第四章钢的热处理办法

合集下载

热处理PPT课件

热处理PPT课件
5
6
第一节 钢在加热和冷却时的组织转变
一、钢在加热时的组织转变
由Fe—Fe3C状态图可知,钢加热至稍高于727°C(PSK线或A1线) 时,将发生珠光体向奥氏体的转变。这种转变过程伴随着铁原子和碳原 子的扩散,所以其转变过程属于一种扩散型的转变。
以共析钢为例,分析奥氏体形成的过程。其基本过程可描述为四个步 骤
9
第一节 钢在加热和冷却时的组织转变
10
第一节 钢在加热和冷却时的组织转变
二、钢在冷却时的组织转变
钢经加热获得奥氏体组织后,如在不同的冷却条件 下冷却,最后可使钢获得不同的力学性能。例如用45 钢制造的直径为15mm的轴,经840°C加热后,若在 空气中冷却,其表面硬度小于HBS209;若在油中冷 却,其表面硬度可达HRC45左右;若在水中冷却, 其表面硬度可达HRC65左右。为了解这些差别的原 因,必须了解奥氏体在冷却过程中的组织变化规律。
16
第一节 钢在加热和冷却时的组织转变

过冷到550℃~350℃之间的转变组织为上贝氏
体半扩散型(B上),Fe不扩散,羽毛状碳化物分
布在F间,韧性差,过冷到350℃~MS之间的转变组
织为下贝氏体(B下) ,C原子有一定的扩散能力,
针状碳化物分布在F内,韧性高,综合机械性能好。
③低温转变产物 共析钢奥氏体过冷到 Ms230℃~Mf-50℃之间的转变产物,马氏体(M) 组织。是含碳过饱和的α —固溶体。由于马氏体中 溶入过多的碳使晶格严重扭曲,从而增加了变形抗 力,所以马氏体具有很高的硬度。含碳量越高其硬 度越大。马氏体是单相亚稳定的组织。
热处理工艺都是由加热、保温和冷却三个阶段所组 成的。因此,热处理工艺过程可用“温度—时间” 为坐标的曲线图表示,此曲线称为热处理工艺曲线。

钢丝拉拔生产(第四章)-钢丝热处理

钢丝拉拔生产(第四章)-钢丝热处理
加热时间确定方法:
理论计算法,经验归纳法、实验法等。
4.2连续式索氏体化处理
(1)理论计算法
所得结果与实际情况误差很大,工厂生产所定的钢丝加热时间,多 不用理论计算方法。
(2)经验归纳法
钢丝加热时间主要与钢丝直径、钢丝加热温度、炉子的形式和炉温曲线等有关。 为此,按不同炉型和温度制度,分析总结归纳大量实际资料,建立一些经验公 式或图表,可用来估算所需的加热时间。
目的:
(1)消除热轧线材中组织缺陷、非平衡组织和粗大晶粒,使机械性
能均匀。
(2)消除由于拉拔过程所引起的硬化和脆性,提高其塑性和韧性,
以利于加工过程继续进行。
(3)保证成品钢丝获得所需要的机械性能和金相组织。
分类:球化退火、再结晶退火、低温退火等。
4.1钢丝热处理的目的和种类
(1)球化退火 钢丝加热到一定的温度(通常取Acl与Ac3或Acm之间的温度),保温一段时间后,再以不大
例如:对盘条进行退火或正火处理。
4.1钢丝热处理的目的和种类
二、钢丝热处理的种类
1、正火处理 2、等温淬火处理 3、退火处理 4、回火处理
5、调质处理
4.1钢丝热处理的目的和种类
1、正火处理 定义:将钢丝或线材加热到Ac3(亚共析钢)或
Acm(过共析钢)以上一定的温度,保温一段时间, 随后在空气中进行冷却,以获得珠光体组织的热处 理方式,称为正火处理。 用途:正火处理往往作为碳素钢丝的中间处理过程, 而不作为钢丝拉制的成品处理。 主要目的:软化钢丝。
(大于加热钢丝的破断拉力),使钢丝发生断裂。遇到这种情况应减慢 热处理速度,并适当降低炉温,以防止钢丝过热。
4.2连续式索氏体化处理
经验公式一:
按上式计算表明,钢丝直径愈大,钢丝热处理速度则愈小。但该式所得

金属材料和热处理基本概念及基础知识-热处理工艺

金属材料和热处理基本概念及基础知识-热处理工艺

淬透性一般可用淬火临界直径、截面硬度分布曲 线和端淬硬度分布曲线等表示。由于钢中化学成分的 波动,表示钢淬透性硬度曲线有一个波动范围,被称 为淬透性带。 钢材的淬透性与淬硬性是两个完全不同的概念。 淬火硬度高的不一定淬透性好,而硬度低的钢材也可 能具有高的淬透性。 一般机械制造行业大多以心部获得50% 马氏体为 淬火临界直径标准,对于重要机加及军工行业则以心 部获得90 %马氏体作为临界直径标准,以保证零件整 个截面都获得较高力学性能。
2.加热与保温时间
五、钢的回火与回火工艺
将淬火钢重新加热到A1以下某一温度,保温后冷 却到室温的热处理工艺称回火。
1、回火的目的
• ⑴ 降低淬火钢的脆性,消除或减少淬火钢的内应力。 • ⑵ 提高钢的塑性和韧性,获得所要求的性能。
• ⑶ 稳定工件尺寸,降低硬度,便于切削加工。


第四节 钢的表面淬火
将钢加热到临界点以上(某些退火也可在临界点以下) 保温一定时间,随炉缓慢冷却,以获得接近平衡状态组织的 热处理工艺。主要用于铸、锻、焊件毛坯的热处理。
• 1、退火的目的 • 1)降低钢件硬度,便于切削加工。 • 2)消除工件内应力,稳定尺寸。
• 3)细化晶粒,改善组织,提高钢的机械性能。 • 4)为最终热处理做好组织准备。



一、钢的渗碳 渗碳是将钢件加热到奥氏体状态下,于富碳介质 中长时间加热,使碳原子渗入表层,增加钢件表层的 含碳量,然后通过淬火获得高硬度的马氏体组织,达 到提高强度、耐磨性及疲劳强度的目的。 渗碳一般用含碳0.1~0.25%的低碳钢。 渗碳—淬火+低温回火
1、渗碳方法
⑴ 气体渗碳(煤油、苯、甲醇+丙酮) 渗碳介质的分解—吸收—扩散三个基本过程。 主要应控制好加热温度(930 º C)和保温时间。 温度越高,渗速越大,扩散层越厚,但晶粒越大,使 钢变脆。保温时间取决于渗层厚度,但时间越长,扩 散速度减慢。钢件渗碳几小时到几十小时,可得到 0.5~2mm的渗碳层深度。 ⑵ 固体渗碳 ⑶ 液体渗碳

钢的热处理复习与思考及答案

钢的热处理复习与思考及答案

第四章 钢的热处理?复习与思考一、名词解释 1.热处理 热处理是采用适当的方式对金属材料或工件进行加热、保温和冷却以获得预 期的组织结构与性能的工艺。

2.等温转变 等温转变是指工件奥氏体化后,冷却到临界点以下的某一温度区间内等温保 持时,过冷奥氏体发生的相变。

3.连续冷却转变 连续冷却转变是指工件奥氏体化后以不同冷速连续冷却时过冷奥氏体发生 的相变。

4.马氏体 马氏体是碳或合金元素在α-Fe 中的过饱和固溶体。

5.退火 钢的退火是将工件加热到适当温度,保持一定时间,然后缓慢冷却的热处理 工艺。

6.正火 正火是指工件加热奥氏体化后在空气中冷却的热处理工艺。

7.淬火 钢的淬火是指工件加热奥氏体化后以适当方式冷却获得马氏体或(和)贝氏体 组织的热处理工艺。

8.回火 回火是指工件淬硬后,加热到 Ac1 以下的某一温度,保温一定时间,然后冷 却到室温的热处理工艺。

9.表面热处理 表面热处理是为改变工件表面的组织和性能,仅对其表面进行热处理的工 艺。

10.渗碳 为提高工件表层碳的质量分数并在其中形成一定的碳含量梯度,将工件在渗 碳介质中加热、保温,使碳原子渗入的化学热处理工艺称为渗碳。

11.渗氮在一定温度下于一定介质中,使氮原子渗入工件表层的化学热处理工艺称为 渗氮,又称氮化。

二、填空题 1.整体热处理分为 退火 、 正火 、 淬火 和 回火 等。

2.根据加热方法的不同,表面淬火方法主要有: 感应加热 表面淬火、 火焰加热 表面淬火、 电接触加热 表面淬火、 电解液加热 表面淬火 等。

3.化学热处理方法很多,通常以渗入元素命名,如 渗碳 、 渗氮 、 碳氮 共渗 和 渗硼 等。

4.热处理工艺过程由 加热 、 保温 和 冷却 三个阶段组成。

5.共析钢在等温转变过程中,其高温转变产物有: P 、 S 和 T。

6.贝氏体分 上贝氏体 和 下贝氏体 两种。

7.淬火方法有: 单介质 淬火、 双介质 淬火、 马氏体分级 淬火 和 贝氏体等温 淬火等。

钢的热处理课件

钢的热处理课件

热处理的工艺要素是温度和时间。任何热处理过程都是 由加热、保温和冷却三个阶段组成的。因此,要掌握钢的热 处理原理,主要就是要掌握钢在加热和冷却时的组织转变规 律。
温 度 加热 保 温 冷却
0 图3-1 热处理工艺曲线
时间
热处理的任务是通过改变钢材的组织,来改变钢材的性 能,以满足使用要求的。一般都有将钢加热到相变温度以上, 使常温组织变为高温组织--奥氏体。然后在冷却过程中使它 向要求的组织转变。因此,奥氏体在形成过程中,其成份、 晶粒大小等,将直接影响热处理的效果。为此,了解奥体的 形成过程和影响因素是很重要的。 以共析钢为例,说明奥氏体的转变(形成)过程。 其转变过程可归纳为四个阶段。 1.奥氏体(A)晶核的形成 2.奥氏体(A)晶核的长大 3.残余渗碳体(Fe3C)的溶解
② 改善低碳钢的可切削性 。
③ 作为中碳钢的预备热处理(可以替代部分退火热处理)。
三 、淬火
方法: 将钢加热到AC3(亚共析钢)或ACcm(共析钢或过共析钢)以上 30~50℃,保温一定时间使其奥氏体化,然后在冷却介质中迅速 冷却。 目的: 是获得均匀细小的马氏体组织,再经过回火处理,提高钢的 力学性能。 注意: ①淬火的关键是:确定淬火温度和冷却方式。 ②它是最常用的一种热处理,是决定产品质量的关键。
目前应用较广的是气体氮化法。把工件放在专门氮化的炉 子里,加热到500~600℃,同时通入氨气(NH3),氨气加热到 450℃,就分解出活性氨原子,扩散渗入工件表层,形成氮化 层。 氮化的要素是温度和时间,用时间控制渗层厚度。
氮化处理的缺点是:时间长 , 一般要用合金钢 , 所以 成本高。只用于机床中高速传动轴;精密齿轮等。 一般氮化零件的工艺路线为: 锻造→退火→粗加工→调质→精加工→除应力退火→磨 削→氮化→精磨。 3.碳氮共渗 把碳和氮同时渗入零件表层的过程称为氰化 。 根据处理温度的不同分为高温、中温和低温氰化。 4.其它化学热处理方法 (1) 渗铝 目的:是使钢的表面具有高的抗氧化性能。 (2) 渗铬 目的:是增加零件抗蚀性能,还可提高碳钢 的硬度和耐磨性。

钢的主要热处理方法

钢的主要热处理方法

火,等温淬火等.
一般在250-400°C和450-600°C会出现二个低冲击区.低温区
Hh
把预先经淬火或正火的钢,重新加热到相变点以下温 度,并以适当的温度冷却,以提高其塑性和韧度的工艺
过程.
获得稳定的金相组织;降低或消除淬火应力;降低强 (硬)度,提高塑性,韧性有利于切削加工.
的脆性不能靠重新回火来消除,被称为:不可逆回火脆性.因 此,一般应避免在此温度区回火. 高温回火脆性在回火后缓慢冷却时发生,可用重新回火快速冷
形变热处理
消除铸件的内应力,稳定其形状尺寸.对于特殊钢及特 殊性能合金或有色合金可用以提高强度等.含碳量越
高,效果越显著.
在温室下完成的是自然时效;用加热来加速完成的是人工时 效.
提高一般淬火钢的耐磨性及疲劳寿命,稳定精密零件 的 尺寸,形状,能缩短工艺周期,降低工艺成本(减少
残余奥氏体组织).
保持工件的心部韧性和使表面具有较好的耐磨性;可 提高冲击韧性和疲劳强度等使用性能.它只改变工件
表层组织,不改变表面化学成分.
S,D,Td等是以表面强化为主,提高表面强度,耐磨性和 疲劳强度,心部能保持原有的强度和韧性.
氰化同时也可以提高表面的热硬性和耐蚀性能.渗金属如铬, 铝,硅等主要是改善表面的物理,化学性质,如抗氧化,耐酸蚀 等;渗铬,硅还能增加耐磨性.它能改变表面的成分和组织,基
渗层性质与化分相同的钢类似.网状碳化物,并为淬 火作好组织准备.也能改善切削性能(对于低碳钢).
与退火的区别是冷却速度大.正火后的组织是细珠光体和少量 铁素体或单一的珠光体,硬度也较高.
1).按加热温度分:完全淬火,不完全淬火等;
2).按加热速度分:普通加热淬火,快速加热淬火等;
是从某一适当的温度施行快速冷却的工艺操作.一般 使工件具备一定的显微组织,以保证某一截面部位在 3).按加热介质差异分:有空气中的氧化加热淬火,可控气氛保

钢的热处理工艺

钢的热处理工艺

钢的热处理工艺钢的热处理工艺,是指通过加热、保温和冷却等工艺步骤,改变钢材的结构和性能。

热处理工艺可以使钢材具有更高的强度、硬度、耐磨性和耐蚀性,提高其使用性能。

常见的钢的热处理工艺包括退火、正火、淬火和回火等。

退火是钢材的一种常见热处理工艺。

通过加热钢材至适当温度后,进行保温一段时间,然后缓慢冷却至室温。

退火可以消除钢材的内应力,改善钢材的塑性和韧性,减少脆性,同时提高钢的延展性和可加工性。

正火是指将钢材加热至高于临界温度后,进行保温一段时间,然后将钢材风冷或水冷至室温。

正火可以提高钢材的强度和硬度,改善其耐磨性能。

正火过程中的冷却速度较缓慢,使得钢材晶粒长大,同时降低了内应力。

淬火是将加热至临界温度的钢材迅速冷却,使其组织转变为马氏体。

马氏体是一种具有高强度和硬度的组织。

淬火工艺中的冷却速度非常快,可以制造出高强度的硬质钢。

回火是将淬火后的钢材加热至一定温度,并保持一定时间后,再进行冷却。

回火工艺可以降低淬火后钢材的脆性,提高其韧性,增加塑性和抗热应力能力。

回火也可用于调整钢材的硬度和强度。

除了上述常见的热处理工艺外,还有调质、表面硬化、固溶处理等多种热处理方法可用于钢材加工。

总之,钢的热处理工艺通过改变钢材的结构和性能,使其具备更好的力学性能和耐磨性能。

热处理工艺的选择需要根据钢材的成分、用途和要求来确定,以确保最佳的性能结果。

钢材在现代工业中被广泛应用,其性能可以通过热处理工艺得到显著提升。

这些热处理工艺能够改变钢材的组织结构,并调整其力学性能和物理性能。

一种常见的钢材热处理工艺是退火。

退火是将钢材加热至高温,然后经过保温一段时间,最后缓慢冷却至室温。

退火过程中,钢材的晶粒会得到细化,内应力被消除,从而提高了材料的塑性和韧性。

退火也可以减少脆性,并改善加工性能和可塑性。

另一种常见的热处理工艺是正火。

正火是将钢材加热至高于临界温度,然后经过保温一段时间,最后通过风冷或水冷来快速冷却。

正火可以增加钢材的强度和硬度,改善其耐磨性能。

金属工艺学电子教学教案——第四章 钢的热处理02(高教版 王英杰主编)

金属工艺学电子教学教案——第四章  钢的热处理02(高教版 王英杰主编)

第四节淬火教学重点与难点1.重点淬火、回火2.难点淬透性和淬硬性教学方法与手段1.利用挂图等教具。

2.举生活中应用淬火与回火的现象,分析原理与应用,触类旁通。

教学组织1.复习提问10分钟2.讲解75分钟3.小结5分钟教学内容♦钢的淬火是指工件加热奥氏体化后以适当方式冷却获得马氏体或(和)贝氏体组织的热处理工艺。

♦临界冷却速度是指获得马氏体的最低冷却速度。

♦马氏体是碳或合金元素在α-Fe中的过饱和固溶体,是单相亚稳组织,硬度较高,用符号M表示。

马氏体的硬度主要取决于马氏体中碳的质量分数。

马氏体中由于溶入过多的碳原子,从而使α-Fe晶格发生畸变,增加其塑性变形抗力,故马氏体中碳的质量分数越高,其硬度也越高。

一、淬火(一)淬火的目的淬火的目的主要是使钢件得到马氏体(和贝氏体)组织,提高钢的硬度和强度,与适当的回火工艺相配合,更好地发挥钢材的性能潜力。

(二)淬火工艺1.淬火加热温度的确定亚共析钢淬火加热温度为Ac以上30℃~50℃。

3以上30℃~50℃。

共析钢和过共析钢淬火加热温度为Ac12.淬火介质常用的淬火冷却介质有油、水、盐水、硝盐浴和空气等。

3.淬火方法(1)单液淬火。

♦将已奥氏体化的钢件在一种淬火介质中冷却的方法。

例如,低碳钢和中碳钢在水中淬火,合金钢在油中淬火等。

单液淬火方法主要应用于形状简单的钢件。

(2)双液淬火。

♦将工件加热奥氏体化后先浸入冷却能力强的介质中,在组织即将发生马氏体转变时立即转入冷却能力弱的介质中冷却的方法,称为双液淬火。

例如,先在水中冷却后在油中冷却的双液淬火。

双液淬火主要适用于中等复杂形状的高碳钢工件和较大尺寸的合金钢工件。

(3)马氏体分级淬火♦工件加热奥氏体化浸入温度稍高于或稍低于Ms点的盐浴或碱浴中,保持适当时间,在工件整体达到冷却介质温度后取出空冷以获得马氏体组织的淬火方法,称为马氏体分级淬火。

马氏体分级淬火能够减小工件中的热应力,并缓和相变过程中产生的组织应力,减少淬火变形。

材料力学第四章钢的热处理

材料力学第四章钢的热处理

本章练习1 4、过共析钢的等温转变图(C曲线)如右图所示,试指出图中各点位置所
对应的组织。
本章练习1
5、两块碳的质量分数均为Wc=0.77%的钢片加热至727℃以上,分别以不同 方式冷却,钢片的冷却曲线及该种钢材的奥氏体等温转变图如图所示。 试问图中①、②、③、④点各是什么组织?定性地比较②、④点组织的 硬度大小。
a)A1~650℃:P,5~25HRC,片间距为0.6~0.7μm,( 500× )。 b)650℃ ~600℃:细片状P---索氏体(S),片间距为0.2~0.4μm,25~36HRC。 c)600℃ ~550℃:极细片状P---托氏体(T),片间距为<0.2μm,35~40HRC。
a)
b)
c)
第二节 钢在冷却时的组织转变 二、过冷奥氏体等温转变的组织和性能 2.贝氏体型转变 半扩散相变(C)550℃~Ms,根据其组织形态不同,分为:
铸锭或铸件在凝固过程中不可避免的要产生枝晶偏析等化学成分不均匀 现象,为达到化学成分的均匀化,必须对其进行扩散退火。 特点:加热温度高(一般在Ac3或Acm以上150~200℃),保温时间长(10h以上) 去应力退火
用来消除因变形加工及铸造、焊接过程中引起的残余内应力,以提高工 件的尺寸稳定性,防止变形和开裂。 特点:工件随炉缓慢加热至Ac1-(100 ~ 200 ℃),经一段时间保温后随炉
除Co、Al (>2.5% ) 外,所有合金元素溶入 奥氏体中,都可增加过冷奥氏体的稳定性,使等 温转变图右移。其中非碳化物形成元素或弱碳化 物形成元素只改变等温转变图的位置,不改变形 状,而碳化物形成元素不仅使等温转变图的位置 发生变化,还改变等温转变图的形状。 3.加热温度和保温时间
加热温度越高,保温时间越长,TTT曲 线向右移。

钢的热处理方法及应用

钢的热处理方法及应用

钢的热处理‎方法及应用‎2008-01-27 17:341.退火操作方法:将钢件加热‎到Ac3+30~50度或A‎c1+30~50度或A‎c1以下的‎温度(可以查阅有‎关资料)后,一般随炉温‎缓慢冷却。

目的:1.降低硬度,提高塑性,改善切削加‎工与压力加‎工性能;2.细化晶粒,改善力学性‎能,为下一步工‎序做准备;3.消除冷、热加工所产‎生的内应力‎。

应用要点:1.适用于合金‎结构钢、碳素工具钢‎、合金工具钢‎、高速钢的锻‎件、焊接件以及‎供应状态不‎合格的原材‎料;2.一般在毛坯‎状态进行退‎火。

2.正火操作方法:将钢件加热‎到Ac3或‎A ccm 以上30~50度,保温后以稍‎大于退火的‎冷却速度冷‎却。

目的:1.降低硬度,提高塑性,改善切削加‎工与压力加‎工性能;2.细化晶粒,改善力学性‎能,为下一步工‎序做准备;3.消除冷、热加工所产‎生的内应力‎。

应用要点:正火通常作‎为锻件、焊接件以及‎渗碳零件的‎预先热处理‎工序。

对于性能要‎求不高的低‎碳的和中碳‎的碳素结构‎钢及低合金‎钢件,也可作为最‎后热处理。

对于一般中‎、高合金钢,空冷可导致‎完全或局部‎淬火,因此不能作‎为最后热处‎理工序。

3.淬火操作方法:将钢件加热‎到相变温度‎A c3或A‎c1以上,保温一段时‎间,然后在水、硝盐、油、或空气中快‎速冷却。

目的:淬火一般是‎为了得到高‎硬度的马氏‎体组织,有时对某些‎高合金钢(如不锈钢、耐磨钢)淬火时,则是为了得‎到单一均匀‎的奥氏体组‎织,以提高耐磨‎性和耐蚀性‎。

应用要点:1.一般用于含‎碳量大于百‎分之零点三‎的碳钢和合‎金钢;2.淬火能充分‎发挥钢的强‎度和耐磨性‎潜力,但同时会造‎成很大的内‎应力,降低钢的塑‎性和冲击韧‎度,故要进行回‎火以得到较‎好的综合力‎学性能。

4.回火操作方法:将淬火后的‎钢件重新加‎热到Ac1‎以下某一温‎度,经保温后,于空气或油‎、热水、水中冷却。

第四章 钢的热处理及表面强化技术讲解

第四章    钢的热处理及表面强化技术讲解

2.化学镀镍磷
化学镀是指在无外加电流条件下,利用化学方法在金属表面沉积其他金 属或合金的工艺方法。化学镀镍磷合金可提高工件表面的硬度、抗粘着性、 减摩性,从而提高其耐磨性。
2 气相沉积TiN和TiC
气相沉积是指在一定成分的气体中加热至一定温 度,通过化学或物理作用在钢件表面沉积其他金属或 金属化合物的工艺方法。在钢件表面沉积TiN、TiC等 超硬金属化合物,能大大提高其表面的硬度、耐磨性、 耐蚀性和高温抗氧化性。
表 面 热处理
钢加热时的组织转变
钢的预备热处理——退火与正火
钢的最终热处理(一)——淬火与回火 钢的最终热处理(二)——表面热处理 钢的表面强化技术
本 章 要 点
钢的热处理是指将钢在固态下进行 加热、保温和冷却,以获得所需的组织 和性能的工艺方法。通过适当的热处理, 能显著提高钢的力学性能,以满足零件 的使用要求和延长零件的使用寿命;能 改善钢的加工工艺性能(如切削加工性 能、冲压性能等),以提高生产率和加 工质量;还能消除钢在加工(如铸造、 焊接、切削、冷变形等)过程中产生的 残余内应力,以稳定零件的形状和尺寸。
淬火加热后组织 钢种
亚共析钢 Wc≤0.5%
亚共析钢 Wc>0.5%
淬火温度(℃) Ac3+30~50
Ac3+30~50 Ac1+30~50 Ac1+30~50

最终组织 M
M + A残 M + A残 M+Fe3C+A
共析钢 过共析钢
单液淬火 将加热后的零件投入一种冷却剂中冷却至室温。 优点:操作简单,容易实现自动化 缺点:易产生淬火缺陷, 水中淬火易产生变形和 裂纹,油中淬火易产生硬度不足或硬度不均匀等 现象。 应用:碳钢一般用水作冷却介质,合金钢可用油 作冷却介质。

钢的热处理工艺

钢的热处理工艺

第四章钢的热处理技术所谓钢的热处理技术是将钢在固态下以适当的方式进行加热,保温和冷却,以获得所需组织和性能的工艺方法.热处理是强化金属材料,提高产品质量和寿命的主要途径之一.绝大部分重要的机械零件,在制造过程中都必须进行热处理.根据加热和冷却方法不同,将钢的常用热处理分类如下:尽管热处理种类繁多,但其基本过程都是由加热,保温和冷却三个阶段组成.图4-1为最基本的热处理工艺曲线形式.改变加热温度,保温时间,冷却速度等参数,会在一定程度上发生相应的预期组织转变,从而改变材料的性能.由此可知,控制加热温度,保温时间和冷却速度就可以控制钢的组织和性能. 1. 钢在加热时的转变(奥氏体化)加热是热处理的第一道工序.大多数热处理工艺首先要将钢加热到相变点(又称临界点)以上,目的是获得奥氏体.Fe-Fe3C相图相变点A1,A3,Acm是碳钢在极缓慢地加热或冷却情况下测定的.但在实际生产中,加热和冷却并不是极其缓慢的,因此,钢的实际相变点都会偏离平衡相变点.即:加热转变相变点在平衡相变点以上,而冷却转变相变点在平衡相变点以下.通常把实际加热温度标为Ac1,Ac3,Accm,,实际冷却温度标为Ar1,Ar3,Arcm.如图4-1所示.钢的相变点是制定热处理工艺参数的重要依据,各种钢的相变点可在热处理手册中查到.1.1奥氏体的形成过程钢加热到Ac1点以上时会发生珠光体向奥氏体的转变,加热到Ac3和Accm以上时,便全部转变为奥氏体,这种加热转变过程称为钢的奥氏体化.奥氏体的形成过程是珠光体转变为奥氏体的一个重新结晶的过程.由于珠光体是铁素体和渗碳体的机械混合物,铁素体与渗碳体的晶格类型不同,含碳量差别很大,转变为奥氏体必须进行晶格的改组和铁碳原子的扩散.下面以共析钢为例说明奥氏体化大致可分为四个过程,如图4-2所示.1.1.1奥氏体形核奥氏体的晶核上首先在铁素体和渗碳体的相界面上形成的.由于界面上的碳浓度处于中间值,原子排列也不规则,原子由于偏离平衡位置处于畸变状态而具有较高的能量.同时位错和空间密度较高铁素体和渗碳体的交接处在浓度结构和能量上为奥氏体形核提供了有利条件.1.1.2奥氏体长大奥氏体一旦形成,便通过原子扩散不断张大在于铁素体接触的方向上,铁素体逐渐通过改组晶胞向奥氏提转化;在与渗碳体接触的方向上,渗碳体不断溶入奥氏体. 1.1.3残余渗碳体溶解由于铁素体的晶格类型和含碳量的差别都不大,因而铁素体向奥氏体的转变总是先完成.当珠光体中的铁素体全部转变为奥氏体后,仍有少量的渗碳体尚未溶解.随着保温时间的延长,这部分渗碳体不断溶入奥氏体,直至完全消失.1.1.4奥氏体均匀化刚形成的奥氏体晶粒中,碳浓度是不均匀的.原先渗碳体的位置,碳浓度较高;原先属于铁素体的位置,碳浓度较低.因此,必须保温一段时间,通过碳原子的扩散获得成分均匀的奥氏体.这就是热处理应该有一个保温阶段的原因.应当指出,在生产中钢的热处理并非都要求达到奥氏体均匀化,而是根据热处理的目的,控制奥氏体形成的不同阶段..应当指出,在生产中钢的热处理并非都要求达到奥氏体均匀化,而是根据热处理的目的,控制奥氏体形成的不同阶段.亚共析钢和过共析钢的奥氏体形成过程与共析钢基本相似,不同之处是亚共析钢和过共析钢需加热到Ac3或Accm以上时,才能获得单一的奥氏体组织,即完全奥氏体化.但对过共析钢而言,此时奥氏体晶粒已粗化.1.共析钢碳溶解在铁的晶格中形成固溶体,碳溶解到α——铁中的固溶体叫铁素体,溶解到γ——铁中的固溶体叫奥氏体。

钢材的热处理有以下几个方法

钢材的热处理有以下几个方法

钢材的热处理有以下几个方法※均质退火处理简称均质化处理(Homogenization),系利用在高温进行长时间加热,使内部的化学成分充分扩散,因此又称为『扩散退火』。

加热温度会因钢材种类有所差异,大钢锭通常在1200℃至1300℃之间进行均质化处理,高碳钢在1100℃至1200℃之间,而一般锻造或轧延之钢材则在1000℃至1200℃间进行此项热处理。

※完全退火处理完全退火处理系将亚共析钢加热至Ac3温度以上30~50℃、过共析钢加热至Ac1温度以上50℃左右的温度范围,在该温度保持足够时间,使成为沃斯田体单相组织(亚共析钢)或沃斯田体加上雪明碳体混合组织后,在进行炉冷使钢材软化,以得到钢材最佳之延展性及微细晶粒组织。

※球化退火处理球化退火主要的目的,是希望藉由热处理使钢铁材料内部的层状或网状碳化物凝聚成为球状,使改善钢材之切削性能及加工塑性,特别是高碳的工具钢更是需要此种退火处理。

常见的球化退火处理包括:(1)在钢材A1温度的上方、下方反复加热、冷却数次,使A1变态所析出的雪明碳铁,继续附着成长在上述球化的碳化物上;(2)加热至钢材A3或Acm温度上方,始碳化物完全固溶于沃斯田体后急冷,再依上述方法进行球化处理。

使碳化物球化,尚可增加钢材的淬火后韧性、防止淬裂,亦可改善钢材的淬火回火后机械性质、提高钢材的使用寿命。

※软化退火处理软化退火热处理的热处理程序是将工件加热到600℃至650℃范围内(A1温度下方),维持一段时间之后空冷,其主要目的在于使以加工硬化的工件再度软化、回复原先之韧性,以便能再进一步加工。

此种热处理方法常在冷加工过程反复实施,故又称之为制程退火。

大部分金属在冷加工后,材料强度、硬度会随着加工量渐增而变大,也因此导致材料延性降低、材质变脆,若需要再进一步加工时,须先经软化退火热处理才能继续加工。

※弛力退火处理弛力退火热处理主要的目的,在于清除因锻造、铸造、机械加工或焊接所产生的残留应力,这种残存应力常导致工件强度降低、经久变形,并对材料韧性、延展性有不良影响,因此弛力退火热处理对于尺寸经度要求严格的工件、有安全顾虑的机械构件事非常重要的。

金属工艺学电子教学教案——第四章钢的热处理03(高教版王英杰主编).doc

金属工艺学电子教学教案——第四章钢的热处理03(高教版王英杰主编).doc

第六节钢的表面热处理与化学热处理教学重点与难点1・重点表面淬火与化学热处理2 •难点渗碳与渗氮教学方法与手段1.利用挂图等教具。

2.列举生活与生产中应用表面淬火与化学热处理、渗碳与渗氮工艺的实例,分析原理与应用,以点带面,触类旁通。

教学组织1 •复习提问10分钟2.讲解75分钟3.小结5分钟教学内容的表面热处理♦表面热处理是为改变工件表面的组织和性能,仅对其表面进行热处理的工艺。

其中表面淬火是最常用的表面热处理。

♦表面淬火是指仅对工件表层进行淬火的工艺。

其目的是使工件表面获得高硬度和耐磨性,而心部保持较好的塑性和韧性。

依加热方法的不同,表面淬火方法主耍有:感应加热表面淬火、火焰加热表面淬火、屯接触加热表面淬火及屯解液加热表面淬火等。

(一)感应加热表面淬火利用感应电流通过工件所产生的热效应,使工件表而、局部或整体加热并进行快速冷却的淬火工艺称为感应加热淬火。

1.感应加热基木原理依靠感应电流的热效应,使工件表层在几秒钟内快速加热到淬火温度,然后迅速冷却,淬帔工件表面层,这就是感应加热表面淬火的基本原理。

2.感应加热表面淬火的特点(1)加热时间短,工件基本无氧化、脱碳,且变形小。

奥氏休晶粒细小,淬火后获得细小马氏体组织,使工件表层比一般淬火駛度高2〜3HRC,且脆性较低。

工件表面淬火后,在淬硬的表面层中存在较大的残余压应力,因此,提高了工件的疲劳强度。

(2)加热速度快,热效率高,生产率高,易实现机械化、口动化,适于大批量生产。

(3)感应加热设备投资大,维修调试比较困难。

3 •感应加热表而淬火的应用感应加热表面淬火主要用于中碳钢和中碳合金钢制造的工件,如40钢、45 钢、400、40MnB 等。

生产上通过选择不同的电流频率来达到满足不同要求的淬硬层深度。

根据电流频率不同,感应加热淬火分为三类:高频感应加热表面淬火、中频感应加热表面淬火和工频感应加热表面淬火。

感应加热表而淬火后,需要进行低温回火。

感应加热表面淬火零件的工艺路线一般如下:毛坯锻造(或轧材下料)一退火或正火一粗加工一调质一精加工一感应加热表而淬火一低温回火一磨削加工。

钢铁材料的一般热处理

钢铁材料的一般热处理
钢铁材料的一般热处理
2010-8-26 14:55:44
名称
热处理过程
热处理目的
1.退火
将钢件加热到一定温度,保温一定时间,然后缓慢冷却到室温。
①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工;
②细化晶粒,均匀钢的组织,改善钢的性能及为以后的热处理作准备;
③消除钢中的内应力。防止零件加工后变形及开裂。
4.回火
将淬火后的钢件加热到临界温度以下,保温一段时间,然后在空气或油中冷却。回火是紧接着淬火以后进行的,也是热处理的最后一道工序。
①获得所需的力学性能。在通常情况下,零件淬火后的强度和硬度有很大提高,但塑性和韧性却有明显降低,而零件的实际工作条件要求有良好的强度和韧性。选择适当的回火温度进行回火后,可以获得所需的力学性能;
退火类别
(1)完全退火
将钢件加热到临界温度(不同钢材临界温度也不同,一般是710-750℃,个别合金钢的临界温度可达800—960oC)以上30—50oC,保温一定时间,然后随炉缓慢冷却(或埋在沙中冷却)。
细化晶粒,均匀组织,降低硬度,充分消除内应力完全退火适用于含碳量(质量分数)在O.8%以下的锻件或铸钢件。
②稳定组织,稳定尺寸;
③消除内应力。
回火类别
(1)低温回火
将淬硬的钢件加热到150-50oC,并在这个温度保温一定时间,然后在空气中冷却,低温回火多用于切削刀具、量具、模具、滚动轴承和渗碳零件等。
消除钢件因淬火而产生的内应力。
(2)中温回火
将淬火的钢件加热到350~450%,经保温一段时间冷却下来,一般用于各类弹簧及热冲模等零件。
使钢件获得较高的弹性、一定的韧性和硬度。
(3)高温回火
将淬火后的钢件加热到500~650oC,经过保温以后冷却,主要用于要求高强度、高韧性的重要结构零件,如主轴、曲轴、凸轮、齿轮和连杆等。

钢的热处理

钢的热处理

第四章钢的热处理一、判断题1. 实际加热时的临界点总是低于像图上的临界点。

( ×)2. 珠光体向奥氏体转变也是通过形核及晶核长大的过程进行的。

( √)3. 渗透性好的钢,淬火后温度一定高。

( ×)4. 淬火后的钢,回火时随温度的变化组织会发生不同的转变。

( √)5. 下贝氏体是热处理后一种比较理想的组织。

( √)6. 马氏体组织是一种非稳定的组织。

( ×)7. A1线以下仍未转变的奥氏体称为残余奥氏体。

( ×)8. 珠光体、索氏体、屈氏体都是片层状的铁素体和渗碳体混合物所以他们的力学性能相同。

( √)9. 贝氏体具有较高的强度、硬度和较好的塑性、韧性。

( √)10. 钢的晶粒因过热而粗化时,就有变脆倾向。

( √)11. 索氏体和回火索氏体的性能没有多大的区别。

( ×)12. 完全退火不适用于高碳钢。

( √)13. 在去应力退火过程中,刚的组织不发生变化。

( √)14、钢的最高淬火硬度,只要取决于钢中奥氏体的含碳量。

( √)15、淬火后的钢其回火温度越高,回火后的强度和硬度也越高。

( ×)16、钢回火的加热温度在Ac1以下,因此在回火过程中无组织变化。

( √)17、感应加热表面淬火,淬硬层深度取决于电流频率;频率越低,淬硬层越浅;反之频率越高,硬层越深。

( ×)18、钢渗氮后,无需淬火既有很高的硬度及耐磨性。

( √)19、高速钢的热硬性可达600℃,常用于制造切削速度较高的刀具,且在切削时能长期保持刀口锋利,故又称锋钢。

( √)20、白口铸铁中的碳绝人多数足以渗碳体的形式存在,所以其具有高硬度、抗磨性和低脆性。

( √)21、在切削加工前先排预先热处理,一般说来低碳钢采用正火,而高碳钢及合金钢正火硬度太高,必须采用退火。

( √)22、一般清况下碳钢淬火用油,合金钢淬火用水。

( ×)23、双介质淬火就是将钢奥氏体化历,先浸入一种冷却能力弱的介质,在钢件还未达到该淬火介质温度之前即取出,马上浸入另一种冷却能力强的介质中冷却。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
力学性能要求不高的普通结构零件:正火可作为最终热处理。但是形 状复杂的零件,正火速度较快,内应力较大,容易变形开裂,应用退 火。
第四章钢的热处理办法
加热温度范围
热处理工艺曲线
1—完全退火 2—球化退火 3—去应力退火 4—正火
第四章钢的热处理办法
二、淬火与回火
1.钢的淬火
淬火——将钢件加热到Ac3或Ac1 以上的适当温度,经 保温后快速冷却(冷却速度大于v临),以获得马氏体或下 贝氏体组织的热处理工艺。介质:油、水、盐水、碱水
目的:获得马氏体组织,提高钢的强度、硬度和耐磨 性。 晶格改变,碳原子不扩散,
第四章钢的热处理办法
(1)淬火加热温度的选择
亚共析钢: Ac3以上30~50℃
(过)共析钢 : Ac1以上30~50℃
碳钢淬火温度范围
第四章钢的热处理办法
(2)淬火冷却介质的选择
淬火的冷却速度必须大 于该钢种的临界冷却速度。
第四章钢的热处理办法
(2)贝氏体型转变区——中温等温转变
在550℃~Ms 温度范围内,因转变温度较低,原子的 活动能力较弱,转变后得到的组织为含碳量具有一定过饱 和程度的铁素体和分散的渗碳体(或碳化物)所组成的混 合物,称为贝氏体,用符号B表示。
贝氏体有上贝氏体(B上)和下贝氏体(B下)之分。
第四章钢的热处理办法
冷却中要避免引起钢件 的变形和开裂。
冷却介质对钢的理想淬 火冷却速度应是“慢―快― 慢” 。
第四章钢的热处理办法
(3)常用的淬火方法
单液淬火法 双介质淬火 马氏体分级淬火 贝氏体等温淬火
奥氏体在A1线以上是稳定相,当冷却到A1线 以下而又尚未转变的奥氏体称为过冷奥氏体。这 是一种不稳定的过冷组织,只要经过一段时间的 等温保持,它就可以等温转变为稳定的新相。这 种转变就称为奥氏体的等温转变。
过冷奥氏体的转变包括珠光体型、贝氏体型、马 氏体型等几种转变
第四章钢的热处理办法

(1)高温等温转变:
第四章钢的热处理办法
一、退火与正火
软化组织:降低硬度,
消除内应力,细化晶粒,
机械零件一般的加工工以艺利于顺切削序加:工
强化组织:增加强硬度 和耐磨性,稳定组织,
消除内应力。
第四章钢的热处理办法
1.退火
退火——将钢加热到适当温度,保持一定时间,然后 缓慢冷却(一般随炉冷却)的热处理工艺。
常用退火方法:
第四章 钢的热处理
§4-1 热处理的原理及分类 §4-2 钢在加热及冷却时的组织转变 §4-3 热处理的基本方法 §4-4 钢的表面热处理 §4-5 零件的热处理分析 *§4-6 热处理实验
第四章钢的热处理办法
§4-1 热处理的原理及分类
钢丝的水冷与空冷
现象:放在水中冷却的一根钢丝硬而脆,很容易折断; 放在空气中冷却的一根较软、有较好的塑性,可以卷成圆圈 而不断裂。
第四章钢的热处理办法
实验说明:虽然钢的成分相同,加热的温度也相,但采 用不同的冷却方法,却得到了不同的力学性能。这主要是因 为在不同冷却速度的情况下,钢的内部组织发生了不同的变 化。
热处理及工艺曲线
第四章钢的热处理办法
热处理的分类:
第四章钢的热处理办法
§4-2 钢在加热及冷却时的组织转变
一、钢在加热时的组织转变 二、钢在冷却时的组织转变
形核
长大 残余渗碳体溶解 均匀化
第四章钢的热处理办法
3.奥氏体晶粒的长大
晶粒的长大是依靠较大晶粒吞并较小晶粒和晶界迁移的 方式进行。控制加热温度和保温时间,避免晶粒粗大的现象。
第四章钢的热处理办法
二、钢在冷却时的组织转变
两种冷却方式: 等温处理 ห้องสมุดไป่ตู้续冷却
第四章钢的热处理办法
1.奥氏体的等温转变
(3)马氏体型转变区——低温连续转变
当钢从奥氏体区急冷到MS 以下时,奥氏体便开始转变 为马氏体。由于转变温度低,原子扩散能力小,在马氏体 转变过程中,只有γ-Fe向α-Fe的晶格改变,而不发生碳 原子的扩散。因此,溶解在奥氏体中的碳,转变后原封不 动地保留在铁的晶格中,形成碳在α-Fe中的过饱和固溶体, 称为马氏体,用符号M表示。 硬度取决于含碳量。
第四章钢的热处理办法
2.正火(得到S组织)
正火——将钢加热到Ac3或Accm以上30~50℃,保温
适当的时间后,在空气中冷却的工艺方法。
亚共析钢:正火目的是细化晶粒,均匀组织,提高机 械性能。低、中碳结构钢:调整硬度,改善切削加工性能。
高碳过共析钢:存在网状渗碳体不能直接球化退火。 正火的目的是消除网状渗碳体,有利于球化退火,为淬火 做好组织准备。正火后硬度过高难以进行切削加工,必须 再进行球化退火。
完全退火(中低碳
钢,细化晶粒,降低硬度)
球化退火(高碳钢,
片状变为细小球状颗粒, 降低硬度,为淬火做准备)
去应力退火 (组
织不变化,消除内应力)
退火目的: 降低硬度,提高塑性,以利于切 削加工和冷变形加工 细化晶粒,均匀组织,为后续热 处理作好组织上的准备 消除残余内应力,防止工件的变 形与开裂
第四章钢的热处理办法
一、钢在加热时的组织转变
1.钢在加热和冷却时的相变温度
在加热时钢的转变温 度要高于平衡状态下的临 界点;在冷却时要低于平 衡状态下的临界点。
加热时的各临界点:
Ac1、Ac3和Accm 冷却时的各临界点:
Ar1、Ar3和Arcm
第四章钢的热处理办法
2.奥氏体的形成
钢在加热时的组织转变,主要包括奥氏体的形成和晶粒 长大两个过程。
高碳M:针状,硬度高,脆性大
低碳M:板条状,良好的强度,较好的韧性
170-230HBW
第四章钢的热处理办法
2.奥氏体的连续冷却 转变
v1:随炉冷却(退火) v2:空冷(正火) v3:油冷(油冷淬火) v4:水冷(水冷淬火) vk:临界冷却速度
V临
第四章钢的热处理办法
§4-3 热处理的基本方法
一、退火与正火 二、淬火与回火
光 体
珠光体型转变区
型 转
(过冷度越大,片层越细,塑
变 区
性变形抗力越大,硬度和强度

越高)
氏 体


(2)中温等温转变:
变 区
贝氏体型转变区
马 氏


(3)低温连续转变:
转 变 区
马氏体型转变区
共析钢等温转变曲线图
第四章钢的热处理办法
(1)珠光体型转变区——高温等温转变
共析钢的过冷奥氏体在A1~550℃温度范围内,过冷 奥氏体将发生奥氏体向珠光体型的转变 ,即转变为铁素 体和渗碳体。
相关文档
最新文档