无穷级数知识点介绍 整理人王浩
无穷级数知识点总结考研
无穷级数知识点总结考研一、无穷级数的概念无穷级数是由无穷多个数的和组成,通常用符号∑表示。
其一般形式为:S = a_1 + a_2 + a_3 + ...... + a_n + ......其中a_n是一个数列,称为级数的通项。
无穷级数是由级数的部分和组成的序列,即S_n = a_1 + a_2 + ...... + a_n,所以求无穷级数的和,就是求该序列的极限,即lim(S_n)。
在实际运用中,我们通常是通过研究级数的部分和的性质,来求级数的和或证明级数的敛散性。
二、无穷级数的敛散性1. 收敛与发散的定义级数的和S = ∑a_n,如果级数的部分和S_n = a_1 + a_2 + ...... + a_n存在极限L,即lim(S_n) = L,那么称级数收敛,其和为L,记作∑a_n = L。
如果级数的部分和S_n的极限不存在,或者极限为无穷大,即lim(S_n) = ±∞,那么称级数发散。
2. 收敛级数的判定(1)正项级数收敛判定对于正项级数∑a_n,即a_n≥0,根据级数的部分和单调递增有界的结论,若存在常数M,使得对一切n始终成立S_n ≤ M,那么级数收敛;如果对于任意的M > 0,总存在n_0,使得对一切n > n_0有S_n > M,那么级数发散。
(2)比较判别法若对于所有的n,总有0 ≤ a_n ≤ b_n,且∑b_n收敛,那么∑a_n也收敛;若对于所有的n,总有a_n ≥ b_n ≥ 0,且∑b_n发散,那么∑a_n也发散;若∑b_n发散,且对于足够大的n,总有a_n>b_n,则∑a_n发散。
(3)比值判别法若存在常数0 < q < 1及整数n_0,使得当n > n_0时,有a_n_+1/a_n ≤ q,那么级数收敛;若a_n_+1/a_n≥1,那么级数发散;若a_n_+1/a_n不满足以上两个条件,那么比值判别法无法判断级数的敛散性。
高等数学无穷级数知识点总结
高等数学无穷级数知识点总结
无穷级数是高等数学中的一个重要内容,它涉及到很多重要的概念和定理。
以下是一些高等数学无穷级数的知识点总结:
1. 无穷级数的基本概念:无穷级数是指一个数列的项按一定规律相加而成的数列。
其中,无穷级数的定义域可以是实数集或复数集。
2. 无穷级数的分类:无穷级数可以分为数项级数和函数项级数两大类。
数项级数是指以常数项级数的形式表示的无穷级数,而函数项级数则是以函数项的形式表示的无穷级数。
3. 无穷级数的敛散性:无穷级数的敛散性是指级数是否收敛或发散。
如果一个无穷级数收敛,则称其为收敛级数,反之则称为发散级数。
4. 无穷级数的判别法:无穷级数的判别法是指判断一个无穷级数是否收敛的方法。
常用的判别法包括比较判别法、比值判别法、根值判别法和莱布尼兹判别法等。
5. 无穷级数的和应用:无穷级数在数学中有着广泛的应用,例如求和、积分、微积分等。
在实际应用中,无穷级数往往被用来求解各种问题。
6. 无穷级数的和函数:无穷级数的和函数是指级数的每一项相加得到的总和。
无穷级数的和函数具有很多重要的性质,例如连续性、可导性等。
7. 无穷级数的广义性质:无穷级数的广义性质是指关于无穷级数的一些扩展概念和定理。
例如,无穷级数的前 n 项和的广义性质、
无穷级数的广义收敛性等。
以上是高等数学无穷级数的一些重要知识点总结。
希望能对读者有所帮助。
无穷级数知识点汇总
无穷级数知识点汇总一、数项级数(一)数项级数的基本性质1.收敛的必要条件:收敛级数的一般项必趋于0.2.收敛的充要条件(柯西收敛原理):对任意给定的正数ε,总存在N 使得对于任何两个N 大于的正整数m 和n ,总有ε<-n m S S .(即部分和数列收敛)3.收敛级数具有线性性(即收敛级数进行线性运算得到的级数仍然收敛),而一个收敛级数和一个发散级数的和与差必发散.4.对收敛级数的项任意加括号所成级数仍然收敛,且其和不变.5.在一个数项级数内去掉或添上有限项不会影响敛散性. (二)数项级数的性质及敛散性判断 1.正项级数的敛散性判断方法(1)正项级数基本定理:如果正项级数的部分和数列有上界,则正项级数收敛. (2)比较判别法(放缩法):若两个正项级数∑∞=1n nu和∑∞=1n nv之间自某项以后成立着关系:存在常数0>c ,使),2,1( =≤n cv u n n ,那么 (i )当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii )当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.推论:设两个正项级数∑∞=1n n u 和∑∞=1n n v ,且自某项以后有nn n n v v u u 11++≤,那么 (i )当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii )当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.(3)比较判别法的极限形式(比阶法):给定两个正项级数∑∞=1n n u 和∑∞=1n n v ,若0lim >=∞→l v u nnn ,那么这两个级数敛散性相同.(注:可以利用无穷小阶的理论和等价无穷小的内容) 另外,若0=l ,则当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;若∞=l ,则当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.常用度量: ①等比级数:∑∞=0n nq,当1<q 时收敛,当1≥q 时发散;②p -级数:∑∞=11n p n ,当1>p 时收敛,当1≤p 时发散(1=p 时称调和级数); ③广义p -级数:()∑∞=2ln 1n pn n ,当1>p 时收敛,当1≤p 时发散.④交错p -级数:∑∞=--111)1(n pn n ,当1>p 时绝对收敛,当10≤<p 时条件收敛. (4)达朗贝尔判别法的极限形式(商值法):对于正项级数∑∞=1n n u ,当1lim1<=+∞→r u u nn n 时级数∑∞=1n n u 收敛;当1lim1>=+∞→r u u nn n 时级数∑∞=1n n u 发散;当1=r 或1=r 时需进一步判断. (5)柯西判别法的极限形式(根值法):对于正项级数∑∞=1n nu,设n n n u r ∞→=lim ,那么1<r 时此级数必为收敛,1>r 时发散,而当1=r 时需进一步判断. (6)柯西积分判别法:设∑∞=1n nu为正项级数,非负的连续函数)(x f 在区间),[+∞a 上单调下降,且自某项以后成立着关系:n n u u f =)(,则级数∑∞=1n n u 与积分⎰+∞)(dx x f 同敛散.2.任意项级数的理论与性质(1)绝对收敛与条件收敛:①绝对收敛级数必为收敛级数,反之不然; ②对于级数∑∞=1n nu,将它的所有正项保留而将负项换为0,组成一个正项级数∑∞=1n nv,其中2nn n u u v +=;将它的所有负项变号而将正项换为0,也组成一个正项级数∑∞=1n nw,其中2nn n u u w -=,那么若级数∑∞=1n nu绝对收敛,则级数∑∞=1n nv和∑∞=1n nw都收敛;若级数∑∞=1n nu条件收敛,则级数∑∞=1n nv和∑∞=1n nw都发散.③绝对收敛级数的更序级数(将其项重新排列后得到的级数)仍绝对收敛,且其和相同. ④若级数∑∞=1n nu和∑∞=1n nv都绝对收敛,它们的和分别为U 和V ,则它们各项之积按照任何方式排列所构成的级数也绝对收敛,且和为UV .特别地,在上述条件下,它们的柯西乘积⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=11n n n n v u 也绝对收敛,且和也为UV . 注:⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=∑∑∑∞=∞=∞=111n n n n n n v u c ,这里121121v u v u v u v u c n n n n n ++++=-- .(2)交错级数的敛散性判断(莱布尼兹判别法):若交错级数∑∞=--11)1(n n n u 满足0lim =∞→n n u ,且{}n u 单调减少(即1+≥n n u u ),则∑∞=--11)1(n n n u 收敛,其和不超过第一项,且余和的符号与第一项符号相同,余和的值不超过余和第一项的绝对值.二、函数项级数(一)幂级数1.幂级数的收敛半径、收敛区间和收敛域 (1)柯西-阿达马定理:幂级数∑∞=-00)(n n nx x a在R x x <-0内绝对收敛,在Rx x >-0内发散,其中R 为幂级数的收敛半径. (2)阿贝尔第一定理:若幂级数∑∞=-00)(n n nx x a在ξ=x 处收敛,则它必在00x x x -<-ξ内绝对收敛;又若∑∞=-00)(n n nx x a在ξ=x 处发散,则它必在00x x x ->-ξ也发散.推论1:若幂级数∑∞=0n n nx a在)0(≠=ξξx 处收敛,则它必在ξ<x 内绝对收敛;又若幂级数∑∞=0n n nx a在)0(≠=ξξx 处发散,则它必在ξ>x 时发散.推论2:若幂级数∑∞=-00)(n n nx x a在ξ=x 处条件收敛,则其收敛半径0x R -=ξ,若又有0>n a ,则可以确定此幂级数的收敛域.(3)收敛域的求法:令1)()(lim1<+∞→x a x a nn n 解出收敛区间再单独讨论端点处的敛散性,取并集.2.幂级数的运算性质(1)幂级数进行加减运算时,收敛域取交集,满足各项相加;进行乘法运算时,有:∑∑∑∑∞==-∞=∞=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛0000n n n i i n i n n n n n n x b a x b x a ,收敛域仍取交集. (2)幂级数的和函数)(x S 在收敛域内处处连续,且若幂级数∑∞=-00)(n nn x x a在R x x -=0处收敛,则)(x S 在[)R x R x +-00,内连续;又若幂级数∑∞=-00)(n n nx x a在R x x +=0处收敛,则)(x S 在(]R x R x +-00,内连续.(3)幂级数的和函数)(x S 在收敛域内可以逐项微分和逐项积分,收敛半径不变. 3.函数的幂级数展开以及幂级数的求和 (1)常用的幂级数展开:① +++++=nxx n x x e !1!2112∑∞==0!n n n x ,x ∈(-∞, +∞).②=11x -1+x +x 2+···+x n +··· =∑∞=0n n x ,x ∈(-1, 1). 从而,∑∞=-=+0)(11n nx x ,∑∞=-=+022)1(11n n n x x . ③∑∞=+++-=++-+-+-=0121253)!12()1()!12()1(!51!31sin n n nn n n x n x x x x x ,x ∈(-∞, +∞).④∑∞=-=+-+-+-=02242)!2()1()!2()1(!41!211cos n n n n n n x n x x x x ,x ∈(-∞, +∞). ⑤∑∞=-+-=++-+-+-=+11132)1(11)1(3121)1ln(n n n n n n x x n x x x x ,x ∈(-1, 1]. ⑥ ++--++-++=+n x n n x x x !)1()1(!2)1(1)1(2ααααααα,x ∈(-1, 1).⑦1202123)12()!(4)!2(12!)!2(!)!12(321arcsin +∞=+∑+=++-+++=n n n n x n n n n x n n x x x ,x ∈[-1, 1]. ⑧120123121)1(121)1(31arctan +∞=++-=++-++-=∑n n n n n x n x n x x x ,x ∈[-1, 1].(2)常用的求和经验规律:①级数符号里的部分x 可以提到级数外;②系数中常数的幂中若含有n ,可以与x 的幂合并,如将n c 和n x 合并为ncx )(; ③对∑∞=0n nnx a求导可消去n a 分母因式里的n ,对∑∞=0n n n x a 积分可消去n a 分子因式里的1+n ;④系数分母含!n 可考虑x e 的展开,含)!2(n 或)!12(+n 等可考虑正余弦函数的展开; ⑤有些和函数满足特定的微分方程,可以考虑通过求导发现这个微分方程并求解. (二)傅里叶级数1.狄利克雷收敛定理(本定理为套话,不需真正验证,条件在命题人手下必然成立) 若)(x f 以l 2为周期,且在[-l , l ]上满足: ①连续或只有有限个第一类间断点; ②只有有限个极值点;则)(x f 诱导出的傅里叶级数在[-l , l ]上处处收敛. 2. 傅里叶级数)(x S 与)(x f 的关系:⎪⎪⎪⎩⎪⎪⎪⎨⎧-++--++=.2)0()0(2)0()0()()(为边界点,为间断点;,为连续点;,x l f l f x x f x f x x f x S3.以l 2为周期的函数的傅里叶展开展开:∑∞=⎪⎪⎭⎫⎝⎛++=10sin cos 2)(~)(n n n l x n b l x n a a x S x f ππ(1)在[-l , l ]上展开:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰---l ln l l n l l dx l x n x f l b dx l x n x f l a dx x f l a ππsin )(1cos )(1)(10;(2)正弦级数与余弦级数:①奇函数(或在非对称区间上作奇延拓)展开成正弦级数:⎪⎪⎩⎪⎪⎨⎧===⎰l n n dxl x n x f l b a a 00sin )(200π;②偶函数(或在非对称区间上作偶延拓)展开成余弦级数:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰0cos )(2)(2000n l n l b dx l x n x f l a dx x f l a π;4.一些在展开时常用的积分: (1);0cos ;1)1(sin 010=+-=⎰⎰+ππnxdx nnxdx n(2)2sin 1cos ;1sin 2020πππn n nxdx n nxdx ==⎰⎰;(3)2022010)1(2cos 1)1(cos ;)1(sin n nxdx x n nxdx x n nxdx x n n n -=--=-=⎰⎰⎰+πππππ;; (4)C nx n nx a e n a nxdx e axax +-+=⎰)cos sin (1sin 22; C nx a nx n e na nxdx e ax ax +++=⎰)cos sin (1cos 22; (5)C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21sin sin ;C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21cos cos .注:①求多项式与三角函数乘积的积分时可采用列表法,注意代入端点后可能有些项为0; ②展开时求积分要特别注意函数的奇偶性及区间端点和间断点的特殊性; ③对于π≠l 的情形,事先令x lt π=对求积分通常是有帮助的.。
无穷级数知识点
无穷级数知识点
嘿,朋友们!今天咱来聊聊无穷级数这个有意思的知识点。
啥是无穷级数呢?简单来说,就是把一堆数按照一定规则加起来,不过这堆数有无穷多个呢!就好像你有无限多的糖果,然后把它们一个一个地加起来。
无穷级数有很多种类型哦。
比如说正项级数,这些数都是正数呢。
那怎么判断一个正项级数收不收敛呢?有好多方法呀!就像我们判断一件事情能不能成功一样,有各种标准。
还有交错级数,这些数一会儿正一会儿负,就像坐过山车一样起起伏伏。
对于交错级数,也有专门的判别法来看看它是不是收敛的。
那无穷级数有啥用呢?哎呀,用处可大啦!比如在数学的很多领域都能看到它的身影。
它就像是一把万能钥匙,可以打开很多知识的大门。
想象一下,如果没有无穷级数,很多数学问题就没办法解决啦,那该多可惜呀!它就像一个神奇的工具,帮助我们更好地理解和探索数学的奥秘。
在物理学中,无穷级数也常常出现呢!比如在研究一些波动现象的时候,无穷级数就能发挥大作用啦。
总之,无穷级数是数学中非常重要的一部分,它充满了魅力和神奇。
它让我们看到了数学的无限可能,让我们对知识的追求永无止境。
所以呀,大家可别小看了无穷级数哦,它真的超级厉害的!。
无穷级数知识点总结专升本
无穷级数知识点总结专升本一、概念无穷级数是由无限多个项组成的级数,其中每个项都是一个数字或者变量的表达式。
无穷级数通常用符号∑表示,其中∑表示总和,表示对所有项进行求和。
无穷级数可以是收敛的,也可以是发散的。
对于收敛的无穷级数,其和可以用极限来表示;对于发散的无穷级数,其和不存在。
二、级数的性质1.级数的部分和级数的部分和是指级数前n项的和,用Sn表示。
当n趋向无穷大时,级数的部分和就是级数的和。
当级数的部分和的极限存在时,级数收敛;当级数的部分和的极限不存在时,级数发散。
2.级数的收敛与发散级数的收敛指的是级数的部分和的极限存在,也就是级数的和存在;级数的发散指的是级数的部分和的极限不存在,也就是级数的和不存在。
3.级数的敛散性级数敛散性指的是级数的收敛性或发散性。
级数的敛散性可以通过级数的部分和的极限是否存在来判断。
4.级数的比较性级数的比较性是指通过级数的部分和与其他级数的部分和进行比较来判断级数的敛散性。
可以通过比较原则、比值原则、根值原则等方法来比较级数的敛散性。
5.级数的运算性质级数满足加法、数乘、绝对收敛、收敛性与级数重新排列等运算性质。
三、收敛级数1.正项级数对于所有项均为非负数的级数,称为正项级数。
正项级数通常采用单调有界数列的性质来判断是否收敛。
2.幂级数幂级数是形式为∑an*x^n的无穷级数,其中an为常数系数,x为自变量。
幂级数通常需要通过收敛半径来判断其收敛性。
3.级数的收敛判别法级数的收敛判别法是用来判断级数是否收敛的方法,包括比较法、审敛法、根值法、比值法、积分法等。
4.级数收敛性的应用无穷级数的收敛性可以应用于数学和物理等领域,如泰勒级数、傅立叶级数等。
四、发散级数1.发散级数的定义对于发散级数而言,其和不存在,无法通过有限项之和来表示。
发散级数可能是几何级数、调和级数、交错级数等。
2.级数的发散判别法级数的发散判别法是用来判断级数是否发散的方法,例如:项数发散法、数值发散法、微分法等。
无穷级数知识点高一
无穷级数知识点高一无穷级数是数学中的一个重要概念,也是高一学习数学时必须掌握的知识点之一。
掌握无穷级数的概念及其相关性质,对于以后的数学学习和应用有很大的帮助。
本文将从定义、收敛性和求和公式三个方面介绍高一学生需要了解的无穷级数知识。
一、定义无穷级数是由一列数按照一定规律排列形成的数列的和。
形式上,一个无穷级数可以表示为:S = a₁ + a₂ + a₃ + ...其中,a₁, a₂, a₃, ... 是数列的项。
无穷级数一般用符号"∑"来表示。
二、收敛性对于一个无穷级数,我们关注它是否有确定的和。
如果一个无穷级数的部分和数列{Sₙ}的极限存在,那么我们称这个无穷级数是收敛的,部分和数列的极限就是该无穷级数的和。
有两个常见的收敛判定准则:1. 比值判别法:若极限 lim(aₙ₊₁/aₙ) 存在且小于1,则无穷级数收敛;若大于1,则无穷级数发散;若等于1,则判定不确定。
2. 积分判别法:对于正项级数∑aₙ,若能找到连续、正值的函数f(x)使得 f(n) = aₙ,则∫f(x)dx从1到正无穷收敛,则原级数收敛;若发散,则原级数发散。
三、求和公式对于一些特定的无穷级数,我们可以找到它们的求和公式,从而便于计算。
以下是一些常见的求和公式:1. 等差数列求和公式:S = (n/2)(a₁ + aₙ)2. 等比数列求和公式:S = a₁ / (1 - r),其中|r| < 13. 幂级数求和公式:对于幂级数∑(aₙxₙ),当|x| < 1时,S =a₁ / (1 - x)注意,这里提到的求和公式只是一些常见的情况,实际上,很多无穷级数并不容易求和,需要借助更高级的数学方法来求解。
综上所述,无穷级数是高一数学中的重要内容,学生需要掌握无穷级数的概念、收敛性及求和公式。
理解无穷级数的概念和性质有助于培养学生的数学思维,提高问题解决能力。
同时,也为将来学习数学的更深层次打下了坚实的基础。
无穷级数知识点总结
无穷级数知识点总结一、无穷级数的定义无穷级数是指由无限个实数或复数项组成的数列之和。
一般地,我们用数列 {a_n} 来表示无穷级数的各项,那么无穷级数就可以表示为:S = a_1 + a_2 + a_3 + ...其中 S 代表无穷级数的和,而 a_1, a_2, a_3, ... 分别代表无穷级数的各项。
无穷级数通常可以用极限的概念来进行定义,即无穷级数的和就是数列的极限。
如果数列 {S_n} 的部分和数列收敛到某个数 L,那么无穷级数 S 的和便为 L,即:S = lim (n->∞) S_n = L这里的 S_n 代表无穷级数的部分和数列,它可以写成:S_n = a_1 + a_2 + ... + a_n无穷级数的定义是无穷数列极限的推广,它引入了无穷个数的概念,因此无穷级数的性质和收敛性等问题相对于有限级数来说更加复杂和多样。
二、无穷级数的性质无穷级数在数学中有着许多重要的性质,这些性质对于研究无穷级数的收敛性、计算方法以及应用等方面都有着重要的作用。
下面我们将详细介绍无穷级数的一些重要性质。
1. 无穷级数的有限项相加结果相同如果无穷级数的有限项相加的结果相同,那么这个无穷级数的和也相同。
即如果无穷级数S = a_1 + a_2 + a_3 + ... 的前 n 项之和等于 S_n,而无穷级数 T = b_1 + b_2 + b_3 + ... 的前 n 项之和等于 T_n,并且 S_n = T_n,那么这两个无穷级数的和也相等,即 S = T。
2. 无穷级数的倒序相加结果相同如果无穷级数的倒序相加的结果与原来的无穷级数相同,那么这个无穷级数的和同样相同,即如果无穷级数 S = a_1 + a_2 + a_3 + ... 的倒序相加的结果也等于 S,那么这个无穷级数的和就等于 S。
3. 无穷级数的部分和数列的有界性如果无穷级数的部分和数列 {S_n} 是有界的,即存在一个正数 M,使得对于所有的正整数n,都有 |S_n| <= M,那么这个无穷级数是收敛的。
大一高数无穷级数知识点
大一高数无穷级数知识点在大一高等数学课程中,无穷级数是一个重要的内容,具有广泛的应用。
了解无穷级数的概念、性质和收敛条件等知识点对于学好这门课程是至关重要的。
本文将介绍大一高数无穷级数的基本知识点,并对其应用进行简要探讨。
一、无穷级数的概念无穷级数是由一系列数的和构成的数列。
设a₁、a₂、a₃、⋯、aₙ、⋯是一列实数,将它们相加所得的数列称为无穷级数,表示为:S = a₁ + a₂ + a₃ + ⋯ + aₙ + ⋯二、无穷级数的收敛和发散1. 收敛的定义:若一个无穷级数的部分和数列{Sₙ}收敛于某个实数S,即lim(n→∞)Sₙ = S,则称该无穷级数收敛,否则称为发散。
2. 收敛的必要条件:无穷级数收敛的必要条件是它的通项数列趋于零,即lim(n→∞)aₙ = 0。
3. 通项数列趋于零的充分条件:若无穷级数的通项数列满足aₙ≤aₙ₊₁(n≥N,N为某个自然数),则该无穷级数收敛。
三、常见的无穷级数1. 等差数列的无穷级数:若等差数列a₁、a₂、a₃、⋯、aₙ、⋯的公差不为零,即aₙ₊₁ - aₙ = d ≠ 0,则其部分和数列为等差数列,即Sₙ = (n/2)(2a₁ + (n-1)d)。
若d>0并且|a₁|/(|a₁ + d| < 1,则该无穷级数收敛,反之发散。
2. 等比数列的无穷级数:若等比数列a₁、a₂、a₃、⋯、aₙ、⋯的公比不为零,即aₙ₊₁/aₙ = q ≠ 0,则其部分和数列为等比数列,即Sₙ = a₁(1-qⁿ)/(1-q)。
当|q|<1时,该无穷级数收敛,否则发散。
四、收敛级数的运算性质1. 收敛级数的有界性:收敛级数的部分和数列有界。
2. 收敛级数的加法性:有限个收敛级数的和仍然是收敛级数。
3. 收敛级数的乘法性:若级数{aₙ}收敛,级数{bₙ}绝对收敛,则乘积级数{aₙbₙ}收敛。
五、收敛级数的应用无穷级数在数学和实际问题中有广泛的应用,以下介绍两个常见的应用:1. 泰勒级数:泰勒级数是一种无穷级数展开式,用于将函数表示成无穷级数的形式。
无穷级数知识点汇总
无穷级数知识点汇总无穷级数是由无穷多个数的和组成的数列。
它是数学中的基本概念,具有广泛的应用,涉及到数学分析、物理学、工程学等领域。
无穷级数的收敛与发散是无穷级数研究的核心问题。
收敛意味着无穷级数的和存在,而发散则意味着无穷级数的和不存在。
接下来,我们将介绍几个与无穷级数收敛与发散相关的知识点。
1.部分和的概念:对于给定的无穷级数,在给定的位置截取有限个数进行求和,这个和称为部分和。
部分和序列是由部分和构成的数列。
在研究无穷级数收敛与发散时,通常先分析部分和序列的性质。
2.等比级数:等比级数是指形如a+ar+ar^2+...的级数,其中a是首项,r是公比。
当公比,r,<1时,等比级数收敛,和为a/(1-r)。
当,r,≥1时,等比级数发散。
3.绝对收敛与条件收敛:如果一个无穷级数的各项绝对值组成的级数收敛,那么这个级数是绝对收敛的。
如果一个级数是收敛的但不是绝对收敛的,那么这个级数是条件收敛的。
4. 正项级数:如果一个无穷级数的各项都是非负数,或者说对于所有的n,an≥0,那么这个级数是正项级数。
正项级数的部分和序列是递增的,且如果部分和序列有上界,则该级数收敛。
5.收敛判别法:为了判断一个无穷级数的收敛性,数学家发展了多种不同的方法。
其中一些著名的判别法包括比值判别法、根值判别法、积分判别法等。
这些方法根据级数项之间的关系,通过判断级数的部分和序列是否满足一些特定条件,进而判断级数的收敛性。
6.绝对收敛级数的性质:绝对收敛级数在加法和乘法运算下具有良好的性质。
例如,绝对收敛级数可以无限重排项而不改变其和。
此外,对于绝对收敛级数,我们可以通过将级数分拆成两部分再进行求和,这样的重排不改变级数的和。
除了以上内容,无穷级数还涉及到级数的收敛半径、幂级数、Fourier级数等等一系列的概念和方法。
-收敛半径是幂级数中重要的一个概念,指的是幂级数在哪些点上收敛的临界点。
可以使用柯西-阿达玛公式来计算收敛半径。
大学数学微积分第十一章 无穷级数常数项级数知识点总结
第十一章 无穷级数 § 11.1 常数项级数一、基本概念与性质 1. 基本概念无穷多个数123,,,,,n u u u u 依次相加所得到的表达式1231nn n uu u u u ∞==+++++∑称为数项级数(简称级数)。
1nn k k S u ===∑123n u u u u ++++ (1,2,3,n =)称为级数的前n 项的部分和,{}(1,2,3,)n S n =称为部分和数列。
11lim (),,n n n n n n S S u S u S ∞∞→∞====∑∑若存在则称级数是收敛的,且其和为记以lim n n S →∞若不存在,则称级数1n n u ∞=∑是发散的,发散级数没有和的概念。
(注:在某些特殊含义下可以考虑发散级数的和,但在基础课和考研的考试大纲中不作这种要求。
) 2. 基本性质 (1)如果11111,()nnnn n n n n n n n u v a b aubv a u b v ∞∞∞∞∞=====++∑∑∑∑∑和皆收敛,为常数,则收敛,且等于(2) 在级数中增加或减少或变更有限项则级数的收敛性不变。
(3) 收敛级数具有结合律,也即对级数的项任意加括号所得到的新级数仍收敛,而且其和不变。
发散级数不具有结合律,引言中的级数可见是发散的,所以不同加括号后得到级数的情形就不同。
(4) 级数1n n u ∞=∑收敛的必要条件是lim 0n n u →∞=(注:引言中提到的级数11(1),n n ∞+=-∑具有lim n →∞()11n +-不存在,因此收敛级数的必要条件不满足,1n ∞=∑()11n +-发散。
调和级数1n ∞=∑1n满足limn →∞10,n =但1n ∞=∑1n 却是发散的,所以满足收敛级数的必要条件lim n →∞0n u =,而1n ∞=∑n u 收敛性尚不能确定。
)3.两类重要的级数(1)等比级数(几何级数):0n n ar ∞=∑ ()0a ≠当1r <时,0nn ar ∞=∑1ar =-收敛;当1r ≥时,0n n ar ∞=∑发散(2)p--级数:11p n n ∞=∑ 当p>1时,11p n n ∞=∑收敛, 当p ≤1时11pn n∞=∑发散(注:p>1时,11pn n∞=∑的和一般不作要求,但后面用特殊的方法可知1n ∞=∑2216n π=) 二、正项级数敛散性的判别法()01,2,3,n u n ≥=若则1nn u∞=∑称为正项级数,这时(){}11,2,3,n n n S S n S +≥=所以是单调加数列,它是否收敛就只取决于n S 是否有上界,因此1n ∞=∑n nu S ⇔收敛有上界,这是正项级数比较判别法的基础,从而也是正项级数其它判别法的基础。
无穷级数知识点总结简短
无穷级数知识点总结简短
1. 无穷级数的定义
无穷级数是指由无限个数相加而成的级数,通常表示为:
S = a1 + a2 + a3 + ...
其中,a1, a2, a3...表示级数的每一项。
2. 无穷级数的收敛与发散
无穷级数可能收敛也可能发散。
如果无穷级数的部分和S_n在n趋向无穷时收敛于某一有
限数,即lim(S_n) = S,则称该无穷级数收敛;如果无穷级数的部分和S_n在n趋向无穷
时发散至无穷大或者发散至负无穷大,即lim(S_n) = ±∞,则称该无穷级数发散。
3. 无穷级数的收敛性判别法
无穷级数的收敛性判别法有很多种,包括比较判别法、比值判别法、根值判别法、积分判
别法等。
这些判别法可以用来判断无穷级数的收敛性,并且在实际问题中有很多应用。
4. 无穷级数的性质
无穷级数有许多重要的性质,包括级数的线性性质、级数的绝对收敛性、级数的收敛域等。
这些性质在研究无穷级数的收敛性和计算级数的和时非常重要。
5. 无穷级数的应用
无穷级数在物理、工程、计算机科学等领域都有重要的应用。
例如,在物理学中,泰勒级
数可用于近似计算非线性函数的值;在工程学中,级数可以用来描述振动、波动等现象;
在计算机科学中,级数在算法复杂性分析和数值计算中也有广泛的应用。
总之,无穷级数是数学中一个重要的概念,它涉及到收敛与发散、收敛性判别法、性质和
应用等方面,对于理解和应用级数有着重要的意义。
无穷极数知识点总结
无穷极数知识点总结1. 无穷级数的定义无穷级数是指由无穷多个项组成的级数,通常表示为a1 + a2 + a3 + ... + an + ...,其中每一项an是一个实数或复数。
无穷级数可以是收敛的,即其和是一个有限的值,也可以是发散的,即其和不存在或为无穷大。
2. 无穷级数的收敛无穷级数收敛的概念是指无穷级数的和在某个范围内趋于一个有限的值。
收敛的无穷级数在数学分析和实际应用中有着广泛的应用,例如在泰勒级数展开、微积分中的积分计算等方面。
无穷级数的收敛有多种判别法,如比较判别法、根值判别法、积分判别法等。
3. 无穷级数的发散无穷级数发散的概念是指无穷级数的和无法趋向于一个有限的值,而是趋向于无穷大或者根本无法定义。
无穷级数的发散也有多种判别法,例如奇偶项判别法、柯西收敛准则等。
4. 绝对收敛与条件收敛无穷级数的收敛有两种情况,一种是绝对收敛,即该级数每一项的绝对值级数收敛;另一种是条件收敛,即该级数每一项的绝对值级数发散,但级数本身却收敛。
绝对收敛级数在某种程度上更容易处理和计算,而条件收敛级数的性质相对更为复杂,也更有意思。
5. 级数收敛的充分条件对于实数级数来说,级数部分和序列的收敛性与级数本身的收敛性之间是十分紧密的,因此研究级数部分和序列的收敛性可以得到级数收敛的充分条件。
比如级数收敛的柯西准则、级数收敛的柯西——施瓦茨准则、莱布尼茨级数收敛准则等。
6. 无穷级数的运算无穷级数也可以进行加减乘除等运算,不过进行这些运算时需要满足一定的条件,比如级数收敛、级数部分和序列的收敛性等。
无穷级数的运算规则也有许多特殊的性质,如级数的收敛性与绝对收敛性的性质、级数的乘法运算性质、级数的幂级数展开等。
7. 级数收敛的应用无穷级数的研究在数学中有着广泛的应用,比如在分析学中的泰勒级数展开、微积分中的求和、微分方程的求解、数论中的级数和等方面都有不同程度的应用。
无穷级数也在物理学、工程学、经济学等应用领域中有着很多重要的应用。
无穷级数重要知识点总结
无穷级数重要知识点总结一、无穷级数的定义1.1 无穷级数的概念无穷级数是一种特殊的数列求和形式。
它由一个无穷数列的项之和构成,通常表示为a1 + a2 + a3 + ... + an + ...,其中a1, a2, a3, ...是数列的项。
无穷级数的和是用极限的概念来定义的,即当n趋向无穷时,无穷级数的前n项和趋于一个确定的数。
1.2 无穷级数的收敛和发散无穷级数有两种基本的收敛性质:收敛和发散。
当无穷级数的和存在时,我们称这个级数是收敛的;当无穷级数的和不存在时,我们称这个级数是发散的。
1.3 无穷级数的通项无穷级数的通项是指级数中每一项的公式表示。
通项的形式多种多样,可以是一个简单的代数式,也可以是一个复杂的函数表达式。
通项的形式对于判断无穷级数的收敛性有着重要的作用。
二、无穷级数的性质2.1 无穷级数的加法性质如果无穷级数a1 + a2 + a3 + ... + an + ...和无穷级数b1 + b2 + b3 + ... + bn + ...都存在,那么它们的和也存在,并且等于这两个级数的和的和。
即∑(ai + bi) = ∑ai + ∑bi。
2.2 无穷级数的乘法性质如果无穷级数a1 + a2 + a3 + ... + an + ...和无穷级数b1 + b2 + b3 + ... + bn + ...都存在,那么它们的乘积也存在,并且等于这两个级数的乘积的和。
即(∑ai) * (∑bi) = ∑(ai * bi)。
2.3 无穷级数的极限性质当n趋向无穷时,无穷级数的前n项和会趋于一个确定的数。
这个极限的存在性和确定性是无穷级数的一个重要性质。
2.4 无穷级数的收敛性质对于一个给定的无穷级数,我们需要研究它的收敛性质,即它是否收敛、以及收敛到哪个数。
无穷级数的收敛性质对于很多数学问题有着深远的影响。
2.5 无穷级数的发散性质发散是无穷级数的另一个重要性质,它表示无穷级数的和不存在。
大一下高数知识点无穷级数
大一下高数知识点无穷级数大一下高数知识点:无穷级数在大一下的高等数学课程中,无穷级数是一个重要的知识点。
无穷级数是由无穷多个数相加(或相减)所得的结果,它在数学和其它科学领域中都有广泛的应用。
本文将着重介绍无穷级数的定义、性质和一些重要的收敛准则。
一、无穷级数的定义无穷级数可以写作以下形式:S = a₁ + a₂ + a₃ + ... + aₙ + ...其中,a₁、a₂、a₃等为级数的各项。
二、常见的无穷级数1. 等差级数等差级数是最常见的一类无穷级数。
它的通项公式一般为:aₙ = a₁ + (n-1)d其中,a₁为首项,d为公差。
例如,等差级数的前5项可以表示为:S₅ = a₁ + (a₁ + d) + (a₁ + 2d) + (a₁ + 3d) + (a₁ + 4d)2. 等比级数等比级数的通项公式一般为:aₙ = a₁ * r^(n-1)其中,a₁为首项,r为公比。
例如,等比级数的前5项可以表示为:S₅ = a₁ + a₁r + a₁r² + a₁r³ + a₁r⁴三、无穷级数的性质1. 部分和在无穷级数中,我们通常用部分和来近似计算级数的和。
部分和Sn定义为:Sₙ = a₁ + a₂ + a₃ + ... + aₙ其中,n为正整数。
2. 收敛和发散对于无穷级数,如果其部分和Sn在n趋向于无穷大时有极限S,则称该级数收敛,否则称该级数发散。
如果收敛,其收敛值S即为无穷级数的和。
3. 收敛性质无穷级数有以下重要的收敛性质:(1)若级数Sn收敛,则其任意子级数也收敛。
(2)若级数Sn发散,则其任意超级数也发散。
(3)若级数Sn和级数Tn都是收敛的,则它们的和级数Sn + Tn也是收敛的。
4. 绝对收敛和条件收敛若级数的所有项的绝对值构成的级数收敛,则称原级数绝对收敛。
否则,若级数本身收敛但其对应的绝对值级数发散,则称原级数条件收敛。
四、无穷级数的收敛准则在判断无穷级数的收敛性时,有一些常用的收敛准则:1. 正项级数判别法如果级数的所有项都是非负数,并且后一项总是比前一项大或相等,则该级数收敛。
高数大一知识点无穷级数
高数大一知识点无穷级数高数大一知识点:无穷级数无穷级数是数学分析中一个重要的概念,指的是一个由无穷多个数相加或相乘而得到的数列或数列的和。
在大一的高等数学课程中,无穷级数是一个重要的知识点,本文将介绍无穷级数的定义、性质以及一些常见的无穷级数。
1. 无穷级数的定义在数学中,无穷级数的定义如下:设给定一个数列{an},则称S = a1 + a2 + a3 + ... + an + ...为该数列的无穷级数。
其中,ai为无穷级数的通项。
2. 无穷级数的性质无穷级数具有以下几个性质:2.1 收敛性:如果无穷级数的部分和数列{Sn}存在有限极限s,即lim(n→∞)Sn = s,则称该无穷级数收敛,s为该无穷级数的和。
2.2 敛散性:如果无穷级数的部分和数列{Sn}不存在有限极限,即lim(n→∞)Sn不存在或为无穷大,则称该无穷级数发散。
2.3 绝对收敛性:如果无穷级数的绝对值级数收敛,则称该无穷级数绝对收敛。
2.4 条件收敛性:如果无穷级数收敛但绝对值级数发散,则称该无穷级数条件收敛。
3. 常见的无穷级数3.1 等差数列的无穷级数等差数列的无穷级数是一类常见的无穷级数。
它的通项可以表示为an = a + (n-1)d,其中a为首项,d为公差。
等差数列的无穷级数可以用以下公式进行求和:Sn = n(a + a + (n-1)d)/23.2 等比数列的无穷级数等比数列的无穷级数也是常见的无穷级数类型。
它的通项可以表示为an = ar^(n-1),其中a为首项,r为公比(不等于0)。
等比数列的无穷级数可以用以下公式进行求和:S = a/(1-r),当|r|<1时3.3 调和级数调和级数是一类极其重要的无穷级数,它的通项可以表示为an = 1/n。
调和级数的部分和数列可以用以下公式表示:Sn = 1 + 1/2 + 1/3 + ... + 1/n4. 无穷级数的应用无穷级数在数学及其他领域中有广泛的应用。
第12章无穷级数知识点总结
第十二章 无穷级数一、 常数项级数1. 常数项级数的基本性质①1nn u∞=∑收敛⇔部分和数列{}n s 收敛,其中12n n s u u u =+++.② 若1nn u∞=∑收敛,则lim 0n n u →∞=;反之,则不一定成立.③ 若1nn uU ∞==∑,1n n v V ∞==∑,则()1n n n au bv aU bV ∞=+=+∑(a 、b 为任意常数).④ 收敛级数满足结合律注意:发散级数加括号后有可能得到收敛级数,因此不能由加括号后的级数的收敛性判断加括号前的级数的收敛性.⑤ 增加、删除或改变级数的有限项不会改变级数的收敛性.2. 常数项级数的收敛性判定 (1) 一般方法① 级数的收敛性定义 ② 级数的基本性质③ 绝对收敛、条件收敛(P.263)(2) 正项级数审敛法理论基础:正项级数1nn u∞=∑收敛⇔部分和数列{}n s 有界(P.256定理1)① 比较审敛法(通常选择等比级数、调和级数、p-级数作为比较对象) ② 比值审敛法(适用范围:结合课件) ③ 根值审敛法(适用范围:结合课件) ④ 积分审敛法(适用范围:结合课件)无穷级数常数项级数1n n u ∞=∑函数项级数1()n n u x ∞=∑正项级数一般常数项级数(交错级数等)幂级数 傅里叶级数 其它(3) 交错级数审敛法——莱布尼茨定理(P.262定理7,充分非必要条件)3. 几个重要结论等比级数 P.250例1 调和级数 P.253、P.263(交错级数)p-级数P.257例1、交错级数111(1)n p n n∞-=-∑(结合课件) 级数收敛的“夹逼准则”,即由n n n a c b ≤≤,1nn a∞=∑、1nn b∞=∑收敛推出1nn c∞=∑收敛(结合课件)二、 幂级数1. 幂级数的收敛半径、收敛区间、收敛域(P.271定理1的推论、P.272定理2)关键:注意收敛区间与收敛域的区别(P.272)求幂级数收敛域的基本步骤(P.273~274例1、2、3、4)2. 幂级数的运算性质(P.274~275四则运算,P.276性质1、2、3连续、逐项可积、逐项可导)=<<+∞时,当0=时,1n v∞=∑当=+∞时,==01<<时,n ∞∑当1>时,1n u∞=∑当1=时,无法判定积分审敛法1n n u ∞=∑收敛⇔1()f x dx +∞⎰收敛,其中()f x 在[1,)+∞上连续、单调减少且()n f n u =3.常用函数的麦克劳林展开式(五条公式P.281)关键:牢记级数的一般项,n从零开始,注意收敛域.4.求幂级数的和函数、函数展开成幂级数的间接法通过线性运算法则、变量变换、恒等变形、逐项求导、逐项积分等方法将所给幂级数化为常用函数的幂级数展开式,利用已知的和函数求解.三、傅里叶级数1.三角函数系的正交性(P.304)2.傅里叶系数、傅里叶级数、狄利克雷充分性条件(P.305,P.306的定理)3.正弦级数、余弦级数(P.310)4.奇延拓、偶延拓(P.312)5.一般周期函数的傅里叶级数(P.316的定理)。
无穷级数知识点
无穷级数1. 级数收敛充要条件:部分和存在且极值唯一,即:存在,称级数收敛。
2.若任意项级数收敛,发散,则称条件收敛,若收敛,则称级数绝对收敛,绝对收敛的级数一定条件收敛。
.2. 任何级数收敛的必要条件是lim 0n n u →∞=3.若有两个级数和1n n v ∞=∑,则 ①,11n n n n u v s σ∞∞==⎛⎫⎛⎫⋅=⋅ ⎪ ⎪⎝⎭⎝⎭∑∑。
②收敛,1n n v ∞=∑发散,则发散。
③若二者都发散,则不确定,如发散,而收敛。
4.三个必须记住的常用于比较判敛的参考级数:a)b) P 级数:c) 对数级数:5.三个重要结论6.常用收敛快慢正整数由慢到快连续型由慢到快 7.正项(不变号)级数敛散性的判据及常用技巧1.11,1,lim 0)1,n n n n n l u l l u l μμ+→∞→+∞⎧<⎪⎪=>≠⎨⎪=⎪⎩收发(实际上导致了单独讨论(当为连乘时)2. 1,1,1,n l l l n l μ<⎧⎪=>⎨⎪=⎩收发(当为某次方时)单独讨论3.代数式 1111n n n n n n n n n n u v v u u v ∞∞∞∞====≤⇒⇒⇒∑∑∑∑收敛收敛,发散发散② 极限式 ,其中:和1n n v ∞=∑都是正项级数。
1111111111• 0 • 0 • n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n A u v u v v u u v A u v u kv u v A v u v u u v v u ∞∞∞∞====∞∞==∞∞∞∞=====→→<⇒⇒⇒≠→→=⇒=∞⇒→<⇒⇒⇒∑∑∑∑∑∑∑∑∑∑是的高阶无穷小收敛收敛,发散发散。
是的同阶无穷小和敛散性相同。
是的高阶无穷小收敛收敛,发散发散。
3211221~~111n n n n u n n n n ∞=++⎛⎫⇒==+ ⎪---⎝⎭,113220012210113n n n n dx udx x x n ∞=⇒≤=≤=⨯++∑⎰⎰,也可选用基准级数就可知原级8、任意项级数的敛散性的判据及常用技巧①lim 0n n u →∞=②1n n u u +≥⇒收敛。
无穷级数知识点汇总
无穷级数知识点汇总一、数项级数(一)数项级数的基本性质1.收敛的必要条件:收敛级数的一般项必趋于0.2.收敛的充要条件(柯西收敛原理):对任意给定的正数ε,总存在N 使得对于任何两个N 大于的正整数m 和n ,总有ε<-n m S S .(即部分和数列收敛)3.收敛级数具有线性性(即收敛级数进行线性运算得到的级数仍然收敛),而一个收敛级数和一个发散级数的和与差必发散.4.对收敛级数的项任意加括号所成级数仍然收敛,且其和不变.5.在一个数项级数内去掉或添上有限项不会影响敛散性. (二)数项级数的性质及敛散性判断 1.正项级数的敛散性判断方法(1)正项级数基本定理:如果正项级数的部分和数列有上界,则正项级数收敛. (2)比较判别法(放缩法):若两个正项级数∑∞=1n nu和∑∞=1n nv之间自某项以后成立着关系:存在常数0>c ,使),2,1( =≤n cv u n n ,那么 (i )当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii )当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.推论:设两个正项级数∑∞=1n n u 和∑∞=1n n v ,且自某项以后有nn n n v v u u 11++≤,那么 (i )当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii )当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.(3)比较判别法的极限形式(比阶法):给定两个正项级数∑∞=1n n u 和∑∞=1n n v ,若0lim >=∞→l v u nnn ,那么这两个级数敛散性相同.(注:可以利用无穷小阶的理论和等价无穷小的内容) 另外,若0=l ,则当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;若∞=l ,则当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.常用度量: ①等比级数:∑∞=0n nq,当1<q 时收敛,当1≥q 时发散;②p -级数:∑∞=11n p n ,当1>p 时收敛,当1≤p 时发散(1=p 时称调和级数); ③广义p -级数:()∑∞=2ln 1n pn n ,当1>p 时收敛,当1≤p 时发散.④交错p -级数:∑∞=--111)1(n pn n ,当1>p 时绝对收敛,当10≤<p 时条件收敛. (4)达朗贝尔判别法的极限形式(商值法):对于正项级数∑∞=1n n u ,当1lim1<=+∞→r u u nn n 时级数∑∞=1n n u 收敛;当1lim1>=+∞→r u u nn n 时级数∑∞=1n n u 发散;当1=r 或1=r 时需进一步判断. (5)柯西判别法的极限形式(根值法):对于正项级数∑∞=1n nu,设n n n u r ∞→=lim ,那么1<r 时此级数必为收敛,1>r 时发散,而当1=r 时需进一步判断. (6)柯西积分判别法:设∑∞=1n nu为正项级数,非负的连续函数)(x f 在区间),[+∞a 上单调下降,且自某项以后成立着关系:n n u u f =)(,则级数∑∞=1n n u 与积分⎰+∞)(dx x f 同敛散.2.任意项级数的理论与性质(1)绝对收敛与条件收敛:①绝对收敛级数必为收敛级数,反之不然; ②对于级数∑∞=1n nu,将它的所有正项保留而将负项换为0,组成一个正项级数∑∞=1n nv,其中2nn n u u v +=;将它的所有负项变号而将正项换为0,也组成一个正项级数∑∞=1n nw,其中2nn n u u w -=,那么若级数∑∞=1n nu绝对收敛,则级数∑∞=1n nv和∑∞=1n nw都收敛;若级数∑∞=1n nu条件收敛,则级数∑∞=1n nv和∑∞=1n nw都发散.③绝对收敛级数的更序级数(将其项重新排列后得到的级数)仍绝对收敛,且其和相同. ④若级数∑∞=1n nu和∑∞=1n nv都绝对收敛,它们的和分别为U 和V ,则它们各项之积按照任何方式排列所构成的级数也绝对收敛,且和为UV .特别地,在上述条件下,它们的柯西乘积⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=11n n n n v u 也绝对收敛,且和也为UV . 注:⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=∑∑∑∞=∞=∞=111n n n n n n v u c ,这里121121v u v u v u v u c n n n n n ++++=-- .(2)交错级数的敛散性判断(莱布尼兹判别法):若交错级数∑∞=--11)1(n n n u 满足0lim =∞→n n u ,且{}n u 单调减少(即1+≥n n u u ),则∑∞=--11)1(n n n u 收敛,其和不超过第一项,且余和的符号与第一项符号相同,余和的值不超过余和第一项的绝对值.二、函数项级数(一)幂级数1.幂级数的收敛半径、收敛区间和收敛域 (1)柯西-阿达马定理:幂级数∑∞=-00)(n n nx x a在R x x <-0内绝对收敛,在Rx x >-0内发散,其中R 为幂级数的收敛半径. (2)阿贝尔第一定理:若幂级数∑∞=-00)(n n nx x a在ξ=x 处收敛,则它必在00x x x -<-ξ内绝对收敛;又若∑∞=-00)(n n nx x a在ξ=x 处发散,则它必在00x x x ->-ξ也发散.推论1:若幂级数∑∞=0n n nx a在)0(≠=ξξx 处收敛,则它必在ξ<x 内绝对收敛;又若幂级数∑∞=0n n nx a在)0(≠=ξξx 处发散,则它必在ξ>x 时发散.推论2:若幂级数∑∞=-00)(n n nx x a在ξ=x 处条件收敛,则其收敛半径0x R -=ξ,若又有0>n a ,则可以确定此幂级数的收敛域.(3)收敛域的求法:令1)()(lim1<+∞→x a x a nn n 解出收敛区间再单独讨论端点处的敛散性,取并集.2.幂级数的运算性质(1)幂级数进行加减运算时,收敛域取交集,满足各项相加;进行乘法运算时,有:∑∑∑∑∞==-∞=∞=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛0000n n n i i n i n n n n n n x b a x b x a ,收敛域仍取交集. (2)幂级数的和函数)(x S 在收敛域内处处连续,且若幂级数∑∞=-00)(n nn x x a在R x x -=0处收敛,则)(x S 在[)R x R x +-00,内连续;又若幂级数∑∞=-00)(n n nx x a在R x x +=0处收敛,则)(x S 在(]R x R x +-00,内连续.(3)幂级数的和函数)(x S 在收敛域内可以逐项微分和逐项积分,收敛半径不变. 3.函数的幂级数展开以及幂级数的求和 (1)常用的幂级数展开:① +++++=nxx n x x e !1!2112∑∞==0!n n n x ,x ∈(-∞, +∞).②=11x -1+x +x 2+···+x n +··· =∑∞=0n n x ,x ∈(-1, 1). 从而,∑∞=-=+0)(11n nx x ,∑∞=-=+022)1(11n n n x x . ③∑∞=+++-=++-+-+-=0121253)!12()1()!12()1(!51!31sin n n nn n n x n x x x x x ,x ∈(-∞, +∞).④∑∞=-=+-+-+-=02242)!2()1()!2()1(!41!211cos n n n n n n x n x x x x ,x ∈(-∞, +∞). ⑤∑∞=-+-=++-+-+-=+11132)1(11)1(3121)1ln(n n n n n n x x n x x x x ,x ∈(-1, 1]. ⑥ ++--++-++=+n x n n x x x !)1()1(!2)1(1)1(2ααααααα,x ∈(-1, 1).⑦1202123)12()!(4)!2(12!)!2(!)!12(321arcsin +∞=+∑+=++-+++=n n n n x n n n n x n n x x x ,x ∈[-1, 1]. ⑧120123121)1(121)1(31arctan +∞=++-=++-++-=∑n n n n n x n x n x x x ,x ∈[-1, 1].(2)常用的求和经验规律:①级数符号里的部分x 可以提到级数外;②系数中常数的幂中若含有n ,可以与x 的幂合并,如将n c 和n x 合并为ncx )(; ③对∑∞=0n nnx a求导可消去n a 分母因式里的n ,对∑∞=0n n n x a 积分可消去n a 分子因式里的1+n ;④系数分母含!n 可考虑x e 的展开,含)!2(n 或)!12(+n 等可考虑正余弦函数的展开; ⑤有些和函数满足特定的微分方程,可以考虑通过求导发现这个微分方程并求解. (二)傅里叶级数1.狄利克雷收敛定理(本定理为套话,不需真正验证,条件在命题人手下必然成立) 若)(x f 以l 2为周期,且在[-l , l ]上满足: ①连续或只有有限个第一类间断点; ②只有有限个极值点;则)(x f 诱导出的傅里叶级数在[-l , l ]上处处收敛. 2. 傅里叶级数)(x S 与)(x f 的关系:⎪⎪⎪⎩⎪⎪⎪⎨⎧-++--++=.2)0()0(2)0()0()()(为边界点,为间断点;,为连续点;,x l f l f x x f x f x x f x S3.以l 2为周期的函数的傅里叶展开展开:∑∞=⎪⎪⎭⎫⎝⎛++=10sin cos 2)(~)(n n n l x n b l x n a a x S x f ππ(1)在[-l , l ]上展开:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰---l ln l l n l l dx l x n x f l b dx l x n x f l a dx x f l a ππsin )(1cos )(1)(10;(2)正弦级数与余弦级数:①奇函数(或在非对称区间上作奇延拓)展开成正弦级数:⎪⎪⎩⎪⎪⎨⎧===⎰l n n dxl x n x f l b a a 00sin )(200π;②偶函数(或在非对称区间上作偶延拓)展开成余弦级数:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰0cos )(2)(2000n l n l b dx l x n x f l a dx x f l a π;4.一些在展开时常用的积分: (1);0cos ;1)1(sin 010=+-=⎰⎰+ππnxdx nnxdx n(2)2sin 1cos ;1sin 2020πππn n nxdx n nxdx ==⎰⎰;(3)2022010)1(2cos 1)1(cos ;)1(sin n nxdx x n nxdx x n nxdx x n n n -=--=-=⎰⎰⎰+πππππ;; (4)C nx n nx a e n a nxdx e axax +-+=⎰)cos sin (1sin 22; C nx a nx n e na nxdx e ax ax +++=⎰)cos sin (1cos 22; (5)C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21sin sin ;C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21cos cos .注:①求多项式与三角函数乘积的积分时可采用列表法,注意代入端点后可能有些项为0; ②展开时求积分要特别注意函数的奇偶性及区间端点和间断点的特殊性; ③对于π≠l 的情形,事先令x lt π=对求积分通常是有帮助的.。
无穷级数知识点介绍整理人王浩
专转本专题知识点----------无穷级数数项级数定义1 设给定一个数列,...,,...,,,321n u u u u 则和式......321+++++n u u u u (11.1)称为数项级数,简称为级数,简记为∑∞=1n nu,即∑∞=1n nu=......321+++++n u u u u其中,第n 项n u 称为级数的一般项或者通项。
式(11.1)的前n 项和∑==++++=nk k n n u u u u u S 1321...称为式(11.1)的前n 项部分和。
当n 依次取1,2,3,...时,部分和...,..,,,321n S S S S构成一个新的数列{}n S ,数列{}n S 也称为部分和数列定义2 若级数∑∞=1n nu的部分和数列{}n S 有极限SS S n n =∞→lim ,则称级数∑∞=1n nu收敛,称S 是级数∑∞=1n nu的和,即 (3211)+++++==∑∞=n n nu u u u uS如果部分和数列{}n S 没有极限,则称为级数∑∞=1n nu发散数项级数的性质 (1)若级数∑∞=1n nu和级数∑∞=1n nv都收敛,它们的和分别为S 和σ,则级数∑∞=±1)(n n nv u也收敛,且其和为±S σ(2)若级数∑∞=1n nu收敛,且其和为S ,则它的每一项都乘以一个不为零的常数k,所得到的级数∑∞=1n nku也收敛,且其和为kS(3)在一个级数前面加上(或去掉)有限项,级数的敛散性不变 (4)若级数∑∞=1n nu收敛,则将这个级数的项任意加括号后,所成的级数...)...(...)...()...(1211121+++++++++++-+k k n n n n n u u u u u u u 也收敛,且与原级数有相同的和(5)(级数收敛的必要条件)若级数∑∞=1n nu收敛,则0lim =∞→n n u综上所述,几何级数∑∞=-11n n aq 的敛散性⎪⎩⎪⎨⎧≥,发散。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专转本专题知识点----------无穷级数数项级数定义1 设给定一个数列,...,,...,,,321n u u u u 则和式......321+++++n u u u u (11.1)称为数项级数,简称为级数,简记为∑∞=1n nu,即∑∞=1n nu=......321+++++n u u u u其中,第n 项n u 称为级数的一般项或者通项。
式(11.1)的前n 项和∑==++++=nk k n n u u u u u S 1321...称为式(11.1)的前n 项部分和。
当n 依次取1,2,3,...时,部分和...,..,,,321n S S S S构成一个新的数列{}n S ,数列{}n S 也称为部分和数列定义2 若级数∑∞=1n nu的部分和数列{}n S 有极限SS S n n =∞→lim ,则称级数∑∞=1n nu收敛,称S 是级数∑∞=1n nu的和,即 (3211)+++++==∑∞=n n nu u u u uS如果部分和数列{}n S 没有极限,则称为级数∑∞=1n nu发散数项级数的性质 (1)若级数∑∞=1n nu和级数∑∞=1n nv都收敛,它们的和分别为S 和σ,则级数∑∞=±1)(n n nv u也收敛,且其和为±S σ(2)若级数∑∞=1n nu收敛,且其和为S ,则它的每一项都乘以一个不为零的常数k,所得到的级数∑∞=1n nku也收敛,且其和为kS(3)在一个级数前面加上(或去掉)有限项,级数的敛散性不变 (4)若级数∑∞=1n nu收敛,则将这个级数的项任意加括号后,所成的级数...)...(...)...()...(1211121+++++++++++-+k k n n n n n u u u u u u u 也收敛,且与原级数有相同的和(5)(级数收敛的必要条件)若级数∑∞=1n nu收敛,则0lim =∞→n n u数项级数的敛散性研究对象:正项级数、交错级数、任意项级数 一.正项级数正项级数:若级数∑∞=1n nu=......321+++++n u u u u 满足条件,...)3,2,1(0=≥n u n ,则称此级数为正项级数定理1 正项级数收敛的充要条件是其部分和数列{}n S 有界定理2 (比较判别法)若级数∑∞=1n nu和级数∑∞=1n nv为两个正项级数,且,...)3,2,1(=≤n v u n n ,那么: (1)若级数∑∞=1n nv收敛时,级数∑∞=1n nu也收敛(2)若级数∑∞=1n nu发散时,级数∑∞=1n nv也发散定理3(达朗贝尔比值判别法)若正项级数∑∞=1n nu(,...3,2,1,0=>n u n )满足条件l u u nn n =+∞→1lim则(1)当1<l 时,级数收敛 (2)当1>l 时,级数发撒(3)当1=l 时,无法判断此级数的敛散性二.交错级数级数∑∞=-1)1(n n n u (,...3,2,1,0=>n u n )称为交错级数定理4(莱布尼兹判别法)若交错级数∑∞=-1)1(n nnu (,...3,2,1,0=>n u n )满足下列条件(1)1+≥n n u u (2)0lim =∞→n n u则交错级数∑∞=-1)1(n nnu 收敛,其和,1u S ≤其余项的绝对值1+≤n n u r三.绝对收敛和条件收敛若级数∑∞=-1)1(n nnu 的各项为任意实数,则称级数∑∞=1n nu为任意项级数定义 如果任意项级数∑∞=1n nu的各项绝对值组成的级数∑∞=1n nu收敛,则称级数∑∞=1n nu绝对收敛;如果∑∞=1n nu发散,而∑∞=1n nu收敛,则称级数∑∞=1n nu条件收敛定理5 如果级数∑∞=1n nu绝对收敛,则级数∑∞=1n nu必收敛定理6 如果任意项级数∑=1n nu满足条件l u u nn n =+∞→1lim(1)当1<l 时,级数绝对收敛 (2)当1>l 时,级数发撒 幂级数定义1 如果,...)3,2,1)((=n x u 是定义在某个区间I 上的函数,则称函数...)(...)()()(211++++=∑∞=x u x u x u x u nn n(11.4)为区间I 上的函数项级数定义2 形如...)(...)()()(020201010+-++-+-+=-∑∞=n n n n n x x a x x a x x a a x x a (11.5)的级数称为)(0x x -的幂级数,其中,...,...,,,210n a a a a 均为常数,称为幂级数的系数。
当00=x 时,级数∑∞=+++++=12210......n n n n n x a x a x a a x a (11.6)称为x 的幂级数定义 3 对于形如式(11.6)的幂级数若设l a a nn n =+∞→1lim,则x l x a a x a x a u u nn n n n n n n n n n •=•==+∞→++∞→+∞→1111lim lim lim根据任意项级数判别法可知:(1)当0≠l 时,若1<•x l ,即R l x =<1,式(11.6)绝对收敛 若1>•x l ,即R l x =>1,式(11.6)发散若1=•x l ,即R lx ==1,则比值判别法失效,式(11.6)可能收敛也可能发散(2)当0=l ,由于10<=•x l ,式(11.6)对任何x 都收敛称lR 1=为幂级数式(11.6)的收敛半径 定理1 如果幂级数∑=+++++=12210......n n n nn x a x a x a a xa的系数满足条件l a a nn n =+∞→1lim,则(1)当+∞<<l 0时,lR 1= (2)当0=l 时,+∞=R(3)当+∞=l 时,0=R幂级数的性质 设幂级数∑∞=0n nnxa 与∑∞=0n nnxb 的收敛半径分别是1R 与2R (1R 与2R 均不为0),它们的和函数分别为)(1x S 与)(2x S 1.(加法与减法运算))()()(210x S x S x b ax b x a n n n nn nnn nn±=±=±∑∑∑∞=∞=∞=所得的幂级数∑∞=±0)(n nn nx b a仍收敛,且收敛半径是1R 与2R 中较小的一个2.(乘法运算))()(...)...(...)()()()(21011020211200110000x S x S x b a b a b a x b a b a b a x b a b a b a x b x a n n n n n n n n nn •=+++++++++++=•-∞=∞=∑∑两幂级数相乘所得的幂级数仍收敛,且收敛半径是1R 与2R 中较小的一个 3.(微分运算)若幂级数∑∞=0n nnxa 的收敛半径R ,则在(-R,R )内和函数S(x)可导,且有∑∑∑∞=-∞=∞=='='='010)()()(n n n n nn n nn x na x a xa x S且求导后所得的幂级数的收敛半径仍为R4.(积分运算)若幂级数∑∞=0n nnxa 的收敛半径R ,则和函数S(x)在该区间内可积,且有∑⎰∑⎰⎰∑∞=∞=+∞=+===0011)()(n xn n n nn xxn nn x n a dx x a dx x a dx x S且求导后所得的幂级数仍收敛,且收敛半径仍为R 函数展成幂级数 1.泰勒级数设)(x f 在0x x =处任意阶可导,则幂级数n n n x x n x f )(!)(010)(-∑∞=称为)(x f 在0x x =处的泰勒级数2.麦克劳林公式 当00=x 时,级数nn n x n f ∑∞=0)(!)0(称为)(x f 的麦克劳林级数 3.几个常见的麦克劳林展开式①)1,1(,110-∈=-∑∞=x x x n n ②)1,1(,)1(11-∈-=+∑∞=x x x n n n ③),(,!0+∞-∞∈=∑∞=x n x e n nx④),(,)!12()1(sin 012+∞-∞∈+-=∑∞=+x n x x n n n ⑤),(,)!2()1(cos 02+∞-∞∈-=∑∞=x n x x n nn ⑥)1,1(,)1()1ln(11-∈-=+∑∞=-x n x x n nn ⑦∑∞=-∈•+--=+0)1,1(,!)1)...(1()1(n n x x n n x αααα。