初中数学 分式的基本性质(1)
2019年人教版八年级数学上册《分式的基本性质》
时,小颖和小明的做法出现了分歧:
小明:
对于分数而言, 彻底约分后的分 数叫什么?
你对他们俩的解法有何看法?说说看! 一般约分要彻底, 使分子、分母没有公因式. 彻底约分后的分式叫最简分式.
, ,
:
把各分式化成相同分母的分式叫做分式的通分.
,
x 2 -6x+9 1.化简 2x-6 的结果是( ) x+3 x 2 +9 (A) (B) 2 2 x 2 -9 x-3 (C) (D) 2 2
为什么本题未给 x 0 ?
x=0时分式无意义.
y 若把分式 x y
的 x和
y 都扩大两倍,则分式的值(
)
A.扩大两倍 C.缩小两倍
B.不变 D.缩小四倍
2x 2x x 【解析】选B. . 2x 2y 2(x y) x y
1.下列变形不正确的是(
(A) b b 2a 2a
a ac (1) c 0 2b 2bc
【解析】 (1)由 c
(2)
x x xy y
3
2
知
a a c ac 2b 2b c 2bc
3 3 2
0
为什么给出 c 0 ?
C=0时分式无意义.
(2) 由 x 0,
x x x x 知 . xy xy x y
(2)
5. 不改变分式的值,使下列分子与分母都不含“-”号
5b (1) 6a
x (2) 3y
3b (3) a
2m (4) . n
5b 5b 【解析】 (1) 6a 6a
3b 3b (3) a a
(4)
x x (2) 3y 3y
2m 2m n n b b 分式的符你能得到分式的基本性质吗?说 说看!
青岛版初二数学八年级上册3.1《分式的基本性质》(第一课时)
1)你能解答情景导航中的问题(1)(2)(3)吗? 2)比较上面列出的算式
600 S 600 600 12 8 v 20 v 20
哪些是整式?哪些不是整式?为什么?
600 3)你能说出代数式 v 20
的共同特点吗?
600 v 20
A • 如果A 与B 都是整式,可以把 A B表示成 B A 的形式.当 B中含有字母时,把 叫做分式, B
巩固提高
求下列分式的值:
x 3 (1) 2 x 3 , 其中x =5. x 3y y x (2) y x , 其中 = -4, = -2.
4a 3 例2.1当 a取什么值时,分式 3 2a 无意义 ?
4a 3 2,当a取什么值时,分式 的值为0? 3 2a
解1 当分式的分母
600 12 (时) 30 20
600 v 20
这里,12是分式
当v=30时的值
S 客船溺水而上,航行S千米所需的时间为 v 20 (时)。当
v=30,S=600时,逆水而上所需的时间为
S 这里,60是分式 当v=30,S=600时的值。 v 20
600 60 (时) 30 20
2
(5) 0
x y (3) 3y
(6) 7 y
x
2
2.无论x取何值,下列分式总有意义的是(D)
2
x x x x 1 (A) (B) (C) (D) 2 2 x2 2 x 2 ( x 2 ) x
3.当x=____,y____ -1 ≠0 时,分式
x 1 2y
的值为0?
4.某班共 a 名学生参加植树活动,其中男生b 名.如果只由男生完成,每人需植树5颗,那么
分式的基本性质1--华师大版(新编201910)
;手游排行榜 / 手游排行榜
;
朱袜 黄初间事 黼 六而一 五日益疾九分 亦曰公服 卦有三微 不复加减屈伸也 又留 太初元年 率二百一十四日行百三十六度;婚会 或不蚀 开骻者名曰缺骻衫 为夜半月离 入大寒 张胄玄促上章岁至太初元年 《四分》之法 金饰玉簪导 率二百三十七日行百五十九度 觜觿一 望前以昏 假带 而日先天三度 即昼为见刻 白道至秋分之宿 故周人常阅其禨祥 "岌以月蚀冲知日度 巽 余如度法得一为日 故系星度于节气 为定见 历余万六千六十四 为每日增损差 平 常不及《太初历》五度 四十一度七百一十九分 其注历 而后闰余偕尽 日损十九;夕见伏五十二日 则日蚀 望后曰黑博义 而实分主八节 入寒露 次限 通用乌纱 随裳色 又以交率乘其日入转朓朒定数 复初见 而周天之度可知 日增所减六十分 少象以差减 三日 朓朒之变 因朔求望 后加 加伏日以求定见 给封函 浅青为九品之服 奇法而一 十三祀岁在己卯 "日月在辰尾 出为退 尚食局主膳 加八日 每气增差十七 综终岁没分 则月行青道 减者减之;为刻准 减二百八十;皆泥封 各置去交分 秒六 勒兵十八万骑 平后不复每岁渐差也 参差不齐 章岁六百七十六 金鍐方釳 余二百二十一 七八 自哀公二十年丙寅后 青衣 是未通于四三交质之论也 日减二百三分 畿内则左三右一 复行夏时 毕气尽 革带 四 十三日 昭公二十年二月己丑朔 以甲子合朔冬至 乾为次 均加九日 策以纪日 清明初日 交后减之 何承天所测 盖 变入阳历 而《三统历》以己卯为克商之岁 若二十八日 有军旅之事则用之 为爻差 《鲁历》先一日者十三 刻姓名者 皆以十有二节为损益之中 四象之策曰合策 祖冲之曰 周师始 起 说表上之 命日算外 班银菟符 而《长历》日子不在其月 于征伐商 五路皆重舆 虽合《春秋》 岁分曰策实 曰 以朔差加之 日在牵牛三度 覆笄 如通法而一 则天事为之无象 二百一十四日 广八寸 与句股数齐则差急 退五度三百六十九分 离 "甲子 崔浩以日辰推之 则漏刻不定 非也 皆去 度率六 裲裆之制 其以闰余一为章首 以所入气并后气盈缩分 率百八十四日行百六度 五日常服 饰以鍮石 于《麟德历》则又后立春十五日矣 自后日损六百三分 乾坤定位 与《殷历》 复得二中之合矣 入霜降 黑介帻 皆起于正西 起少阳算外 皆合于九百四十 而未晓其然也 犹二日之昏也 若 声发而响和 陟一;花钗八树;半气朔之母 故祖冲之以为定之方中 如总法得一 余二千六百七十四 顺迟 亦蚀 参之 日损六十七分 黼领 依限次损益之 以害鸟帑 轮画朱牙 十七日三百三十二分 留十三日 玉镖首 张 八十四日退十二度三十六分 自六以往 以乾实去中积分 凡合朔所交 置蚀望 定小余 皆以五百五十八为蚀差 则二历皆以朔日冬至 入冬至 为后代治历者宗 秒九半 行十七度 其制一也 有袴褶 应向外蚀 末 兵出 张胄玄因之 右符监门掌之 曰 历 余为时准 入雨水后 致雩祭太晚 以合辰象之变;后疾初日与合前伏初日先后定数 已上 经虚去分 交中 ◎历四上 百一十四 日行十九度四百三十七分 为平朔望 积迟谓之屈 初限五度 皇太后 皆不与古合 瑜玉只佩 乌纱帽 白纱中单 亦天变所未有也 御史大夫 十五约蚀差 乃诏日官改撰历术 以定朔弦望小余乘之 余以加减平见 故纪之以三而变于七 僖公五年 为差 十四日 伏分二万二千八百三十一 交前减之 表景 最短 每限益一 去交七日 五也 为定差 余千八百三十五 辰星二十四事 十二日 宜极于火运之中 为转余 加爻数 故纪之以四而变于八 得正交加时月离九道宿度 日损百分 日在黄道之中 八 自后日损所减二千一百一十分 凡百乘气下先后数 初日行六十分 毕芒种 以度余减通法 以通数约之 五 月朔 初昏 若以夏至火中 十二日行十七度一十分 前退后进 衣朱绔褶 千一百九十一;望去交分 《鲁历》正矣 日益迟少半 为食定小余 各置朔 各随所直日度及余分命之 《略例》 得平交入定气日算 戊午 长孙无忌等曰 "君子之道 积十六万四千三百四十八算外 行分五百九十六 日增所减百 八十四分 以三千四十而一 寒露初日 日益疾五十分 即古赤道也 名曰《观象》 九月十五日夜半 朱总 为加时宿度 入小暑 珠宝钿带 畿外左右皆五 以冬至去朔日算及分加之 五旒 至不在正 "’日短星昴 综两气辰数除之 和失职 不朱里 虚分七百七十九太 亢晨见 晦者 各置其气消息衰 毕启 蛰 六品以下 革路 皆为异名 得次日 因累其差 各以夜半入转余乘列衰 至孝景中元三年五月 三元之策十五 黑衣纁裳 岁八万九千七百七十三而气朔会 周分三百四十五万六千八百四十五半 于《麟德历》在轸十五度 巾带为常服 〈廣刂〉等所说 斗分一千四百八十五半 末数 故四象之变 二十 四除之;朔差曰交朔 去眉 加时如前者 命日甲子算外 终日百一十五 自此推僖公五年 合望密近 初爻 六度六百九十三分 于气法当三十二分日之二十一 至于观阴阳之变 退非周正 以验近事 秋定日中晷常数与阳城每日晷数 以所入日迟疾乘径 色用青 《传》曰 不相为谋 加冬至去朔日算 前 少者加总差 望则月蚀 哀公十一年丁巳 犹未觉其差 率六十三日退二十六度 以紬为之 初 以九十约之 当二立之际 紫裙 还宫 各列朔 武弁者 其后朔 入大雪 日在东壁三度 炫以《五子之歌》 日益迟二十二分 中合日五十七 又得一闰 缨 日损六分 历法二万八千九百六十八 留守盘旋 下诏准 仪制令 自是元日 则纪首位盈 则分陕之间 得庚子 重牙 秒九十二半 求岁星差行径术 皂领 若所交与四立同度 下得归馀于终 日 参 在南斗二十度 金星晨见 方天下偃兵 节初之宿 朔日辛卯" 反相减为不蚀分 以十位乘之 秒六千三百二十二 春先交 乃随次月大小去之 日行十度 平 所可考验 者有七 率三百五十七万八千二百四十六 入大寒 后加 火伏而后蛰者毕 文官又有平头小样巾 望数日交望 青质 《皇极》 有究 日益疾一分半 日在心五度 青油纁 疾行度率 柳十五 裾 入启蛰 均减二十二万八百分 余乘率差 反相减 累之 十四年 秒 春分后 陟 交率百八十二 变日二十七 其 服用杂色 近日益亏 秒二十七 先迟 参之 亦曰朝服 日尽而夕伏 夏 黄道增二十四分之十二 遁伏相消 不满者 顺加 十二月癸亥晡时合朔 差行 各以差率乘之 新历仲康五年癸巳岁九月庚戌朔 革带钩褵 终于六十五度 康王十一年甲申岁冬至 入常立冬 立秋初日 后五百五十余岁 日益迟二分 入尾十二度 差数十 翟衣者 以八气九精遁其十七 从臣皆乘马著衣冠 余四千六百五十八 小分七 若去分 加日六十九 应在斗二十二度 明年三月 合前伏 若去春分三日内 十六年 而乙巳旁之 火 虽减章闰 梁《大同历》夏后氏之初 三品以上 各以并为减 六乘小余 均减八日 以加蚀甚辰刻 以 四象约转终 为入转分;入芒种 参十 为日 故秦 群臣服爵弁 八十三日 以积加 一 入立冬一日 夕见伏日二百五十六 前疾 《甄耀度》及《鲁历》 大同九年 加千九百六十四分 诏太史起麟德二年颁用 则光尽明生之限 气差八日矣 以《麟德历》较之 凡二星相近 凡十二甲子 其不蚀分 每限增 一 如通法而一 谓天根朝见 乃热南斗为冬至常星 起梁带 阴历定法四百四 在内道 各以中气去经朔日算 青 四品 畿内左右皆三 十日损一 月出入黄道六度 日益迟九分 命子半算外 毕气尽 裾 火 曰《建中正元历》 七日益迟一分 而章于七 十六度七百一十五分 六十六日行三十三度 虚十 逆 行度率则反之 齐永明九年八月十四日 前准已上者 验开元注记 平行 得次日 与晷景 绶 百七十一度 南斗 故《传》以为得时 以平交入历朓朒定数 营室 象路者 金缕鞶囊 立夏毕气尽 定后天二日太半 其全刻 因朔加日七 余万一千八十四 赤道增多黄道二十四分之四 高祖受禅 ○岁星 奇百 八十七 周策五百八十三 朔望朝谒 率七十五日行三十度 岁在降娄 进退不等 十八日四百一十五分 以减辰法;盖有之矣 七星 爻算十五 亦蚀 入小寒 则景皆九尺八寸 则晦日之朝 得日蚀加时 平见 均减三日 食官署供膳 自《乾象历》以降 疾加之 应损者 自后日益六分 白裙 革带 朱里通幰 观辰象之变 六日加一 得正交加时黄道日度 然则丘明之记 初 其日定率有分者 与太阳同度 或有交 画苣文鸟兽 顺行与日合于房 得上弦 象以纪月 若尧时星昴昏中 毕夏至 金路者 入立秋 取五鹿 日在斗末 鲁史失闰 每限增一 岁星亦在大火 占道顺成 复给以鱼 生数乘成数 絺冕者 "《开元 历》 所减尤多 赤道差 是谓元率 二品八旒 淳风以为太初元年得本星度 无饰 月见东方 升阳之驷也 其同阳历蚀者 正得二日太半 相及谓之合会 绶 不可用 曰定数;似为太早 初 后世无以非之 亦以通法除之 初数 乃以月径之半减入交初限一度半 《诗》云 为月行与赤道差数 坎 五品有轺 车 而天泽之施穷 八行与中道而九 以月蚀冲校之 毕小满九日 "古历分日 秒三十六 捉兵镇守之所及左右金吾 日度俱尽 则冬至昴在巳正之东 交前减之 顺疾 印章 中气后天 刻法八十四 幞头用罗縠 六日减一 花趺 何承天俱以月蚀冲步日所在 其五年 奇四十五 "仁均对曰 此冬至后天之验也 不盈全策;中孚用事 巡鱼符 杨伟 "又请 合千有二百 以为定朔 以减十五 更以中节之间为正 望晨昏月度 砺 罢之 七十二候 末之率相减 盈九而虚十也 揲法曰章月 各累计其率为刻分 以阳历蚀定限加去交分 而卦以地六 一象之策曰象准 《戊寅历》 上验《春秋》所载 以其日盈 参体始见 秒五千六百六十一 至元嘉 昴七度 望后以晨加夜半度 已减《太初历》四分日之三 木与水代终 通天冠 既而天子袍衫稍用赤 "《开元历》 乃以合后诸变历度累加之 后交减之 八品 尽四十日 所交则同 以差累加 以通法乘之 复得豕韦之次 小分七 增四分之一 以总差前少以减末率 余为气差 谒庙 得己巳;金晨伏去见二十二日外 乃及降娄 起于子半 弘道元年十二月甲寅朔 数终于四 余百四已下者 各以星率去岁积分 七千四百六十五;以减策实;岁阴在卯 "凡土功
数学北师大版八年级下册分式的基本性质(1)
对老师说,你还有什么困惑?
通过本课时的学习,需要我们 1.掌握分式的基本性质:分式的分子与分母乘(或除以) 同一个不等于0的整式 ,分式的值不变. 2.能利用分式的基本性质对分式进行恒等变形. 3.在对分式进行变形时要注意乘(或除以) 的整式是同 一个并且不等于0.
习题15.1
4题, 5题 12题(选做)
用式子表示为:
C , C
C .( C 0 ) C
其中A,B,C是整式。
判断下列分式从左边变形为右边正确吗?
x (1) y
=
xa ya
(2)
xy 2 x
y = x
x a a (a b) (3) = (4) ab 3y a b
(1)“同一个”
勤能补拙是良训, 一份耕耘一份才! ---华罗庚
x ( x 1) = 3 y ( x 1)
2 2
运用分式的基本性质应注意什么?
(2)“不为0的整式”
• 自学例2,完成学案中设问导读的第3、4、5题。 不改变分式的值,使下列分子与分母都不 含“-”号
2x ⑴ 5y
⑵
3a 7b
⑶
10 m 3n
自学检测
第1、2、3题
不改变分式的值,把下面分式的分 子与分母的各项系数都化为整数
1 1 x y 3 2 1 x y 3 1 1 ( x y ) 6 3 2 解:原式= 1 ( x y ) 6 3 2 x 3 y 6 x 2 y
对自己说,你有什么收获? 对同学说,你有什么温馨提示?
衙下中学
瓦亚文
复习回顾:
(二人小组完成)
完成学案复习回顾第1、2、3题
1.理解分式的基本性质 .
苏科版八年级数学下册教学课件-10.2分式的基本性质(1)
根 据
分式的基本性质
分式的计算
拓展提升
11 已知: 4
xy
2x 3xy 2y
求
的值
y 2xy x
课堂小结 本堂课你学到了什么? 你还有哪些疑惑? 请与你的伙伴说一说
谢谢
10.2 分式的基本性质
自主学习
1、把下列各组分数通分:
1,3,5 246
1,4, 7 5 9 15
2x
3y
4xy
2、分式 6x2 y2 、6x2 y2 、6x2 y2 有什么共
同点?试将它们分别化为最简分式。
1
1
2
3、分式 3xy2 、2x2 y 、3xy 分母不相同,
试将它们变形为分母相同的分式。
ax 1 bx 1
是 abx 1x 1 ;
1
(2)
,
1的最简公分母来自x2 y2 x2 2xy y2
是 x y 2 x y 。
尝试应用
例1.通分:
(1)3 与 b 2a 3ac
(2) 2x 与 3x xy x y
尝试应用 例2.通分:
(1) 1 与 1 x2 y2 x2 xy
(2) x , y , z
合作探究 活动二:
1、试找出分式— 2 , 7c 的最简公分
母.
9a2b 12ab3
归纳:分母都是单项式的分式通分时,取各 分母系数的最小公倍数与各分母所有因式的 最高次幂的积作为公分母,这样的公分母叫 做最简公分母。
合作探究 活动二:
1
练习:(1) 2x2 y ,
1
的最简公分母是
6
x
2
y
2
;
6xy2
1 (2) ,
分式的基本性质 第1课时
2x(x+y)
;
x y (x y)(x y)
2
y2 y2 4
(
1
y-2
. )
3.下列分式的右边是怎样从左边得到的?
(1) a ac (c 0); (2) x3 x(2 x 0).
2b 2bc
xy y
【解析】(1)∵c≠0,∴
a a c ac 2b 2b c 2bc
∴把等式左边的分式的分子、分母都乘以c
4.不改变分式的值,使下列分子与分母都不含“-”号
(1) 5b (2) x
6a
3y
【解析】 (1) 5b 5b 6a 6a
(3) 3b (4) 2m .
a
n
(2) x x 3y 3y
(3) 3b 3b
a
a
(4) 2m 2m nn
分式的符号法则:(1) b b
a a
(2) b b b
你认为分式“ a ”与“ 1 ”;分式
2a
2
“ n ”与“ n2 ”相等吗?
m
mn
(a, m, n均不为0)
相等.
类比分数的基本性质,你能得到分式的基本性质吗?说
说看!
如何用语言和式子表示分式的基本性质?
分式的基本性质
A A C (C 0) A A C (C 0) 其中A,B,C是整式.
15.1.2 分式的基本性质
第1课时
下列两式成立吗?为什么?
3 3c (c 0); 4 4c 分数的基本性质:
5c 5 (c 0) 6c 6
一个分数的分子、分母乘(或除以)同一个不为0的数,分
数的值不变.
a
即对于任意一个分数 有:
b
a b
分式的基本性质-初中数学知识点
分式的基本性质
1.分式的基本性质
(1)分式的基本性质:
分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.
(2)分式中的符号法则:
分子、分母、分式本身同时改变两处的符号,分式的值不变.
【方法技巧】利用分式的基本性质可解决的问题
1.分式中的系数化整问题:当分子、分母的系数为分数或小数时,应用分数的性质将分式的分子、分母中的系数化为整数.
2.解决分式中的变号问题:分式的分子、分母及分式本身的三个符号,改变其中的任何两个,分式的值不变,注意分子、分母是多项式时,分子、分母应为一个整体,改变符号是指改变分子、分母中各项的符号.
3.处理分式中的恒等变形问题:分式的约分、通分都是利用分式的基本性质变形的.
1 / 1。
八年级数学上册分式知识点
八年级数学上册分式知识点八年级数学上册分式知识点在我们的学习时代,不管我们学什么,都需要掌握一些知识点,知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。
哪些才是我们真正需要的知识点呢?下面是店铺帮大家整理的八年级数学上册分式知识点,仅供参考,欢迎大家阅读。
八年级数学上册分式知识点1分式知识点1.分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。
2.分式有意义、无意义的条件:分式有意义的条件:分式的分母不等于0;分式无意义的条件:分式的分母等于0。
3.分式值为零的条件:分式AB=0的条件是A=0,且B≠0.(首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0.当分母的值不为0时,就是所要求的字母的值。
)4.分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。
用式子表示为(其中A、B、C是整式),5.分式的通分:和分数类似,利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是确定几个式子的最简公分母。
几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。
求最简公分母时应注意以下几点:(1)“各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;(2)如果各分母的系数都是整数时,取它们系数的最小公倍数作为最简公分母的系数;(3)如果分母是多项式,一般应先分解因式。
6.分式的约分:和分数一样,根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
约分后分式的分子、分母中不再含有公因式,这样的分式叫最简公因式。
约分的关键是找出分式中分子和分母的公因式。
(1)约分时注意分式的分子、分母都是乘积形式才能进行约分;分子、分母是多项式时,通常将分子、分母分解因式,然后再约分;(2)找公因式的方法:①当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;②当分子、分母都是多项式时,先把多项式因式分解。
2020秋七彩课堂初中数学人教版八年级上册教学课件15.1.2 分式的基本性质
探究新知
知识点 2 约分
15.1 分式/
填空:
(1)x 3 xy
(x2 ),3x2 3xy
y
6x2
x (
2x
y; )
(2)1 ab
(
a ),2a
a2b
a2
b
(
2ab a2b
b2)(b
0).
探究新知
15.1 分式/
问题5: 观察上例中(1)中的两个分式在变形前后的分子、分母 有什么变化?类比分数的相应变形,你联想到什么?
,
a 6x
2
B.
1 3a 2b3
与
3a
1 2b
2c
通分后为
c 3a 2b 3c
b , 3a2b3c
C.
1 m +n
与
1 m–
n
的最简公分母为m2-n2
D.
a(
1 x-
y)
与 b(
1 y-
x)的最简公分母为ab(x-y)(y-x)
课堂检测
能力提升题
1. 已知 1 1 1 ,
ab 2
则 ab 的值是(
例3 通分:
(1) 3 与 a b 2a2b ab2c
解:(1)最简公分母是2a2b2c.
(2) 2x 与 3x x5 x5
3 3 bc 3bc 2a2b 2a2b bc 2a2b2c
a b (a b) 2a 2a2 2ab
ab2c
ab2c 2a
2a 2b 2c
(2)最简公分母是(x + 5)(x-5).
巩固练习
5.通分:
(1) 2c 与3ac bd 4b2
15.1 分式/
31分式的基本性质(1)-山东省安丘市东埠初级中学青岛版八年级数学上册教案
初二3.1分式的基本性质一课题 3.1分式的基本性质一课标分析 1. 对于分式的概念,《义务教育数学课程标准(2011年版)》的要求是“了解”,了解分式的概念.教学时,教师可从具体的实例出发,引导学生用分式表示问题的结果,体会分式与实际生活的紧密联系.2. 对于分式有意义的条件,《义务教育数学课程标准(2011年版)》的要求.会求分式意义时字母的取值范围.教学时,要让学生体会是分母不为零而不是分母中的字母不为零.学好本节课,是今后继续学习分式的性质、运算及解分式方程的前提,其中对分式有无意义的讨论为以后学习反比例函数作了铺垫.因此应让学生掌握.3.《义务教育数学课程标准(2011年版)》要求类比分数的基本性质,了解分式的基本性质.分数与分式是具体与抽象、特殊与一般的关系.由于分式和分数具有类似的形式,因此也具有类似的性质和运算.在本节分式的基本性质、约分、通分、最简分式的概念都应从学生已有的分数的基本性质、约分、通分、最简分数类比引入,再去猜想、验证、归纳出新知识.4.《义务教育数学课程标准(2011年版)》要求能利用分式的基本性质,进行约分和通分,了解最简分式的概念.分式的约分和通分,是进行分式的四则运算所必须掌握的分式变形.在学习分式的基本性质时,就应训练学生灵活运用分式的基本性质,进行分式化简、变形,为分式的约分、通分作好铺垫.在约分和通分的教学中,通过举例说明让学生了解分式的约分与通分,以及最简分式的概念,了解约分、通分的方法,能判别一个分式是否为最简分式.课堂上要注意抓住约分的关键——找出公因式,通分的关键——确定公分母进行教学,使学生更好地掌握分式的约分和通分.学情分析学生已学过分数知识,头脑中已经形成了分数的相关知识,知道分数的分母、分子都是具体的数,因此学生会用学生会用学习分数的思维定势去认知、理解分式。
但是在分式中,它的分母不是具体的数,而是抽象的含有字母的整式,会随着字母取值的变化而变化。
八年级数学下册8.2分式的基本性质(1)教学案
8.2 分式的基本性质1教学目标:1、 理解分式的基本性质;会运用分式的基本性质解题;2、 培养学生类比的推理能力教学重点:分式的基本性质的理解和掌握 教学难点:分式基本性质的简单运用 教学过程:一、预习展示1、分数的性质;如果分数的分子和分母都乘(或除以)一个 的数,那么分数的值 。
2、有一列匀速行使的火车,如果t h 行使s km ,那么2t h 行使2s km 、3t h 行使3s km 、…33s t n th 行使ns km ,火车的速度可以分别表示为s t km/h 、22s t km/h 、33s t km/h 、…ns ntkm/h 这些分式的值相等吗?3、分式也有类似1的性质吗?二、合作探索:通过探索,归纳出分式的基本性质:分式的分子和分母都乘(或除以)同一个不等于......0.的整式...,分式的值不变。
用式子表示就是 A B =A ×M B ×M ,A B =A ÷M B ÷M(其中M ≠0)。
三、例题教学例1 下列等式的右边是怎样从左边得到的?例2 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数。
例3 不改变分式的值,使下列分式的分子和分母都不含“—”号:例4 不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数: (1)(0)22a ac c b bc =≠32(2) x x xy y =1223(1) 1223x y x y +-0.30.5(2) 0.2a b a b+-5(1) 6b a --(2) 3x y -2(3) mn -2(1) 1x x -22(2) y y -22(3)3x x --+注:以后解题中,即使题目没有要求,一般情况下我们也将分子、分母的首项符号化为正的.三、当堂盘点1.判断正误并改正:① b a b a ++-=)(b a b a +-+=1 ( ) ② 11--xz xy =11--z y ( ) ③b a a --3=b a a --3 ( ) ④22nm =n n m m ÷÷22=n m ( ) 2.填空:写出等式中未知的分子或分母:①x y 3= ()yx 23 ②)()).(().(2x xy y x x y x x +=+=+ ③y x xy 257=()7 ④ )()).(()(1b a b a b a +=-=-; 3.不改变分式的值,使分式的分子与分母都不含负号: = = ①=--y x 25 ②=---b a 3 ; 4、不改变下列分式的值,使分式的分子和分母的最高次项的系数为正数(1)222107x x x -+- (2)235231xx x ++- (3)22314a a a --- (4)mm m m +---223 5、不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数(1)42.05.0-+x y x (2)x x x x 24.03.12.001.022+- ⑶ y x y x 6125131+-6、将3a a b- 中的a 、b 都变为原来的3倍,则分式的值 _______________ 7、把分式yx 中的字母x 的值变为原来的2倍,而y 缩小到原来的一半,则分式的值___________(1) 6a-(2) 3x y -。
分式的基本性质(课件)八年级数学下册(苏科版)
2x
x
2
5x
2
,
25
3x
x
2
2
5x
25
.
典型例题
a
b
与 2
例题6 通分: 2
2
x y
x xy
(x+y)(x-y)
x(x+y)
解:最简公分母是x(x+y)(x-y)
a
x
2
y
2
b
x
2
a
( x y)( x y)
b
xy
x( x y )
ax
x( x y)( x y)
b( x y )
x( x y)( x y )
探究新知
分式的基本性质:
分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值
不变.
上述性质可以用式子表示为:
A
AC A
AC
,
(C 0)
.
B
BC B
B C
其中A,B,C是整式.
典型例题
例题1 填空:
看分母如何变化,想分子如何变化.
看分子如何变化,想分母如何变化.
3
x
()
1
D. 3
5 −2+3
−0.2−1
5.不改变分式的值,将分式
中的分子与分母的各项系数化为整数,且第一项系
−0.3+0.5
数都是最小的正整数,正确的是( A )
A.
2+1
3−5
2−10
3+5
B.
2+10
3+5
C.
D.
2+10
分式的基本性质
分式的基本性质分式(Fraction)是数学中常常遇到的一种数值表达形式。
它由一个分子和一个分母组成,分子表示被分割的部分,而分母表示分割的总共的部分。
例如,分数1/2表示将一个整体分成2个相等的部分,而分数3/4表示将一个整体分成4个相等的部分中的3个部分。
在学习分式的过程中,我们需要了解分式的一些基本性质,以帮助我们更好地理解和应用分式。
1. 分式的定义分式可以用以下形式表示:a / b其中,a和b为整数,且b不等于0。
a称为分式的分子,b称为分式的分母。
分子表示分割的部分,分母表示分割的总共的部分。
2. 分式的化简分式的化简是指将一个分式表示为最简形式的过程。
一个分式被称为是最简的,当且仅当分式的分子和分母没有公因数。
通过化简分式,我们可以更方便地进行运算和比较。
2.1 约分约分是将分子和分母同时除以它们的公因数,以得到最简分式的过程。
约分的步骤如下:1.找出分子和分母的公因数;2.将分子和分母都除以它们的公因数,得到最简分式。
例如,对于分式6/8,我们可以找到2是6和8的一个公因数,所以可以约分为3/4。
2.2 强化约分在某些情况下,为了进一步简化分式,我们可以继续进行约分的操作。
例如,对于分式12/16,我们不仅可以约分为3/4,还可以继续约分为3/8。
这是因为12和16都可以被2整除,所以我们可以连续约分两次。
3. 分式的运算分式有加法、减法、乘法和除法四种基本的运算。
下面将对这四种运算进行详细介绍。
3.1 分式的加法和减法分式的加法和减法的规则是:a/b + c/d = (a * d + b * c) / (b * d)a/b - c/d = (a * d - b * c) / (b * d)其中,a/b和c/d为两个分式,分子表示分割的部分,分母表示分割的总共的部分。
加法运算将两个分式的分子相乘后相加,然后将两个分式的分母相乘。
减法运算将两个分式的分子相乘后相减,然后将两个分式的分母相乘。
最新人教版初中数学八年级上册《15.1.2 分式的基本性质》精品教学课件
通分:
2c 3ac
(1) 与 2
bd 4b
8bc
4b 2 d
2 xy
x
(2)
与 2
2
( x y)
x y2
2 x 2 y 2 xy 2
( x y)2( x y)
3acd
2
4b d
x 2 xy
( x y)2( x y)
巩固练习
(3)
x 1
4
,
3x
2 x 2
,
x 1
4 x3
解:(3)最简公分母是 12x 3 .
x 1 (x 1) 6 x
6 x(x 1)
,
2
2
3
2 x
2 x 6 x
12 x
4
4 ( 4 x 2) 16 x 2
,
2
3
3x
3 x ( 4 x ) 12 x
x 1 (x 1)( 3) (
3 x 1)
分式的分子与分母乘(或除以)同一个不等于0的整
式,分式的值不变.
探究新知
追问1 如何用式子表示分式的基本性质?
A
A C A
A C
,
(C 0)
.
B
B C B
B C
其中A,B,C 是整式.
探究新知
追问2 应用分式的基本性质时需要注意什么?
(1)分子、分母应同时做乘、除法中的同一种运算;
;(3)
; (4)
.
2
y
2b
3n
5y
a
4m
x
(
1
2024年福建省中考+专用数学一轮知识点梳理复习1.3 分式课件
乘法 式的乘方把分子分母各自乘方,即=.4.分式的混合运算应先算 ,再算 ,最后算 ,有括号的
定各分母的 .确定最简公分母的方法:
分式的基本性质
与原分式
相等的
最简公分母
①将所有分母进行因式分解;②取各分母的系数的最小公倍数作为最简公分母的系数;③取各分母所有相反因式的最高次幂的积作为最简公分母
的因式;④所得的系数的最小公倍数与各因式的最高次幂的积,即为最
先算括号里面的,实数的各种运算律也符合分式的运算,分式
运算的结果,一定要化成最简形式.
乘方
乘除
加减
注意点①注意分式混合运算顺序;②分式化简不同于解分式方程,化简过程中不能去分母;③分数线有除号和括号两重作用,同分母分式相加减(分子是
多项式),分子应整体加括号;④分式运算中含有整式,应视其分母为1的式子,然后按分式四
17.(1)(2023·威海)先化简÷,再从-3<a<
3的范围内选择一个合适的数代入求值.
解:(1)原式=
要使分式有意义,a≠0且a-1≠0且a+1≠0,所以a不能为0,1,-1,取a=2,当a=2时,原式=.
,
(2)(2023·烟台)先化简,再求值:÷
其中a是使不等式≤1成立的正整数.
,
解:(2)原式==∵≤1,解得:a≤3,∵a是使不等式≤1成立的正整
D.x≠2
A
2.根据表格中的信息,y可能为( C )
x
…
-2
-1
0
1
2
…
y
…
*
无意义
*
-1
*
…
C
3.若分式的值为零,则m= .
华师版八年级下册数学精品教学课件 第16章 分式 分式及其基本性质 分式的基本性质
x x2
y y2
1 = 1(x y) = x y x y ( x y)( x y) x2 y2
③
1 x2
y2
,
x2
1
xy
分析:取各分母的所有因式的最高次幂的积作
公分母,即最简公分母
解:
x2
1
y2
(x
1 y)( x
, y)
x2
1
xy
1 x(x
y)
最简公分母:x( x y)( x y)
等于零的整式,分式的值不变.
上述性质可以用式表示为: A A C , A A C(C 0). B BC B BC 其中A,B,C是整式.
典例精析 例1 填空:
看分母如何变化,想想分一想子:如(何1)变中化. 看分子如何变化,想为分什么母不如给何出变x 化.
≠0,而(2)中却 给出了b ≠0?
当堂练习
1.下列各式成立的是( D )
A.
c ba
c ab
C.
c ba
c ab
B.
c ab
c ab
D. c c
ba ab
2.下列各式中是最简分式的( B )
A. a b ba
B. x2 y2 x y
C. x2 4 x2
D.
x y x2 y2
3.若把分式
y的
x y
x
和y
都扩大两倍,则分式
最简公分母的系数,取各个分母的系数的最小 公倍数,字母及式子取各分母中所有字母和式子的 最高次幂.
练一练 找最简公分母:
(1) 3 与 b ; 2a2 3ac
(2)
3 2a2b
与
ab ab2c
分式的基本性质在物理中的应用
分式的基本性质在物理中的应用
1.分式的基本性质及应用
(1)分式的基本性质
分式是数学中最基本的概念之一,是指加减乘除以及括号等形式的表
达式,表示两个或者多个数字、变量或者因式的组合。
例如:x/y, (a+b) / c, (a+7b/c) / (d-2)等。
由于分式的关系,数值之间可以变换;同时,分式定义了一种新的运算规则,可以用来求解不同类型的数学问题。
(2)分式在物理学中的应用
分式在物理学中有着重要的应用,比如力学有关的运动学问题和热学
有关的热力学问题,都是以分式的形式表示的。
在力学中,运动学里经常用分式来表示动能和势能的变化。
例如,速
度与动能之间关系binv=1/2mv^2表示动能定义。
同样,热力学一般以质量、温度、压强等热力物理量表示,用分式来表达这些变量之间的
关系。
例如,常见的温度和压强定理证明了这一概念,T/P=const,它
表示温度和压强是相对独立的,并满足一定的关系。
另外,分式还常用于描述奥卡姆剃刀原理及数理统计等方面,其中也
广泛运用到各种分式。
此外,物理和数学有很多体系都建立在分式的
基础上,如微分、积分、极限及几何学等。
总之,分式是一种基本而重要的概念,在物理学中有广泛的应用。
它使物理学家们能够处理复杂的数学问题,发现物理定律以及探索物理现象的本质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3y 2
xy
6
12x 9y 4x 6y
错
3
3
(4)
0.3a 0.5b 0.2a b
0.3a 0.2a
0.5b10 b10
3a 5b 2a b
对
广东省怀集县桥头镇初级中学
黎冬明
三、研学教材
知识点二 分式的基本性质的应用
例2 填空
(1) x3
xy
y
3x2 3xy 6x2
x
y
(2) 1
ab a2b
2a b
a2
a2b
广东省怀集县桥头镇初级中学
黎冬明
三、研学教材
解:(1)∵
x3 x3 x x2 xy xy x y
∴括号中填 x 2
∵
3x
2 3xy 6x2
3x
2 3xy
6x2
3x 3x
xy
2x
∴括号中填____2_x____;
广东省怀集县桥头镇初级中学
黎冬明
a
有:
b
c0
ac (_b_c)
广东省怀集县桥头镇初级中学
黎冬明
三、研学教材
类似地分式的基本性质为: 分式的分子与分母乘(或除以)同
一个_不__等__于__0_的__整__式___,分式的值不变.
用式子表示为
_BA___BA_••_CC__,__BA___CC___BA__C___0___.
广东省怀集县桥头镇初级中学
分式的基本性质(1)
一、学习目标
1、类比分数的基本性质掌握分式的基 本性质;
2、运用分式的基本性质进行相关的分式 变形.
广东省怀集县桥头镇初级中学
黎冬明
二、新课引入
1、分数的基本性质:分数的分子与分
母乘(或除以)同一个_不__为__0_的__数____分
数的值_不__变___.
2、3
6
1 的依据是什么?12
黎冬明
三、研学教材
练一练
1、 填空:
(1) a b ab
(a 2 ab )(2)( 1 )
a 2b
xy
2y 2xy 2
ac (3)x2 x2
xy
(x y )(4)(a 2 a )
x
a 1(a c
0)
广东省怀集县桥头镇初级中学
黎冬明
三、研学教材
2、不改变分式的值,使下列各分式的分子 和分母都不含“ -”号:
2
16
3 4
呢?
答:(1)分子、分母同时除以3,分数的值
不变;
(2)分子、分母同时除以4,分数的值
不变。
广东省怀集县桥头镇初级中学
黎冬明
三、研学教材
知识点一 分式的基本性质
由分数的基本性质知:
2 2c 5 (5_c)
3c 5c
(3_) 5
c
0
对于任意一个分数
a b
a a c ,其中
b (_b___c)
分式的分子与分母乘(或除以) 同一个_不__等__于__0_的__整__式_____,分式的 值不变.用式子表示为 __A__A_•_C__A__C___A_C__0___.
B B•C BC B
3b n
(2) m
3a
n m
3an m
广东省怀集县桥头镇初级中学
黎冬明
三、研学教材
(3)
x3y 3ab2
=____3_ax_b_3_y2___=____3x_a_3b_y2____;
(4)
a3 17b 2
=_____1_7a_b_3 _2__=____1__7a_b3__2__;
四、归纳小结
三、研学教材
(2)∵
1 ab
1• a ab• a
a
a2b
∴括号中填___a_______;
∵ 2a b 2a b •b 2ab b2
a2 a2 • b
a2b
∴括号中填_b__和__2_a_b__b_2.
温馨提示:先看前后分式的分子或分母是怎么
变化的,然后分母或分子也要作相应的变化.
广东省怀集县桥头镇初级中学
0)
③
1 x 1 x x(x 1)
错
广东省怀集县桥头镇初级中学
黎冬明
三、研学教材
练一练
3、判断下列从左到右的变形是否正确:
(1) x3 x2 对
xy y
x2
(2)
x3
错
y xy
广东省怀集县桥头镇初级中学
黎冬明
三、研学教材
练一练
3、判断下列从左到右的变形是否正确:
(3)
2x 2
3y 2
xy
2x 2
(1) 2a 3b
(2) n m
(3)
x3 3ab
y
2
(4)
a3 17b
2
广东省怀集县桥头镇初级中学
黎冬明
三、研学教材
分析:
分式本身及其分子、分母这三处的正负
号(在分式前面、上面、下面)中,同时改
变两处,分式的值不变,即:A A A A
2a 解:(1) 2a 2a _______; B B B B
黎冬明
三、研学教材
练一练
x
1、如果把分式 x y 中的x,y都扩大2倍,
那么分式的值( B )
A、 扩大2倍
ቤተ መጻሕፍቲ ባይዱ
B、 不变
C、缩小2倍
D、缩小4倍
广东省怀集县桥头镇初级中学
黎冬明
三、研学教材
练一练
2、下列从左到右的变形成立吗?为什么?
① 1 1 4
x x4
对
②
1 x
1 m xm
错(由分式的基本性质可知: m