

15.已知函数()2sin cos cos 2f x x x x =+ (Ⅰ) 求()4f π的值;(Ⅱ) 设α∈(0,π),()22f α=,求sin α的值.16.已知实数,,a b c 成等差数列,1,1,4a b c +++成等比数列,且15a b c ++=,求,,a b c17.袋子A 和B 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是31,从B 中摸出一个红球的概率为p .(Ⅰ) 从A 中有放回地摸球,每次摸出一个,共摸5次求(i )恰好有3摸到红球的概率; (ii )第一次、第三次、第五次均摸到红球的概率. (Ⅱ) 若A 、B 两个袋子中的球数之比为1:2,将A 、B 中的球装在一起后,从中摸出一个红球的概率是25,求p 的值.18.如图,在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =12P A ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC . (Ⅰ)求证OD ∥平面PAB(Ⅱ) 求直线OD 与平面PBC 所成角的大小;19.如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程;(Ⅱ)若点P 在直线l 上运动,求∠F 1PF 2的最大值.20.函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2+2x . (Ⅰ)求函数g (x )的解析式; (Ⅱ)解不等式g (x )≥f (x )-|x -1|.(Ⅲ)若()()()1h x g x f x λ=-+在[]1,1-上是增函数,求实数λ的取值范围数学(文科)试题参考答案一.选择题:二.填空题.11. ()2,11xy x R x x=∈≠-且 12.90︒13.2 14.5832 三.解答题15满分14分解:(Ⅰ)∵()sin 2cos 2f x x x =+∴sin cos 1422f πππ⎛⎫=+= ⎪⎝⎭(Ⅱ) cos sin 2f ααα⎛⎫=+= ⎪⎝⎭∴1sin ,cos 424ππαα⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭ 13226sin sin 4422224ππαα⎛⎫=+-=⨯⨯= ⎪⎝⎭∵()0απ∈,, ∴sin 0α>, 故sin α=16.本题主要考查等差、等比数列的基本知识考查运算及推理能力满分14分解:由题意,得()()()()()()2151221413a b c a c b a c b ⎧++=⎪⎪+=⎨⎪++=+⎪⎩由(1)(2)两式,解得5b = 将10c a =-代入(3),整理得213220211,2,5,811,5, 1.a a a a a b c a b c -+=========-解得或故或经验算,上述两组数符合题意。

A17.本题主要考查排列组合、相互独立事件同时发生的概率等基本知识,同时考查学生的逻辑思维能力满分14分解:(Ⅰ)(ⅰ) 32351240.33243C ⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭(ⅱ)311327⎛⎫= ⎪⎝⎭.(Ⅱ)设袋子A 中有m 个球,袋子B 中有2m 个球,由122335m mpm +=,得1330p =18.本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力满分14分解:方法一:(Ⅰ) ∵O 、D 分别为AC 、PC 中点,OD PA ∴ ∥PA PAB ⊂又平面,OD PAB ∴ 平面∥(Ⅱ)AB BC OA OC ⊥= ,,OA OB OC ∴== ,OP ABC ⊥又 平面,.PA PB PC ∴== E PE BC POE ⊥取BC 中点,连结,则平面 OF PE F DF OF PBC⊥⊥作于,连结,则平面 ODF OD PBC ∴∠ 是与平面所成的角.sin OF Rt ODF ODF OD ∆∠==在中, OD PBC ∴ 与平面所成的角为方法二:OP ABC OA OC AB BC ⊥== 平面,,,.OA OB OA OP OB OP ∴⊥⊥⊥ ,,()O OP zO xyz -以为原点,射线为非负轴,建立空间直角坐标系如图,,0,0,,0,,0,0222AB a A B C ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭设,则 ()0,0,.OP h P h =设,则DOBCAPxyz()D PC 为的中点,Ⅰ212,0,,,0,422OD a h PA a h ⎛⎫⎛⎫∴=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 又, 1...2OD PA OD PA OD PAB ∴=-∴∴ 平面∥∥()2,PA a = Ⅱ 7,2h a ∴=214,0,,44OD a a ⎛⎫∴=- ⎪ ⎪⎝⎭11,1,,7PBC n ⎛⎫=- ⎪ ⎪⎝⎭可求得平面的法向量 210cos ,.30OD n OD n OD n⋅∴〈〉==⋅ OD PBC θ设与平面所成的角为, 210sin cos ,,30OD n θ=〈〉=则 210arcsin30OD PBC ∴ 与平面所成的角为19.本题主要考查椭圆的几何性质、椭圆方程、两条直线的夹角等基础知识,考查解析几何的基本思想方法和综合解题能力满分14分解:(Ⅰ)设椭圆方程为()222210x y a b a b +=>>,半焦距为c ,则2111,a MA a A F a c c =-=-,()2222224a a a c c a abc ⎧-=-⎪⎪⎪=⎨⎪=+⎪⎪⎩由题意,得 2,3,1a b c ∴=== ,221.43x y +=故椭圆方程为(Ⅱ)()004,,0P y y -≠设20.本题主要考查函数图象的对称、二次函数的基本性质与不等式的应用等基础知识,以及综合运用所学知识分析和解决问题的能力满分14分解:(Ⅰ)设函数()y f x =的图象上任意一点()00,Q x y 关于原点的对称点为(),P x y ,则0000,,2.0,2x xx x y y y y +⎧=⎪=-⎧⎪⎨⎨+=-⎩⎪=⎪⎩即 ∵点()00,Q x y 在函数()y f x =的图象上∴()22222,2y x x y x x g x x x -=-=-+=-+,即 故(Ⅱ)由()()21210g x f x x x x ≥----≤, 可得当1x ≥时,2210x x -+≤,此时不等式无解当1x <时,2210x x +-≤,解得12x -≤≤ 因此,原不等式的解集为11,2⎡-⎢⎣(Ⅲ)()()()21211h x x x λλ=-++-+①()[]1411,1h x x λ=-=+-当时,在上是增函数,1λ∴=-②11.1x λλλ-≠-=+当时,对称轴的方程为 ⅰ)111, 1.1λλλλ-<-≤-<-+当时,解得ⅱ)111,10.1λλλλ->-≥--<≤+当时,解得0.λ≤综上,。

相关文档
最新文档