第五章三角函数知识点及例题
高中数学必修一第五章三角函数必须掌握的典型题(带答案)
高中数学必修一第五章三角函数必须掌握的典型题单选题1、若函数f(x)=sinωx (ω>0),在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω=( ). A .1B .32C .2D .3答案:B分析:根据f (π3)=1以及周期性求得ω.依题意函数f(x)=sinωx (ω>0),在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减, 则{f (π3)=sin π3ω=1T 2=πω≥π3, 即{π3ω=2kπ+π2,k ∈Z 0<ω≤3 ,解得ω=32.故选:B2、设函数f(x)=2sin (ωx +φ)−1(ω>0),若对于任意实数φ,f(x)在区间[π4,3π4]上至少有2个零点,至多有3个零点,则ω的取值范围是( ) A .[83,163)B .[4,163)C .[4,203)D .[83,203) 答案:B分析:t =ωx +φ,只需要研究sint =12的根的情况,借助于y =sint 和y =12的图像,根据交点情况,列不等式组,解出ω的取值范围. 令f(x)=0,则sin (ωx +φ)=12 令t =ωx +φ,则sint =12则问题转化为y =sint 在区间[π4ω+φ,3π4ω+φ]上至少有两个,至少有三个t ,使得sint =12,求ω的取值范围.作出y =sint 和y =12的图像,观察交点个数,可知使得sint =12的最短区间长度为2π,最长长度为2π+23π, 由题意列不等式的:2π≤(3π4ω+φ)−(π4ω+φ)<2π+23π 解得:4≤ω<163.故选:B小提示:研究y =Asin (ωx +φ)+B 的性质通常用换元法(令t =ωx +φ),转化为研究y =sint 的图像和性质较为方便.3、cos 2π12−cos 25π12=( ) A .12B .√33C .√22D .√32 答案:D分析:由题意结合诱导公式可得cos 2π12−cos 25π12=cos 2π12−sin 2π12,再由二倍角公式即可得解. 由题意,cos 2π12−cos 25π12=cos 2π12−cos 2(π2−π12)=cos 2π12−sin 2π12=cos π6=√32. 故选:D.4、已知α ∈(0,π),且3cos 2α−8cos α=5,则sin α=( ) A .√53B .23 C .13D .√59 答案:A分析:用二倍角的余弦公式,将已知方程转化为关于cosα的一元二次方程,求解得出cosα,再用同角间的三角函数关系,即可得出结论.3cos2α−8cosα=5,得6cos 2α−8cosα−8=0,即3cos 2α−4cosα−4=0,解得cosα=−23或cosα=2(舍去),又∵α∈(0,π),∴sinα=√1−cos 2α=√53. 故选:A.小提示:本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.5、已知f (x )=2√3sinwxcoswx +2cos 2wx ,(w >0),若函数在区间(π2,π)内不存在对称轴,则w 的范围为( )A .(0,16]∪[13,34]B .(0,13]∪[23,34] C .(0,16]∪[13,23]D .(0,13]∪[23,56]答案:C分析:先通过三角恒等变换将f (x )化简成正弦型函数,再结合正弦函数性质求解即可. 函数化简得f (x )=√3sin2wx +cos2wx +1=2sin (2wx +π6)+1, 由2wx +π6=kπ+π2(k ∈Z ),可得函数的对称轴为x =kπ+π32w(k ∈Z ), 由题意知,kπ+π32w≤π2且(k+1)π+π32w≥π,即k +13≤w ≤3k+46,k ∈Z ,若使该不等式组有解, 则需满足k +13≤3k+46,即k ≤23,又w >0,故0≤3k+46,即k >−43,所以−43<k ≤23,又k ∈Z ,所以k =0或k =1,所以w ∈(0,16]∪[13,23].6、将一条闭合曲线放在两条平行线之间,无论这条闭合曲线如何运动,只要它与两平行线中的一条直线只有一个交点,就必与另一条直线也只有一个交点,则称此闭合曲线为等宽曲线,这两条平行直线间的距离叫等宽曲线的宽比.如圆所示就是等宽曲线.其宽就是圆的直径.如图所示是分别以A 、B 、C 为圆心画的三段圆弧组成的闭合曲线Γ(又称莱洛三角形),下列关于曲线Γ的描述中,正确的有( ) (1)曲线Γ不是等宽曲线;(2)曲线Γ是等宽曲线且宽为线段AB 的长; (3)曲线Γ是等宽曲线且宽为弧AB 的长; (4)在曲线Γ和圆的宽相等,则它们的周长相等; (5)若曲线Γ和圆的宽相等,则它们的面积相等.A .1个B .2个C .3个D .4个 答案:B分析:若曲线Γ和圆的宽相等,设曲线Γ的宽为1,则圆的半径为12,根据定义逐项判断即可得出结论. 若曲线Γ和圆的宽相等,设曲线Γ的宽为1,则圆的半径为12, (1)根据定义,可以得曲线Γ是等宽曲线,错误; (2)曲线Γ是等宽曲线且宽为线段AB 的长,正确; (3)根据(2)得(3)错误;(4)曲线Γ的周长为3×16×2π=π,圆的周长为2π×12=π,故它们的周长相等,正确; (5)正三角形的边长为1,则三角形对应的扇形面积为π×126=π6,正三角形的面积S =12×1×1×√32=√34, 则一个弓形面积S =π6−√34, 则整个区域的面积为3(π6−√34)+√34=π2−√32, 而圆的面积为π(12)2=π4,不相等,故错误;综上,正确的有2个, 故选:B.小提示:本题主要考查新定义,理解“等宽曲线”得出等边三角形是解题的关键.7、已知函数f(x)=2sin (x +π4)+m 在区间(0,π)上有零点,则实数m 的取值范围为( )A .(−√2,√2)B .(−√2,2]C .[−2,√2]D .[−2,√2) 答案:D分析:令f(x)=0,则2sin (x +π4)=−m ,令g (x )=2sin (x +π4),根据x 的取值范围求出g (x )的值域,依题意y =g (x )与y =−m 在(0,π)上有交点,即可求出参数的取值范围; 解:令f(x)=0,即2sin (x +π4)=−m ,令g (x )=2sin (x +π4), 因为x ∈(0,π),所以x +π4∈(π4,5π4),所以sin (x +π4)∈(−√22,1],即g (x )∈(−√2,2],依题意y =g (x )与y =−m 在(0,π)上有交点,则−√2<−m ≤2,所以−2≤m <√2,即m ∈[−2,√2); 故选:D8、已知函数f(x)=sin2x +√3cos2x 的图象向左平移φ个单位长度后,得到函数g(x)的图象,且g(x)的图象关于y 轴对称,则|φ|的最小值为( ) A .π12B .π6C .π3D .5π12 答案:A分析:首先将函数f (x )化简为“一角一函数”的形式,根据三角函数图象的平移变换求出函数g(x)的解析式,然后利用函数图象的对称性建立φ的关系式,求其最小值. f(x)=sin2x +√3cos2x =2sin (2x +π3),所以g(x)=f(x +φ)=2sin [2(x +φ)+π3] =2sin (2x +2φ+π3),由题意可得,g(x)为偶函数,所以2φ+π3=kπ+π2(k ∈Z), 解得φ=kπ2+π12(k ∈Z),又φ>0,所以φ的最小值为π12.故选:A. 多选题9、若函数f (x )=√2sinxcosx +√2cos 2x −√22,则下列说法正确的是( ) A .函数y =f (x )的图象可由函数y =sin2x 的图象向右平移π4个单位长度得到 B .函数y =f (x )的图象关于直线x =−3π8对称 C .函数y =f (x )的图象关于点(−3π8,0)对称D .函数y =x +f (x )在(0,π8)上为增函数 答案:BD分析:由三角函数的恒等变换化简f (x )=sin (2x +π4),再由三角函数的平移变换可判断A ;求出f (−3π8)=−1可判断B 、C ;先判断y =f (x )在(0,π8)上为增函数,即可判断y =x +f (x )在(0,π8)的单调性.由题意,f (x )=√2sinxcosx +√2cos 2x −√22=√22sin2x +√22cos2x =sin (2x +π4).函数y =sin2x 的图象向右平移π4个单位长度可得到f (x )=sin2(x −π4)=sin (2x −π2)=−cos2x ,故A 错误;f (−3π8)=sin [2×(−3π8)+π4]=−1,所以函数y =f (x )的图象关于直线x =−3π8对称,故B 正确,C 错误; 函数y =x 在(0,π8)上为增函数,x ∈(0,π8)时,2x +π4∈(π4,π2),故函数f (x )在(0,π8)上单调递增,所以函数y =x +f (x )在(0,π8)上为增函数,故D 正确. 故选:BD .10、已知函数f (x )=sinxcosx −cos 2x ,则( ) A .函数f (x )在区间(0,π8)上为增函数B .直线x =3π8是函数f (x )图像的一条对称轴C .函数f (x )的图像可由函数y =√22sin2x 的图像向右平移π8个单位得到 D .对任意x ∈R ,恒有f (π4+x)+f (−x )=−1 答案:ABD解析:首先利用二倍角的正弦与余弦公式可得f (x )=√22sin (2x −π4)−12,根据正弦函数的单调递增区间可判断A ;根据正弦函数的对称轴可判断B ;根据三角函数图像的平移变换的原则可判断C ;代入利用诱导公式可判断D. f (x )=12sin2x −1+cos2x2=√22sin (2x −π4)−12.当x ∈(0,π8)时,2x −π4∈(−π4,0),函数f (x )为增函数,故A 中说法正确;令2x −π4=π2+kπ,k ∈Z ,得x =3π8+kπ2,k ∈Z ,显然直线x =3π8是函数f (x )图像的一条对称轴,故B 中说法正确;函数y =√22⋅sin2x 的图像向右平移π8个单位得到函数y =√22⋅sin [2(x −π8)]=√22sin (2x −π4)的图像,故C 中说法错误; f (π4+x)+f(−x)=√22sin (2x +π4)−12+√22sin (−2x −π4) −12=√22sin (2x +π4)−√22sin (2x +π4)−1=−1,故D 中说法正确. 故选:ABD.小提示:本题是一道三角函数的综合题,考查了二倍角公式以及三角函数的性质、图像变换,熟记公式是关键,属于基础题.11、若角α的终边在直线y =−2x 上,则sinα的可能取值为( ) A .√55B .−√55C .2√55D .−2√55答案:CD分析:利用三角函数的定义,分情况讨论sinα的可能取值. 设角α的终边y =−2x 上一点(a,−2a ), 当a >0时,则r =√5a ,此时sinα=y r=−2√55, 当a <0时,则r =−√5a ,此时sinα=y r=2√55, 故选:CD 填空题12、若cos 2θ=14,则sin 2θ+2cos 2θ的值为____. 答案:138##158分析:利用二倍角公式后,代入求解.∵cos2θ=14,∴sin2θ+2cos2θ=1−cos2θ2+1+cos2θ=32+12cos2θ=32+12×14=138.所以答案是:138.13、求值:sin10°−√3cos10°cos40°=____________.答案:−2分析:应用辅助角公式及诱导公式化简求值即可.sin10°−√3cos10°cos40°=2(12sin10°−√32cos10°)cos40°=2sin(10°−60°)cos40°=−2sin50°cos40°=−2.所以答案是:−214、函数f(x)=sinx−√3cosx的严格增区间为________.答案:[2kπ−π6,2kπ+5π6],k∈Z分析:利用辅助角公式将f(x)化为f(x)=2sin(x+π3),然后由三角函数单调区间的求法,求得函数f(x)的单调区间.依题意f(x)=sinx−√3cosx=2sin(x−π3),由2kπ−π2≤x−π3≤2kπ+π2,k∈Z,解得2kπ−π6≤x≤2kπ+5π6,k∈Z,所以f(x)单调递增区间为[2kπ−π6,2kπ+π6](k∈Z).所以答案是:[2kπ−π6,2kπ+5π6](k∈Z)解答题15、设函数f(x)=sinx+cosx(x∈R).(1)求函数y=[f(x+π2)]2的最小正周期;(2)求函数y=f(x)f(x−π4)在[0,π2]上的最大值.答案:(1)π;(2)1+√22.分析:(1)由题意结合三角恒等变换可得y=1−sin2x,再由三角函数最小正周期公式即可得解;(2)由三角恒等变换可得y=sin(2x−π4)+√22,再由三角函数的图象与性质即可得解.(1)由辅助角公式得f(x)=sinx+cosx=√2sin(x+π4),则y=[f(x+π2)]2=[√2sin(x+3π4)]2=2sin2(x+3π4)=1−cos(2x+3π2)=1−sin2x,所以该函数的最小正周期T=2π2=π;(2)由题意,y=f(x)f(x−π4)=√2sin(x+π4)⋅√2sinx=2sin(x+π4)sinx=2sinx⋅(√22sinx+√22cosx)=√2sin2x+√2sinxcosx=√2⋅1−cos2x2+√22sin2x=√22sin2x−√22cos2x+√22=sin(2x−π4)+√22,由x∈[0,π2]可得2x−π4∈[−π4,3π4],所以当2x−π4=π2即x=3π8时,函数取最大值1+√22.。
高中数学第五章三角函数笔记重点大全(带答案)
高中数学第五章三角函数笔记重点大全单选题1、若sin (π7+α)=12,则sin (3π14−2α)=( ) A .35B .−12C .12D .13答案:C分析:令θ=π7+α可得α=θ−π7,再代入sin (3π14−2α),结合诱导公式与二倍角公式求解即可令θ=π7+α可得α=θ−π7,故sinθ=12,则sin (3π14−2α)=sin (3π14−2(θ−π7))=sin (π2−2θ)=cos2θ=1−2sin 2θ=12故选:C2、sin1860°等于( ) A .12B .-12C .√32D .-√32 答案:C分析:用诱导公式先化简后求值.sin1860°=sin (5×360°+60°)=sin60°=√32, 故选: C3、已知函数f(x)=a 2x−6+3(a >0且a ≠1)的图像经过定点A ,且点A 在角θ的终边上,则sinθ−cosθsinθ+cosθ=( )A .−17B .0C .7D .17 答案:D分析:由题知A (3,4),进而根据三角函数定义结合齐次式求解即可. 解:令2x −6=0得x =3,故定点A 为A (3,4), 所以由三角函数定义得tanθ=43, 所以sinθ−cosθsinθ+cosθ=tanθ−1tanθ+1=43−143+1=17故选:D4、化简:tan(π−α)cos(2π−α)sin(−a+3π2 )cos(−a−π)sin(−π−a)的值为()A.−2B.−1C.1D.2答案:B分析:运用同角三角函数间的基本关系和三角函数的诱导公式化简可得答案.解:原式=−tanα⋅cosα⋅(−cosα)cos(π+a)⋅[−sin(π+a)]=tanα⋅cos2α−cosα⋅sinα=−sinαcosα⋅cosαsinα=-1.故选:B.5、sin(3π2+α)=()A.sinαB.−sinαC.cosαD.−cosα答案:D分析:利用诱导公式sin(π+α)=−sinα,sin(π2+α)=cosα代入计算.sin(3π2+α)=sin(π+π2+α)=−sin(π2+α)=−cosα.故选:D.6、函数y=−sin2x−4cosx+6的值域是()A.[2,10]B.[0,10]C.[0,2]D.[2,8]答案:A分析:根据同角三角函数关系式变形,可得函数是关于cosx的二次函数,利用换元法可得值域.函数y=−sin2x−4cosx+6=−(1−cos2x)−4cosx+6=cos2x−4cosx+5=(cosx−2)2+1,因为cosx∈[−1,1],所以当cosx=1时,函数取得最小值2,当cosx=−1时,函数取得最大值10,故函数的值域为[2,10],故选:A.7、关于函数y=sinx(sinx+cosx)描述正确的是()A.最小正周期是2πB.最大值是√2C .一条对称轴是x =π4D .一个对称中心是(π8,12) 答案:D分析:利用三角恒等变换化简y 得解析式,再利用正弦型函数的图像和性质得出结论. 解:由题意得:∵y =sinx(sinx +cosx) =sin 2x +12sin2x=1−cos2x 2+12sin2x =√22sin(2x −π4)+12选项A :函数的最小正周期为T min =2πω=2π2=π,故A 错误;选项B :由于−1≤sin(2x −π4)≤1,函数的最大值为√22+12,故B 错误; 选项C :函数的对称轴满足2x −π4=kπ+π2,x =k2π+3π8,当x =π4时,k =−14∉Z ,故C 错误; 选项D :令x =π8,代入函数的f(π8)=√22sin(2×π8−π4)+12=12,故(π8,12)为函数的一个对称中心,故D 正确;故选:D8、当θ∈(0,π2),若cos (5π6−θ)=−12,则sin (θ+π6)的值为( ) A .12B .√32C .−√32D .−12 答案:B分析:利用诱导公式和平方关系求解.因为cos (5π6−θ)=−cos (π−(5π6−θ))=−cos (π6+θ)=−12, 所以cos (π6+θ)=12, 因为θ∈(0,π2), 所以π6+θ∈(π6,2π3),所以sin (θ+π6)=√1−cos 2(π6+θ)=√32,故选:B 多选题9、已知角α,β,γ,满足α+β+γ=π,则下列结论正确的是( ) A .sin(α+β)=sinγB .cos(β+γ)=cosα C .sinα+γ2=sin β2D .cosα+β2=sin γ2答案:AD分析:由诱导公式判断.因为α+β+γ=π,所以sin(α+β)=sin(π−γ)=sinγ,cos (γ+β)=cos (π−α)=−cosα,α+β+γ2=π2,sinα+γ2=sin (π2−β2)=cos β2,cosα+β2=cos (π2−γ2)=sin γ2.BC 错,AD 正确. 故选:AD .10、如图,已知函数f(x)=Asin(ωx +φ)(其中A >0,ω>0,|φ|≤π2)的图象与x 轴交于点A,B ,与y 轴交于点C ,BC ⃗⃗⃗⃗⃗ =2BD ⃗⃗⃗⃗⃗⃗ ,∠OCB =π3,|OA|=2,|AD|=2√213.则下列说法正确的有( )A .f (x )的最小正周期为12B .φ=−π6C .f (x )的最大值为163D .f (x )在区间(14,17)上单调递增答案:ACD分析:由题意可得:√3|Asinφ|=2+πω,sin(2ω+φ)=0,可得A ,B ,C ,D 的坐标,根据|AD|=2√213,可得方程(1−π2ω)2+A 2sin 2φ4=283,进而解出ω,φ,A .判断出结论.由题意可得:|OB|=√3|OC|,∴√3|Asinφ|=2+πω,sin(2ω+φ)=0,A(2,0),B(2+πω,0),C(0,Asinφ),∴D (1+π2ω,Asinφ2),∵|AD |=2√213,∴(1−π2ω)2+A 2sin 2φ4=283,把|Asinφ|=1√3(2+πω)代入上式可得:(πω)2−2×πω−24=0,ω>0.解得πω=6,∴ω=π6,可得周期T =2πω=12,∴sin(π3+φ)=0,|φ|≤π2,解得φ=−π3.可知:B 不对,∴√3|Asin (−π3)|=2+6,A >0,解得A =163,函数f(x)=163sin(π6x −π3),可知C 正确.x ∈(14,17) 时,(π6x −π3)∈(2π,5π2),可得:函数f(x)在x ∈(14,17)单调递增.综上可得:ACD 正确. 故选:ACD小提示:关键点点睛:本题的关键是表示点B,C,D 的坐标,并利用两点间距离表示等量关系后,求解各点的坐标,问题迎刃而解.11、已知函数f(x)=√3cos(2x +π3),则下列结论正确的是( ) A .函数f(x)的最小正周期为π B .函数f(x)在[0,π]上有三个零点 C .当x =5π6时,函数f(x)取得最大值D .为了得到函数f(x)的图象,只要把函数f(x)=√3cos(x +π3)图象上所有点的横坐标变为原来的2倍(纵坐标不变) 答案:AC分析:根据各选项分别进行讨论,从而得出结论. A 选项,根据周期公式T =2π2=π,故A 正确;B 选项,画出函数图象,根据图象可知函数f(x)在[0,π]上有两个零点,故B 错误;C 选项,画出函数图象,根据图象可知当x =5π6时,函数f(x)取得最大值,故C 正确;D选项,为了得到函数f(x)的图象,只要把函数f(x)=√3cos(x+π3)图象上所有点的横坐标变为原来的12倍(纵坐标不变),故D错误.故选:AC.小提示:本题考查余弦型三角函数的知识点,涉及到函数的周期零点以及函数的图象等,属于基础题型.12、已知函数f(x)=Asin(2x+φ)(A>0,|φ|<π2)的部分图象如图所示,则下列说法正确的是()A.f(x)=√3sin(2x+π3)B.函数f(x)在[π6,2π3]上单调递减C.函数g(x)=√3cos2x的图象可由函数f(x)的图象向左平移π12个单位得到D.函数f(x)的图象关于(5π12,0)中心对称答案:AC分析:首先利用“五点法”求函数的解析式,利用函数的性质求函数的单调递减区间,判断选项B,再利用平移规律,判断选项C ,利用对称中心公式求函数的对称中心,判断选项D . 解:对于A :根据函数的图象:2×π12+φ=2kπ+π2(k ∈Z ),解得φ=2kπ+π3(k ∈Z ),由于|φ|<π2,所以当k =0时,φ=π3.由于f (0)=32,所以A sin π3=32,解得A =√3.所以f (x )=√3sin(2x +π3),故A 正确;对于B :令π2+2kπ≤2x +π3≤2kπ+3π2(k ∈Z ),解得:π12+kπ≤x ≤kπ+7π12(k ∈Z ), 所以函数的单调递减区间为[π12+kπ,kπ+7π12](k ∈Z ),故函数在[π12,7π12]上单调递减,在[7π12,2π3]上单调递增,故B 错误;对于C :函数f (x +π12)=√3sin(2x +π6+π3)=√3cos2x =g(x),故C 正确;对于D :令2x +π3=kπ(k ∈Z ),解得x =−π6+kπ2(k ∈Z ),所以函数的对称中心为(−π6+kπ2,0)(k ∈Z ),由于k 为整数,故D 错误;故选:AC .小提示:思路点睛:本题考查y =Asin (ωx +φ)的解析式和性质的判断,可以整体代入验证的方法判断函数性质:(1)对于函数y =Asin (ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此判断直线x =x 0或点(x 0,0)是否是函数的对称轴和对称中心时,可通过验证f (x 0)的值进行判断;(2)判断某区间是否是函数的单调区间时,也可以求ωx +φ的范围,验证此区间是否是函数y =sinx 的增或减区间.13、已知函数f (x )=sin (ωx +φ)(ω>0,|φ|<π)的部分图像如图所示,则下列说法正确的是( )A .f (136)=12B .函数f (x −13)是偶函数C .函数f (x )在区间[2k −23,2k +13](k ∈Z )上单调递增 D .若函数f (x )在[−2,a ]上有5个零点,则176≤a <236答案:CD分析:根据图像得到函数解析式为f(x)=sin (πx +π6),代入数据计算知A 错误,f (x −13)=sin (πx −π6),非奇非偶,所以B 错误,计算单调性得到C 正确,计算t =πx +π6∈[−2π+π6,aπ+π6],根据函数图像计算得到D 正确,得到答案.T 2=43−13=1,T =2πω=2,即ω=π,由13π+φ=2kπ+π2,可得φ=2kπ+π6,k ∈Z ,又|φ|<π,所以φ=π6, 因此函数f(x)=sin (πx +π6). f (136)=f (16)=√32,所以A 错误;f (x −13)=sin [π(x −13)+π6]=sin (πx −π6),非奇非偶,所以B 错误;由2kπ−π2≤πx +π6≤2kπ+π2,可得2k −23≤x ≤2k +13(k ∈Z),所以函数f(x)在区间[2k −23,2k +13](k ∈Z)单调递增,所以C 正确;因为x ∈[−2,a],所以t =πx +π6∈[−2π+π6,aπ+π6],结合函数y =sint(t ∈R)的图象可得3π≤aπ+π6<4π,所以176≤a <236,所以D 正确.故选:CD. 填空题14、若函数f (x )=2sin (ωx +π6)(ω>0)在区间[−π4,π4]上单调递增,则ω的最大值是__________. 答案:43分析:直接利用正弦函数的单调性与区间的关系列不等式即可求解. ∵−π4≤x ≤π4,∴π6−π4ω≤ωx +π6≤π4ω+π6,要使f (x )在[−π4,π4]上单调递增,则{π6−π4ω≥−π2,π4ω+π6≤π2,,解得{ω⩽83ω⩽43, 又∵ω>0,∴0<ω⩽43,则ω的最大值是43.所以答案是:43.15、已知cosα=13,则sin (π2+α)=_____________. 答案:13分析:直接利用诱导公式sin (π2+α)=cosα计算可得. 解:因为cosα=13,所以sin (π2+α)=cosα=13所以答案是:13.16、当θ∈(0,π2)时,若cos (5π6−θ)=−12,则sin (θ+π6)的值为_________. 答案:√32##12√3分析:先由已知条件求出sin (5π6−θ),然后利用诱导公式可求得结果. ∵θ∈(0,π2),∴5π6−θ∈(π3,5π6),∴sin (5π6−θ)=√1−cos 2(5π6−θ)=√32, ∴sin (θ+π6)=sin [π−(5π6−θ)]=sin (5π6−θ)=√32.所以答案是:√32解答题17、已知函数f(x)=4−msinx−3cos2x(m∈R).(1)若关于x的方程f(x)=0在区间(0,π)上有三个不同解x1,x2,x3,求m与x1+x2+x3的值;(2)对任意x∈[−π6,π],都有f(x)>0,求m的取值范围.答案:(1)m=4,x1+x2+x3=3π2;(2)(−72,2√3).分析:(1)由题设及同角三角函数平方关系有f(x)=3sin2x−msinx+1,令t=sinx∈(0,1],根据已知条件、二次函数的性质及三角函数的对称性求参数m,以及x1,x2,x3的关系,进而求x1+x2+x3.(2)由(1)得t∈[−12,1]且3t2+1>mt恒成立,讨论t的范围,结合对勾函数的性质求参数m的范围. (1)f(x)=4−msinx−3cos2x=3sin2x−msinx+1,设t=sinx,在(0,π)上0<t≤1,则y=3t2−mt+1,若f(x)=0有三个不同解x1,x2,x3,则3t2−mt+1=0有两个不同的根,其中t1=1,0<t2<1,所以3−m+1=0,得:m=4,由t1=sinx1=1得:x1=π2,由t2=sinx,知:两个解x2,x3关于x=π2对称,即x2+x3=2×π2=π,综上,x1+x2+x3=π+π2=3π2;(2)由(1),当x∈[−π6,π]时,t∈[−12,1],要使f(x)>0恒成立,即3t2−mt+1>0,得3t2+1>mt,当t=0时,不等式恒成立,当t>0时,m<3t+1t 恒成立,又3t+1t≥2√3t⋅1t=2√3,当且仅当t=√33时取等号,此时0<m<2√3,当t <0时,m >3t +1t ,而t ∈[−12,0)时y =3t +1t 为减函数,而y|t=−12=−32−2=−72,此时0>m >−72, 综上,实数m 的取值范围是(−72,2√3).18、已知函数f (x )=3sin (2x +φ)(φ∈(0,π2)),其图象向左平移π6个单位长度后,关于y 轴对称.(1)求函数f (x )的表达式;(2)说明其图象是由y =sinx 的图象经过怎样的变换得到的.答案:(1)f (x )=3sin (2x +π6)(2)答案见解析分析:(1)写出变换后的函数解析式,根据函数的对称性可得出关于φ的等式,结合φ的取值范围可求得φ的值,即可得出函数f (x )的解析式;(2)根据三角函数图象的变换规律可得出结论.(1)解:将函数f (x )=3sin (2x +φ)图象上的所有点向左平移π6个单位长度后,所得图象的函数解析式为y =3sin [2(x +π6)+φ]=3sin (2x +π3+φ).因为图象平移后关于y 轴对称,所以2×0+π3+φ=kπ+π2(k ∈Z ),所以φ=kπ+π6(k ∈Z ).因为φ∈(0,π2),所以φ=π6,所以f (x )=3sin (2x +π6).(2)解:将函数y =sinx 的图象上的所有点向左平移π6个单位长度,所得图象的函数解析式为y =sin (x +π6), 再把所得图象上各点的横坐标变为原来的12(纵坐标不变),得函数y =sin (2x +π6)的图象, 再把图象上各点的纵坐标伸长到原来的3倍(横坐标不变),即得函数y =3sin (2x +π6)的图象.。
高中数学必修一第五章三角函数知识点归纳总结(精华版)(带答案)
高中数学必修一第五章三角函数知识点归纳总结(精华版)单选题1、若sin (π7+α)=12,则sin (3π14−2α)=( ) A .35B .−12C .12D .13答案:C分析:令θ=π7+α可得α=θ−π7,再代入sin (3π14−2α),结合诱导公式与二倍角公式求解即可令θ=π7+α可得α=θ−π7,故sinθ=12,则sin (3π14−2α)=sin (3π14−2(θ−π7)) =sin (π2−2θ)=cos2θ=1−2sin 2θ=12故选:C2、若sin(π−α)+cos(−α)=15,α∈(0,π),则tan (32π−α)的值为( ) A .−43或−34B .−43C .−34D .34答案:C分析:根据同角三角函数的基本关系及诱导公式求解. 由sin(π−α)+cos(−α)=15可得:sinα+cosα=15,平方得:sin 2α+2sinαcosα+cos 2α=125 所以tan 2α+2tanα+1tan 2α+1=125,解得tanα=−43或tanα=−34, 又sinα+cosα=15,所以|sinα|>|cosα|, 故tanα=−43, 故选:C3、已知函数f(x)=cos 2ωx 2+√32sinωx −12(ω>0,x ∈R),若函数f(x)在区间(π,2π)内没有零点,则ω的取值范围是( )A .(0,512]B .(0,56)C .(0,512]∪[56,1112]D .(0,512]∪(56,1112] 答案:C分析:先化简函数解析式,由π<x <2π得,求得πω+π6<ωx +π6<2πω+π6,利用正弦函数图象的性质可得2πω+π6≤π或{2πω+π6≤2ππω+π6≥π,求解即可. f(x)=cosωx+12+√32sinωx −12=√32sinωx +12cosωx =sin(ωx +π6).由π<x <2π得,πω+π6<ωx +π6<2πω+π6, ∵函数f(x)在区间(π,2π)内没有零点,且πω+π6>π6, ∴2πω+π6≤π或{2πω+π6≤2ππω+π6≥π , 解得0<ω⩽512或56⩽ω⩽1112,则ω的取值范围是(0,512]∪[56,1112].故选:C .4、已知函数y =√2sin(x +π4),当y 取得最小值时,tanx 等于( )A .1B .−1C .√32D .−√32答案:A分析:由正弦函数的性质,先求出当y 取得最小值时x 的取值,从而求出tanx . 函数y =√2sin(x +π4),当y 取得最小值时,有x +π4=2kπ+3π2,故x =2kπ+5π4,k ∈Z .∴tanx =tan (2kπ+5π4)=tan (π4)=1,k ∈Z . 故选:A .5、已知tanθ=2,则sin(π2+θ)−cos(π−θ)cosθ−sin(π−θ)=( )A .2B .-2C .0D .23 答案:B分析:根据tanθ=2,利用诱导公式和商数关系求解. 因为tanθ=2, 所以sin(π2+θ)−cos(π−θ)cosθ−sin(π−θ),=2cosθcosθ−sinθ, =21−tanθ=−2,故选:B6、要得到函数y =sin (2x +π6)的图象,可以将函数y =cos (2x −π6)的图象( ) A .向右平移π12个单位长度B .向左平移π12个单位长度C .向右平移π6个单位长度D .向左平移π6个单位长度 答案:A分析:利用诱导公式将平移前的函数化简得到y =sin (2x +π3),进而结合平移变换即可求出结果.因为y =cos (2x −π6)=sin (2x −π6+π2)=sin (2x +π3),而y =sin [2(x −π12)+π3],故将函数y =cos (2x −π6)的图象向右平移π12个单位长度即可, 故选:A. 7、已知sinα=2√67,cos (α−β)=√105,且0<α<3π4,0<β<3π4,则sinβ=( )A .9√1535B .11√1035C .√1535D .√1035答案:A解析:易知sinβ=sin(α−(α−β)),利用角的范围和同角三角函数关系可求得cosα和sin (α−β),分别在sin (α−β)=√155和−√155两种情况下,利用两角和差正弦公式求得sinβ,结合β的范围可确定最终结果. ∵sinα=2√67<√22且0<α<3π4,∴0<α<π4,∴cosα=√1−sin 2α=57. 又0<β<3π4,∴−3π4<α−β<π4,∴sin (α−β)=±√1−cos 2(α−β)=±√155. 当sin (α−β)=√155时,sinβ=sin(α−(α−β))=sinαcos (α−β)−cosαsin (α−β) =2√67×√105−57×√155=−√1535, ∵0<β<3π4,∴sinβ>0,∴sinβ=−√1535不合题意,舍去; 当sin (α−β)=−√155,同理可求得sinβ=9√1535,符合题意.综上所述:sinβ=9√1535.故选:A .小提示:易错点睛:本题中求解cosα时,易忽略sinα的值所确定的α的更小的范围,从而误认为cosα的取值也有两种不同的可能性,造成求解错误. 8、若tanθ=2,则sinθ(1−sin2θ)sinθ−cosθ=( )A .25B .−25C .65D .−65 答案:A分析:由二倍角正弦公式和同角关系将sinθ(1−sin2θ)sinθ−cosθ转化为含tanθ的表达式,由此可得其值. sinθ(1−sin2θ)sinθ−cosθ=sinθ(sin 2θ+cos 2θ−sin2θ)sinθ−cosθ=sinθ(sinθ−cosθ)2sinθ−cosθ=sin 2θ−sinθcosθsin 2θ+cos 2θ=tan 2θ−tanθtan 2θ+1=25.故选:A. 多选题9、若α是第二象限的角,则下列各式中成立的是( ) A .tanα=−sinαcosαB .√1−2sinαcosα=sinα−cosαC .cosα=−√1−sin 2αD .√1+2sinαcosα=sinα+cosαE .sinα=−√1−cos 2α 答案:BC解析:利用sin 2α+cos 2α=1,tanα=sinαcosα,结合三角函数在各个象限的符号,代入每个式子进行化简、求值.对A ,由同角三角函数的基本关系式,知tanα=sinαcosα,所以A 错;对B ,C ,D ,E ,因为α是第二象限角,所以sinα>0,cosα<0,所以sinα−cosα>0,sinα+cosα的符号不确定,所以√1−2sinαcosα=√(sinα−cosα)2=sinα−cosα,所以B ,C 正确;D ,E 错. 故选:BC.小提示:本题考查同角三角函数的基本关系、三角函数在各个象限的符号,考查运算求解能力. 10、下列各式中,值为12的是( )A .cos 2π12−sin 2π12B .tan22.5∘1−tan 222.5∘C .2sin195°cos195°D .√1+cos π62答案:BC分析:运用二倍角公式,结合诱导公式和特殊角的三角函数值的求法即可得到答案. 选项A ,cos 2π12−sin 2π12=cos (2×π12)=cos π6=√32,错误; 选项B ,tan22.5°1−tan 222.5°=12⋅2tan22.5°1−tan 222.5°=12tan45°=12,正确;选项C ,2sin195∘cos195∘=sin390∘=sin (360∘+30∘)=sin30∘=12,正确;选项D ,√1+cos π62=√1+√322=√2+√32,错误.故选:BC.11、(多选)已知θ∈(0,π),sinθ+cosθ=15,则( )A .θ∈(π2,π)B .cosθ=−35 C .tanθ=−34D .sinθ−cosθ=75答案:ABD分析:已知式平方求得sinθcosθ,从而可确定θ的范围,然后求得sinθ−cosθ,再与已知结合求得sinθ,cosθ,由商数关系得tanθ,从而可判断各选项.因为sinθ+cosθ=15①,所以(sinθ+cosθ)2=sin 2θ+2sinθcosθ+cos 2θ=125,所以2sinθcosθ=−2425.又θ∈(0,π),所以sinθ>0,所以cosθ<0,即θ∈(π2,π),故A 正确.(sinθ−cosθ)2=1−2sinθcosθ=4925,所以sinθ−cosθ=75②,故D 正确.由①②,得sinθ=45,cosθ=−35,故B 正确.tanθ=sinθcosθ=−43,故C 错误. 故选:ABD . 填空题12、当θ∈(0,π2)时,若cos (5π6−θ)=−12,则sin (θ+π6)的值为_________.答案:√32##12√3 分析:先由已知条件求出sin (5π6−θ),然后利用诱导公式可求得结果. ∵θ∈(0,π2),∴5π6−θ∈(π3,5π6), ∴sin (5π6−θ)=√1−cos 2(5π6−θ)=√32, ∴sin (θ+π6)=sin [π−(5π6−θ)]=sin (5π6−θ)=√32. 所以答案是:√3213、已知sinα=2cosα,则sin 2α+2sinαcosα=______. 答案:85##1.6分析:根据题意,由同角三角函数关系可得tanα的值,而sin 2α+2sinαcosα1=sin 2α+2sinαcosαsin 2α+cos 2α,最后利用齐次式化成关于tanα的分式即可解.解:由sinα=2cosα,得tanα=sinαcosα=2, 则sin 2α+2sinαcosα1=sin 2α+2sinαcosαsin 2α+cos 2α=tan 2α+2tanαtan 2α+1=22+2×222+1=85.所以答案是:85.14、已知f (x )=sin (ωx +π3)(ω>0),f (π6)=f (π3),且f (x )在区间(π6,π3)上有最小值,无最大值,则ω=______.答案:143分析:由题意可得函数的图象关于直线x=π4对称,再根据f(x)在区间(π6,π3)上有最小值,无最大值,可得π4ω+π3=2kπ+3π2(k∈Z),由此求得ω的值.依题意,当x=π6+π32=π4时,y有最小值,即sin(π4ω+π3)=−1,则π4ω+π3=2kπ+3π2(k∈Z),所以ω=8k+143(k∈Z).因为f(x)在区间(π6,π3)上有最小值,无最大值,所以π3−π4≤T2=πω,即ω≤12,令k=0,得ω=143.所以答案是:143解答题15、已知函数f(x)=2sinxcosx−2√3sin2x+√3.(1)求函数f(x)的最小正周期及其单调递增区间;(2)当x∈[−π6,π6],时,a−f(x)≤0恒成立,求a的最大值.答案:(1)最小正周期π,单调递增区间为[kπ−5π12,kπ+π12],k∈Z(2)最大值为0分析:(1)根据正弦和余弦的二倍角公式以及辅助角公式即可化简f(x)为f(x)=2sin(2x+π3),然后根据周期公式可求周期,整体代入法求单调增区间,(2)根据x的范围可求2x+π3∈[0,2π3],进而可求f(x)的值域,故可求a的范围.(1)f(x)=2sinxcosx−2√3sin2x+√3=sin2x+√3cos2x=2sin(2x+π3)故函数f(x)的最小正周期T=2π2=π.由2kπ-π2≤2x+π3≤2kπ+π2得kπ−5π12≤x≤kπ+π12(k∈Z).∴函数f(x)的单调递增区间为[kπ−5π12,kπ+π12],k∈Z.(2)∵x∈[−π6,π6],∴2x+π3∈[0,2π3],∴sin (2x +π3)∈[0,1],f (x )=2sin (2x +π3)∈[0,2].由a −f (x )≤0恒成立,得a ≤(f (x ))min ,即a ≤0.故a 的最大值为0.。
部编版高中数学必修一第五章三角函数带答案知识点总结全面整理
(名师选题)部编版高中数学必修一第五章三角函数带答案知识点总结全面整理单选题1、函数f(x)=sin (2x −π3)的一个对称中心的坐标是( ) A .(0,0)B .(0,−√32)C .(π2,0)D .(π6,0) 2、已知tanα=−2,则2sinα+cosαcosα−sinα=( )A .−4B .−12C .−1D .−13 3、已知sinαcosα=12,则tanα+1tanα的值为( )A .12B .−12C .−2D .24、已知函数y =√2sin(x +π4),当y 取得最小值时,tanx 等于( ) A .1B .−1C .√32D .−√325、若函数f(x)=sinωx (ω>0),在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω=( ). A .1B .32C .2D .36、将函数y =2sin (x +π3)的图象向左平移m (m >0)个单位长度后,所得到的图象关于原点对称,则m 的最小值是( ) A .π12B .π6C .π3D .2π37、sin (3π2+α)=( )A .sinαB .−sinαC .cosαD .−cosα8、函数f (x )=2sin (ωx +φ)(ω>0)图像上一点P (s,t )(−2<t <2)向右平移2π个单位,得到的点Q 也在f (x )图像上,线段PQ 与函数f (x )的图像有5个交点,且满足f (π4−x)=f (x ),f (−π2)>f (0),若y =f (x ),x ∈[0,π2]与y =a 有两个交点,则a 的取值范围为( ) A .(−2,−√2]B .[−2,−√2]C .[√2,2)D .[√2,2]多选题9、已知函数f(x)=3sin(ωx +π3)(ω>0)的图象对称轴与对称中心的最小距离为π4,则下列结论正确的是( )A .f(x)的最小正周期为2πB .f(x)的图象关于(−π6,0)对称 C .f(x)在(−5π12,π12)上单调递减 D .f(x)的图象关于直线x =7π12对称 10、下列不等式中成立的是( ) A .sin1<sin π3B .cos2π3>cos2C .cos (−70∘)>sin18∘D .sin4π5>sin17π611、已知函数f(x)=sin(3x +φ)(−π2<φ<π2)的图象关于直线x =π4对称,则( ) A .函数f (x +π12)为偶函数B .函数f(x)在[π12,π6]上单调递增C .若|f (x 1)−f (x 2)|=2,则|x 1−x 2|的最小值为π3D .将函数f(x)图象上所有点的横坐标缩小为原来的13,得到函数y =sin(x +φ)的图象 填空题12、若sin (θ+π8)=13,则sin (2θ−π4)=________.13、若cosα=−35, α为第二象限的角,则sin(π−α)=__________.部编版高中数学必修一第五章三角函数带答案(四十二)参考答案1、答案:D分析:解方程2x−π3=kπ,k∈Z即得解.解:令2x−π3=kπ,k∈Z,∴x=12kπ+π6,令k=0,∴x=π6,所以函数f(x)=sin(2x−π3)的一个对称中心的坐标是(π6,0).故选:D2、答案:C分析:利用齐次化可求三角函数式的值.2sinα+cosαcosα−sinα=2tanα+11−tanα=−4+11−(−2)=−1,故选:C.3、答案:D解析:根据题中条件,由切化弦,将所求式子化简整理,即可得出结果.∵sinαcosα=12,∴tanα+1tanα=sinαcosα+cosαsinα=sin2α+cos2αsinαcosα=112=2,故选:D.4、答案:A分析:由正弦函数的性质,先求出当y取得最小值时x的取值,从而求出tanx.函数y=√2sin(x+π4),当y取得最小值时,有x+π4=2kπ+3π2,故x=2kπ+5π4,k∈Z.∴tanx=tan(2kπ+5π4)=tan(π4)=1,k∈Z.故选:A.5、答案:B分析:根据f(π3)=1以及周期性求得ω.依题意函数f(x)=sinωx (ω>0),在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减, 则{f (π3)=sin π3ω=1T 2=πω≥π3, 即{π3ω=2kπ+π2,k ∈Z 0<ω≤3 ,解得ω=32.故选:B 6、答案:D分析:由三角函数平移变换可得平移后函数为y =2sin (x +m +π3),根据对称性得到m +π3=kπ(k ∈Z ),结合m >0可得所求最小值.将y =2sin (x +π3)向左平移m (m >0)个单位长度得:y =2sin (x +m +π3),∵y =2sin (x +m +π3)图象关于原点对称,∴m +π3=kπ(k ∈Z ),解得:m =−π3+kπ(k ∈Z ),又m >0, ∴当k =1时,m 取得最小值2π3. 故选:D. 7、答案:D分析:利用诱导公式sin (π+α)=−sinα,sin (π2+α)=cos α代入计算. sin (3π2+α)=sin (π+π2+α)=−sin (π2+α)=−cos α. 故选:D . 8、答案:A分析:首先根据已知条件分析出|PQ |=2π=2T ,可得ω=2,再由f (π4−x)=f (x )可得y =f (x )对称轴为x =π8,利用f (−π2)>f (0)可以求出符合题意的一个φ的值,进而得出f (x )的解析式,再由数形结合的方法求a 的取值范围即可.如图假设P(0,0),线段PQ与函数f(x)的图像有5个交点,则|PQ|=2π,所以由分析可得|PQ|=2π=2T,所以T=π,可得ω=2πT =2ππ=2,因为f(π4−x)=f(x)所以f[π4−(π8+x)]=f(π8+x),即f(π8−x)=f(π8+x),所以x=π8是f(x)的对称轴,所以2×π8+φ=π2+kπ(k∈Z),即φ=π4+kπ(k∈Z),f(−π2)=2sin(−π+φ)=−2sinφ>f(0)=2sinφ,所以sinφ<0,可令k=−1得φ=−3π4,所以f(x)=2sin(2x−3π4),当x∈[0,π2]时,令2x−3π4=t∈[−3π4,π4],则f(t)=2sint,t∈[−3π4,π4]作f(t)图象如图所示:当t=−3π4即x=0时y=−√2,当t=−π2即x=π8时,y=−2,由图知若y =f (x ),x ∈[0,π2]与y =a 有两个交点,则a 的取值范围为(−2,−√2], 故选:A小提示:关键点点睛:本题解题的关键是取特殊点P (0,0)便于分体问题,利用已知条件结合三角函数图象的特点,以及三角函数的性质求出f (x )的解析式,再利用数形结合的思想求解a 的取值范围. 9、答案:BD分析:先利用f(x)的图象对称轴与对称中心的最小距离和周期的关系求出ω值,再利用整体思想求其周期、单调性和对称轴.因为f(x)的图象对称轴与对称中心的最小距离为π4,所以T 4=π4,即T =π,即选项A 错误; 由T =2πω=π,得ω=2,即f(x)=3sin(2x +π3),因为f(−π6)=3sin(−π3+π3)=3sin0=0,所以f(x)的图象关于(−π6,0)对称,即选项B 正确; 当−5π12<x <π12时,则−π2<2x +π3<π2,所以f(x)=3sin(2x +π3)在(−5π12,π12)上单调递增,即选项C 错误;因为f(7π12)=3sin(7π6+π3)=3sin 3π2=−3,所以f(x)的图象关于直线x =7π12对称,即选项D 正确. 故选:BD. 10、答案:ACD分析:结合诱导公式,根据y =sinx 和y =cosx 的单调性依次判断各个选项即可得到结果. 对于A ,∵y =sinx 在(0,π2)上单调递增,又0<1<π3<π2,∴sin1<sin π3,A 正确; 对于B ,∵y =cosx 在(π2,π)上单调递减,又π2<2<2π3<π,∴cos2π3<cos2,B 错误;对于C ,∵cos (−70∘)=cos70∘=sin20∘,又sin20∘>sin18∘,∴cos (−70∘)>sin18∘,C 正确; 对于D ,∵sin4π5=sin (π−π5)=sin π5,sin17π6=sin (3π−π6)=sin π6,又sin π6<sin π5,∴sin 4π5>sin17π6,D 正确.故选:ACD. 11、答案:BC分析:根据函数f(x)=sin(3x +φ)(−π2<φ<π2)的图象关于直线x =π4对称,由3×π4+φ=kπ+π2,k ∈Z 求得函数的解析式,再逐项判断.因为函数f(x)=sin(3x +φ)(−π2<φ<π2)的图象关于直线x =π4对称, 所以3×π4+φ=kπ+π2,k ∈Z ,即φ=kπ−π4,k ∈Z , 又因为−π2<φ<π2,则φ=−π4, 所以f(x)=sin(3x −π4),A.函数f (x +π12)=sin(3(x +π12)−π4)=sin3x 为奇函数,故错误;B. 因为x ∈[π12,π6],则3x −π4∈[0,π4],又y =sinx 在[0,π4]上递增,所以函数f(x)在[π12,π6]上单调递增,故正确; C. T =2π3因为|f (x 1)−f (x 2)|=2,则f (x 1),f (x 2) 分别为函数的最大值和最小值,则|x 1−x 2|的最小值为T 2=π3,故正确;D.将函数f(x)图象上所有点的横坐标缩小为原来的13,得到函数y =sin(9x −π4)的图象,故错误; 故选:BC 12、答案:−79分析:由题知2(θ+π8)−π2=(2θ−π4),进而根据诱导公式与二倍角公式求解即可.解:因为2(θ+π8)−(2θ−π4)=π2,所以sin (2θ−π4)=sin [2(θ+π8)−π2]=−cos [2(θ+π8)] =2sin 2(θ+π8)−1=2×(13)2−1=−79. 所以答案是:−7913、答案:45分析:先根据同角三角函数的关系求出sinα,再结合诱导公式即可求出sin(π−α).,α为第二象限的角,∵cosα=−35,∴sinα=√1−cos2α=45∴sin(π−α)=sinα=4.5.所以答案是:45小提示:本题考查同角三角函数的关系以及诱导公式的应用,属于基础题.。
部编版高中数学必修一第五章三角函数带答案必考知识点归纳
(名师选题)部编版高中数学必修一第五章三角函数带答案必考知识点归纳单选题1、若tanθ=−2,则sin 2θ+2sinθcosθ−cos 2θ的值是( ) A .−15B .−35C .−75D .15 2、cos 2π12−cos 25π12=( ) A .12B .√33C .√22D .√323、小说《三体》中的“水滴”是三体文明派往太阳系的探测器,由强相互作用力材料制成,被形容为“像一滴圣母的眼泪”.小刘是《三体》的忠实读者,他利用几何作图软件画出了他心目中的水滴(如图),由线段AB ,AC 和优弧BC 围成,其中BC 连线竖直,AB ,AC 与圆弧相切,已知“水滴”的水平宽度与竖直高度之比为74,则cos∠BAC =( ).A .1725B .4√37C .45D .574、已知f (x )=2√3sinwxcoswx +2cos 2wx ,(w >0),若函数在区间(π2,π)内不存在对称轴,则w 的范围为( )A .(0,16]∪[13,34]B .(0,13]∪[23,34] C .(0,16]∪[13,23]D .(0,13]∪[23,56]5、已知函数f(x)=a 2x−6+3(a >0且a ≠1)的图像经过定点A ,且点A 在角θ的终边上,则sinθ−cosθsinθ+cosθ=( )A .−17B .0C .7D .176、《九章算术》是我国古代数学的杰出代表作.其中“方田”章给出计算弧田面积所用的经验公式为:弧田面积=1(弦×矢+矢2).弧田(如图7-1-5)由圆弧和其所对弦围成,公式中“弦”指圆弧所对的弦长,“矢”等于半2,半径为4m的弧田,按照上述经验公式计算所得弧田面积约是径长与圆心到弦的距离之差.现有圆心角为2π3()A.6m2B.9m2C.12m2D.15m27、将一条闭合曲线放在两条平行线之间,无论这条闭合曲线如何运动,只要它与两平行线中的一条直线只有一个交点,就必与另一条直线也只有一个交点,则称此闭合曲线为等宽曲线,这两条平行直线间的距离叫等宽曲线的宽比.如圆所示就是等宽曲线.其宽就是圆的直径.如图所示是分别以A、B、C为圆心画的三段圆弧组成的闭合曲线Γ(又称莱洛三角形),下列关于曲线Γ的描述中,正确的有()(1)曲线Γ不是等宽曲线;(2)曲线Γ是等宽曲线且宽为线段AB的长;(3)曲线Γ是等宽曲线且宽为弧AB的长;(4)在曲线Γ和圆的宽相等,则它们的周长相等;(5)若曲线Γ和圆的宽相等,则它们的面积相等.A.1个B.2个C.3个D.4个8、所有与角α的终边相同的角可以表示为k⋅360°+α(k∈Z),其中角α()A .一定是小于90°的角B .一定是第一象限的角C .一定是正角D .可以是任意角 多选题9、已知tanθ=2,则下列结论正确的是( ) A .tan(π−θ)=−2B .tan(π+θ)=−2C .sinθ−3cosθ2sinθ+3cosθ=−17D .sin2θ=4510、下列四个函数中,以π为周期且在(0,π2)上单调递增的偶函数有( ) A .y =cos |2x |B .y =sin2x C .y =|tanx |D .y =lg |sinx | 11、下列各式中,值为√32的是( ) A .√1−cos120°2B .cos 2π12−sin 2π12C .cos 15°sin 45°−sin 15°cos 45°D .tan15°1−tan 215°填空题12、关于函数f (x )=sinx +1sinx 有如下四个命题: ①f (x )的图象关于y 轴对称. ②f (x )的图象关于原点对称. ③f (x )的图象关于直线x =π2对称. ④f (x )的最小值为2.其中所有真命题的序号是__________.13、如果角α是第三象限角,则点P(tanα,sinα)位于第_______象限部编版高中数学必修一第五章三角函数带答案(二十五)参考答案1、答案:A分析:利用同角三角函数的基本关系将弦化切,再代入计算可得;解:因为tanθ=−2,所以sin2θ+2sinθcosθ−cos2θ=sin2θ+2sinθcosθ−cos2θsin2θ+cos2θ=tan2θ+2tanθ−1tan2θ+1=(−2)2+2×(−2)−1(−2)2+1=−15.故选:A 2、答案:D分析:由题意结合诱导公式可得cos2π12−cos25π12=cos2π12−sin2π12,再由二倍角公式即可得解.由题意,cos2π12−cos25π12=cos2π12−cos2(π2−π12)=cos2π12−sin2π12=cosπ6=√32.故选:D.3、答案:A分析:设优弧BC的圆心为O,半径为R,连接OA,OB,OC,如图,进而可得“水滴”的水平宽度为|OA|+R,竖直高度为2R,根据题意求得OA=52R,由切线的性质和正弦函数的定义可得sin∠BAO=25,结合圆的对称性和二倍角的余弦公式即可得出结果.设优弧BC的圆心为O,半径为R,连接OA,OB,OC,如下图所示易知“水滴”的水平宽度为|OA |+R ,竖直高度为2R ,则由题意知OA+R 2R=74,解得OA =52R ,AB 与圆弧相切于点B ,则OB ⊥AB ,∴在Rt △ABO 中,sin∠BAO =OB OA=R 52R=25,由对称性可知,∠BAO =∠CAO ,则∠BAC =2∠BAO , ∴cos∠BAC =1−2sin 2∠BAO =1−2×(25)2=1725,故选:A . 4、答案:C分析:先通过三角恒等变换将f (x )化简成正弦型函数,再结合正弦函数性质求解即可. 函数化简得f (x )=√3sin2wx +cos2wx +1=2sin (2wx +π6)+1, 由2wx +π6=kπ+π2(k ∈Z ), 可得函数的对称轴为x =kπ+π32w(k ∈Z ), 由题意知,kπ+π32w≤π2且(k+1)π+π32w≥π,即k +13≤w ≤3k+46,k ∈Z ,若使该不等式组有解, 则需满足k +13≤3k+46,即k ≤23,又w >0,故0≤3k+46,即k >−43,所以−43<k ≤23,又k ∈Z ,所以k =0或k =1,所以w ∈(0,16]∪[13,23]. 5、答案:D分析:由题知A(3,4),进而根据三角函数定义结合齐次式求解即可. 解:令2x −6=0得x =3,故定点A 为A(3,4), 所以由三角函数定义得tanθ=43, 所以sinθ−cosθsinθ+cosθ=tanθ−1tanθ+1=43−143+1=17故选:D 6、答案:B分析:根据题设条件计算出弦和矢,再代入弧田面积公式计算作答. 依题意,弦=2×4sin π3=4√3(m),矢=4−4cos π3=2(m), 则弧田面积=12(4√3×2+22)=4√3+2≈9(m 2),所以弧田面积约是9m 2. 故选:B 7、答案:B分析:若曲线Γ和圆的宽相等,设曲线Γ的宽为1,则圆的半径为12,根据定义逐项判断即可得出结论.若曲线Γ和圆的宽相等,设曲线Γ的宽为1,则圆的半径为12,(1)根据定义,可以得曲线Γ是等宽曲线,错误; (2)曲线Γ是等宽曲线且宽为线段AB 的长,正确; (3)根据(2)得(3)错误;(4)曲线Γ的周长为3×16×2π=π,圆的周长为2π×12=π,故它们的周长相等,正确; (5)正三角形的边长为1,则三角形对应的扇形面积为π×126=π6,正三角形的面积S =12×1×1×√32=√34, 则一个弓形面积S =π6−√34, 则整个区域的面积为3(π6−√34)+√34=π2−√32, 而圆的面积为π(12)2=π4,不相等,故错误;综上,正确的有2个, 故选:B.小提示:本题主要考查新定义,理解“等宽曲线”得出等边三角形是解题的关键. 8、答案:D分析:由终边相同的角的表示的结论的适用范围可得正确选项.因为结论与角α的终边相同的角可以表示为k ⋅360°+α(k ∈Z )适用于任意角,所以D 正确, 故选:D. 9、答案:ACD分析:对于A ,B 利用诱导公式可求解;对于C ,D 利用齐次式化简可判断. 对于A 选项,tan(π−θ)=−tanθ=−2,故A 选项正确; 对于B 选项,tan(π+θ)=tanθ=2,故B 选项错误;对于C 选项,sinθ−3cosθ2sinθ+3cosθ=tanθ−32tanθ+3=2−34+3=−17,故C 选项正确;对于D 选项,sin2θ=2sinθcosθ=2sinθcosθsin 2θ+cos 2θ=2tanθtan 2θ+1=44+1=45,故D 选项正确. 故选:ACD 10、答案:CD分析:由单调性判断出A 选项,由奇偶性判断B 选项,C 选项可画出函数图象进行判断,D 选项,先判断出y =|sinx |的最小正周期,单调性及奇偶性,进而作出判断. y =cos |2x |在(0,π2)上不单调,故A 错误; y =sin2x 为奇函数,故B 错误; y =|tanx |图象如下图:故最小正周期为π,在(0,π2)上单调递增,且为偶函数,故C 正确;y =|sinx |最小正周期为π,在(0,π2)上单调递增,且为偶函数,则y =lg |sinx |也是以π为周期且在(0,π2)上单调递增的偶函数,故D 正确.故选:CD11、答案:AB分析:结合二倍角公式和正弦的差角公式依次讨论各选项即可得答案.解:选项A:√1−cos120°2=√sin260°=sin60°=√32;选项B:cos2π12−sin2π12=cosπ6=√32;选项C:cos15°sin45°−sin15°cos45°=sin(45°−15°)=sin30°=12;选项D:tan15°1−tan215°=12×2tan15°1−tan215°=12tan30°=12×√33=√36.故选:AB.12、答案:②③分析:利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取−π<x<0可判断命题④的正误.综合可得出结论.对于命题①,f(π6)=12+2=52,f(−π6)=−12−2=−52,则f(−π6)≠f(π6),所以,函数f(x)的图象不关于y轴对称,命题①错误;对于命题②,函数f(x)的定义域为{x|x≠kπ,k∈Z},定义域关于原点对称,f(−x)=sin(−x)+1sin(−x)=−sinx−1sinx=−(sinx+1sinx)=−f(x),所以,函数f(x)的图象关于原点对称,命题②正确;对于命题③,∵f(π2−x)=sin(π2−x)+1sin(π2−x)=cosx+1cosx,f(π2+x)=sin(π2+x)+1sin(π2+x)=cosx+1cosx,则f(π2−x)=f(π2+x),所以,函数f(x)的图象关于直线x=π2对称,命题③正确;对于命题④,当−π<x<0时,sinx<0,则f(x)=sinx+1sinx<0<2,命题④错误.所以答案是:②③.小提示:本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.13、答案:四分析:由角α是第三象限角,可判断出tanα>0,sinα<0,从而可判断出点P的位置因为角α是第三象限角,所以tanα>0,sinα<0,所以点P(tanα,sinα)位于第四象限,所以答案是:四。
部编版高中数学必修一第五章三角函数带答案知识点归纳总结(精华版)
(名师选题)部编版高中数学必修一第五章三角函数带答案知识点归纳总结(精华版)单选题1、若扇形周长为20,当其面积最大时,其内切圆的半径r 为( ) A .5−1sin1B .1sin1+32C .5sin11+sin1D .5+51+sin12、若f (x )=cos (x −π3)在区间[−a,a ]上单调递增,则实数a 的最大值为( ) A .π3B .π2C .2π3D .π3、函数f(x)=sin (2x −π3)的一个对称中心的坐标是( ) A .(0,0)B .(0,−√32)C .(π2,0)D .(π6,0) 4、为了得到函数y =2sin3x 的图象,只要把函数y =2sin (3x +π5)图象上所有的点( ) A .向左平移π5个单位长度B .向右平移π5个单位长度 C .向左平移π15个单位长度D .向右平移π15个单位长度5、筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到应用.假定在水流稳定的情况下,筒车上的每一个盛水筒都做匀速圆周运动.如图,将筒车抽象为一个几何图形(圆),筒车半径为4m ,筒车转轮的中心O 到水面的距离为2m ,筒车每分钟沿逆时针方向转动4圈.规定:盛水筒M 对应的点P 从水中浮现(即P 0时的位置)时开始计算时间,且以水轮的圆心O 为坐标原点,过点O 的水平直线为x 轴建立平面直角坐标系xOy .设盛水筒M 从点P 0运动到点P 时所经过的时间为t (单位:s ),且此时点P 距离水面的高度为h (单位:m ),则点P 第一次到达最高点需要的时间为( )s .A .2B .3C .5D .10 6、已知sinθ=45,则sin (π−θ)cos(π2+θ)cos (π+θ)sin(π2−θ)=( )A .−169B .169C .−43D .437、若α∈(0,π2),tan2α=cosα2−sinα,则tanα=( ) A .√1515B .√55C .√53D .√1538、将函数y =2sin (x +π3)的图象向左平移m (m >0)个单位长度后,所得到的图象关于原点对称,则m 的最小值是( ) A .π12B .π6C .π3D .2π3多选题9、如图,正方形ABCD 的长为2,O 为边AD 中点,射线OP 绕点O 按逆时针方向从射线OA 旋转至射线OD ,在旋转的过程中,记∠AOP 为x ,射线OP 扫过的正方形ABCD 内部的区域(阴影部分)的面积为f (x ),则下列说法正确的是( )A .f (π4)=12B .f (x )在(π2,π)上为减函数C .f (x )+f (π−x )=4D .f (x )图象的对称轴是x =π2 10、下列各式中值为12的是( ). A .2sin75°cos75°B .1−2sin 25π12C .sin45°cos15°−cos45°sin15°D .tan20°+tan25°+tan20°tan25°11、已知函数f(x)=3sin(ωx +π3)(ω>0)的图象对称轴与对称中心的最小距离为π4,则下列结论正确的是( ) A .f(x)的最小正周期为2πB.f(x)的图象关于(−π6,0)对称C.f(x)在(−5π12,π12)上单调递减D.f(x)的图象关于直线x=7π12对称填空题12、已知△ABC的内角A,B,C的对边分别为a,b,c.若cosA(sinC−cosC)=cosB,a=2,c=√2,则角C大小为_____.13、已知sinα−3cosα=0,则sin2α+sin2α=__________.部编版高中数学必修一第五章三角函数带答案(四十七)参考答案1、答案:C分析:先根据扇形周长求解出面积取最大值时扇形的圆心角和半径,然后根据图形中的内切关系得到关于内切圆半径r的等式,由此求解出r的值.设扇形的半径为R,圆心角为α,面积为S,因为2R+αR=20,所以S=12αR2=(10−R)R≤(10−R+R2)2=25,取等号时10−R=R,即R=5,所以面积取最大值时R=5,α=2,如下图所示:设内切圆圆心为O,扇形过点O的半径为AP,B为圆与半径的切点,因为AO+OP=R=5,所以r+rsin∠BPO =5,所以r+rsin1=5,所以r=5sin11+sin1,故选:C.2、答案:A分析:先求出函数的增区间,进而建立不等式组解得答案即可.易知将函数y=cosx的图象向右平移π3得到函数f(x)=cos(x−π3)的图象,则函数f(x)=cos(x−π3)的增区间为[−23π+2kπ,π3+2kπ](k∈Z),而函数又在[−a,a]上单调递增,所以{−a≥−23πa≤π3⇒a≤π3,于是0<a≤π3,即a的最大值为π3. 故选:A.3、答案:D分析:解方程2x−π3=kπ,k∈Z即得解.解:令2x−π3=kπ,k∈Z,∴x=12kπ+π6,令k=0,∴x=π6,所以函数f(x)=sin(2x−π3)的一个对称中心的坐标是(π6,0).故选:D4、答案:D分析:根据三角函数图象的变换法则即可求出.因为y=2sin3x=2sin[3(x−π15)+π5],所以把函数y=2sin(3x+π5)图象上的所有点向右平移π15个单位长度即可得到函数y=2sin3x的图象.故选:D.5、答案:C分析:设点P离水面的高度为ℎ(t)=Asin(ωt+φ)+2,根据题意求出A,ω,φ,再令ℎ(t)=6可求出结果. 设点P离水面的高度为ℎ(t)=Asin(ωt+φ)+2,依题意可得A=4,ω=8π60=2π15,φ=−π6,所以ℎ(t)=4sin(2π15t−π6)+2,令ℎ(t)=4sin(2π15t−π6)=6,得sin(2π15t−π6)=1,得2π15t−π6=2kπ+π2,k∈Z,得t=15k+5,k∈Z,因为点P第一次到达最高点,所以0<t<2π2π15=15,所以k=0,t=5s.故选:C6、答案:B分析:由诱导公式和同角关系sin (π−θ)cos(π2+θ)cos (π+θ)sin(π2−θ)可化为sin 2θcos 2θ,再由同角关系由sinθ求出cos 2θ,由此可得结果.∵ sinθ=45,∴ cos 2θ=1−sin 2θ=925 则sin (π−θ)cos(π2+θ)cos (π+θ)sin(π2−θ)=sinθ(−sinθ)(−cosθ)cosθ=sin 2θcos 2θ=169,故选:B. 7、答案:A分析:由二倍角公式可得tan2α=sin2αcos2α=2sinαcosα1−2sin 2α,再结合已知可求得sinα=14,利用同角三角函数的基本关系即可求解.∵tan2α=cosα2−sinα∴tan2α=sin2αcos2α=2sinαcosα1−2sin 2α=cosα2−sinα,∵α∈(0,π2),∴cosα≠0,∴2sinα1−2sin 2α=12−sinα,解得sinα=14,∴cosα=√1−sin 2α=√154,∴tanα=sinαcosα=√1515. 故选:A.小提示:关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出sinα. 8、答案:D分析:由三角函数平移变换可得平移后函数为y =2sin (x +m +π3),根据对称性得到m +π3=kπ(k ∈Z ),结合m >0可得所求最小值.将y =2sin (x +π3)向左平移m (m >0)个单位长度得:y =2sin (x +m +π3), ∵y =2sin (x +m +π3)图象关于原点对称,∴m +π3=kπ(k ∈Z ),解得:m =−π3+kπ(k ∈Z ),又m >0, ∴当k =1时,m 取得最小值2π3. 故选:D.9、答案:AC分析:求出当0<tanx≤2时,函数f(x)的解析式,可判断A选项的正误;利用f(x)的单调性可判断B选项的正误;利用对称性可判断C选项的正误;利用特殊值法可判断D选项的正误.对于A选项,当0<tanx≤2时,设OP交AB于点E,tanx=tan∠AOE=|AE||OA|=|AE|,所以,f(x)=12|OA|⋅|AE|=12tanx,∵0<tanπ4≤2,∴f(π4)=12tanπ4=12,A选项正确;对于B选项,当x∈(π2,π)时,射线OP扫过的正方形ABCD内部的区域(阴影部分)的面积显然逐渐增加,即函数f(x)在(π2,π)上单调递增,B选项错误;对于C选项,取BC的中点G,连接OG,设射线OP与正方形的边的交点为E,作点E关于直线OG的对称点F,则∠FOD=x,所以,∠AOF=π−x,将射线OF绕O点按顺时针方向旋转扫过正方形ABCD的面积为S,由对称性可知S=f(x),因为S+f(π−x)=4,即f(x)+f(π−x)=4,C选项正确;对于D选项,由C选项可知,f(x)+f(π−x)=4,则f(π4)+f(3π4)=4,所以,f(3π4)=4−f(π4)=72≠f(π4),所以,函数f (x )的图象不关于直线x =π2对称,D 选项错误.故选:AC.小提示:关键点点睛:本题考查函数基本性质的判断问题,在判断函数f (x )的单调性时,需要充分利用f (x )的几何意义,结合面积的对称性来求解,另外在判断某些结论不成立时,可充分利用特殊值来进行否定. 10、答案:AC分析:选项A 利用二倍角的正弦求值;选项B 利用二倍角的余弦求值;选项C 逆用两角差的正弦公式求值;选项D 利用两角和的正切公式求值.因为2sin75°cos75°=sin (2×75°)=12,故选项A 正确;因为1−2sin 25π12=cos (2×5π12)=−√32,故选项B 错误;因为sin45°cos15°−cos45°sin15°=sin (45°−15°)=12,故选项C 正确; 因为1=tan (20°+25°)=tan20°+tan25°1−tan20°tan25°,整理得,tan20°+tan25°+tan20°tan25°=1,故选项D 错误; 故选:AC. 11、答案:BD分析:先利用f(x)的图象对称轴与对称中心的最小距离和周期的关系求出ω值,再利用整体思想求其周期、单调性和对称轴.因为f(x)的图象对称轴与对称中心的最小距离为π4, 所以T4=π4,即T =π,即选项A 错误; 由T =2πω=π,得ω=2,即f(x)=3sin(2x +π3),因为f(−π6)=3sin(−π3+π3)=3sin0=0,所以f(x)的图象关于(−π6,0)对称,即选项B 正确; 当−5π12<x <π12时,则−π2<2x +π3<π2, 所以f(x)=3sin(2x +π3)在(−5π12,π12)上单调递增,即选项C 错误;因为f(7π12)=3sin(7π6+π3)=3sin 3π2=−3,所以f(x)的图象关于直线x =7π12对称,即选项D 正确. 故选:BD. 12、答案:π6解析:根据三角形内角和以及诱导公式将B 转化为A,C ,利用两角和公式,可求出A ,再用正弦定理,即可求解.因为cosA (sinC −cosC )=cosB, 所以cosA (sinC −cosC )=−cos (A +C ),所以cosAsinC =sinAsinC,所以sinC (cosA −sinA )=0, 因为C ∈(0,π),∴sinC ≠0,所以cosA =sinA , 则tanA =1,所以A =π4,又a sinA =√2sinC ,则sinC =12,因为c <a ,所以0<C <π4,故C =π6. 故答案为:π6.小提示:本题主要考查解三角形、三角恒等变换等基础知识,属于基础题. 13、答案:32##1.5分析:首先根据同角三角函数的基本关系求出tan α,再利用二倍角公式及同角三角函数的基本关系将弦化切,最后代入计算可得;解:因为sin α−3cos α=0,所以tan α=sin αcos α=3,所以sin 2α+sin2α=sin 2α+2sinαcosα=sin 2α+2sinαcosαsin 2α+cos 2α=tan 2α+2tanαtan 2α+1=32+2×332+1=32所以答案是:32。
高中数学第五章三角函数重点知识点大全(带答案)
高中数学第五章三角函数重点知识点大全单选题1、若sinα+cosαsinα−cosα=12,则tan (α+π4)的值为( ) A .−2B .2C .−12D .12 答案:C分析:利用弦化切和两角和的正切展开式化简计算可得答案. 因为sinα+cosαsinα−cosα=12.所以tanα+1tanα−1=12,解得tanα=−3,于是tan (α+π4)=tanα+tanπ41−tanαtanπ4=−3+11−(−3)=−12.故选:C.2、已知角α的终边经过点P (−3,4),则sinα−cosα−11+tanα的值为( )A .−65B .1C .2D .3答案:A分析:由三角函数的定义可得sinα=45,cosα=−35,tanα=−43,将其代入即可求解.由√(−3)2+42=5,得sinα=45,cosα=−35,tanα=−43,代入原式得=45−(−35)−11+(−43)=−65.故选:A3、记函数f(x)=sin (ωx +π4)+b(ω>0)的最小正周期为T .若2π3<T <π,且y =f(x)的图象关于点(3π2,2)中心对称,则f (π2)=( ) A .1B .32C .52D .3答案:A分析:由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解. 由函数的最小正周期T 满足2π3<T <π,得2π3<2πω<π,解得2<ω<3,又因为函数图象关于点(3π2,2)对称,所以3π2ω+π4=kπ,k ∈Z ,且b =2,所以ω=−16+23k,k ∈Z ,所以ω=52,f(x)=sin (52x +π4)+2, 所以f (π2)=sin (54π+π4)+2=1. 故选:A4、已知tanα=cosα2−sinα,则sinα=( ) A .√154B .12C .√32D .14答案:B分析:利用田家四季歌的基本关系得到sinαcosα=cosα2−sinα,整理可得2sinα=cos 2α+sin 2α,再根据平方关系计算可得;解:由tanα=cosα2−sinα,得sinαcosα=cosα2−sinα,即cos 2α=2sinα−sin 2α,∴2sinα=cos 2α+sin 2α=1, 解得sinα=12, 故选:B.5、已知sinαcosα=−16,π4<α<3π4,则sinα−cosα的值等于( )A .2√33B .−2√33C .−√63D .43答案:A分析:结合同角三角函数的基本关系式,利用平方的方法求得正确结论. 由于sinαcosα=−16,π4<α<3π4,所以sinα>0,cosα<0,故sinα−cosα>0,所以sinα−cosα=√(sinα−cosα)2=√1−2sinαcosα=√1+13=2√33. 故选:A6、√3tan26∘tan34∘+tan26∘+tan34∘= ( ) A .√33B .−√3C .√3D .−√33答案:C解析:利用两角和的正切公式,特殊角的三角函数值化简已知即可求解.解:√3tan26°tan34°+tan26°+tan34°=√3tan26°tan34°+tan(26°+34°)(1−tan26°tan34°)=√3tan26°tan34°+√3(1−tan26°tan34°) =√3tan26°tan34°+√3−√3tan26°tan34°=√3. 故选:C .7、已知sinθ+sin (θ+π3)=1,则sin (θ+π6)=( ) A .12B .√33C .23D .√22答案:B分析:将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值. 由题意可得:sinθ+12sinθ+√32cosθ=1,则:32sinθ+√32cosθ=1,√32sinθ+12cosθ=√33, 从而有:sinθcos π6+cosθsin π6=√33, 即sin (θ+π6)=√33. 故选:B.小提示:本题主要考查两角和与差的正余弦公式及其应用,属于中等题.8、将函数y =2sin (x +π3)的图象向左平移m (m >0)个单位长度后,所得到的图象关于原点对称,则m 的最小值是( ) A .π12B .π6C .π3D .2π3答案:D分析:由三角函数平移变换可得平移后函数为y =2sin (x +m +π3),根据对称性得到m +π3=kπ(k ∈Z ),结合m >0可得所求最小值.将y =2sin (x +π3)向左平移m (m >0)个单位长度得:y =2sin (x +m +π3),∵y=2sin(x+m+π3)图象关于原点对称,∴m+π3=kπ(k∈Z),解得:m=−π3+kπ(k∈Z),又m>0,∴当k=1时,m取得最小值2π3.故选:D.多选题9、已知tanθ=2,则下列结论正确的是()A.tan(π−θ)=−2B.tan(π+θ)=−2C.sinθ−3cosθ2sinθ+3cosθ=−17D.sin2θ=45答案:ACD分析:对于A,B利用诱导公式可求解;对于C,D利用齐次式化简可判断. 对于A选项,tan(π−θ)=−tanθ=−2,故A选项正确;对于B选项,tan(π+θ)=tanθ=2,故B选项错误;对于C选项,sinθ−3cosθ2sinθ+3cosθ=tanθ−32tanθ+3=2−34+3=−17,故C选项正确;对于D选项,sin2θ=2sinθcosθ=2sinθcosθsin2θ+cos2θ=2tanθtan2θ+1=44+1=45,故D选项正确.故选:ACD10、下列选项中,与sin(−330∘)的值相等的是()A.2cos215∘B.cos18∘cos42∘−sin18∘sin42∘C.2sin15∘sin75∘D.tan30∘+tan15∘+tan30∘tan15∘答案:BC分析:求出sin(−330∘)的值以及各选项中代数式的值,由此可得出合适的选项.sin(−330∘)=sin(360∘−330∘)=sin30∘=12.对于A选项,2cos215∘=2×1+cos30∘2=1+cos30∘=1+√32;对于B选项,cos18∘cos42∘−sin18∘sin42∘=cos(18∘+42∘)=cos60∘=12;对于C选项,2sin15∘sin75∘=2sin15∘sin(90∘−15∘)=2sin15∘cos15∘=sin30∘=12;对于D选项,∵tan45∘=tan(30∘+15∘)=tan30∘+tan15∘1−tan30∘tan15∘=1,化简可得tan30∘+tan15∘+tan30∘tan15∘=1.故选:BC.11、已知tanα=4,tanβ=−14,则( )A .tan(−α)tanβ=1B .α为锐角C .tan(β+π4)=35D .tan2α=tan2β 答案:ACD分析:由诱导公式可判断A ,由正切函数的定义可判断B ,由正切函数的两角和公式可判断C ,由二倍角公式可判断D.对于A ,∵tanα=4,tanβ=−14,∴tan(−α)tanβ=−tanαtanβ=1,故A 正确;对于B ,∵tanα=4>0,∴α为第一象限角或第三象限角,故B 错误; 对于C ,∵tanβ=−14,∴tan(β+π4)=1+tanβ1−tanβ=35,故C 正确;对于D ,∵tanα=4,tanβ=−14,∴tan2α=2tanα1−tan 2α=2×41−42=−815,tan2β=2×(−14)1−(−14)2=−815,故D 正确.故选:ACD12、设α是第三象限角,则α2所在象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限 答案:BD解析:用不等式表示第三象限角α,再利用不等式的性质求出α2满足的不等式,从而确定α2的终边所在的象限.∵α是第三象限角,∴k ⋅360°+180°<α<k ⋅360°+270°,k ∈Z , 则k ⋅180°+90°<α2<k ⋅180°+135°,k ∈Z ,令k =2n ,n ∈Z 有n ⋅360°+90°<α2<n ⋅360°+135°,n ∈Z ;在二象限;k =2n +1,n ∈z , 有n ⋅360°+270°<α2<n ⋅360°+315°,n ∈Z ;在四象限;故选:B D .小提示:本题考查象限角的表示方法,不等式性质的应用,通过角满足的不等式,判断角的终边所在的象限,属于容易题.13、下列化简正确的是A.tan(π+1)=tan1B.sin(−α)tan(360∘−α)=cosαC.sin(π−α)cos(π+α)=tanαD.cos(π−α)tan(−π−α)sin(2π−α)=1答案:AB解析:利用诱导公式,及tanα=sinαcosα,依次分析即得解利用诱导公式,及tanα=sinαcosαA选项:tan(π+1)=tan1,故A正确;B选项:sin(−α)tan(360o−α)=−sinα−tanα=sinαsinαcosα=cosα,故B正确;C选项:sin(π−α)cos(π+α)=sinα−cosα=−tanα,故C不正确;D选项:cos(π−α)tan(−π−α)sin(2π−α)=−cosα⋅(−tanα)−sinα=−cosα⋅sinαcosαsinα=−1,故D不正确故选:AB小提示:本题考查了诱导公式和同角三角函数关系的应用,考查了学生概念理解,转化划归,数学运算能力,属于基础题.填空题14、已知函数f(x)=3sin(ωx+π6)(ω>0)在(0,π12)上单调递增,则ω的最大值是____.答案:4分析:根据正弦型函数的单调性即可求解.由函数f(x)=3sin(ωx+π6)(ω>0)在区间(0,π12)上单调递增,可得ω⋅π12+π6≤π2,求得ω≤4,故ω的最大值为4,所以答案是:415、已知f(x)=2sin(2x+π3),若∃x1,x2,x3[0,3π2],使得f(x1)=f(x2)=f(x3),若x1+x2+x3的最大值为M,最小值为N,则M+N=___________.答案:23π6分析:作出f(x)在[0,3π2]上的图象,x1,x2,x3为f(x)的图象与直线y=m交点的横坐标,利用数形结合思想即可求得M和N﹒作出f(x)=2sin(2x+π3)在[0,3π2]上的图象(如图所示)因为f(0)=2sinπ3=√3,f(3π2)=2sin(π+π3)=−√3,所以当f(x)的图象与直线y=√3相交时,由函数图象可得,设前三个交点横坐标依次为x1、x2、x3,此时和最小为N,由2sin(2x+π3)=√3,得sin(2x+π3)=√32,则x1=0,x2=π6,x3=π,N=7π6;当f(x)的图象与直线y=−√3相交时,设三个交点横坐标依次为x1、x2、x3,此时和最大为M,由2sin(2x+π3)=−√3,得sin(2x+π3)=−√32,则x1+x2=7π6,x3=3π2,M=8π3;所以M+N=23π6.所以答案是:23π6.16、已知角α终边落在直线y=34x上,求值:sinα+1cosα=_______.答案:2或−12解析:由题意利用任意角的三角函数的定义,同角三角函数的基本关系,分类讨论,分别求得sinα和cosα的值,可得要求式子的值.解:当角α终边落在直线y =34x(x ⩾0)上,α为锐角,sinαcosα均为正值,且tanα=sinαcosα=34,再结合sin 2α+cos 2α=1,求得sinα=35,cosα=45, 则sinα+1cosα=35+145=2.当角α终边落在直线y =34x(x <0)上,α∈(π,3π2),sinαcosα均为负值,且tanα=sinαcosα=34,再结合sin 2α+cos 2α=1,求得sinα=−35,cosα=−45, 则sinα+1cosα=−35+1−45=−12,所以答案是:2或−12.小提示:本题主要考查任意角的三角函数的定义,同角三角函数的基本关系,考查运算能力,属于基础题. 解答题17、已知0<α<π2,cos (α+π4)=13.(1)求sinα的值;(2)若−π2<β<0,cos (β2−π4)=√33,求α−β的值.答案:(1)4−√26(2)α−β=π4分析:(1)利用同角三角函数的基本关系结合两角差的正弦公式可求得sinα的值;(2)利用二倍角的余弦公式可求得sinβ的值,利用同角三角函数的基本关系以及两角差的余弦公式求出cos (α−β)的值,结合角α−β的取值范围可求得结果. (1)解:因为0<α<π2,∴π4<α+π4<3π4,又cos(α+π4)=13,所以sin(α+π4)=√1−(13)2=2√23,所以sinα=sin[(α+π4)−π4]=sin(α+π4)cosπ4−cos(α+π4)cosπ4=√22(2√23−13)=4−√26.(2)解:因为cos(β2−π4)=√33,sinβ=cos(β−π2)=cos[2(β2−π4)]=2cos2(β2−π4)−1=2×13−1=−13,又因为−π2<β<0,所以cosβ=√1−sin2β=2√23,由(1)知,cosα=cos[(α+π4)−π4]=cos(α+π4)cosπ4+sin(α+π4)sinπ4=4+√26,所以cos(α−β)=cosαcosβ+sinαsinβ=4+√26×2√23+4−√26×(−13)=√22.因为0<α<π2,−π2<β<0,则0<α−β<π,所以α−β=π4.18、已知函数f(x)=2sinxsin(π3−x)+2cos2x−12.(1)求函数f(x)的单调增区间;(2)当x∈(−π6,π4)时,函数g(x)=f2(x)−2mf(x)+m2−116有四个零点,求实数m的取值范围.答案:(1)[kπ−5π12,kπ+π12],k∈Z(2)2√3+14<m<4√3−14分析:(1)化简f(x)的解析式,根据正弦函数的增区间可得结果;(2)转化为ℎ(t)=t2−2mt+m2−116在(√32,√3)内有两个零点,根据二次函数列式可得结果.(1)f(x)=2sinxsin(π3−x)+2cos2x−12=2sinx(sinπ3cosx−cosπ3sinx)+1+cos2x−12 =√3sinxcosx−sin2x+1+cos2x−12=√32sin2x+cos2x+cos2x−12=√32sin2x+1+cos2x2+cos2x−12=√32sin2x+32cos2x=√3sin(2x +π3),由2kπ−π2≤2x +π3≤2kπ+π2,k ∈Z , 得kπ−512π≤x ≤kπ+π12,k ∈Z ,所以函数f (x )的单调增区间为[kπ−5π12,kπ+π12],k ∈Z . (2)当x ∈(−π6,π4)时,2x +π3∈(0,5π6),f(x)=√3sin(2x +π3)∈(0,√3],因为函数g (x )=f 2(x )−2mf (x )+m 2−116有四个零点,令t =f(x),则t ∈(0,√3)且ℎ(t)=t 2−2mt +m 2−116在(√32,√3)内有两个零点, 所以{Δ=4m 2−4(m 2−116)>0√32<m <√3ℎ(√32)>0ℎ(√3)>0,即{ √32<m <√334−√3m +m 2−16>03−2√3m +m 2−16>0,解得{√32<m <√3m 〈2√3−14或m 〉2√3+14m 〈4√3−14或m 〉4√3+14,解得2√3+14<m <4√3−14,所以实数m 的取值范围是2√3+14<m <4√3−14. 小提示:方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.。
(精选试题附答案)高中数学第五章三角函数易错知识点总结
(名师选题)(精选试题附答案)高中数学第五章三角函数易错知识点总结单选题1、已知f (x )=2√3sinwxcoswx +2cos 2wx ,(w >0),若函数在区间(π2,π)内不存在对称轴,则w 的范围为( )A .(0,16]∪[13,34]B .(0,13]∪[23,34] C .(0,16]∪[13,23]D .(0,13]∪[23,56] 答案:C分析:先通过三角恒等变换将f (x )化简成正弦型函数,再结合正弦函数性质求解即可. 函数化简得f (x )=√3sin2wx +cos2wx +1=2sin (2wx +π6)+1, 由2wx +π6=kπ+π2(k ∈Z ),可得函数的对称轴为x =kπ+π32w(k ∈Z ),由题意知,kπ+π32w≤π2且(k+1)π+π32w≥π,即k +13≤w ≤3k+46,k ∈Z ,若使该不等式组有解,则需满足k +13≤3k+46,即k ≤23,又w >0,故0≤3k+46,即k >−43,所以−43<k ≤23,又k ∈Z ,所以k =0或k =1,所以w ∈(0,16]∪[13,23]. 2、若sin (π7+α)=12,则sin (3π14−2α)=( ) A .35B .−12C .12D .13答案:C分析:令θ=π7+α可得α=θ−π7,再代入sin (3π14−2α),结合诱导公式与二倍角公式求解即可令θ=π7+α可得α=θ−π7,故sinθ=12,则sin (3π14−2α)=sin (3π14−2(θ−π7)) =sin (π2−2θ)=cos2θ=1−2sin 2θ=12故选:C3、若tanθ=2,则sinθ(1−sin2θ)sinθ−cosθ=( )A .25B .−25C .65D .−65 答案:A分析:由二倍角正弦公式和同角关系将sinθ(1−sin2θ)sinθ−cosθ转化为含tanθ的表达式,由此可得其值.sinθ(1−sin2θ)sinθ−cosθ=sinθ(sin 2θ+cos 2θ−sin2θ)sinθ−cosθ=sinθ(sinθ−cosθ)2sinθ−cosθ=sin 2θ−sinθcosθsin 2θ+cos 2θ=tan 2θ−tanθtan 2θ+1=25.故选:A.4、已知函数f(x)=2sin (x +π4)+m 在区间(0,π)上有零点,则实数m 的取值范围为( )A .(−√2,√2)B .(−√2,2]C .[−2,√2]D .[−2,√2) 答案:D分析:令f(x)=0,则2sin (x +π4)=−m ,令g (x )=2sin (x +π4),根据x 的取值范围求出g (x )的值域,依题意y =g (x )与y =−m 在(0,π)上有交点,即可求出参数的取值范围; 解:令f(x)=0,即2sin (x +π4)=−m ,令g (x )=2sin (x +π4),因为x ∈(0,π),所以x +π4∈(π4,5π4),所以sin (x +π4)∈(−√22,1],即g (x )∈(−√2,2],依题意y =g (x )与y =−m 在(0,π)上有交点,则−√2<−m ≤2,所以−2≤m <√2,即m ∈[−2,√2); 故选:D5、已知扇形的圆心角为3π4,半径为4,则扇形的面积S 为( )A .3πB .4πC .6πD .2π 答案:C解析:利用S =12αr 2即可求得结论. 由扇形面积公式得:S =12×3π4×42=6π.故选:C.6、已知函数f (x )=Asin (ωx +φ)(A >0,ω>0,|φ|<π2)的部分图像如下图所示.则能够使得y =2sinx 变成函数f (x )的变换为( )A .先横坐标变为原来的12倍,再向左平移π24 B .先横坐标变为原来的2倍,再向左平移π12 C .先向左平移π6,再横坐标变为原来的12倍D .先向左平移π24,再横坐标变为原来的2倍答案:C分析:先根据给定图象求出函数f (x )的解析式,再求出由y =2sinx 到f (x )的变换即得. 观察图象知A =2,f (x )周期为T ,则T4=5π12−π6=π4,即T =π,ω=2πT=2,又f (π6)=2,即2⋅π6+φ=2kπ+π2(k ∈Z),而|φ|<π2,则k =0,φ=π6, 所以f (x )=2sin(2x +π6),把y =2sinx 图象向左平移π6得y =2sin(x +π6)图象,再把所得图象上每一点的横坐标变为原来的12倍即得f (x ).故选:C7、已知函数y =√2sin(x +π4),当y 取得最小值时,tanx 等于( ) A .1B .−1C .√32D .−√32答案:A分析:由正弦函数的性质,先求出当y 取得最小值时x 的取值,从而求出tanx . 函数y =√2sin(x +π4),当y 取得最小值时,有x +π4=2kπ+3π2,故x =2kπ+5π4,k ∈Z .∴tanx =tan (2kπ+5π4)=tan (π4)=1,k ∈Z . 故选:A .8、若f (x )=cos (x −π3)在区间[−a,a ]上单调递增,则实数a 的最大值为( ) A .π3B .π2C .2π3D .π答案:A分析:先求出函数的增区间,进而建立不等式组解得答案即可.易知将函数y =cosx 的图象向右平移π3得到函数f (x )=cos (x −π3)的图象,则函数f (x )=cos (x −π3)的增区间为[−23π+2kπ,π3+2kπ](k ∈Z ),而函数又在[−a,a ]上单调递增,所以{−a ≥−23πa ≤π3⇒a ≤π3,于是0<a ≤π3,即a的最大值为π3. 故选:A.9、当θ∈(0,π2),若cos (5π6−θ)=−12,则sin (θ+π6)的值为( ) A .12B .√32C .−√32D .−12 答案:B分析:利用诱导公式和平方关系求解.因为cos (5π6−θ)=−cos (π−(5π6−θ))=−cos (π6+θ)=−12,所以cos (π6+θ)=12,因为θ∈(0,π2), 所以π6+θ∈(π6,2π3),所以sin (θ+π6)=√1−cos 2(π6+θ)=√32, 故选:B10、已知sinθ+sin (θ+π3)=1,则sin (θ+π6)=( )A .12B .√33C .23D .√22答案:B分析:将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值. 由题意可得:sinθ+12sinθ+√32cosθ=1,则:32sinθ+√32cosθ=1,√32sinθ+12cosθ=√33, 从而有:sinθcos π6+cosθsin π6=√33, 即sin (θ+π6)=√33. 故选:B.小提示:本题主要考查两角和与差的正余弦公式及其应用,属于中等题. 填空题11、已知sinθ−cosθ=12,则sin 3θ−cos 3θ=______. 答案:1116分析:根据sinθ−cosθ=12平方可得sinθ⋅cosθ=38,结合立方差公式即可代入求值.因为sinθ−cosθ=12,平方得(sinθ−cosθ)2=14,所以sinθ⋅cosθ=38,所以sin 3θ−cos 3θ=(sinθ−cosθ)⋅(sin 2θ+sinθcosθ+cos 2θ)=12×(1+38)=1116. 所以答案是:111612、函数f (x )=sinx 的图象向左平移π6个单位得到函数g (x )的图象,则下列函数g (x )的结论:①一条对称轴方程为x =7π6;②点(5π6,0)是对称中心;③在区间(0,π3)上为单调增函数;④函数g (x )在区间[π2,π]上的最小值为−12.其中所有正确的结论为______.(写出正确结论的序号) 答案:②③④解析:先求得g (x ),然后利用代入法判断①②,根据单调区间和最值的求法判断③④. 函数f (x )=sinx 的图象向左平移π6个单位得到函数g (x )=sin (x +π6), g (7π6)=sin (7π6+π6)=sin4π3=sin (π+π3)=−sin π3=−√32≠±1,所以①错误.g (5π6)=sin (5π6+π6)=sinπ=0,所以②正确. 由2kπ−π2≤x +π6≤2kπ+π2,解得2kπ−2π3≤x ≤2kπ+π3,k ∈Z .令k =0得−2π3≤x ≤π3,所以g (x )在区间(0,π3)上为单调增函数,即③正确.由π2≤x ≤π得2π3≤x +π6≤7π6,所以当x =π,x +π6=7π6时,g (x )有最小值为sin7π6=sin (π+π6)=−sin π6=−12,所以④正确.所以答案是:②③④小提示:解决有关三角函数对称轴、对称中心的问题,可以考虑代入验证法.考查三角函数单调区间的问题,可以考虑整体代入法.13、若α∈(0,π2),且cos 2α+cos(π2−2α)=710,则tan2α=____ 答案:−34分析:利用诱导公式、二倍角正弦公式,将题设条件转化为1+2tanαtan 2α+1=710,结合角的范围求tanα值,再应用二倍角正切公式求tan2α即可.∵cos 2α+cos(π2−2α)=cos 2α+sin2α=cos 2α+2sinαcosαsin 2α+cos 2α=1+2tanαtan 2α+1=710,∴tanα=3或tanα=−17,又α∈(0,π2),∴tanα=3,则tan2α=2tanα1−tan 2α=−34.所以答案是:−3414、设函数f (x )=sin (ωx +φ),A >0,ω>0,若f (x )在区间[π6,π2]上单调,且f (π2)=f (2π3)=−f (π6),则f (x )的最小正周期为____. 答案:π分析:根据单调性可确定0<ω≤3,结合f (π2)=f (2π3)=−f (π6),可得x =7π12,(π3,0)分别为对称轴和对称中心,即可结合周期求解.函数f (x )=sin (ωx +φ),A >0,ω>0,若f (x )在区间[π6,π2]上单调, 则T2=πω≥π2-π6,∴0<ω≤3.∵f (π2)=f (2π3)=−f (π6),∴x =π2+2π32=7π12为f (x )=sin (ωx +φ)的一条对称轴,且(π6+π22,0)即(π3,0)为f (x )=sin (ωx +φ)的一个对称中心, 只有当T4=14⋅2πω=7π12−π3=π4时,解得ω=2∈(0,3],∴T=2π2=π,故答案为:π15、已知函数f (x )=2sin (ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,则满足条件(f (x )+f (−5π4)) (f (x )+f (7π3))<0的最小正偶数x 为___________.答案:4分析:先根据图象求出函数f(x)的解析式,再求出f(−5π4),f(7π3)的值,然后求解三角不等式可得最小正偶数.由图可知34T=5π6−π12=3π4,即T=2πω=π,所以ω=2;由五点法可得2×π12+φ=π2,即φ=π3;所以f(x)=2sin(2x+π3).因为f(−5π4)=2sin(−13π6)=−1,f(7π3)=2sin(5π)=0;所以由(f(x)+f(−5π4))(f(x)+f(7π3))<0可得0<f(x)<1;由0<2sin(2x+π3)<1,即0<sin(2x+π3)<12,∴2kπ<2x+π3<2kπ+π6,k∈Z或2kπ+5π6<2x+π3<2kπ+π,k∈Z,解得kπ−π6<x<kπ−π12,k∈Z或kπ+π4<x<kπ+π3,k∈Z,令k=1,可得5π6<x<11π12或5π4<x<4π3,所以最小正偶数x为4.所以答案是:4.解答题16、弹簧振子的振动是简谐振动.某个弹簧振子在完成一次全振动的过程中,时间t(单位:s)与位移y(单位:mm)之间的对应数据记录如下表:(1)试根据这些数据确定这个振子的位移关于时间的函数解析式;(2)画出该函数在t∈[0,0.6]的图象;(3)在这次全振动过程中,求位移为10mm时t的取值集合.答案:(1)y=20sin(10π3t−π2)=−20cos10π3t,t≥0(2)图象见解析(3){0.2,0.4}分析:(1)设函数解析式为y=Asin(ωt+φ),t≥0,根据表格数据得出A,ω,φ的值,即可得出这个振子的位移关于时间的函数解析式;(2)由五点作图法作图即可;(3)解方程20sin(10π3t−π2)=10,即可得出t的取值集合.(1)设函数解析式为y=Asin(ωt+φ),t≥0,由表格可知:A=20,T=0.6,则ω=2πT =2π0.6=10π3,即y=20sin(10π3t+φ).由函数图象过点(0,−20),得−20=20sinφ,即sinφ=−1,可取φ=−π2.则这个振子的位移关于时间的函数解析式为y=20sin(10π3t−π2)=−20cos10π3t,t≥0;(2)列表:由表格数据知,y=−20cos10π3t,t∈[0,0.6]的图象如图所示.;(3)由题意得−20cos10π3t=10,即cos10π3t=−12,则10π3t=2π3+2k1π,k1∈Z或10π3t=−2π3+2k2π,k2∈Z,所以t =15+35k 1,k 1∈Z 或t =−15+35k 2,k 2∈Z .又t ∈[0,0.6],所以t =0.2或0.4.所以在这次全振动过程中,位移为10mm 时t 的取值集合为{0.2,0.4}.17、已知函数f(x)=Asin(ωx +φ)+B(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求f(x)的解析式及对称中心坐标:(2)先把f(x)的图象向左平移π6个单位,再向上平移1个单位,得到函数g(x)的图象,若当x ∈[−π4,π6]时,求g(x)的值域.答案:(1)f(x)=2sin(2x +π3)−1,(kπ2−π6,−1)(k ∈Z )(2)[0,2]分析:(1)先根据图象得到函数的最大值和最小值,由此列方程组求得A,B 的值,根据周期求得ω的值,根据f(π12)=1求得φ的值,由此求得f (x )的解析式,进而求出f (x )的对称中心; (2)根据三角变换法则求得函数g (x )的解析式,再换元即可求出g (x )的值域. (1)由图象可知:{A +B =1−A +B =−3,解得:A =2 , B =−1,又由于T2=7π12−π12,可得:T =π,所以ω=2πT=2由图像知f(π12)=1,sin(2×π12+φ)=1,又因为−π3<π6+φ<2π3所以2×π12+φ=π2,φ=π3.所以f(x)=2sin(2x +π3)−1令2x+π3=kπ(k∈Z),得:x=kπ2−π6(k∈Z)所以f(x)的对称中心的坐标为(kπ2−π6,−1)(k∈Z)(2)依题可得g(x)=f(x+π6)+1=2sin(2x+2π3),因为x∈[−π4,π6],令2x+2π3=t∈[π6,π],所以sint∈[0,1],即g(x)的值域为[0,2].18、已知向量a⃗=(2sinx,√3cosx),b⃗⃗=(cosx,2cosx),函数f(x)=a⃗⋅b⃗⃗.(1)求函数f(x)的单调递增区间;(2)求函数f(x)在[0,π2]上的最大值和最小值以及对应的x的值.答案:(1)[−5π12+kπ,π12+kπ](k∈Z)(2)f(x)的最大值为2+√3,此时x=π12;f(x)的最小值为0,此时x=π2分析:(1)先根据向量数量积得到f(x),再由二倍角及辅助角公式化简,然后求单调区间即可;(2)根据区间的范围求出内层的范围,再求最值及对应的x的值.(1)因为向量a⃗=(2sinx,√3cosx),b⃗⃗=(cosx,2cosx),得函数f(x)=a⃗⋅b⃗⃗=2sinxcosx+2√3cos2x=sin2x+√3cos2x+√3=2sin(2x+π3)+√3,令−π2+2kπ≤2x+π3≤π2+2kπ(k∈Z),则−5π12+kπ≤x≤π12+kπ(k∈Z),∴f(x)的单调递增区间为[−5π12+kπ,π12+kπ](k∈Z);(2)当x∈[0,π2]时,2x+π3∈[π3,4π3],所以2sin(2x+π3)∈[−√3,2],当2x+π3=π2,x=π12时,f(x)取得最大值,f(x)max=f(π12)=2+√3,当2x+π3=4π3,x=π2时,f(x)取得最小值,f(x)min=f(π2)=0.19、已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)最小正周期为π,图象过点(π4,√2). (1)求函数f(x)解析式(2)求函数f(x)的单调递增区间.答案:(1)f(x)=2sin(2x+π4);(2)[−3π8+kπ,π8+kπ](k∈Z).分析:(1)利用周期公式可得ω,将点(π4,√2)代入即得解析式;(2)由−π2+2kπ≤2x+π4≤π2+2kπ(k∈Z)计算即可求得单调递增区间.(1)由已知得π=2πω,解得ω=2.将点(π4,√2)代入解析式,√2=2sin(2×π4+φ),可知cosφ=√22,由0<φ<π可知φ=π4,于是f(x)=2sin(2x+π4).(2)令−π2+2kπ≤2x+π4≤π2+2kπ(k∈Z)解得−3π8+kπ≤x≤π8+kπ(k∈Z),于是函数f(x)的单调递增区间为[−3π8+kπ,π8+kπ](k∈Z).小提示:本题考查正弦函数的图像和性质,基础题.。
(精选试题附答案)高中数学第五章三角函数重点知识点大全
(名师选题)(精选试题附答案)高中数学第五章三角函数重点知识点大全单选题1、化简:tan(π−α)cos(2π−α)sin(−a+3π2)cos(−a−π)sin(−π−a)的值为( )A .−2B .−1C .1D .2 答案:B分析:运用同角三角函数间的基本关系和三角函数的诱导公式化简可得答案. 解:原式=−tanα⋅cosα⋅(−cosα)cos(π+a)⋅[−sin(π+a)]=tanα⋅cos 2α−cosα⋅sinα=−sinαcosα⋅cosαsinα=-1. 故选:B.2、已知函数f(x)=2sin (x +π4)+m 在区间(0,π)上有零点,则实数m 的取值范围为( ) A .(−√2,√2)B .(−√2,2]C .[−2,√2]D .[−2,√2) 答案:D分析:令f(x)=0,则2sin (x +π4)=−m ,令g (x )=2sin (x +π4),根据x 的取值范围求出g (x )的值域,依题意y =g (x )与y =−m 在(0,π)上有交点,即可求出参数的取值范围; 解:令f(x)=0,即2sin (x +π4)=−m ,令g (x )=2sin (x +π4), 因为x ∈(0,π),所以x +π4∈(π4,5π4),所以sin (x +π4)∈(−√22,1],即g (x )∈(−√2,2],依题意y =g (x )与y =−m 在(0,π)上有交点,则−√2<−m ≤2,所以−2≤m <√2,即m ∈[−2,√2); 故选:D3、要得到函数y =3sin(2x +π4)的图象,只需将函数y =3sin2x 的图象( ).A .向左平移π4个单位长度B .向右平移π4个单位长度 C .向左平移π8个单位长度D .向右平移π8个单位长度 答案:C分析:根据函数图象平移的性质:左加右减,并结合图象变化前后的解析式判断平移过程即可. 将y =3sin2x 向左移动π8个单位长度有y =3sin2(x +π8)=3sin(2x +π4),∴只需将函数y =3sin2x 的图象向左平移π8个单位长度,即可得y =3sin(2x +π4)的图象. 故选:C4、已知扇形的圆心角为3π4,半径为4,则扇形的面积S 为( )A .3πB .4πC .6πD .2π 答案:C解析:利用S =12αr 2即可求得结论.由扇形面积公式得:S =12×3π4×42=6π.故选:C.5、要得到函数y =sin (2x +π6)的图象,可以将函数y =cos (2x −π6)的图象( ) A .向右平移π12个单位长度B .向左平移π12个单位长度C .向右平移π6个单位长度D .向左平移π6个单位长度答案:A分析:利用诱导公式将平移前的函数化简得到y =sin (2x +π3),进而结合平移变换即可求出结果.因为y =cos (2x −π6)=sin (2x −π6+π2)=sin (2x +π3),而y =sin [2(x −π12)+π3],故将函数y =cos (2x −π6)的图象向右平移π12个单位长度即可, 故选:A.6、若tanθ=2,则sinθ(1−sin2θ)sinθ−cosθ=( )A .25B .−25C .65D .−65 答案:A分析:由二倍角正弦公式和同角关系将sinθ(1−sin2θ)sinθ−cosθ转化为含tanθ的表达式,由此可得其值.sinθ(1−sin2θ)sinθ−cosθ=sinθ(sin 2θ+cos 2θ−sin2θ)sinθ−cosθ=sinθ(sinθ−cosθ)2sinθ−cosθ=sin 2θ−sinθcosθsin 2θ+cos 2θ=tan 2θ−tanθtan 2θ+1=25.故选:A.7、下列函数中为周期是π的偶函数是( ) A .y =|sinx |B .y =sin|x| C .y =−sinx D .y =sinx +1 答案:A分析:根据偶函数定义可判断选项,由三角函数的图像与性质可得周期,即可得解. 对于A ,y =|sinx |为偶函数,且最小正周期为π,所以A 正确; 对于B ,y =sin |x |为偶函数,但不具有周期性,所以B 错误; 对于C ,y =−sinx 为奇函数,所以C 错误; 对于D, y =sinx +1为非奇非偶函数,所以D 错误. 综上可知,正确的为A 故选:A8、若α为第四象限角,则( )A .cos2α>0B .cos2α<0C .sin2α>0D .sin2α<0 答案:D分析:由题意结合二倍角公式确定所给的选项是否正确即可.方法一:由α为第四象限角,可得3π2+2kπ<α<2π+2kπ,k ∈Z ,所以3π+4kπ<2α<4π+4kπ,k ∈Z此时2α的终边落在第三、四象限及y 轴的非正半轴上,所以sin2α<0 故选:D.方法二:当α=−π6时,cos2α=cos(−π3)>0,选项B 错误;当α=−π3时,cos2α=cos(−2π3)<0,选项A 错误;由α在第四象限可得:sinα<0,cosα>0,则sin2α=2sinαcosα<0,选项C 错误,选项D 正确; 故选:D.小提示:本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.9、已知简谐振动f (x )=Asin (ωx +φ)(|φ|<π2)的振幅是32,图象上相邻最高点和最低点的距离是5,且过点(0,34),则该简谐振动的频率和初相是( ) A .16,π6B .18,π3C .18,π6D .16,π3 答案:C分析:根据正弦型函数的图象与性质求出振幅、周期,再由过点(0,34)求出初相即可得解.由题意可知,A =32,32+(T2)2=52, 则T =8,ω=2π8=π4,∴ y =32sin (π4x +φ). 由32sin φ=34,得sin φ=12. ∵|φ|<π2,因此频率是18,初相为π6.故选:C10、《掷铁饼者》是希腊雕刻家米隆于约公元前450年雕刻的青铜雕像,它取材于现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的每只手臂长约π4m ,肩宽约为π8m ,“弓”所在圆的半径约为1.25m ,则如图掷铁饼者双手之间的距离约为( )A .π2m B .5√24m C .5π8m D .2m 答案:B分析:由题意知这段弓所在弧长,结合弧长公式求出其所对圆心角,双手之间的距离为其所对弦长. 由题得:弓所在的弧长为:l =π4+π4+π8=5π8;所以其所对的圆心角α=5π854=π2;∴两手之间的距离d =2Rsin π4=√2×1.25AB =5√24m . 故选:B 填空题11、已知tanθ是方程x 2−6x +1=0的一根,则cos 2(θ+π4)=_____.分析:依题意可得tan 2θ−6tanθ+1=0,再根据同角三角函数的基本关系将切化弦,整理得sin 2θ−6sinθcosθ+cos 2θ=0,即可求出sin2θ,再根据二倍角余弦公式及诱导公式计算可得. 解:∵tanθ是方程x 2−6x +1=0的一根, ∴tan 2θ−6tanθ+1=0,则sin 2θcos 2θ−6sinθcosθ+1=0, 可得sin 2θ−6sinθcosθ+cos 2θ=0,可得sinθcosθ=16, ∴sin2θ=2sinθcosθ=13,∴cos 2(θ+π4)=1+cos(2θ+π2)2=1−sin2θ2=1−132=13.所以答案是:1312、赵爽弦图如图所示,其中大正方形是由四个全等的直角三角形和中间一个小正方形拼成的,若α∈(0,π4),且小正方形与大正方形的面积之比为1:4,则tanα的值为______.答案:4−√73分析:设大正方形的边长为a ,由直角三角形中的三角函数定义求得小正方形边长,然后由已知面积比可求得α的关系式,从而可得tanα.设大正方形的边长为a ,则小正方形的边长为a (cosα−sinα),所以a 2(cosα−sinα)2a 2=1−2sinαcosα=14,即sinαcosα=38,所以sinαcosαsin 2α+cos 2α=tanαtan 2α+1=38,即3tan 2α−8tanα+3=0,得tanα=4−√73或tanα=4+√73.又α∈(0,π4),所以0<tanα<1,即tanα=4−√73.所以答案是:4−√73.13、如图,弹簧挂着的小球做上下振动,它在t秒时相对于平衡位置(即静止时的位置)的高度ℎ厘米满足下列关系:ℎ=2sin(t+π6),t∈[0,+∞),则每秒钟小球能振动______次.答案:12π分析:求正弦型函数的频率.函数ℎ=2sin(t+π6),t∈[0,+∞)的周期T=2π,故频率为12π.所以每秒钟小球能振动12π次.所以答案是:12π.14、若角α的终边落在直线y=-x上,则√1−sin2α√1−cos2αcosα的值等于________.答案:0解析:先求出α=2kπ+34π或2kπ+74π,k∈Z,再分类讨论得解.因为角α的终边落在直线y=-x上,所以α=2kπ+34π或2kπ+74π,k∈Z,当α=2kπ+34π,k∈Z,即角α的终边在第二象限时,sinα>0,cosα<0;所以√1−sin2α+√1−cos2αcosα=sinα|cosα|+|sinα|cosα=sinα−cosα+sinαcosα=0当α=2kπ+74π,k∈Z,即角α的终边在第四象限时,sinα<0,cosα>0.所以√1−sin2α+√1−cos2αcosα=sinα|cosα|+|sinα|cosα=sinαcosα+−sinαcosα=0综合得√1−sin2α+√1−cos2αcosα的值等于0.所以答案是:015、已知tanα=√2,则cos4α−cos2α+sin2α=__________.答案:49解析:将cos4α−cos2α+sin2α化简为sin2α(1−sin2α)=sin4α,然后将式子写成sin4α(sin2α+cos2α)2再转化为含tanα的式子,可求出答案.cos4α−cos2α+sin2α=cos2α(cos2α−1)+sin2α=−cos2αsin2α+sin2α=sin2α(1−sin2α)=sin4α=sin4α(sin2α+cos2α)2=tan4α(1+tan2α)2=4(2+1)2=49所以答案是:49.小提示:关键点睛:本题考查三角函数的给值求值问题,解答本题的关键是先将所求化简为sin4α,再变形为sin4α(sin2α+cos2α)2,从而转化为tan4α(1+tan2α)2,属于中档题.解答题16、一半径为2m的水轮(如图所示),水轮圆心O离水面1m,已知水轮逆时针转动,每3s转一圈,且当水轮上点P从水中浮现时(图中点P0)开始计算时间.(1)试建立适当的坐标系,将点P距离水面的高度ℎ(m)表示为时间t(s)的函数;(2)点P第一次到达最高点大约要多长时间?答案:(1)ℎ=2sin(2π3t−π6)+1(2)1s分析:(1)以水轮所在平面与水面的交线为x轴,以过点O且与水面垂直的直线为y轴,建立如图所示的直角坐标系,进而设ℎ=Asin(ωt+φ)+k(−π2<φ<0),再求解析式即可;(2)令2sin(2π3t−π6)+1=3,解得t=1+3k,k∈Z,进而当k=0时,P第一次到达最高点,求得对应值即可.(1)解:以水轮所在平面与水面的交线为x轴,以过点O且与水面垂直的直线为y轴,建立如图所示的直角坐标系,设ℎ(t)=Asin(ωt+φ)+k(A>0,ω>0,−π2<φ<0),则A=2,k=1,∵T=3=2πω,∴ω=2π3,∴ℎ=2sin(2π3t+φ)+1,∵t=0时,ℎ=0,∴0=2sinφ+1,∴sinφ=−12,∵−π2<φ<0,∴φ=−π6,∴ℎ(t)=2sin(2π3t−π6)+1.(2)解:令2sin(2π3t−π6)+1=3,得sin(2π3t−π6)=1,∴2π3t−π6=π2+2kπ,k∈Z,∴t=1+3k,k∈Z,∴当k=0时,P第一次到达最高点,∴点P第一次到达最高点大约要1s.17、已知函数f(x)=6cos x sin(x−π6)+32.(1)求f(x)的最小正周期和对称轴方程;(2)若函数y=f(x)−a在x∈[π12,5π12]存在零点,求实数a的取值范围.答案:(1)最小正周期为π,对称轴方程为x=kπ2+π3,k∈Z(2)[0,3]分析:(1)化简函数f(x)=3sin(2x−π6),结合三角函数的图象与性质,即可求解;(2)根据题意转化为sin(2x−π6)=a3在x∈[π12,5π12]上有解,根据x∈[π12,5π12]时,得到sin(2x−π6)∈[0,1],即可求解.(1)解:对于函数f(x)=6cosxsin(x−π6)+32=6cosx(√32sinx−12cosx)+32=3√32sin2x−3×1+cos2x2+32=3(√32sin2x−12cos2x)=3sin(2x−π6),所以函数f(x)的最小正周期为2π2=π,令2x−π6=kπ+π2,k∈Z,解得x=kπ2+π3,k∈Z,所以函数f(x)的对称轴的方程为x=kπ2+π3,k∈Z.(2)解:因为函数y=f(x)−a在x∈[π12,5π12]存在零点,即方程sin(2x−π6)=a3在x∈[π12,5π12]上有解,当x∈[π12,5π12]时,可得2x−π6∈[0,2π3],可得sin(2x−π6)∈[0,1],所以0≤a3≤1,解得0≤a≤3,所以实数a的取值范围[0,3].18、已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π2)的图象与直线y=2的相邻两个交点间的距离为2π,且________.在①函数f(x+π6)为偶函数;②f(π3)=√3;③∀x∈R,f(x)≤f(π6);这三个条件中任选一个,补充在上面问题中,并解答.(1)求函数f(x)的解析式;(2)求函数f(x)在[0,π]上的单调递增区间.答案:(1)f(x)=2sin(x+φ);(2)答案见解析.解析:由已知得周期从而求得ω,选①:(1)得出f(x+π6),根据偶函数与诱导公式求得φ;(2)求出f(x)的增区间,再与[0,π]求交集可得;选②:(1)解方程f(π3)=√3可得φ;(2)同选①选③:(1)由f(π6)是最大值可得φ;(2)同选①解:∵f(x)的图象与直线y=2的相邻两个交点间的距离为2π,∴T=2π,即2πω=2π,∴ω=1,∴f(x)=2sin(x+φ).方案一:选条件①(1)∵f(x+π6)=2sin(x+φ+π6)为偶函数,∴φ+π6=π2+kπ,即φ=π3+kπ,k∈Z,∵0<φ<π2,∴φ=π3,∴f(x)=2sin(x+π3).(2)令−π2+2kπ≤x+π3≤π2+2kπ,k∈Z,得:−56π+2kπ≤x≤π6+2kπ,k∈Z,令k=0,得−5π6≤x≤π6,∴函数f(x)在[0,π]上的单调递增区间为[0,π6](写成开区间也可得分)方案二:选条件②(1)方法1:∵f(π3)=2sin(π3+φ)=√3,∴sin(π3+φ)=√32,∴π3+φ=π3+2kπ或π3+φ=2π3+2kπ,k∈Z,∴φ=2kπ或φ=π3+2kπ,k∈Z,∵0<φ<π2,∴φ=π3,∴f(x)=2sin(x+π3);方法2:∵f(π3)=2sin(π3+φ)=√3,∴sin(π3+φ)=√32,∵0<φ<π2,∴π3<π3+φ<5π6,∴π3+φ=2π3即φ=π3,∴f(x)=2sin(x+π3);(2)同方案一.方案三:选条件③∵∀x∈R,f(x)≤f(π6),∴f(π6)为f(x)的最大值,∴π6+φ=π2+2kπ,k∈Z,即φ=π3+2kπ,k∈Z,∵0<φ<π2,∴φ=π3,∴f(x)=2sin(x+π3);(2)同方案一.小提示:思路点睛:本题考查三角函数的图象与性质,掌握正弦函数的性质是解题关键.f(x)=Asin(ωx+φ)(A>0,ω>0),只要把ωx+φ作为一个整体,用它替换y=sinx中的x可确定函数的性质如单调性、对称中心、对称轴,最值,也可由f(x)=Asin(ωx+φ)(A>0,ω>0)中x的范围求出t=ωx+φ的范围M,然后考虑y=sinx在x∈M时的性质得出结论.19、在股票市场上,投资者常根据股价(每股的价格)走势图来操作,股民老张在研究某只股票时,发现其在平面直角坐标系内的走势图有如下特点:每日股价y(元)与时间x(天)的关系在ABC段可近似地用函数y= asin(ωx+φ)+20(a>0,ω>0,0<φ<π)的图像从最高点A到最低点C的一段来描述(如图),并且从C点到今天的D点在底部横盘整理,今天也出现了明显的底部结束信号.老张预测这只股票未来一段时间的走势图会如图中虚线DEF段所示,且DEF段与ABC段关于直线l:x=34对称,点B、D的坐标分别是(12,20)、(44,12).(1)请你帮老张确定a、ω、φ的值,写出ABC段的函数表达式,并指出此时x的取值范围;(2)请你帮老张确定虚线DEF段的函数表达式,并指出此时x的取值范围;(3)如果老张预测准确,且在今天买入该只股票,那么最短买入多少天后,股价至少是买入价的两倍?答案:(1)a=8,ω=π24,φ=π2,f(x)=8cosπ24x+20,x∈[0,24](2)y=8cos[π24(68−x)]+20,x∈[44,68](3)16天.分析:(1)由已知图中B,D两点的坐标求得a与T,进而可得ω的值,再由五点法作图的第三个点求解φ,即可得函数的解析式,并求得x的范围;(2)由对称性求解DEF段的函数表达式,以及x的取值范围;(3)由8cos[π24(68−x)]+20=24解得:x=60,减去44即得答案.(1)由图以及B,D两点的纵坐标可知:a=20−12=8,T4=12,可得:T=48,则ω=2π48=π24,由π24×24+φ=3π2+2kπ(k∈Z)解得:φ=π2+2kπ(k∈Z),所以k=0,φ=π2,所以ABC段的函数表达式为f(x)=8sin(π24x+π2)+20=8cosπ24x+20,x∈[0,24](2)由题意结合对称性可知:DEF段的函数解析式为:y=8cos[π24(68−x)]+20,x∈[44,68](3)由8cos[π24(68−x)]+20=24解得:x=60,所以买入60−44=16天后,股票至少是买入价的两倍.。
高中数学第五章三角函数知识点归纳超级精简版(带答案)
高中数学第五章三角函数知识点归纳超级精简版单选题1、所有与角α的终边相同的角可以表示为k⋅360°+α(k∈Z),其中角α()A.一定是小于90°的角B.一定是第一象限的角C.一定是正角D.可以是任意角答案:D分析:由终边相同的角的表示的结论的适用范围可得正确选项.因为结论与角α的终边相同的角可以表示为k⋅360°+α(k∈Z)适用于任意角,所以D正确,故选:D.2、已知函数f(x)=sin2x+2√3sinxcosx−cos2x,x∈R,则()A.f(x)的最大值为1B.f(x)在区间(0,π)上只有1个零点C.f(x)的最小正周期为π2D.x=π3为f(x)图象的一条对称轴答案:D分析:首先利用二倍角公式及辅助角公式将函数化简,再结合正弦函数的性质计算可得;解:函数f(x)=sin2x+2√3sinxcosx−cos2x=√3sin2x−cos2x=2(√32sin2x−12cos2x)=2sin(2x−π6),可得f(x)的最大值为2,最小正周期为T=2π2=π,故A、C错误;由f(x)=0可得2x−π6=kπ,k∈Z,即x=kπ2+π12,k∈Z,可知f(x)在区间(0,π)上的零点为π12,7π12,故B错误;由f(π3)=2sin(2π3−π6)=2,可知x=π3为f(x)图象的一条对称轴,故D正确.故选:D3、某公园有一摩天轮,其直径为110米,逆时针匀速旋转一周所需时间约为28分钟,最高处距离地面120米,能够看到方圆40公里以内的景致.某乘客观光3分钟时看到一个与其视线水平的建筑物,试估计建筑物多高?()(参考数据:√2≈1.414,√3≈1.732) A .50B .38C .27D .15 答案:C分析:作出简图,求出3分钟走过的角度,从而求出三分钟后距摩天轮最低点的高度,进而求出建筑物的高度.设走了3分钟到达B (如图所示),走过的圆心角为θ=2π×328=3π14,OE =Rcos 3π14=55cos 3π14, 因为π6<3π14<π4 ,所以√22<cos 3π14<√32, 所以38.885<55cos 3π14<47.63所以AE =55−55cos3π14∈(7.73,21.145),所以建筑物的高度:55(1−cos 3π14)+10∈(17.73,31.145)故选:C4、三个数cos 32,sin 110,sin 74的大小关系是( ) A .cos 32>sin110>sin 74B .cos 32>sin 74>sin 110C .cos 32<sin 110<sin 74D .sin 74>cos 32>sin 110 答案:C分析:诱导公式化余弦为正弦,然后由正弦函数的单调性比较大小.cos32=sin(π2−32),sin74=sin(π−74).∵π2−32≈0.07,110=0.1,π−74≈1.39,∴π2>π−74>π2−32>0.又∵y=sinx在(0,π2)上是增函数,∴cos32<sin110<sin74.故选:C.5、海水受日月的引力,在一定的时候发生涨落的现象叫潮汐.一般早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近船坞;卸货后落潮时返回海洋.下面是某港口在某季节每天的时间与水深值(单位:m)记录表的距离)为4m,安全条例规定至少要有2m的安全间隙(船底与海底的距离),该船计划在中午12点之后按规定驶入港口,并开始卸货,卸货时,其吃水深度以每小时0.25m的速度减小,4小时卸完,则其在港口最多能停放()A.4小时B.5小时C.6小时D.7小时答案:B分析:由已知表格中数据求得f(x)=2sinπ6x+5,根据驶入港口f(x)大于等于6,离开时f(x)大于等于5,分析即可得答案.由表格中的数据可知,f(x)max=7,f(x)min=3,则A=f(x)max−f(x)min2=7−32=2,B=f(x)max+f(x)min2=7+32=5.由T=12,∴ω=2πT =π6,故f(x)=2sin(π6x+φ)+5,当x=3时,f(x)=7,则2sin(π6x+φ)+5=7∴2cosφ=2,即cosφ=1,得.∴f(x)=2sinπ6x+5.由f(x)=2sinπ6x+5=6,得sinπ6x=12,ϕ=即π6x =π6+2kπ,k ∈Z 或π6x =5π6+2kπ,k ∈Z∴x =12k +1,k ∈Z 或x =12k +5,k ∈Z . 又该船计划在中午12点之后按规定驶入港口, ∴k =1时,x =13,即该船应在13点入港并开始卸货,卸货时,其吃水深度以每小时0.25m 的速度减小,4小时卸完,卸完后的吃水深度为4−0.25×4=3, 所以该货船需要的安全水深为3+2=5米,由f (x )=2sin π6x +5=5,得sin π6x =0,即π6x =0+2kπ,k ∈Z 或π6x =π+2kπ,k ∈Z∴x =12k,k ∈Z 或x =12k +6,k ∈Z .所以可以停留到18点,此时水深为5米,货船需要离港,则其在港口最多能停放5小时. 故选:B6、若扇形周长为20,当其面积最大时,其内切圆的半径r 为( ) A .5−1sin1B .1sin1+32C .5sin11+sin1D .5+51+sin1答案:C分析:先根据扇形周长求解出面积取最大值时扇形的圆心角和半径,然后根据图形中的内切关系得到关于内切圆半径r 的等式,由此求解出r 的值.设扇形的半径为R ,圆心角为α,面积为S ,因为2R +αR =20, 所以S =12αR 2=(10−R )R ≤(10−R+R 2)2=25,取等号时10−R =R ,即R =5,所以面积取最大值时R =5,α=2, 如下图所示:设内切圆圆心为O ,扇形过点O 的半径为AP ,B 为圆与半径的切点, 因为AO +OP =R =5,所以r +rsin∠BPO =5,所以r +rsin1=5, 所以r =5sin11+sin1,故选:C.7、已知α ∈(0,π2),2sin2α=cos2α+1,则sinα= A .15B .√55C .√33D .2√55答案:B分析:利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案. ∵2sin2α=cos2α+1,∴4sinα⋅cosα=2cos 2α.∵α∈(0,π2),∴cosα>0.sinα>0,∴sinα=cosα,又sin 2α+cos 2α=1,∴5sin 2α=1,sin 2α=15,又sinα>0,∴sinα=√55,故选B .小提示:本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉. 8、若sinα+cosαsinα−cosα=12,则tan (α+π4)的值为( )A .−2B .2C .−12D .12 答案:C分析:利用弦化切和两角和的正切展开式化简计算可得答案. 因为sinα+cosαsinα−cosα=12.所以tanα+1tanα−1=12,解得tanα=−3,于是tan (α+π4)=tanα+tanπ41−tanαtanπ4=−3+11−(−3)=−12.故选:C. 多选题9、若α是第二象限的角,则下列各式中成立的是( ) A .tanα=−sinαcosαB .√1−2sinαcosα=sinα−cosαC .cosα=−√1−sin 2αD .√1+2sinαcosα=sinα+cosαE .sinα=−√1−cos 2α 答案:BC解析:利用sin 2α+cos 2α=1,tanα=sinαcosα,结合三角函数在各个象限的符号,代入每个式子进行化简、求值.对A ,由同角三角函数的基本关系式,知tanα=sinαcosα,所以A 错;对B ,C ,D ,E ,因为α是第二象限角,所以sinα>0,cosα<0,所以sinα−cosα>0,sinα+cosα的符号不确定,所以√1−2sinαcosα=√(sinα−cosα)2=sinα−cosα,所以B ,C 正确;D ,E 错. 故选:BC.小提示:本题考查同角三角函数的基本关系、三角函数在各个象限的符号,考查运算求解能力. 10、如图是函数y =Asin(ωx +φ)(x ∈R)在区间[−π6,5π6]上的图象.为了得到这个函数的图象,只要将y =sinx(x ∈R)的图象上所有的点( ).A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变 B .向左平移π6个单位长度,再把所得各点的横坐标仲长到原来的12,纵坐标不变C .把所得各点的横坐标缩短到原来的12,纵坐标不变,再向左平移π6个单位长度 D .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变答案:AC分析:先根据图象求函数解析式,应先观察图象,确定“振幅”“周期”,再通过计算求φ,再借助图象变换规则即可得出结果.由图象知,A=1,T=π,所以ω=2,y=sin (2x+φ),将(−π6,0)代入得:sin(φ−π3)=0,所以φ−π3=kπ,k ∈z ,取φ=π3,得y=sin (2x+π3),y =sinx 向左平移π3,得y =sin (x +π3).然后各点的横坐标缩短到原来的12,得y =sin (2x +π3).故A 正确. y =sinx 各点的横坐标缩短到原来的12,得y =sin2x .然后向左平移π6个单位,得y =sin2(x +π6)=sin (2x +π3).故C 正确.故选:AC小提示:本题主要考查了三角函数的图象变换及三角函数性质,图象的伸缩变换的规律:(1)把函数y =f (ωx )的图像向左平移ℎ(ℎ>0)个单位长度,则所得图像对应的解析式为y =f [ω(x +ℎ)],遵循“左加右减”;(2)把函数y =f (x )图像上点的纵坐标保持不变,横坐标变为原来的ω倍(ω>0),那么所得图像对应的解析式为y =f (1ωx),属于中档题.11、(多选题)已知tan 2x −2tan 2y −1=0,则下列式子成立的是( )A .sin 2y =2sin 2x +1B .sin 2y =−2sin 2x −1C .sin 2y =2sin 2x −1D .sin 2y =1−2cos 2x 答案:CD解析:对原式进行切化弦,整理可得:sin 2x ⋅cos 2y −2sin 2y ⋅cos 2x =cos 2y ⋅cos 2x ,结合因式分解代数式变形可得选项.∵tan 2x −2tan 2y −1=0, sin 2xcos 2x −2⋅sin 2ycos 2y −1=0,整理得sin 2x ⋅cos 2y −2sin 2y ⋅cos 2x =cos 2y ⋅cos 2x ,∴(1−cos 2x )(1−sin 2y )−sin 2y ⋅cos 2x =(cos 2y +sin 2y )cos 2x , 即1−cos 2x −sin 2y +sin 2y ⋅cos 2x −sin 2y ⋅cos 2x =cos 2x , 即sin 2y =1−2cos 2x =2sin 2x −1,∴C 、D 正确. 故选:CD小提示:此题考查三角函数的化简变形,根据弦切关系因式分解,结合平方关系变形.12、下列化简正确的是()A.tan(π+1)=tan1B.sin(−α)tan(360°−α)=cosαC.sin(π−α)cos(π+α)=tanαD.cos(π−α)tan(−π−α)sin(2π−α)=1E.若θ∈(π2,π),则√1−2sin(π+θ)sin(3π2−θ)=sinθ−cosθ答案:ABE解析:根据三角函数的诱导公式及同角三角函数关系,对A,B,C,D,E五个选项进行化简即可求出答案. 对于A,根据三角函数的诱导公式可知,故A正确;对于B,sin(−α)tan(360°−α)=−sinα−tanα=cosα,故B正确;对于C,sin(π−α)cos(π+α)=sinα−cosα=−tanα,故C错误;对于D,cos(π−α)tan(−π−α)sin(2π−α)=(−cosα)(−tanα)−sinα=−1,故D错误;对于E,√1−2sin(π+θ)sin(3π2−θ)=√1−2sinθcosθ=√(sinθ−cosθ)2=|sinθ−cosθ|.∵θ∈(π2,π)∴sinθ>0,cosθ<0,∴√1−2sin(π+θ)sin(3π2−θ)=sinθ−cosθ,故E正确.故选:ABE.小提示:本题考查三角函数的诱导公式,同角三角函数间的基本关系,以及三角函数值的符号,熟练掌握诱导公式及同角三角函数关系是解答本题的关键.13、摩天轮常被当作一个城市的地标性建筑,如深圳前海的“湾区之光”摩天轮,如图所示,某摩天轮最高点离地面高度128米,转盘直径为120米,设置若干个座舱,游客从离地面最近的位置进舱,开启后按逆时针匀速旋转t分钟,当t=15时,游客随舱旋转至距离地面最远处.以下关于摩天轮的说法中,正确的为()A.摩天轮离地面最近的距离为4米B.若旋转t分钟后,游客距离地面的高度为ℎ米,则ℎ=−60cos(π15t)+68C.若在t1,t2时刻,游客距离地面的高度相等,则t1+t2的最小值为30D.∃t1,t2∈[0,20],使得游客在该时刻距离地面的高度均为90米答案:BC分析:易知摩天轮离地面最近的距离,从而可判断A;求出t分钟后,转过的角度,即可求出ℎ关于t的表达式,即可判断B;由余弦型函数的性质可求出t1+t2的最小值即可判断C;求出ℎ在t∈[0,20]上的单调性,结合当t=20时,ℎ=98>90即可判断D.解:由题意知,摩天轮离地面最近的距离为128−120=8米,故A不正确;t分钟后,转过的角度为π15t,则ℎ=60−60cosπ15t+8=−60cosπ15t+68,B正确;ℎ=−60cosπ15t+68周期为2ππ15=30,由余弦型函数的性质可知,若t1+t2取最小值,则t1,t2∈[0,30],又高度相等,则t1,t2关于t=15对称,则t1+t22=15,则t1+t2=30;令0≤π15t≤π,解得0≤t≤15,令π≤π15t≤2π,解得15≤t≤30,则ℎ在t∈[0,15]上单调递增,在t∈[15,20]上单调递减,当t=15时,ℎmax=128,当t=20时,ℎ=−60cosπ15×20+68=98>90,所以ℎ=90在t∈[0,20]只有一个解;故选:BC.小提示:关键点睛:本题的关键是求出ℎ关于t的表达式,结合三角函数的性质进行判断.填空题14、已知函数f (x )=Asinωx (A >0,ω>0),若至少存在两个不相等的实数x 1,x 2∈[π,2π],使得f (x 1)+f (x 2)=2A ,则实数ω的取值范围是________. 答案:[94,52]∪[134,+∞)分析:当π>2T 时,易知必满足题意;当π<2T 时,根据x ∈[π,2π]可得ωx ∈[πω,2πω],由最大值点的个数可构造不等式组,结合ω>0确定具体范围.∵至少存在两个不相等的实数x 1,x 2∈[π,2π],使得f (x 1)+f (x 2)=2A , ∴当π>2T =4πω,即ω>4时,必存在两个不相等的实数x 1,x 2∈[π,2π]满足题意;当π<2T ,即0<ω<4时,ωx ∈[πω,2πω], ∴{πω≤π2+2kπ2πω≥5π2+2kπ(k ∈Z ),∴{ω≤12+2kω≥54+k(k ∈Z ); 当k ≤0时,解集为∅,不合题意;令k =1,则94≤ω≤52;令k =2,则134≤ω<4; 综上所述:实数ω的取值范围为[94,52]∪[134,+∞).所以答案是:[94,52]∪[134,+∞).小提示:关键点点睛:本题考查根据正弦型函数最值点的个数求解参数范围的问题,解题关键是能够采用整体对应的方式,根据πω的范围所需满足的条件来构造不等式组,解不等式组求得结果. 15、若α∈(0,π2),且cos 2α+cos (π2−2α)=710,则tan2α=____答案:−34分析:利用诱导公式、二倍角正弦公式,将题设条件转化为1+2tanαtan 2α+1=710,结合角的范围求tanα值,再应用二倍角正切公式求tan2α即可.∵cos 2α+cos (π2−2α)=cos 2α+sin2α=cos 2α+2sinαcosαsin 2α+cos 2α=1+2tanαtan 2α+1=710,∴tanα=3或tanα=−17,又α∈(0,π2), ∴tanα=3,则tan2α=2tanα1−tan 2α=−34. 所以答案是:−3416、若sinx =−23,则cos2x =__________. 答案:19 分析:直接利用余弦的二倍角公式进行运算求解即可.cos2x =1−2sin 2x =1−2×(−23)2=1−89=19. 所以答案是:19.小提示:本题考查了余弦的二倍角公式的应用,属于基础题.解答题17、(1)已知sinα+cosα=√2,求sinα⋅cosα及sin 4α+cos 4α的值;(2)已知sinα+cosα=15(0<α<π),求tanα的值.答案:(1)sinα⋅cosα=12,sin 4α+cos 4α=12;(2)−43.分析:(1)把已知等式平方,结合平方关系可得sinαcosα,再把1=sin 2α+cos 2α平方可求得sin 4α+cos 2α;(2)已知等式平方求得sinαcosα确定出sinα,cosα的正负,求出sinα−cosα,与已知式联立求得sinα,cosα后可得tanα.解:(1)∵sinα+cosα=√2;1+2sinαcosα=2∴sinα⋅cosα=12sin 4α+cos 4α=(sin 2α+cos 2α)2−2sin 2αcos 2α=1−2⋅(12)2=12(2)∵sinα+cosα=15,①∴(sinα+cosα)2+2sinαcosα=125∴2sinαcosα=−2425. ∵0<α<π,∴π2<α<π,∴sinα>0,cosα<0,∴sinα−cosα>0,∴sinα−cosα=√(sinα−cosα)2=75.②由①,②得sinα=45,cosα=−35,∴tanα=−4318、已知函数f(x)=sin4x+cos4x+√32sin2xcos2x,f(x)的图像先向右平移π6,再纵坐标不变横坐标伸长为原来的2倍,得到g(x)的图像.(1)求f(x)的对称中心;(2)当x∈[−π6,π3]时,求g(x)的取值范围答案:(1)(k4π−π24,34)(k∈Z)(2)[14,1]分析:(1)由f(x)=12sin(4x+π6)+34,令4x+π6=kπ,k∈Z求解;(2)由g(x)=12sin(2x−π2)+34=−12cos2x+34,利用余弦函数的性质求解.(1)解:f(x)=(sin2x+cos2x)2−2sin2xcos2x+√34sin4x,=1−12sin22x+√34sin4x=1−14(1−cos4x)+√34sin4x,=14cos4x+√34sin4x+34=12sin(4x+π6)+34,令4x+π6=kπ,x=k4π−π24(k∈Z),所以f(x)的对称中心为(k4π−π24,34)(k∈Z).(2)g(x)=12sin(2x−π2)+34=−12cos2x+34,因为x∈[−π6,π3],所以2x∈[−π3,2π3],故cos2x∈[−12,1],g(x)的取值范围为[1,1].4。
三角函数性质与应用例题和知识点总结
三角函数性质与应用例题和知识点总结一、三角函数的基本定义在直角三角形中,正弦(sin)、余弦(cos)和正切(tan)分别定义为:正弦:对边与斜边的比值,即sinθ =对边/斜边。
余弦:邻边与斜边的比值,即cosθ =邻边/斜边。
正切:对边与邻边的比值,即tanθ =对边/邻边。
二、三角函数的性质1、周期性正弦函数和余弦函数的周期都是2π,即 sin(x +2π) = sin(x),cos(x +2π) = cos(x);正切函数的周期是π,即 tan(x +π) = tan(x)。
2、奇偶性正弦函数是奇函数,即 sin(x) = sin(x);余弦函数是偶函数,即cos(x) = cos(x)。
3、值域正弦函数和余弦函数的值域都是-1, 1,正切函数的值域是 R(全体实数)。
4、单调性正弦函数在π/2 +2kπ, π/2 +2kπ 上单调递增,在π/2 +2kπ, 3π/2 +2kπ 上单调递减(k∈Z)。
余弦函数在2kπ, π +2kπ 上单调递减,在π +2kπ, 2π +2kπ 上单调递增(k∈Z)。
正切函数在(π/2 +kπ, π/2 +kπ) 上单调递增(k∈Z)。
三、三角函数的应用例题例 1:已知一个直角三角形的一个锐角为 30°,斜边为 2,求这个直角三角形的两条直角边的长度。
解:因为一个锐角为 30°,所以 sin30°= 1/2,cos30°=√3/2。
设 30°角所对的直角边为 a,邻边为 b,则:a = 2×sin30°= 2×(1/2) = 1b = 2×cos30°= 2×(√3/2) =√3例 2:求函数 y = 2sin(2x +π/3) 的最大值和最小值,并求出取得最值时 x 的值。
解:因为正弦函数的值域为-1, 1,所以 2sin(2x +π/3) 的值域为-2, 2。
高一数学(必修一)《第五章 三角函数的概念》练习题及答案解析-人教版
高一数学(必修一)《第五章 三角函数的概念》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.点P 从(2,0)出发,逆时针方向旋转43π到达Q 点,则Q 点的坐标为( )A .1,2⎛- ⎝⎭B .(1)-C .(1,-D .21⎛⎫ ⎪ ⎪⎝⎭2.角α的终边过点()3,4P -,则sin 22πα⎛⎫+= ⎪⎝⎭( )A .2425- B .725- C .725D .24253.已知函数1log a y x =和()22y k x =-的图象如图所示,则不等式120y y ≥的解集是( )A .(]1,2B .[)1,2C .()1,2D .[]1,24.已知(0,2)απ∈,sin 0α<和cos 0α>,则角α的取值范围是( ) A .0,2π⎛⎫ ⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭5.已知α是第二象限角,则( ) A .2α是第一象限角 B .sin02α>C .sin 20α<D .2α是第三或第四象限角6.已知直线l 1的斜率为2,直线l 2经过点(1,2),(,6)A B x --,且l 1∥l 2,则19log x =( ) A .3B .12C .2D .12-7.已知()1cos 3αβ-=,3cos 4β=与0,2παβ⎛⎫-∈ ⎪⎝⎭和0,2πβ⎛⎫∈ ⎪⎝⎭,则( ).A .0,2πα⎛⎫∈ ⎪⎝⎭B .,2παπ⎛⎫∈ ⎪⎝⎭C .()0,απ∈D .0,2πα⎡⎫∈⎪⎢⎣⎭8.已知点()tan ,sin P αα在第四象限,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角二、解答题9.设α是第一象限角,作α的正弦线、余弦线和正切线,由图证明下列各等式. (1)22sin cos 1αα+=; (2)sin tan cos ααα=. 如果α是第二、三、四象限角,以上等式仍然成立吗? 10.已知()()()()3sin cos 2cos 2cos sin 2f ππαπαααπαπα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭.(1)化简()f α;(2)若α是第三象限角,且()1sin 5απ-=,求()f α的值.11.已知|cosθ|=-cosθ,且tanθ<0,试判断()()sin cos θcos sin θ的符号.12.不通过求值,比较下列各组数的大小: (1)37sin 6π⎛⎫- ⎪⎝⎭与49sin 3π⎛⎫ ⎪⎝⎭;(2)sin194︒与()cos 160︒.13.(1)已知角α的终边经过点43,55P ⎛⎫- ⎪⎝⎭,求()()()πsin tan π2sin πcos 3παααα⎛⎫-⋅- ⎪⎝⎭+⋅-的值; (2)已知0πx <<,1sin cos 5x x +=求tan x 的值. 14.已知角θ的终边与单位圆在第四象限交于点1,2P ⎛ ⎝⎭. (1)求tan θ的值;(2)求()()cos cos 22sin cos πθθπθπθ⎛⎫-+- ⎪⎝⎭++的值.15.在平面直角坐标系xOy 中角θ的始边为x 轴的正半轴,终边在第二象限与单位圆交于点P ,点P 的横坐标为35. (1)求cos 3sin 3sin cos θθθθ+-的值;(2)若将射线OP 绕点O 逆时针旋转2π,得到角α,求22sin sin cos cos αααα--的值.三、多选题16.给出下列各三角函数值:①()sin 100-;②()cos 220-;③tan 2;④cos1.其中符号为负的是( ) A .①B .②C .③D .④四、双空题17.已知55sin ,cos 66P ππ⎛⎫⎪⎝⎭是角α的终边上一点,则cos α=______,角α的最小正值是______. 参考答案与解析1.C【分析】结合已知点坐标,根据终边旋转的角度和方向,求Q 点坐标即可.【详解】由题意知,442cos ,2sin 33Q ππ⎛⎫ ⎪⎝⎭,即(1,Q -. 故选:C. 2.B【分析】化简得2sin 22cos 12παα⎛⎫+=- ⎪⎝⎭,再利用三角函数的坐标定义求出cos α即得解.【详解】解:2sin 2cos 22cos 12πααα⎛⎫+==- ⎪⎝⎭由题得3cos 5α==-,所以237sin 22()12525πα⎛⎫+=⨯--=- ⎪⎝⎭. 故选:B 3.B【分析】可将12,y y 图象合并至一个图,由12,y y 同号或10y =结合图象可直接求解.【详解】将12,y y 图象合并至一个图,如图:若满足120y y ≥,则等价于120y y ⋅>或10y =,当()1,2x ∈时,则120y y ⋅>,当1x =时,则10y =,故120y y ≥的解集是[)1,2故选:B 4.D【分析】根据三角函数值的符号确定角的终边的位置,从而可得α的取值范围.【详解】因为sin 0α<,cos 0α>故α为第四象限角,故3,22παπ⎛⎫∈⎪⎝⎭故选:D. 5.C∴2α是第三象限,第四象限角或终边在y 轴非正半轴,sin20α<,故C 正确,D 错误. 故选:C . 6.D【分析】由已知结合直线平行的斜率关系可求出x ,然后结合对数的运算性质可求.【详解】解:因为直线l 1的斜率为2,直线l 2经过点(1,2),(,6)A B x --,且l 1∥l 2 所以6221x +=+,解得3x =所以2113991log log 3log 32x -===-故选:D . 7.B【分析】由已知得()0,απ∈,再利用同角之间的关系及两角差的余弦公式计算cos 0α<,即可得解.()0,απ∴∈又cos cos()cos()cos sin()sin ααββαββαββ=-+=---13034=⨯=< ,2παπ⎛⎫∴∈ ⎪⎝⎭故选:B 8.C【分析】由点的位置可确定tan ,sin αα的符号,根据符号可确定角α终边的位置.【详解】()tan ,sin P αα在第四象限tan 0sin 0αα>⎧∴⎨<⎩,α位于第三象限.故选:C. 9.见解析【解析】作出α的正弦线、余弦线和正切线 (1)由勾股定理证明;(2)由三角形相似PMO TAO ∆∆∽证明.若α是第二、三、四象限角,以上等式仍成立.【点睛】本题考查三角函数线的应用,考查用几何方法证明同角间的三角函数关系.掌握三角函数线定义是解题基础.10.(1)()cos f αα=-.【分析】(1)根据诱导公式直接化简即可;(2)由()1sin 5απ-=,可以利用诱导公式计算出sin α,再根据角所在象限确定cos α,进而得出结论.【详解】(1)根据诱导公式()()()()3sin cos 2cos 2cos sin 2f ππαπαααπαπα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭()sin cos sin sin sin ααααα⋅⋅-=⋅cos α=-所以()cos f αα=-;(2)由诱导公式可知()sin sin απα-=-,即1sin 5α=-又α是第三象限角 所以cos α==所以()=cos f αα-=【点睛】本题主要考查诱导公式的运用,属于基础题.使用诱导公式时,常利用口诀“奇变偶不变,符号看象限”进行记忆. 11.符号为负.【分析】由|cosθ|=﹣cosθ,且tanθ<0,可得θ在第二象限,即可判断出.【详解】由|cosθ|=-cosθ可得cosθ≤0,所以角θ的终边在第二、三象限或y 轴上或x 轴的负半轴上;又tanθ<0,所以角θ的终边在第二、四象限,从而可知角θ的终边在第二象限.易知-1<cosθ<0,0<sinθ<1,视cosθ、sinθ为弧度数,显然cosθ是第四象限的角,sinθ为第一象限的角,所以cos(sinθ)>0,sin(cosθ)<0,故()()sin cos θcos sin θ<0故答案为符号为负.【点睛】本题考查了三角函数值与所在象限的符号问题,考查了推理能力,属于基础题. 12.(1)3749sin sin 63ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭(2)sin194cos160︒>︒【分析】根据诱导公式及函数的单调性比较大小. (1)由37sin sin 6sin 666ππππ⎛⎫⎛⎫⎛⎫-=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭49sin sin 16sin 333ππππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭又函数sin y x =在,22ππ⎡⎤-⎢⎥⎣⎦上单调递增所以sin sin 63ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭即3749sin sin 63ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭;(2)由()sin194sin 18014sin14︒=︒+︒=-︒()cos160cos 9070sin70︒=︒+︒=-︒又0147090︒<︒<︒<︒所以sin14sin70︒<︒,即sin14sin70-︒>-︒ 所以sin194cos160︒>︒.13.(1)54;(2)4tan 3x =- .【分析】(1)由三角函数定义易得4cos 5α=,再利用诱导公式和基本关系式化简为()()()πsin tan π12sin πcos 3πcos ααααα⎛⎫- ⎪-⎝⎭⋅=+-求解; (2)将1sin cos 5x x +=两边平方得到242sin cos 025x x =-<,进而求得7sin cos 5x x -=,与1sin cos 5x x +=联立求解.【详解】解:(1)P 点到原点O的距离1r =由三角函数定义有4cos 5x r α== ()()()πsin tan πcos tan 152sin πcos 3πsin cos cos 4ααααααααα⎛⎫- ⎪-⎝⎭⋅=⨯==+---; (2)∵0πx <<,将1sin cos 5x x +=两边平方得112sin cos 25x x +=∴242sin cos 025x x =-<,可得ππ2x << ∴sin 0x > cos 0x < ∴sin cos 0x x ->∵()()22sin cos sin cos 2x x x x -++= ∴7sin cos 5x x -=,联立1sin cos 5x x +=∴4sin 5x = 3cos 5x =-∴4tan 3x =-. 14.(1)(2)2.【分析】(1)根据三角函数的定义tan yxθ=,代值计算即可; (2)利用诱导公式化简原式为齐次式,再结合同角三角函数关系和(1)中所求,代值计算即可. (1)因为角θ的终边与单位圆在第四象限交于点1,2P ⎛ ⎝⎭故可得tan yxθ==(2)原式=()()cos cos 22sin cos πθθπθπθ⎛⎫-+- ⎪⎝⎭++ sin cos sin cos θθθθ+=-tan 1tan 1θθ+=-由(1)可得:tan θ=tan 12tan 1θθ+==-. 15.(1)35(2)1925-【分析】(1)由题意利用任意角的三角函数的定义,求得tan α的值,再利用同角三角函数的基本关系,计算求得所给式子的值.(2)由题意利用诱导公式求得3tan 4α=,再将22sin sin cos cos αααα--化为22tan tan 1tan 1ααα--+,即可求得答案. (1)P 在单位圆上,且点P 在第二象限,P 的横坐标为35,可求得纵坐标为45所以434sin ,cos ,tan 553θθθ==-=-,则cos 3sin 13tan 33sin cos 3tan 15θθθθθθ++==--. (2)由题知2παθ=+,则3sin()cos 5sin 2παθθ=+==-,24cos cos()sin 5παθθ=+=-=-则sin 3tan cos 4ααα== 故22222222sin sin cos cos tan 1sin sin cos cos sin cos tan tan 1ααααααααααααα------==++ 2233()443()1241951--==-+.16.ABC【分析】首先判断角所在象限,然后根据三角函数在各个象限函数值的符号即可求解. 【详解】解:对①:因为100-为第三象限角,所以()sin 1000-<; 对②:因为220-为第二象限角,所以()cos 2200-<; 对③:因为2弧度角为第二象限角,所以tan20<; 对④:因为1弧度角为第一象限角,所以cos10>; 故选:ABC. 17.125π3【解析】根据三角函数的定义,求得cos α的值,进而确定角α的最小正值. 【详解】由于55sin ,cos 66P ππ⎛⎫ ⎪⎝⎭是角α的终边上一点,所以cos α=5πsin 5π1sin62==.由于5π15πsin0,cos 0626=>=<,所以P 在第四象限,也即α是第四象限角,所以π2π3k α=-,当1k =时,则α取得最小正值为5π3.故答案为:(1)12;(2)5π3【点睛】本小题主要考查三角函数的定义,考查特殊角的三角函数值,考查终边相同的角,属于基础题.。
(精选试题附答案)高中数学第五章三角函数考点总结
(名师选题)(精选试题附答案)高中数学第五章三角函数考点总结单选题1、将一条闭合曲线放在两条平行线之间,无论这条闭合曲线如何运动,只要它与两平行线中的一条直线只有一个交点,就必与另一条直线也只有一个交点,则称此闭合曲线为等宽曲线,这两条平行直线间的距离叫等宽曲线的宽比.如圆所示就是等宽曲线.其宽就是圆的直径.如图所示是分别以A、B、C为圆心画的三段圆弧组成的闭合曲线Γ(又称莱洛三角形),下列关于曲线Γ的描述中,正确的有()(1)曲线Γ不是等宽曲线;(2)曲线Γ是等宽曲线且宽为线段AB的长;(3)曲线Γ是等宽曲线且宽为弧AB的长;(4)在曲线Γ和圆的宽相等,则它们的周长相等;(5)若曲线Γ和圆的宽相等,则它们的面积相等.A.1个B.2个C.3个D.4个答案:B,根据定义逐项判断即可得出结论.分析:若曲线Γ和圆的宽相等,设曲线Γ的宽为1,则圆的半径为12若曲线Γ和圆的宽相等,设曲线Γ的宽为1,则圆的半径为1,2(1)根据定义,可以得曲线Γ是等宽曲线,错误;(2)曲线Γ是等宽曲线且宽为线段AB的长,正确;(3)根据(2)得(3)错误;(4)曲线Γ的周长为3×16×2π=π,圆的周长为2π×12=π,故它们的周长相等,正确; (5)正三角形的边长为1,则三角形对应的扇形面积为π×126=π6,正三角形的面积S =12×1×1×√32=√34, 则一个弓形面积S =π6−√34, 则整个区域的面积为3(π6−√34)+√34=π2−√32, 而圆的面积为π(12)2=π4,不相等,故错误;综上,正确的有2个, 故选:B.小提示:本题主要考查新定义,理解“等宽曲线”得出等边三角形是解题的关键.2、海水受日月的引力,在一定的时候发生涨落的现象叫潮汐.一般早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近船坞;卸货后落潮时返回海洋.下面是某港口在某季节每天的时间与水深值(单位:m )记录表已知港口的水的深度随时间变化符合函数f(x)=Asin(ωx +φ)+B ,现有一条货船的吃水深度(船底与水面的距离)为4m ,安全条例规定至少要有2m 的安全间隙(船底与海底的距离),该船计划在中午12点之后按规定驶入港口,并开始卸货,卸货时,其吃水深度以每小时0.25m 的速度减小,4小时卸完,则其在港口最多能停放( )A .4小时B .5小时C .6小时D .7小时 答案:B分析:由已知表格中数据求得f(x)=2sin π6x +5,根据驶入港口f(x)大于等于6,离开时f(x)大于等于5,分析即可得答案.由表格中的数据可知,f(x)max =7,f(x)min =3,则A =f(x)max −f(x)min2=7−32=2,B =f(x)max +f(x)min2=7+32=5.由T=12,∴ω=2πT =π6,故f(x)=2sin(π6x+φ)+5,当x=3时,f(x)=7,则2sin(π6x+φ)+5=7∴2cosφ=2,即cosφ=1,得φ=0.∴f(x)=2sinπ6x+5.由f(x)=2sinπ6x+5=6,得sinπ6x=12,即π6x=π6+2kπ,k∈Z或π6x=5π6+2kπ,k∈Z∴x=12k+1,k∈Z或x=12k+5,k∈Z.又该船计划在中午12点之后按规定驶入港口,∴k=1时,x=13,即该船应在13点入港并开始卸货,卸货时,其吃水深度以每小时0.25m的速度减小,4小时卸完,卸完后的吃水深度为4−0.25×4=3,所以该货船需要的安全水深为3+2=5米,由f(x)=2sinπ6x+5=5,得sinπ6x=0,即π6x=0+2kπ,k∈Z或π6x=π+2kπ,k∈Z∴x=12k,k∈Z或x=12k+6,k∈Z.所以可以停留到18点,此时水深为5米,货船需要离港,则其在港口最多能停放5小时.故选:B3、在地球公转过程中,太阳直射点的纬度随时间周而复始不断变化,太阳直射点回归运动的一个周期就是一个回归年.某科研小组以某年春分(太阳直射赤道且随后太阳直射点逐渐北移的时间)为初始时间,统计了连续400天太阳直射点的纬度值(太阳直射北半球时取正值,直射南半球时取负值).设第x天时太阳直射点的纬度值为y,该科研小组通过对数据的整理和分析.得到y与x近似满足y=23.4392911sin0.01720279x.则每1200年中,要使这1200年与1200个回归年所含的天数最为接近.应设定闰年的个数为()(精确到1)参考数据π0.01720279≈182.6211A.290B.291C.292D.293答案:B分析:设闰年个数为x,根据闰年个数对应天数一致的原则建立关系式366x+365(1200−x)=365.2422×1200,求解x 即可. 解:T =2πω=2π0.01720279=2×182.6211=365.2422,所以一个回归年对应的天数为365.2422天假设1200年中,设定闰年的个数为x ,则平年有1200−x 个, 所以366x +365(1200−x )=365.2422×1200 解得:x =0.2422×1200=290.64. 故选:B.4、已知函数f (x )=sin (2x +π3),为了得到函数g (x )=cos (2x +π3)的图象只需将y =f (x )的图象( ) A .向左平移π4个单位B .向右平移π4个单位 C .向左平移π2个单位D .向右平移π2个单位 答案:A分析:利用三角函数的平移结合诱导公式即可求解. 解:因为sin (2x +π3+π2)=cos (2x +π3) 所以sin(2x +π3)→sin(2x +π2+π3),只需将f (x )的图象向左平移π4个单位, 故选:A.5、已知sin (π+α)=35,则sin(−α)cos(π−α)sin(π2−α)=( )A .−45B .45C .−35D .35 答案:C解析:由条件利用诱导公式进行化简所给的式子,可得结果. ∵sin(π+α)=35=−sinα,∴sinα=−35,则sin(−α)cos(π−α)sin(π2−α)=−sinα⋅(−cosα)cosα=sinα=−35,故选:C6、设函数f(x)=2sin (ωx +φ)−1(ω>0),若对于任意实数φ,f(x)在区间[π4,3π4]上至少有2个零点,至多有3个零点,则ω的取值范围是( ) A .[83,163)B .[4,163)C .[4,203)D .[83,203)答案:B分析:t =ωx +φ,只需要研究sint =12的根的情况,借助于y =sint 和y =12的图像,根据交点情况,列不等式组,解出ω的取值范围. 令f(x)=0,则sin (ωx +φ)=12 令t =ωx +φ,则sint =12则问题转化为y =sint 在区间[π4ω+φ,3π4ω+φ]上至少有两个,至少有三个t ,使得sint =12,求ω的取值范围.作出y =sint 和y =12的图像,观察交点个数,可知使得sint =12的最短区间长度为2π,最长长度为2π+23π, 由题意列不等式的:2π≤(3π4ω+φ)−(π4ω+φ)<2π+23π解得:4≤ω<163.故选:B小提示:研究y =Asin (ωx +φ)+B 的性质通常用换元法(令t =ωx +φ),转化为研究y =sint 的图像和性质较为方便.7、设0<α<π,sinα+cosα=713,则1−tanα1+tanα的值为( )A .177B .717C .−177D .−717 答案:C分析:依题意可知π2<α<π,得到cosα−sinα<0,再利用正余弦和差积三者的关系可求得cosα−sinα的值,将所求关系式切化弦,代入所求关系式计算即可. 由sinα+cosα=713,平方得到1+sin2α=49169,∴sin2α=49169−1=−120169=2sinαcosα,0<α<π, ∴ π2<α<π,∴cosα<0,而sinα>0, ∴cosα−sinα<0; 令t =cosα−sinα(t <0), 则t 2=1−sin2α, ∴t 2=1−sin2α=1+120169=289169,t <0∴t =−1713∴1−tanα1+tanα=cosα−sinαcosα+sinα=137(cosα−sinα)=137×(−1713)=−177,故选:C .8、函数f(x)=sin x −cos (x +π6)的值域为( ) A .[-2,2]B .[−√3,√3] C .[-1,1]D .[−√32,√32]答案:B分析:将f(x)=sin x −cos (x +π6)展开重新整理得到√3sin(x −π6),求出值域即可 解析:f (x )=sin x -cos (x +π6)=sin x -√32cos x +12sin x =32sin x -√32cos x =√3sin (x −π6), 所以函数f (x )的值域为[−√3,√3] 故选:B9、若tanθ=−2,则sin 2θ+2sinθcosθ−cos 2θ的值是( ) A .−15B .−35C .−75D .15答案:A分析:利用同角三角函数的基本关系将弦化切,再代入计算可得; 解:因为tanθ=−2, 所以sin 2θ+2sinθcosθ−cos 2θ=sin 2θ+2sinθcosθ−cos 2θsin 2θ+cos 2θ=tan 2θ+2tanθ−1tan 2θ+1=(−2)2+2×(−2)−1(−2)2+1=−15.故选:A10、已知函数f(x)=sin2x +√3cos2x 的图象向左平移φ个单位长度后,得到函数g(x)的图象,且g(x)的图象关于y 轴对称,则|φ|的最小值为( ) A .π12B .π6C .π3D .5π12 答案:A分析:首先将函数f (x )化简为“一角一函数”的形式,根据三角函数图象的平移变换求出函数g(x)的解析式,然后利用函数图象的对称性建立φ的关系式,求其最小值. f(x)=sin2x +√3cos2x =2sin (2x +π3),所以g(x)=f(x +φ)=2sin [2(x +φ)+π3] =2sin (2x +2φ+π3),由题意可得,g(x)为偶函数,所以2φ+π3=kπ+π2(k ∈Z),解得φ=kπ2+π12(k ∈Z),又φ>0,所以φ的最小值为π12.故选:A. 填空题11、已知tan α=2,则1sin 2α−cos 2α_____.答案:53分析:根据弦切互化即可求解.因为tan α=2 ,所以1sin2α−cos 2α=sin 2α+cos 2αsin2α−cos 2α=tan 2α+1tan 2α−1=4+14−1=53所以答案是:5312、将函数y =3sin(2x +π4)的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____. 答案:x =−5π24##−524π分析:先根据图象变换得解析式,再求对称轴方程,最后确定结果.y =3sin[2(x −π6)+π4]=3sin(2x −π12)2x −π12=π2+kπ(k ∈Z)∴x =7π24+kπ2(k ∈Z) 当k =−1时x =−5π24所以答案是:x =−5π24小提示:本题考查三角函数图象变换、正弦函数对称轴,考查基本分析求解能力,属基础题. 13、函数f (x )=sinxcosx −sin (π2+x)cosx +12,则f (x )的最小值为__________. 答案:−√22解析:先根据二倍角公式和诱导公式将函数f (x )化简为f (x )=Asin(ωx +φ)的形式即可求出答案.因为f(x)=sinxcosx−cos2x+12=12sin2x−1+cos2x2+12=√22sin(2x−π4),所以当sin(2x−π4)=−1时,函数f(x)有最小值,最小值为−√22,所以答案是:−√22.14、已知sin(π3−x)=14,且0<x<π2,则sin(π6+x)−cos(2π3+x)=_____________.答案:√152分析:由已知条件结合诱导公式可得cos(π6+x)=14,从而可求得sin(π6+x)的值,再利用诱导公式求出cos(2π3+x),从而可求得答案由sin(π3−x)=14⇒cos(π6+x)=14,而0<x<π2,∴π6<x+π6<2π3,∵cos(π6+x)>0,∴π6+x∈(π6,π2),∴sin(π6+x)=√154,∴原式=sin(π6+x)−cos(π2+π6+x)=2sin(π6+x)=√152.所以答案是:√15215、已知一扇形的弧所对的圆心角为π3,半径r=20cm,则扇形的弧长为___________cm.答案:20π3##203π分析:由弧长公式直接求解即可.由弧长公式可得,弧长为π3×20=20π3cm.所以答案是:20π3.解答题16、函数y=f(x)的定义域为I,对于区间D⊆I,如果存在x1,x2∈D,x1≠x2,使得f(x1)+f(x2)=2,则称区间D为函数y=f(x)的“P区间”.(1)判断(−∞,+∞)是否是函数y=sin(x+π12)+3的“P区间”,并说明理由;(2)设ω为正实数,若[π,2π]是函数y=cosωx的“P区间”,求ω的取值范围.答案:(1)不是,理由见解析;(2){2}∪[3,+∞).分析:(1)根据函数值的范围可判定(−∞,+∞)不是函数y =sin (x +π12)+3的“P 区间”;(2)根据新定义和余弦函数的性质可得存在k ,l ∈Z ,使得{ωx 1=2kπ,ωx 2=2lπ.,再分类讨论即可求出ω的取值范围.(1) (−∞,+∞)不是函数y =sin (x +π12)+3的“P 区间”.理由如下: 因为f (x )=sin (x +π12)+3≥2,所以对于任意的x 1,x 2∈(−∞,+∞),都有f (x 1)+f (x 2)≥4, 所以(−∞,+∞)不是函数y =sin (x +π12)+3的“P 区间”. (2)因为[π,2π]是函数y =cos ωx 的“P 区间”,所以存在x 1,x 2∈[π,2π],x 1≠x 2,使得cos ωx 1+cos ωx 2=2. 所以{cosωx 1=1,cosωx 2=1.所以存在k,l ∈Z ,使得{ωx 1=2kπ,ωx 2=2lπ.不妨设π≤x 1<x 2≤2π,又因为ω>0,所以ωπ≤ωx 1<ωx 2≤2ωπ,所以ω≤2k <2l ≤2ω. 即在区间[ω,2ω]内存在两个不同的偶数. ①当ω≥4时,区间[ω,2ω]的长度2ω−ω≥4,所以区间[ω,2ω]内必存在两个相邻的偶数,故ω≥4符合题意. ②当0<ω<4时,有0<ω≤2k <2l ≤2ω<8, 所以2k,2l ∈{2,4,6}.当{2k =4,2l =6时,有{ω≤4,6≤2ω ,即3≤ω≤4.所以3≤ω<4也符合题意.当{2k =2,2l =4时,有{ω≤2,4≤2ω ,即ω=2.所以ω=2符合题意.当{2k =2,2l =6时,有{ω≤2,6≤2ω ,此式无解. 综上所述,ω的取值范围是{2}∪[3,+∞).17、化简: (1)√1+cosα−√1−cosα√1+cosα+√1−cosα π<α<3π2); (2)cos(3π2−α)−tan α2(1+cosα)√1−cosα0<α<π). 答案:(1)−√2cos α2(2)−2√2cos α2 分析:(1)先求出α2的范围,再利用二倍角公式和同角三角函数间的关系化简计算即可, (2)利用半角公式,诱导公式和二倍角公式化简即可.(1)因为π<α<3π2,所以π2<α2<3π4,所以原式=sin 2α2+2sin α2cos α2+cos 2α2√2cos 2α2−√2sin 2α2sin 2α2−2sin α2cos α2+cos 2α2√2cos 2α2+√2sin 2α2 =(sin α2+cos α2)2−√2cos α2−√2sin α2(sin α2−cos α2)2−√2cos α2+√2sin α2=−√22(sin α2+cos α2)+√22(sin α2−cos α2) =−√2cos α2.(2)因为tan α2=sin α2cos α2=2sin α2cosα22cos 2α2=sinα1+cosα, 所以(1+cosα)tan α2=sinα.又因为cos(3π2−α)=−sinα,且1−cosα=2sin2α2,所以原式=√2sin2α2=√2|sinα2|=−2√2sinα2cosα2|sinα2|,因为0<α<π,所以0<α2<π2,所以sinα2>0.所以原式=−2√2cosα2.18、一半径为2m的水轮(如图所示),水轮圆心O离水面1m,已知水轮逆时针转动,每3s转一圈,且当水轮上点P从水中浮现时(图中点P0)开始计算时间.(1)试建立适当的坐标系,将点P距离水面的高度ℎ(m)表示为时间t(s)的函数;(2)点P第一次到达最高点大约要多长时间?答案:(1)ℎ=2sin(2π3t−π6)+1(2)1s分析:(1)以水轮所在平面与水面的交线为x轴,以过点O且与水面垂直的直线为y轴,建立如图所示的直角坐标系,进而设ℎ=Asin(ωt+φ)+k(−π2<φ<0),再求解析式即可;(2)令2sin(2π3t−π6)+1=3,解得t=1+3k,k∈Z,进而当k=0时,P第一次到达最高点,求得对应值即可.(1)解:以水轮所在平面与水面的交线为x轴,以过点O且与水面垂直的直线为y轴,建立如图所示的直角坐标系,设ℎ(t)=Asin(ωt+φ)+k(A>0,ω>0,−π2<φ<0),则A=2,k=1,∵T=3=2πω,∴ω=2π3,∴ℎ=2sin(2π3t+φ)+1,∵t=0时,ℎ=0,∴0=2sinφ+1,∴sinφ=−12,∵−π2<φ<0,∴φ=−π6,∴ℎ(t)=2sin(2π3t−π6)+1.(2)解:令2sin(2π3t−π6)+1=3,得sin(2π3t−π6)=1,∴2π3t−π6=π2+2kπ,k∈Z,∴t=1+3k,k∈Z,∴当k=0时,P第一次到达最高点,∴点P第一次到达最高点大约要1s.19、已知函数f(x)=cos(2x+φ)(0<φ<π)是奇函数.(1)求φ的值;(2)若将函数f(x)的图象向右平移π6个单位长度,再将所得图象上所有点的横坐标扩大到原来的4倍,得到函数g(x)的图象,求g(x).答案:(1)π2;(2)g(x)=−sin(12x−π3).分析:(1)利用奇函数f(0)=0求参数φ.(2)由(1)得f(x)=−sin2x,根据图象平移过程写出g(x)解析式.(1)因为f(x)是奇函数,所以f(0)=0,即cosφ=0.又0<φ<π,所以φ=π2,检验符合.(2)由(1)得:f(x)=cos(2x+π2)=−sin2x.将f(x)的图象向右平移π6个单位长度,得到y=−sin2(x−π6)=−sin(2x−π3)的图象,再将所得图象上所有点的横坐标扩大到原来的4倍,得到y=−sin(12x−π3)的图象.故g(x)=−sin(12x−π3).。
高中数学第五章三角函数知识点总结归纳(带答案)
高中数学第五章三角函数知识点总结归纳单选题1、sin1860°等于( ) A .12B .-12C .√32D .-√32答案:C分析:用诱导公式先化简后求值.sin1860°=sin (5×360°+60°)=sin60°=√32, 故选: C2、若y =f (x )的图像与y =cosx 的图象关于x 轴对称,则y =f (x )的解析式为( ) A .y =cos (−x )B .y =−cosx C .y =cos |x |D .y =|cosx | 答案:B分析:根据f (−x )、−f (x )、f (|x |)与|f (x )|的图象特征依次判断即可得到结果. 对于A ,y =cos (−x )=cosx ,图象与y =cosx 重合,A 错误;对于B ,∵y =f (x )与y =−f (x )图象关于x 轴对称,∴y =−cosx 与y =cosx 图象关于x 轴对称,B 正确; 对于C ,当x ≥0时,y =cos |x |=cosx ,可知其图象不可能与y =cosx 关于x 轴对称,C 错误;对于D ,将y =cosx 位于x 轴下方的图象翻折到x 轴上方,就可以得到y =|cosx |的图象,可知其图象与y =cosx 的图象不关于x 轴对称,D 错误. 故选:B.3、所有与角α的终边相同的角可以表示为k ⋅360°+α(k ∈Z ),其中角α( ) A .一定是小于90°的角B .一定是第一象限的角 C .一定是正角D .可以是任意角 答案:D分析:由终边相同的角的表示的结论的适用范围可得正确选项.因为结论与角α的终边相同的角可以表示为k ⋅360°+α(k ∈Z )适用于任意角,所以D 正确,故选:D.4、已知函数f (x )=sin 2x +2√3sinxcosx −cos 2x ,x ∈R ,则( ) A .f (x )的最大值为1B .f (x )在区间(0,π)上只有1个零点 C .f (x )的最小正周期为π2D .x =π3为f (x )图象的一条对称轴答案:D分析:首先利用二倍角公式及辅助角公式将函数化简,再结合正弦函数的性质计算可得; 解:函数f (x )=sin 2x +2√3sinxcosx −cos 2x =√3sin2x −cos2x =2(√32sin2x −12cos2x)=2sin(2x −π6), 可得f(x)的最大值为2,最小正周期为T =2π2=π,故A 、C 错误; 由f(x)=0可得2x −π6=kπ,k ∈Z ,即x =kπ2+π12,k ∈Z ,可知f (x )在区间(0,π)上的零点为π12,7π12,故B 错误;由f(π3)=2sin(2π3−π6)=2,可知x =π3为f (x )图象的一条对称轴,故D 正确. 故选:D 5、已知sinα=2√67,cos (α−β)=√105,且0<α<3π4,0<β<3π4,则sinβ=( )A .9√1535B .11√1035C .√1535D .√1035答案:A解析:易知sinβ=sin(α−(α−β)),利用角的范围和同角三角函数关系可求得cosα和sin (α−β),分别在sin (α−β)=√155和−√155两种情况下,利用两角和差正弦公式求得sinβ,结合β的范围可确定最终结果. ∵sinα=2√67<√22且0<α<3π4,∴0<α<π4,∴cosα=√1−sin 2α=57.又0<β<3π4,∴−3π4<α−β<π4,∴sin (α−β)=±√1−cos 2(α−β)=±√155. 当sin (α−β)=√155时, sinβ=sin(α−(α−β))=sinαcos (α−β)−cosαsin (α−β)=2√67×√105−57×√155=−√1535, ∵0<β<3π4,∴sinβ>0,∴sinβ=−√1535不合题意,舍去;当sin (α−β)=−√155,同理可求得sinβ=9√1535,符合题意.综上所述:sinβ=9√1535.故选:A .小提示:易错点睛:本题中求解cosα时,易忽略sinα的值所确定的α的更小的范围,从而误认为cosα的取值也有两种不同的可能性,造成求解错误.6、关于函数y =sinx(sinx +cosx)描述正确的是( ) A .最小正周期是2πB .最大值是√2C .一条对称轴是x =π4D .一个对称中心是(π8,12) 答案:D分析:利用三角恒等变换化简y 得解析式,再利用正弦型函数的图像和性质得出结论. 解:由题意得:∵y =sinx(sinx +cosx) =sin 2x +12sin2x=1−cos2x 2+12sin2x =√22sin(2x −π4)+12选项A :函数的最小正周期为T min =2πω=2π2=π,故A 错误;选项B :由于−1≤sin(2x −π4)≤1,函数的最大值为√22+12,故B 错误;选项C :函数的对称轴满足2x −π4=kπ+π2,x =k2π+3π8,当x =π4时,k =−14∉Z ,故C 错误; 选项D :令x =π8,代入函数的f(π8)=√22sin(2×π8−π4)+12=12,故(π8,12)为函数的一个对称中心,故D 正确;故选:D7、若扇形周长为20,当其面积最大时,其内切圆的半径r 为( ) A .5−1sin1B .1sin1+32C .5sin11+sin1D .5+51+sin1 答案:C分析:先根据扇形周长求解出面积取最大值时扇形的圆心角和半径,然后根据图形中的内切关系得到关于内切圆半径r的等式,由此求解出r的值.设扇形的半径为R,圆心角为α,面积为S,因为2R+αR=20,所以S=12αR2=(10−R)R≤(10−R+R2)2=25,取等号时10−R=R,即R=5,所以面积取最大值时R=5,α=2,如下图所示:设内切圆圆心为O,扇形过点O的半径为AP,B为圆与半径的切点,因为AO+OP=R=5,所以r+rsin∠BPO =5,所以r+rsin1=5,所以r=5sin11+sin1,故选:C.8、已知角A、B、C为△ABC的三个内角,若sin(A+B−C2)=sin(A−B+C2),则△ABC一定是()A.等腰直角三角形B.直角三角形C.等腰三角形D.等腰或直角三角形答案:C分析:根据诱导公式以及内角和定理得出B=C,从而判断三角形的形状.由sin(A+B−C2)=sin(A−B+C2)可得sin(π−2C2)=sin(π−2B2),sin(π2−C)=sin(π2−B),cosC=cosB,即B=C,故该三角形一定为等腰三角形. 故选:C多选题9、将函数f(x)=cos2x−sin2x的图象向左平移m个单位后,所得图象关于y轴对称,则实数m的值可能为()A.π8B.3π8C.5π8D.7π8答案:BD分析:利用辅助角公式可得f(x)=√2cos(2x+π4),根据图象平移有g(x)=f(x+m),确定平移后的解析式,根据对称性得到m的表达式,即可知可能值.由题意,得:f(x)=cos2x−sin2x=√2cos(2x+π4),图象向左平移m个单位,∴g(x)=f(x+m)=√2cos(2x+2m+π4)关于y轴对称,∴2m+π4=kπ,即m=kπ2−π8(k∈Z),故当k=1时,m=3π8;当k=2时,m=7π8;故选:BD10、若α是第二象限的角,则下列各式中成立的是()A.tanα=−sinαcosαB.√1−2sinαcosα=sinα−cosαC.cosα=−√1−sin2αD.√1+2sinαcosα=sinα+cosαE.sinα=−√1−cos2α答案:BC解析:利用sin2α+cos2α=1,tanα=sinαcosα,结合三角函数在各个象限的符号,代入每个式子进行化简、求值.对A,由同角三角函数的基本关系式,知tanα=sinαcosα,所以A错;对B,C,D,E,因为α是第二象限角,所以sinα>0,cosα<0,所以sinα−cosα>0,sinα+cosα的符号不确定,所以√1−2sinαcosα=√(sinα−cosα)2=sinα−cosα,所以B,C正确;D,E错.故选:BC.小提示:本题考查同角三角函数的基本关系、三角函数在各个象限的符号,考查运算求解能力.11、如图是函数y =Asin(ωx +φ)(x ∈R)在区间[−π6,5π6]上的图象.为了得到这个函数的图象,只要将y =sinx(x ∈R)的图象上所有的点( ).A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变 B .向左平移π6个单位长度,再把所得各点的横坐标仲长到原来的12,纵坐标不变 C .把所得各点的横坐标缩短到原来的12,纵坐标不变,再向左平移π6个单位长度D .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变答案:AC分析:先根据图象求函数解析式,应先观察图象,确定“振幅”“周期”,再通过计算求φ,再借助图象变换规则即可得出结果.由图象知,A=1,T=π,所以ω=2,y=sin (2x+φ),将(−π6,0)代入得:sin(φ−π3)=0,所以φ−π3=kπ,k ∈z ,取φ=π3,得y=sin (2x+π3),y =sinx 向左平移π3,得y =sin (x +π3).然后各点的横坐标缩短到原来的12,得y =sin (2x +π3).故A 正确.y =sinx 各点的横坐标缩短到原来的12,得y =sin2x .然后向左平移π6个单位,得y =sin2(x +π6)=sin (2x +π3).故C 正确. 故选:AC小提示:本题主要考查了三角函数的图象变换及三角函数性质,图象的伸缩变换的规律:(1)把函数y =f (ωx )的图像向左平移ℎ(ℎ>0)个单位长度,则所得图像对应的解析式为y =f [ω(x +ℎ)],遵循“左加右减”;(2)把函数y =f (x )图像上点的纵坐标保持不变,横坐标变为原来的ω倍(ω>0),那么所得图像对应的解析式为y =f (1ωx),属于中档题.12、下列函数中周期为π且为奇函数的是( )A.y=sin(2x+π2)B.y=cos(2x+π2)C.y=tanx D.y=cos(2x−π2)答案:BCD解析:利用诱导公式可将A、B、D分别化为y=cos2x、y=−sin2x、y=sin2x即可判断周期及其奇偶性,进而判断选项正误.A中,y=sin(2x+π2)=cos2x,周期为π且为偶函数,错误;B中,y=cos(2x+π2)=−sin2x,周期为π且为奇函数,正确;C中,y=tanx,周期为π且为奇函数,正确;D中,y=cos(2x−π2)=sin2x,周期为π且为奇函数,正确;故选:BCD.13、摩天轮常被当作一个城市的地标性建筑,如深圳前海的“湾区之光”摩天轮,如图所示,某摩天轮最高点离地面高度128米,转盘直径为120米,设置若干个座舱,游客从离地面最近的位置进舱,开启后按逆时针匀速旋转t分钟,当t=15时,游客随舱旋转至距离地面最远处.以下关于摩天轮的说法中,正确的为()A.摩天轮离地面最近的距离为4米B.若旋转t分钟后,游客距离地面的高度为ℎ米,则ℎ=−60cos(π15t)+68C.若在t1,t2时刻,游客距离地面的高度相等,则t1+t2的最小值为30D.∃t1,t2∈[0,20],使得游客在该时刻距离地面的高度均为90米答案:BC分析:易知摩天轮离地面最近的距离,从而可判断A;求出t分钟后,转过的角度,即可求出ℎ关于t的表达式,即可判断B;由余弦型函数的性质可求出t1+t2的最小值即可判断C;求出ℎ在t∈[0,20]上的单调性,结合当t=20时,ℎ=98>90即可判断D.解:由题意知,摩天轮离地面最近的距离为128−120=8米,故A不正确;t分钟后,转过的角度为π15t,则ℎ=60−60cosπ15t+8=−60cosπ15t+68,B正确;ℎ=−60cosπ15t+68周期为2ππ15=30,由余弦型函数的性质可知,若t1+t2取最小值,则t1,t2∈[0,30],又高度相等,则t1,t2关于t=15对称,则t1+t22=15,则t1+t2=30;令0≤π15t≤π,解得0≤t≤15,令π≤π15t≤2π,解得15≤t≤30,则ℎ在t∈[0,15]上单调递增,在t∈[15,20]上单调递减,当t=15时,ℎmax=128,当t=20时,ℎ=−60cosπ15×20+68=98>90,所以ℎ=90在t∈[0,20]只有一个解;故选:BC.小提示:关键点睛:本题的关键是求出ℎ关于t的表达式,结合三角函数的性质进行判断.填空题14、函数f(x)=sinx−√3cosx的严格增区间为________.答案:[2kπ−π6,2kπ+5π6],k∈Z分析:利用辅助角公式将f(x)化为f(x)=2sin(x+π3),然后由三角函数单调区间的求法,求得函数f(x)的单调区间.依题意f(x)=sinx−√3cosx=2sin(x−π3),由2kπ−π2≤x−π3≤2kπ+π2,k∈Z,解得2kπ−π6≤x≤2kπ+5π6,k∈Z,所以f(x)单调递增区间为[2kπ−π6,2kπ+π6](k∈Z).所以答案是:[2kπ−π6,2kπ+5π6](k∈Z)15、若α∈(0,π2),且cos2α+cos(π2−2α)=710,则tan2α=____答案:−34分析:利用诱导公式、二倍角正弦公式,将题设条件转化为1+2tanαtan 2α+1=710,结合角的范围求tanα值,再应用二倍角正切公式求tan2α即可.∵cos 2α+cos (π2−2α)=cos 2α+sin2α=cos 2α+2sinαcosαsin 2α+cos 2α=1+2tanαtan 2α+1=710,∴tanα=3或tanα=−17,又α∈(0,π2), ∴tanα=3,则tan2α=2tanα1−tan 2α=−34.所以答案是:−3416、若sinx =−23,则cos2x =__________.答案:19分析:直接利用余弦的二倍角公式进行运算求解即可. cos2x =1−2sin 2x =1−2×(−23)2=1−89=19.所以答案是:19.小提示:本题考查了余弦的二倍角公式的应用,属于基础题. 解答题17、(1)已知sinα+cosα=√2,求sinα⋅cosα及sin 4α+cos 4α的值; (2)已知sinα+cosα=15(0<α<π),求tanα的值.答案:(1)sinα⋅cosα=12,sin 4α+cos 4α=12;(2)−43.分析:(1)把已知等式平方,结合平方关系可得sinαcosα,再把1=sin 2α+cos 2α平方可求得sin 4α+cos 2α;(2)已知等式平方求得sinαcosα确定出sinα,cosα的正负,求出sinα−cosα,与已知式联立求得sinα,cosα后可得tanα.解:(1)∵sinα+cosα=√2;1+2sinαcosα=2 ∴sinα⋅cosα=12sin 4α+cos 4α=(sin 2α+cos 2α)2−2sin 2αcos 2α=1−2⋅(12)2=12(2)∵sinα+cosα=15,① ∴(sinα+cosα)2+2sinαcosα=125∴2sinαcosα=−2425.∵0<α<π,∴π2<α<π,∴sinα>0,cosα<0,∴sinα−cosα>0, ∴sinα−cosα=√(sinα−cosα)2=75.②由①,②得sinα=45,cosα=−35,∴tanα=−4318、已知函数f(x)=sin 4x +cos 4x +√32sin2xcos2x ,f(x)的图像先向右平移π6,再纵坐标不变横坐标伸长为原来的2倍,得到g(x)的图像. (1)求f(x)的对称中心;(2)当x ∈[−π6,π3]时,求g(x)的取值范围 答案:(1)(k4π−π24,34)(k ∈Z) (2)[14,1]分析:(1)由f (x )=12sin(4x +π6)+34,令4x +π6=kπ,k ∈Z 求解; (2)由g(x)=12sin(2x −π2)+34=−12cos2x +34,利用余弦函数的性质求解. (1)解:f(x)=(sin 2x +cos 2x )2−2sin 2xcos 2x +√34sin4x , =1−12sin 22x +√34sin4x =1−14(1−cos4x )+√34sin4x , =14cos4x +√34sin4x +34=12sin(4x +π6)+34,令4x +π6=kπ,x =k4π−π24(k ∈Z),所以f(x)的对称中心为(k4π−π24,34)(k∈Z).(2)g(x)=12sin(2x−π2)+34=−12cos2x+34,因为x∈[−π6,π3],所以2x∈[−π3,2π3],故cos2x∈[−12,1],g(x)的取值范围为[14,1].。
高中数学第五章三角函数高频考点知识梳理(带答案)
高中数学第五章三角函数高频考点知识梳理单选题1、设函数f(x)=cos(ωx+π6)(ω>0),在[−π,π]上的图象大致如图,将该图象向右平移m(m>0)个单位后所得图象关于直线x=π6对称,则m的最小值为()A.π4B.2π9C.5π18D.π3答案:C分析:根据五点作图法可构造方程求得ω,得到f(x);由三角函数平移变换可求得平移后解析式,利用代入检验的方法,根据图象关于x=π6可构造方程求得m,由此确定最小值.根据五点法作图知:−4π9ω+π6=−π2,解得:ω=32,∴f(x)=cos(32x+π6);将f(x)向右平移m个单位得:f(x−m)=cos(32x+π6−32m),∵f(x−m)图象关于x=π6对称,∴32×π6+π6−32m=kπ(k∈Z),解得:m=5π18−23kπ(k∈Z),由m>0,可令k=0得m的最小值5π18.故选:C.小提示:方法点睛:根据余弦型函数y=Acos(ωx+φ)的对称轴、对称中心和单调区间求解参数值时,通常采用代入检验的方式,即将x的取值代入ωx+φ,整体对应y=cosx的对称轴、对称中心和单调区间,由此求得结果.2、要得到函数y=3sin(2x+π4)的图象,只需将函数y=3sin2x的图象().A.向左平移π4个单位长度B.向右平移π4个单位长度C.向左平移π8个单位长度D.向右平移π8个单位长度答案:C分析:根据函数图象平移的性质:左加右减,并结合图象变化前后的解析式判断平移过程即可.将y=3sin2x向左移动π8个单位长度有y=3sin2(x+π8)=3sin(2x+π4),∴只需将函数y=3sin2x的图象向左平移π8个单位长度,即可得y=3sin(2x+π4)的图象.故选:C3、若α为第四象限角,则()A.cos2α>0B.cos2α<0C.sin2α>0D.sin2α<0答案:D分析:由题意结合二倍角公式确定所给的选项是否正确即可.方法一:由α为第四象限角,可得3π2+2kπ<α<2π+2kπ,k∈Z,所以3π+4kπ<2α<4π+4kπ,k∈Z此时2α的终边落在第三、四象限及y轴的非正半轴上,所以sin2α<0故选:D.方法二:当α=−π6时,cos2α=cos(−π3)>0,选项B错误;当α=−π3时,cos2α=cos(−2π3)<0,选项A错误;由α在第四象限可得:sinα<0,cosα>0,则sin2α=2sinαcosα<0,选项C错误,选项D正确;故选:D.小提示:本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.4、德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36∘的等腰三角形(另一种是顶角为108∘的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金△ABC中,BCAC =√5−12.根据这些信息,可得sin126∘=( )A .1−2√54B .3+√58C .1+√54D .4+√58答案:C解析:计算出cos72∘=√5−14,然后利用二倍角公式以及诱导公式可计算得出sin126∘=cos36∘的值,即可得出合适的选项.因为△ABC 是顶角为36∘的等腰三角形,所以,∠ACB =72∘, 则cos72∘=cos∠ACB =12BC AC=√5−14,sin126∘=sin (90∘+36∘)=cos36∘,而cos72∘=2cos 236∘−1,所以,cos36∘=√1+cos72∘2=√3+√58=√6+2√516=√5+14. 故选:C.小提示:本题考查利用二倍角公式以及诱导公式求值,考查计算能力,属于中等题.5、在地球公转过程中,太阳直射点的纬度随时间周而复始不断变化,太阳直射点回归运动的一个周期就是一个回归年.某科研小组以某年春分(太阳直射赤道且随后太阳直射点逐渐北移的时间)为初始时间,统计了连续400天太阳直射点的纬度值(太阳直射北半球时取正值,直射南半球时取负值).设第x 天时太阳直射点的纬度值为y ,该科研小组通过对数据的整理和分析.得到y 与x 近似满足y =23.4392911sin0.01720279x .则每1200年中,要使这1200年与1200个回归年所含的天数最为接近.应设定闰年的个数为( )(精确到1)参考数据π0.01720279≈182.6211 A .290B .291C .292D .293 答案:B分析:设闰年个数为x ,根据闰年个数对应天数一致的原则建立关系式366x +365(1200−x )=365.2422×1200,求解x即可.解:T=2πω=2π0.01720279=2×182.6211=365.2422,所以一个回归年对应的天数为365.2422天假设1200年中,设定闰年的个数为x,则平年有1200−x个,所以366x+365(1200−x)=365.2422×1200解得:x=0.2422×1200=290.64.故选:B.6、函数f(x)=sin(π6−2x)在[0,π]上的增区间是()A.[π2,π]B.[π4,π]C.[π3,5π6]D.[π6,π]答案:C分析:首先利用诱导公式将函数化简,再根据x的取值范围,求出2x−π6的取值范围,再结合正弦函数的性质令π2≤2x−π6≤3π2,求出x的范围,即可得解;解:由题知f(x)=−sin(2x−π6),又x∈[0,π],所以2x−π6∈[−π6,11π6],令π2≤2x−π6≤3π2,解得π3≤x≤5π6,所以函数f(x)=sin(π6−2x)在[0,π]上的增区间是[π3,5π6].故选:C.7、已知锐角α终边上一点A的坐标为(2sin3,−2cos3),则角α的弧度数为()A.3−π2B.π2−3C.π−3D.3π2−3答案:A分析:先根据定义得α正切值,再根据诱导公式求解tanα=−2cos32sin3=−sin(π2−3)cos(π2−3)=tan(3−π2),又0<3−π2<π2,α为锐角,∴ α=3−π2,故选:A.8、把函数y =f(x)图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y =sin (x −π4)的图像,则f(x)=( )A .sin (x2−7π12)B .sin (x 2+π12) C .sin (2x −7π12)D .sin (2x +π12) 答案:B分析:解法一:从函数y =f(x)的图象出发,按照已知的变换顺序,逐次变换,得到y =f [2(x −π3)],即得f [2(x −π3)]=sin (x −π4),再利用换元思想求得y =f(x)的解析表达式;解法二:从函数y =sin (x −π4)出发,逆向实施各步变换,利用平移伸缩变换法则得到y =f(x)的解析表达式.解法一:函数y =f(x)图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,得到y =f(2x)的图象,再把所得曲线向右平移π3个单位长度,应当得到y =f [2(x −π3)]的图象,根据已知得到了函数y =sin (x −π4)的图象,所以f [2(x −π3)]=sin (x −π4), 令t =2(x −π3),则x =t2+π3,x −π4=t2+π12, 所以f (t )=sin (t2+π12),所以f (x )=sin (x2+π12); 解法二:由已知的函数y =sin (x −π4)逆向变换,第一步:向左平移π3个单位长度,得到y =sin (x +π3−π4)=sin (x +π12)的图象,第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y =sin (x2+π12)的图象, 即为y =f (x )的图象,所以f (x )=sin (x2+π12). 故选:B. 多选题9、对于函数f(x)={sinx,sinx ≤cosxcosx,sinx >cosx,下列四个结论正确的是( )A.f(x)是以π为周期的函数B.当且仅当x=π+kπ(k∈Z)时,f(x)取得最小值-1C.f(x)图象的对称轴为直线x=π4+kπ(k∈Z)D.当且仅当2kπ<x<π2+2kπ(k∈Z)时,0<f(x)≤√22答案:CD解析:求得f(x)的最小正周期为2π,画出f(x)在一个周期内的图象,通过图象可得对称轴、最小值和最大值,即可判断正确答案.解:函数f(x)={sinx,sinx⩽cosxcosx,sinx>cosx的最小正周期为2π,画出f(x)在一个周期内的图象,可得当2kπ+π4⩽x⩽2kπ+5π4,k∈Z时,f(x)=cosx,当2kπ+5π4<x⩽2kπ+9π4,k∈Z时,f(x)=sinx,可得f(x)的对称轴方程为x=π4+kπ,k∈Z,当x=2kπ+π或x=2kπ+3π2,k∈Z时,f(x)取得最小值−1;当且仅当2kπ<x<π2+2kπ(k∈Z)时,f(x)>0,f(x)的最大值为f(π4)=√22,可得0<f(x)⩽√22,综上可得,正确的有CD.故选:CD.小提示:本题考查三角函数的图象和性质,主要是正弦函数和余弦函数的图象和性质的运用,考查对称性、最值和周期性的判断,考查数形结合思想方法,属于中档题. 10、已知cosα=35,则1+√2cos(2α−π4)sin(α+π2)等于( )A .25B .75C .145D .−25 答案:CD分析:先将要求的式子利用诱导公式、二倍角公式化简成α角的弦函数的形式,然后利用cosα求出sinα,代入即可.解:由cosα=35得sinα=±45.1+√2cos(2α−π4)sin(α+π2)=1+√2(cos2αcos π4+sin2αsin π4)cosα=1+cos2α+sin2αcosα=2cos 2α+2sinαcosαcosα=2(sinα+cosα) 所以当sinα=45时,原式=145;当sinα=−45时,原式=−25. 故选:CD.小提示:本题考查三角恒等变换化简求值,考查运算求解能力,是中档题.本题解题的关键在于由cosα=35得sinα=±45,进而对化简后的值进行分类讨论求解. 11、下列函数中最小正周期为π,且为偶函数的是( ) A .y =|cosx |B .y =sin2x C .y =sin (2x +π2)D .y =cos 12x 答案:AC分析:直接利用奇偶性的定义和周期的公式逐个分析判断即可解:对于A ,定义域为R ,因为f(−x)=|cos(−x)|=|cosx |=f(x),所以函数为偶函数,因为y =|cosx |的图像是由y =cosx 的图像在x 轴下方的关于x 轴对称后与x 轴上方的图像共同组成,所以y =|cosx |的最小正周期为π,所以A 正确,对于B,定义域为R,因为f(−x)=sin(−2x)=−sin2x=−f(x),所以函数为奇函数,所以B错误,对于C,定义域为R,f(x)=sin(2x+π2)=cos2x,最小正周期为π,因为f(−x)=cos(−2x)=cos2x= f(x),所以函数为偶函数,所以C正确,对于D,定义域为R,最小正周期为2π12=4π,所以D错误,故选:AC12、已知x∈R,则下列等式恒成立的是()A.sin(3π−x)=sinx B.sinπ−x2=cos x2C.cos(5π2+3x)=sin3x D.cos(3π2+2x)=−sin2x答案:AB分析:利用诱导公式可判断各选项的正误.sin(3π−x)=sin(π−x)=sinx,sinπ−x2=sin(π2−x2)=cos x2,cos(5π2+3x)=cos(π2+3x)=−sin3x,cos(3π2+2x)=sin2x,故选:AB.13、[多选题]下列说法正确的有()A.终边相同的角一定相等B.钝角一定是第二象限角C.第一象限角可能是负角D.小于90°的角都是锐角答案:BC分析:对于A:取特殊角30°和390°.即可否定结论;对于B:由第二象限角的范围直接判断;对于C:取特殊角-330°即可判断;对于D:取特殊角-45°角进行否定结论.对于A:终边相同的角不一定相等,比如30°和390°.故A不正确;对于B:因为钝角的大小在(90°,180°),所以钝角一定是第二象限角,故B正确;对于C:如-330°角是第一象限角,所以C正确;对于D:−45°<90°,-45°角它不是锐角,所以D不正确.故选:BC.填空题14、写出一个满足tan20°+4cosθ=√3的θ=_________.答案:70°(答案不唯一).分析:√3=tan60°,然后变形tan60°−tan20°可得.由题意4cosθ=√3−tan20°=tan60°−tan20°=sin60°cos60°−sin20°cos20°=sin60°cos20°−cos60°sin20°cos60°cos20°=sin40°cos60°cos20°=2sin20°cos20°1 2cos20°=4sin20°=4cos70°,因此θ=70°(实际上θ=k⋅360°±70°,k∈Z).所以答案是:70°(答案不唯一).15、函数f(x)=sin(2x+3π2)−3cosx的最小值为___________.答案:−4.分析:本题首先应用诱导公式,转化得到二倍角的余弦,进一步应用二倍角的余弦公式,得到关于cosx的二次函数,从而得解.f(x)=sin(2x+3π2)−3cosx=−cos2x−3cosx=−2cos2x−3cosx+1=−2(cosx+34)2+178,∵−1≤cosx≤1,∴当cosx=1时,f min(x)=−4,故函数f(x)的最小值为−4.小提示:解答本题的过程中,部分考生易忽视−1≤cosx≤1的限制,而简单应用二次函数的性质,出现运算错误.16、将函数f(x)=sin(ωx+φ)(ω>0,|φ|<π2)的图像向左平移θ个单位长度得到函数g(x)的图象,如图所示,图中阴影部分的面积为π2,则φ=___________.答案:π6分析:根据三角函数图象的对称性,得到S=2S▭ABCD=π2,求得θ=π4,进而求得w=2,得到f(x)=sin(2x+φ),结合f(π6)=1,即可求得φ的值.如图所示,根据三角函数图象的对称性,可得阴影部分的面积等于矩形ABCD和EFGH的面积之和,即S= S▭ABCD+S▭EFGH=2S▭ABCD,因为函数f(x)=sin(ωx+φ)的图像向左平移θ个单位长度得到函数g(x)的图象,所以S▭ABCD=θ×1=θ,又因为图中阴影部分的面积为π2,所以2θ=π2,解得θ=π4,又由图象可得θ=T4,可得T4=π4,所以T=π,所以w=2πT=2,所以f(x)=sin(2x+φ),因为f(π6)=sin(2×π6+φ)=1,可得π3+φ=π2+2kπ,k∈Z,即φ=π6+2kπ,k∈Z,因为|φ|<π2,所以φ=π6.所以答案是:π6解答题17、建设生态文明是关系人民福祉、关乎民族未来的长远大计.某市通宵营业的大型商场,为响应国家节能减排的号召,在气温低于0°C时,才开放中央空调,否则关闭中央空调.如图是该市冬季某一天的气温(单位:°C)随时间t(0≤t≤24,单位:小时)的大致变化曲线,若该曲线近似满足f(t)=Asin(ωt−2π3)+b(A>0,ω>0)关系.(1)求y=f(t)的表达式;(2)请根据(1)的结论,求该商场的中央空调在一天内开启的时长.答案:(1) f(t)=8sin(π12t−23π)+4,0≤t≤24;(2) 8小时.分析:(1)根据三角函数的图像即可求y=f(t)的表达式;(2)根据正弦函数的图像与性质解f(t)<0,结合0≤t≤24即可求解.解:(1)因为f(t)=Asin(ωt−2π3)+b(A>0,ω>0)图像上最低点坐标为(2,−4),与之相邻的最高点坐标为(14,12),所以A=12−(−4)2=8,T2=14−2=12,b=−4+A=−4+8=4,所以T=2πω=24,解得ω=π12.所以f(t)=8sin (π12t −23π)+4,0≤t ≤24.(2)由(1)得,8sin (π12t −23π)+4<0,所以sin (π12t −23π)<−12,所以7π6+2kπ<π12t −2π3<11π6+2kπ,k ∈Z ,解得22+24k <t <30+24k,k ∈Z ,因为0≤t ≤24,所以0≤t <6,22<t ≤24.所以该商场的中央空调应在本天内开启时长为8小时.18、已知cosα=35,α∈(−π2,0). (1)求tanα,sin2α的值;(2)求sin (π3−α)的值.答案:(1)−43,−2425;(2)3√3+410分析:(1)首先利用同角三角函数关系求出sinα=−45,从而得到tanα=−43,再利用正弦二倍角公式计算sin2α即可.(2)利用正弦两角差公式展开计算即可得到答案.(1)因为cosα=35,α∈(−π2,0),所以sinα=−√1−(35)2=−45,所以tanα=sinαcosα=−4535=−43,sin2α=2sinαcosα=−2425. (2)sin (π3−α)=sin π3cosα−cos π3sinα=√32×35−12×(−45)=3√3+410. 小提示:本题主要考查三角函数的恒等变换,同时考查同角三角函数关系,属于简单题.。
第五章 三角函数单元总结(思维导图+知识记诵+能力培养)(含解析)
第五章三角函数要点一:终边相同的角 1.终边相同的角凡是与α终边相同的角,都可以表示成360k α⋅︒+的形式. 要点诠释:(1)终边相同的前提是:原点,始边均相同;(2)终边相同的角不一定相等,但相等的角终边一定相同; (3)终边相同的角有无数多个,它们相差360︒的整数倍. 特例:终边在x 轴上的角集合{}|180k k Z αα=⋅︒∈,, 终边在y 轴上的角集合{}|18090k k Z αα=⋅︒+︒∈,, 终边在坐标轴上的角的集合{}|90k k Z αα=⋅︒∈,.在已知三角函数值的大小求角的大小时,通常先确定角的终边位置,然后再确定大小. 2.弧度和角度的换算(1)角度制与弧度制的互化:π弧度 180=,1801π=弧度,1弧度'180()5718π=≈(2)弧长公式:r l ||α=(α是圆心角的弧度数),扇形面积公式:2||2121r r l S α==. 要点诠释:(1)角有正负零角之分,它的弧度数也应该有正负零之分,如2ππ--,等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.(2)角α的弧度数的绝对值是:rl=α,其中,l 是圆心角所对的弧长,r 是半径. 要点二:任意角的三角函数的定义、三角函数的符号规律、特殊角的三角函数值、同角三角函数的关系式、诱导公式:1.三角函数定义:角α终边上任意一点P 为),(y x ,设r OP =||则:,cos ,sin r x r y ==ααxy =αtan 要点诠释:三角函数的值与点P 在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离22r x y =+那么22sin x y α=+,22cos x y α=+,tan yxα=. 2.三角函数符号规律:一全正,二正弦,三正切,四余弦(为正);要点诠释:口诀的含义是在第一象限各三角函数值为正;在第二象限正弦值为正,在第三象限正切值为正,在第四象限余弦值为正.α0 6π 4π 3π 2π π32π 2π sin α 0 21 22 23 1 0 -1 0 cos α 1 23 22 21 0 -1 0 1 tan α33 13不存在不存在22sin sin cos 1;tan cos ααααα+== 要点诠释:(1)这里“同角”有两层含义,一是“角相同”,二是对“任意”一个角(使得函数有意义的前提下)关系式都成立;(2)2sin α是2(sin )α的简写;(3)在应用平方关系时,常用到平方根,算术平方根和绝对值的概念,应注意“±”的选取. 5.诱导公式(奇变偶不变,符号看象限):sin(πα-)=sin α,cos(πα-)=-cos α,tan(πα-)=-tan α sin(πα+)=-sin α,cos(πα+)=-cos α,tan(πα+)=tan α sin(α-)=-sin α,cos(α-)=cos α,tan(α-)=-tan αsin(2πα-)=-sin α,cos(2πα-)=cos α,tan(2πα-)=-tan αsin(2k πα+)=sin α,cos(2k πα+)=cos α,tan(2k πα+)=tan α,()k Z ∈ sin(2πα-)=cos α,cos(2πα-)=sin α sin(2πα+)=cos α,cos(2πα+)=-sin α要点诠释:(1)要化的角的形式为α±⋅ 90k (k 为常整数); (2)记忆方法:“奇变偶不变,符号看象限”;(3)必须对一些特殊角的三角函数值熟记,做到“见角知值,见值知角”; (4)sin cos cos 444x x x πππ⎛⎫⎛⎫⎛⎫+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;cos sin 44x x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭. 要点三:正弦函数、余弦函数和正切函数的图象与性质1.三角函数sin cos y x y x ==,的图象与性质: y=sinx y=cosx 定义域 (-∞,+∞) (-∞,+∞) 值域 [-1,1] [-1,1] 奇偶性奇函数偶函数单调性增区间[2,2],22k k k Z ππππ-+∈ 减区间3[2,2],22k k k Zππππ++∈ 增区间[]22k k k Zπππ-∈,减区间[]22k k k Zπππ+∈,周期性 最小正周期2T π=最小正周期2T π=最值 当2()2x k k Z ππ=-∈时,min 1y =-当2()2x k k Z ππ=+∈时,max 1y =当2()x k k Z ππ=+∈时,min 1y =- 当2()x k k Z π=∈时,max 1y = 对称性对称轴()2x k k Z ππ=+∈对称中心()0()k k Z π∈,对称轴()x k k Z π=∈ 对称中心(,0)()2k k Z ππ+∈y=cosx 的图象是由y=sinx 的图象左移2得到的. 2.三角函数tan y x =的图象与性质:y=tanx定义域 ,2x k k Z ππ≠+∈值域 R 奇偶性奇函数单调性 增区间(,),22k k k Z ππππ-+∈周期性 T π=最值 无最大值和最小值 对称性对称中心(,0)()2k k Z π∈ 要点四:函数sin()y A x ωϕ=+的图象与性质 用“五点法”作sin()y A x ωϕ=+的简图,主要是通过变量代换,设z x ωϕ=+,由z 取30,,,,222ππππ来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象. 要点诠释:用“五点法”作图的关键是点的选取,其中横坐标成等差数列,公差为4T. sin()y A x ωϕ=+2.sin()y A x ωϕ=+的性质 (1)三角函数的值域问题三角函数的值域问题,实质上大多是含有三角函数的复合函数的值域问题,常用方法有:化为代数函数的值域或化为关于sin (cos )x x 的二次函数式,再利用换元、配方等方法转化为二次函数在限定区间上的值域.(2)三角函数的单调性函数)0,0)(sin(>>+=ωϕωA x A y 的单调区间的确定,基本思想是把ϕω+x 看作一个整体,比如:由)(2222Z k k x k ∈+≤+≤-ππϕωππ解出x 的范围所得区间即为增区间,由)(23222Z k k x k ∈+≤+≤+ππϕωππ解出x 的范围,所得区间即为减区间; 要点诠释:(1)注意复合函数的解题思想;(2)比较三角函数值的大小,往往是利用奇偶性或周期性在转化为属于同一单调区间上的两个同名函数值,再利用单调性比较.3.确定sin()y A x ωϕ=+的解析式的步骤①首先确定振幅和周期,从而得到A ω,;②确定ϕ值时,往往以寻找“五点法”中第一个零点(,0)ϕω-作为突破口,要注意从图象的升降情况找准第一个零点的位置,同时要利用好最值点.要点五:正弦型函数sin()y A x ωϕ=+的图象变换方法 先平移后伸缩sin y x =的图象 sin()y x ϕ=+的图象sin()y x ωϕ=+的图象 sin()y A x ωϕ=+的图象的图象. 先伸缩后平移sin y x =的图象 sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位sin()y A x ωϕ=+的图象的图象.要点六:两角和、差的正、余弦、正切公式()sin sin cos cos sin αβαβαβ±=±; ()cos cos cos sin sin αβαβαβ±=;ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度sin()y A x k ϕ=++(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度sin()y A x k ωϕ=++()tan tan tan 1tan tan αβαβαβ±±=.要点诠释:1.公式的适用条件(定义域) :公式①、②对任意实数α,β都成立,这表明①、②是R 上的恒等式;公式③中,∈,且R αβk (k Z)2±≠+∈、、παβαβπ2.正向用公式①、②,能把和差角()±αβ的弦函数表示成单角α,β的弦函数;反向用,能把右边结构复杂的展开式化简为和差角()±αβ 的弦函数.公式③正向用是用单角的正切值表示和差角()±αβ的正切值化简.要点七:二倍角公式1. 在两角和的三角函数公式βαβαβαβα=+++中,当T C S ,,时,就可得到二倍角的三角函数公式222,,S C T ααα:sin 22sin cos ααα=;2222cos 2cos sin 2cos 112sin ααααα=-=-=-;22tan tan 21tan ααα=-. 要点诠释:1.在公式22,S C αα中,角α没有限制,但公式2T αα中,只有当)(224Z k k k ∈+≠+≠ππαππα和时才成立;2. 余弦的二倍角公式有三种:ααα22sin cos 2cos -==1cos 22-α=α2sin 21-;解题对应根据不同函数名的需要,函数不同的形式,公式的双向应用分别起缩角升幂和扩角降幂的作用.3. 二倍角公式不仅限于2α和α的二倍的形式,其它如4α是2α的二倍,24αα是的二倍,332αα是的二倍等等,要熟悉这多种形式的两个角相对二倍关系,才能熟练地应用二倍角公式,这是灵活运用这些公式的关键.要点八:二倍角公式的推论升幂公式:21cos 22cos αα+=, 21cos 22sin αα-=降幂公式:ααα2sin 21cos sin =; 22cos 1sin 2αα-=;22cos 1cos 2αα+=.要点九:三角恒等变换的基本题型三角式的化简、求值、证明是三角恒等变换的基本题型: 1.三角函数式的化简(1)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等.(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数.2.三角函数的求值类型有三类(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角.3.三角等式的证明(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明.类型一:三角函数的概念例1. 已知角α的终边过点(,2)(0)a a a ≠,求α的三个三角函数值. 【思路点拨】分0,0a a ><两种情况求α的三个三角函数值. 【解析】因为过点(,2)(0)a a a ≠,所以5|r a =,,2x a y a ==.当250sin 55||5y a r a aα>====时,; 5cos 55x r aα===,2tan =α. 当250sin 5||5y a r a a α<====-时,5cos 55x r aα===--;2tan =α. 【总结升华】(1)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际及解题的需要对参数进行分类讨论;(2)若角α已经给定,不论点选在α的终边上的什么位置,角α的三角函数值都是确定的;另一方面,如果角α终边上点坐标已经确定,那么根据三角函数定义,角α的三角函数值也是确定的.类型二:扇形的弧长与面积的计算例2.已知一半径为r 的扇形,它的周长等于所在圆的周长的一半,那么扇形的中心角是多少弧度?合多少度?扇形的面积是多少?【答案】2π- 65.44︒ 21(2)2r π-【解析】设扇形的圆心角是rad θ,因为扇形的弧长是θr ,所以扇形的周长是2.r r θ+ 依题意,得2,rr r θπ+=()2rad θπ∴=-180(2)ππ⎛⎫-⨯ ⎪⎝⎭≈1.14257.30⨯︒≈65.44,︒ 2211(2).22S r r θπ∴==-【总结升华】弧长和扇形面积的核心公式是圆周长公式2C r π=⋅和圆面积公式2122S r π=⋅⋅,当用圆心角的弧度数α代替2π时,即得到一般的弧长公式和扇形面积公式:211,.22l r S lr r αα=⋅==⋅类型三:同角三角函数的基本关系式 例3.已知1sin cos ,(0,),5A A A π+=∈,求tan A 的值. 【思路点拨】由题意知,12sin cos ,(0,),25A A A π=-∈所以A 为钝角,然后求出3cos 5α=-即可求得. 【解析】方法一:由51cos sin =+A A ,得(),251cos sin 2=+A A),,0(,2512cos sin π∈-=∴A A A .0cos sin ,0cos ,0sin ,2>-<>∴<<∴A A A A A ππ又().57cos sin ,2549cos sin 21cos sin 2=-∴=-=-A A A A A A 由,57cos sin 51cos sin ⎪⎪⎩⎪⎪⎨⎧=-=+A A A A 得,.53cos 54sin ⎪⎪⎩⎪⎪⎨⎧-==A A .34tan -=∴A方法二:由51cos sin =+A A 可得,sin 51cos 22⎪⎭⎫ ⎝⎛-=A A即,sin 51sin 122⎪⎭⎫⎝⎛-=-A A 整理得,012sin 5sin 252=--A A即,0)3sin 5)(4sin 5(=+-A A54sin =∴A 或53sin -=A ,由已知π<<A 0知53sin -=A 不合题意,舍去.1sin cos 5A A +=,两边平方得:12sin cos ,(0,),25A A A π=-∈(,)2A ππ∴∈,所以3cos 5A =- .34tan -=∴A【总结升华】同角三角函数基本关系是反映了各种三角函数之间的内在联系,为三角函数式的恒等变形提供了工具与方法.类型四:三角函数的诱导公式例4.已知sin(3π+θ)=13,求()()()cos cos(2)33cos cos 1sin cos sin 22πθθπππθπθθθπθ+-+--⎡⎤⎛⎫⎛⎫⎣⎦---+ ⎪ ⎪⎝⎭⎝⎭的值.【思路点拨】利用诱导公式,求出sin θ=-13.然后化简要求的式子,即可求得结果. 【答案】18【解析】 ∵sin(3π+θ)=-sin θ=13,∴sin θ=-13, ∴原式=()cos cos(2)3cos cos 1sin cos()cos 2θπθπθθθπθθ--+--⎛⎫---+ ⎪⎝⎭=21cos 1cos cos cos θθθθ++-+ =11cos θ++11cos θ-=221cos θ- =22sin θ=221()3-=18. 【总结升华】 诱导公式用角度和弧度制表示都成立,记忆方法可以概括为“奇变偶不变,符号看象限”,“变”与“不变”是相对于对偶关系的函数而言的,sin α与cos α对偶,“奇”、“偶”是对诱导公式中2k πα⋅+的整数k 来讲的,象限指2k πα⋅+中,将α看作锐角时,2k πα⋅+所在象限,如将3cos 2πα⎛⎫+⎪⎝⎭写成cos 32πα⎛⎫⋅+ ⎪⎝⎭,因为3是奇数,则“cos ”变为对偶函数符号“sin ”,又32πα+看作第四象限角,3cos 2πα⎛⎫+ ⎪⎝⎭为“+”,所以有3cos sin 2παα⎛⎫+= ⎪⎝⎭. 类型五:三角函数的图象和性质 例5. 函数ln cos 22y x x ππ⎛⎫=-<< ⎪⎝⎭的图象是( )【答案】A【解析】ln cos ()22y x x ππ=-<<是偶函数,可排除B 、D ,由cosx 的值域可以确定.因此本题应选A.例6.把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是( )【思路点拨】首先根据函数图象变换的公式,可得最终得到的图象对应的解析式为:y=cos (x+1),然后将曲线y=cos (x+1)的图象和余弦曲线y=cosx 进行对照,可得正确答案. 【解析】将函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象对应的解析式为:y=cosx+1,再将y=cosx+1图象向左平移1个单位长度,再向下平移 1个单位长度,得到的图象对应的解析式为:y=cos (x+1),∵曲线y=cos (x+1)由余弦曲线y=cosx 左移一个单位而得,∴曲线y=cos (x+1)经过点1,02π⎛⎫- ⎪⎝⎭和31,02π⎛⎫- ⎪⎝⎭,且在区间31,122ππ⎛⎫-- ⎪⎝⎭上函数值小于0,由此可得,选项A 正确,故选A .例7.已知函数()sin(),f x x ωϕ=+其中0ω>,||2ϕ<(I )若coscos sinsin 0,44ππϕϕ3-=求ϕ的值; (Ⅱ)在(I )的条件下,若函数()f x 的图像的相邻两条对称轴之间的距离等于3π,求函数()f x 的解析式;并求最小正实数m ,使得函数()f x 的图像象左平移m 个单位所对应的函数是偶函数.【思路点拨】(1)把所给的式子化简,然后结合平方关系式得出tan ϕ,由0ω>,||2πϕ<,求出ϕ的值.(Ⅱ)由题意求得,23T π=,故3ω=,进一步求出()f x 的解析式. 【答案】(I )4π(Ⅱ)()sin(3)4f x x π=+ 12π【解析】 (I )由3coscos sin sin 044ππϕϕ-=,得22sin 022ϕϕ-=,得tan 1ϕ= 又||,24ππϕϕ<∴=.(Ⅱ)由(I )得,()sin()4f x x πω=+依题意,23T π= 又2,T πω=故3,()sin(3)4f x x πω=∴=+ 函数()f x 的图像向左平移m 个单位后所对应的函数为()sin 3()4g x x m π⎡⎤=++⎢⎥⎣⎦()g x 是偶函数当且仅当3()42m k k Z πππ+=+∈即()312k m k Z ππ=+∈ 从而,最小正实数12m π=【总结升华】本题考查了同角三角函数的基本关系式及函数sin()y A x ωϕ=+的性质,属中等难度题.类型六:正用公式例8.已知:41cos ,32sin -=β=α,求cos()αβ-的值. 【思路点拨】因为不知道角,αβ所在的象限,所以要对,αβ分别讨论求cos()αβ-的值.【解析】由已知可求得22515cos 1sin sin 1cos 34ααββ=-=±=-=±. 当α在第一象限而β在第二象限时,os()os cos sin sin c c αβαβαβ-=+51215)43=-+125152-=. 当α在第一象限而β在第三象限时,512152155cos())(43αβ+-=-+⋅=当α在第二象限而β在第二象限时, 512152155cos()()343412αβ+-=--+⋅=. 当α在第二象限而β在第三象限时,512152155cos()()(343412αβ-=--+⋅-=-. 【总结升华】分类的原则是:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论要逐级进行.掌握分类的方法,领会其实质,对于加深基础知识的理解,提高分析问题、解决问题的能力是十分重要的.例9.已知παπ434<<,40πβ<<,53)4cos(=-απ,135)43sin(=+βπ,求sin()αβ+的值.【思路点拨】注意到)(2)4()43(βαπαπβπ++=--+,应把)43(),4(βπαπ+-看成整体,可以更好地使用已知条件.欲求sin()αβ+,只需求出)2cos(βαπ++-.【答案】5665【解析】∵ 042<-<-αππ, ∴54)4sin(-=-απ,∵ πβππ<+<4343, ∴1312)43cos(-=+βπ.∴)](2cos[)sin(βαπβα++-=+6556)54(135531312)]4sin()43sin()4cos()43[cos()]4()43cos[(=-⨯-⨯=-++-+-=--+-=απβπαπβπαπβπ【总结升华】(1)解题中应用了)(2)4()43(βαπαπβπ++=--+式子的变换,体现了灵活解决问题的能力,应着重体会,常见的变换技巧还有(),2()()βαβαααβαβ=+-=++-,2()()βαβαβ=+--, 2()αβαβα+=++等.(2)已知某一个(或两个)角的三角函数值,求另一个相关角的三角函数值,基本的解题策略是从“角的关系式”入手切入或突破.角的关系主要有互余(或互补)关系,和差(为特殊角)关系,倍半关系等.对于比较复杂的问题,则需要两种关系的混合运用.类型七:逆用公式 例10.求值:(1)001tan151tan15+-; (2)44(sin 23cos8sin 67cos98)(sin 730cos 730)''+-o o o o o o. 【思路点拨】 题目中涉及到的角并非特殊角,而从式子的结构出发应逆用和角公式等先化简再计算. (1)利用tan 451︒=将1tan15+︒视为tan 45tan15︒+︒,将1tan15-︒视为1tan 45tan15-︒︒,则式子恰为两角和的正切.【答案】(132)14- 【解析】(1)原式360tan )1545tan(15tan 45tan 115tan 45tan 0000000==+=-+=; (2)原式=44[sin 23cos8sin(9023)cos(908)](sin 730cos 730)''+-+-o o o o o o o o2222(sin 23cos8cos 23sin8)(sin 730cos 730)(sin 730cos 730)o o o o o o o o ''''=-+-22sin(238)(cos 730sin 730)o o o o ''=---11sin15cos15sin 3024=-︒︒=-︒=-.【总结升华】(1)把式中某函数作适当的转换之后,再逆用两角和(差)正(余)弦公式,二倍角公式等,即所谓“逆用公式”.(2)辅助角公式:22sin cos )a b a b αααϕ+++,其中角ϕ在公式变形过程中自然确定.例11. 求值:(1)cos36cos72︒︒;(2)πππ73cos 72cos 7cos【思路点拨】问题的特征是角存在倍角关系,且都是余弦的乘积.方法是分子分母(分母视为1)同乘以最小角的正弦.【答案】(1)1/4 (2)1/8 【解析】(1)原式=000000000sin 36cos36cos 721sin 72cos 721sin1441sin 362sin 364sin 364=⨯=⨯=; (2)原式=πππππππ74cos 72cos 7cos )74cos(72cos 7cos -=-24sin cos cos cos 7777sin7224sin cos cos 7772sin78sin 7...8sin718πππππππππππ=-=-==-=【总结升华】此种类型题比较特殊,特殊在:①余弦相乘;②后一个角是前一个角的2倍;③最大角的2倍与最小角的和与差是π.三个条件缺一不可.另外需要注意2的个数.应看到掌握了这些方法后可解决一类问题,若通过恰当的转化,转化成具有这种特征的结构,则可考虑采用这个方法.类型八:变用公式例12.在ABC ∆中,求值:tan tan tan tan tan tan 222222A B B C C A ++ 【答案】1【解析】∵A B C π++=,∴222+=-A B C π,∴tan tan()cot 2222A B C Cπ+=-= ∴原式=tan tan tan (tan tan )22222A B C A B++tan tan tan tan (1tan tan )222222tan tan tan cot (1tan tan )222222tan tan 1tan tan22221A B C A B A B A B C C A B A B A B +=+-=+⨯-=+-= 例13. 化简:(1)sin 50(13)︒︒;(2)222cos 12tan()sin ()44αππαα--+【思路点拨】(1)题中首先“化切为弦”,同时用好“50︒”和“40︒”的互余关系,注意逆用和角公式化简; (2)题初看有“化切为弦”,“降幂”等诸多想法,但首先应注意到2)4()4(παπαπ=++-这个关系.【答案】(1)1(2)1【解析】(1)原式003sin10sin50(1)cos10=+00cos103sin10sin 50+==000000sin 30cos10cos30sin102sin50cos10+⋅000000000sin 402cos40sin 402sin50cos10cos10sin80cos101cos10cos10=⋅==== (2)原式=2cos 22tan()sin [()]424απππαα---2cos 22sin()4cos ()4cos()4cos 22sin()cos()44cos 2cos 2cos 2sin(2)21απαπαπααππααααπαα=-⋅--=--==-=【总结升华】(1)三角变换所涉及的公式实际上正是研究了各种组合的角(如和差角,倍半角等)的三角函数与每一单角的三角函数关系.因而具体运用时,注意对问题所涉及的角度及角度关系进行观察.(2)三角变换中一般采用“降次”、“化弦”、“通分”的方法;在三角变换中经常用到降幂公式:21cos 2cos 2αα+=,21cos 2sin 2αα-=. 例14.已知32)sin(=+βα,51)sin(=-βα,求的值. 【思路点拨】 先分析所求式 sin tan sin cos cos sin tan cos sin cos αααβαββαββ==,分子、分母均为已知条件中和差角的展开式的项.【答案】137【解析】∵32sin cos cos sin )sin(=+=+βαβαβα, 51sin cos cos sin )sin(=-=-βαβαβα, 2tan()tan tan tan tan()αβαββαβ+--⋅+解得3013cos sin =βα, 307sin cos =βα, ∴tan sin cos 13tan cos sin 7ααββαβ==. 类型九:三角函数知识的综合应用 例15.函数2()6cos 33(0)2xf x x ωωω=->在一个周期内的图象如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且ABC ∆为正三角形.(Ⅰ)求ω的值及函数()f x 的值域;(Ⅱ)若083()f x =,且0102(,)33x ∈-,求0(1)f x +的值. 【答案】(Ⅰ)4π[3,3]-(Ⅱ)65【解析】(Ⅰ)由已知可得:2()6cos 33(0)2x f x x ωωω=-> =3cos ωx+)3sin(32sin 3πωω+=x x又由于正三角形ABC 的高为23,则BC=4 所以,函数482824)(πωωπ===⨯=,得,即的周期T x f所以,函数]32,32[)(-的值域为x f(Ⅱ)因为,由538)(0=x f (Ⅰ)有 ,538)34(sin 32)(00=+=ππx x f 54)34(sin 0=+ππx 即由x 0)2,2()34x (323100ππππ-∈+-∈),得,(所以,53)54(1)34(cos 20=-=+ππx 即 故=+)1(0x f =++)344(sin 320πππx ]4)34(sin[320πππ++x)22532254(324sin)34cos(4cos )34([sin 3200⨯+⨯=+++=ππππππx x567=【总结升华】本题主要考查三角函数的图像与性质同三角函数的关系、两角和的正(余)弦公式、二倍角公式等基础知识,考查运算能力,考查树形结合、转化等数学思想.。
(精选试题附答案)高中数学第五章三角函数全部重要知识点
(名师选题)(精选试题附答案)高中数学第五章三角函数全部重要知识点单选题1、若sin (π7+α)=12,则sin (3π14−2α)=( )A .35B .−12C .12D .13答案:C分析:令θ=π7+α可得α=θ−π7,再代入sin (3π14−2α),结合诱导公式与二倍角公式求解即可令θ=π7+α可得α=θ−π7,故sinθ=12,则sin (3π14−2α)=sin (3π14−2(θ−π7)) =sin (π2−2θ)=cos2θ=1−2sin 2θ=12 故选:C2、已知函数f(x)=2sin (x +π4)+m 在区间(0,π)上有零点,则实数m 的取值范围为( ) A .(−√2,√2)B .(−√2,2]C .[−2,√2]D .[−2,√2) 答案:D分析:令f(x)=0,则2sin (x +π4)=−m ,令g (x )=2sin (x +π4),根据x 的取值范围求出g (x )的值域,依题意y =g (x )与y =−m 在(0,π)上有交点,即可求出参数的取值范围; 解:令f(x)=0,即2sin (x +π4)=−m ,令g (x )=2sin (x +π4),因为x ∈(0,π),所以x +π4∈(π4,5π4),所以sin (x +π4)∈(−√22,1],即g (x )∈(−√2,2],依题意y =g (x )与y =−m 在(0,π)上有交点,则−√2<−m ≤2,所以−2≤m <√2,即m ∈[−2,√2); 故选:D3、中国扇文化有着深厚的文化底蕴,文人雅士喜在扇面上写字作画.如图,是书画家唐寅(1470—1523)的一幅书法扇面,其尺寸如图所示,则该扇而的面积为()A.704cm2B.352cm2C.1408cm2D.320cm2答案:A解析:设∠AOB=θ,OA=OB=r,由题意可得:{24=rθ64=(r+16)θ,解得r,进而根据扇形的面积公式即可求解.如图,设∠AOB=θ,OA=OB=r,由弧长公式可得:{24=rθ64=(r+16)θ,解得:r=485,所以,S扇面=S扇形OCD−S扇形OAB=12×64×(485+16)−12×24×485=704cm2.故选:A.4、将x轴正半轴绕原点逆时针旋转30°,得到角α,则下列与α终边相同的角是()A.330°B.−330°C.210°D.−210°答案:B分析:写出终边相同的角α的集合,进而选出正确答案.由题意得:{α|α=30°+k⋅360°,k∈Z},当k=−1时,α=−330°,B正确,其他选项经过验证均不正确.故选:B5、函数f(x)=sinx+xcosx+x2在[—π,π]的图像大致为A.B.C.D.答案:D分析:先判断函数的奇偶性,得f(x)是奇函数,排除A,再注意到选项的区别,利用特殊值得正确答案.由f(−x)=sin(−x)+(−x)cos(−x)+(−x)2=−sinx−xcosx+x2=−f(x),得f(x)是奇函数,其图象关于原点对称.又f(π2)=1+π2(π2)2=4+2ππ2>1,f(π)=π−1+π2>0.故选D.小提示:本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养.采取性质法或赋值法,利用数形结合思想解题.6、时钟花是原产于南美热带雨林的藤蔓植物,从开放到闭合与体内的一种时钟酶有关.研究表明,当气温上升到20°C时,时钟酶活跃起来,花朵开始开放;当气温上升到28°C时,时钟酶的活性减弱,花朵开始闭合,且每天开闭一次.已知某景区一天内5~17时的气温T(单位:°C)与时间t(单位:h)近似满足关系式T=20−10sin(π8t−π8),则该景区这天时钟花从开始开放到开始闭合约经历()(sin3π10≈0.8)A.1.4h B.2.4h C.3.2h D.5.6h 答案:B分析:由函数关系式T=20−10sin(π8t−π8)分别计算出花开放和闭合的时间,即可求出答案.设t 1时开始开放,t 2时开始闭合,则20−10sin (π8t 1−π8)=20,又t 1∈[5,17],解得t 1=9,20−10sin (π8t 2−π8)=28,∴sin (π8t 2−π8)=−45,由sin 3π10≈0.8得sin13π10≈−45,∴π8t 2−π8=13π10,∴t 2=575,∴t 2−t 1=125=2.4.故选:B.7、在平面直角坐标系中,角α的终边与单位圆交于一点P (m,1),则cos (α+π6)=( )A .−12B .12C .−√32D .√32答案:A分析:根据点P (m,1)在单位圆上,可求得m 的值,进而可求得角α,再根据诱导公式即可求解. 因为点P (m,1)在单位圆上,所以m 2+12=1,解得:m =0, 所以P (0,1)为单位圆与y 轴非负半轴的交点,所以α=π2+2k π(k ∈Z ),所以cos (α+π6)=cos (π2+2k π+π6)=cos (π2+π6)=−sin π6=−12, 故选:A.8、如图,为一半径为3m 的水轮,水轮圆心O 距离水面2m ,已知水轮自点A 开始1min 旋转4圈,水轮上的点P 到水面距离y (m )与时间x (s )满足函数关系y =A sin(ωx +φ)+2,则有( )A .ω=2π15,A =3B .ω=152π,A =3C .ω=2π15,A =5D .ω=152π,A =5答案:A分析:根据最大值及半径求出A ,根据周期求出ω. 由题目可知最大值为5,∴ 5=A ×1+2⇒A =3.T =604=15,则ω=2πT=2π15.故选:A9、将函数f (x )=sin 12x 的图象向左平移φ(φ>0)个单位得到函数g (x )=cos 12x 的图象,则φ的最小值是( ) A .π4B .π2C .πD .2π答案:C分析:依据平移然后判断可知12φ=π2+2k π(k ∈Z ),简单判断可知结果. 由已知可得sin 12(x +φ)=cos 12x =sin (12x +π2),∴12φ=π2+2k π(k ∈Z ),∴φ=π+4k π(k ∈Z ).∵φ>0,∴φ的最小值是π. 故选:C10、已知函数f (x )=Asin (ωx +φ)(A >0,ω>0,|φ|<π2)的部分图像如下图所示.则能够使得y =2sinx 变成函数f (x )的变换为( )A .先横坐标变为原来的12倍,再向左平移π24 B .先横坐标变为原来的2倍,再向左平移π12 C .先向左平移π6,再横坐标变为原来的12倍 D .先向左平移π24,再横坐标变为原来的2倍 答案:C分析:先根据给定图象求出函数f (x )的解析式,再求出由y =2sinx 到f (x )的变换即得.观察图象知A =2,f (x )周期为T ,则T 4=5π12−π6=π4,即T =π,ω=2πT=2,又f (π6)=2,即2⋅π6+φ=2kπ+π2(k ∈Z),而|φ|<π2,则k =0,φ=π6, 所以f (x )=2sin(2x +π6),把y =2sinx 图象向左平移π6得y =2sin(x +π6)图象,再把所得图象上每一点的横坐标变为原来的12倍即得f (x ).故选:C 填空题11、计算:2cos50°−tan40°2=___________.答案:√32##12√3分析:先切化弦,再根据二倍角的正弦公式、诱导公式、两角差的余弦公式化简即可得解.2cos50°−tan40°2=2sin40°−sin40°2cos40°=4sin40°cos40°−sin40°2cos40°=2sin80°−sin40°2cos40°=2cos10°−sin40°2cos40°=2cos (40°−30°)−sin40°2cos40°=√3cos40°+sin40°−sin40°2cos40°=√32. 所以答案是:√3212、赵爽弦图如图所示,其中大正方形是由四个全等的直角三角形和中间一个小正方形拼成的,若α∈(0,π4),且小正方形与大正方形的面积之比为1:4,则tanα的值为______.答案:4−√73分析:设大正方形的边长为a ,由直角三角形中的三角函数定义求得小正方形边长,然后由已知面积比可求得α的关系式,从而可得tanα.设大正方形的边长为a ,则小正方形的边长为a (cosα−sinα),所以a 2(cosα−sinα)2a 2=1−2sinαcosα=14,即sinαcosα=38,所以sinαcosαsin 2α+cos 2α=tanαtan 2α+1=38,即3tan 2α−8tanα+3=0,得tanα=4−√73或tanα=4+√73.又α∈(0,π4),所以0<tanα<1,即tanα=4−√73.所以答案是:4−√73.13、若函数f (x )=2sin (ωx +π6)(ω>0)在区间[−π4,π4]上单调递增,则ω的最大值是__________.答案:43分析:直接利用正弦函数的单调性与区间的关系列不等式即可求解. ∵−π4≤x ≤π4,∴π6−π4ω≤ωx +π6≤π4ω+π6,要使f (x )在[−π4,π4]上单调递增,则{π6−π4ω≥−π2,π4ω+π6≤π2, ,解得{ω⩽83ω⩽43, 又∵ω>0,∴0<ω⩽43,则ω的最大值是43. 所以答案是:43.14、将函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的图像向左平移θ个单位长度得到函数g (x )的图象,如图所示,图中阴影部分的面积为π2,则φ=___________.答案:π6分析:根据三角函数图象的对称性,得到S =2S ▭ABCD =π2,求得θ=π4,进而求得w =2,得到f (x )=sin(2x+φ),结合f(π6)=1,即可求得φ的值.如图所示,根据三角函数图象的对称性,可得阴影部分的面积等于矩形ABCD和EFGH的面积之和,即S= S▭ABCD+S▭EFGH=2S▭ABCD,因为函数f(x)=sin(ωx+φ)的图像向左平移θ个单位长度得到函数g(x)的图象,所以S▭ABCD=θ×1=θ,又因为图中阴影部分的面积为π2,所以2θ=π2,解得θ=π4,又由图象可得θ=T4,可得T4=π4,所以T=π,所以w=2πT=2,所以f(x)=sin(2x+φ),因为f(π6)=sin(2×π6+φ)=1,可得π3+φ=π2+2kπ,k∈Z,即φ=π6+2kπ,k∈Z,因为|φ|<π2,所以φ=π6.所以答案是:π615、如图,弹簧挂着的小球做上下振动,它在t秒时相对于平衡位置(即静止时的位置)的高度ℎ厘米满足下列关系:ℎ=2sin(t+π6),t∈[0,+∞),则每秒钟小球能振动______次.答案:12π分析:求正弦型函数的频率.函数ℎ=2sin(t+π6),t∈[0,+∞)的周期T=2π,故频率为12π.所以每秒钟小球能振动12π次.所以答案是:12π.解答题16、如图,有一景区的平面图是一个半圆形,其中O为圆心,直径AB的长为2km,C,D两点在半圆弧上,且BC=CD,设∠COB=θ;(1)当θ=π12时,求四边形ABCD的面积.(2)若要在景区内铺设一条由线段AB,BC,CD和DA组成的观光道路,则当θ为何值时,观光道路的总长l最长,并求出l的最大值.答案:(1)√6−√24+14;(2)5分析:(1)把四边形ABCD分解为三个等腰三角形:△COB,△COD,△DOA,利用三角形的面积公式即得解;(2)利用θ表示(1)中三个等腰三角形的顶角,利用正弦定理分别表示BC,CD和DA,令t=sinθ2,转化为二次函数的最值问题,即得解.(1)连结OD,则∠COD=π12,∠AOD=5π6∴四边形ABCD的面积为2×12×1×1×sinπ12+12×1×1×sin5π6=√6−√24+14(2)由题意,在△BOC 中,∠OBC =π−θ2,由正弦定理BC sinθ=OB sin(π−θ2)=1cos θ2∴BC =CD =sinθcos θ2=2sin θ2同理在△AOD 中,∠OAD =θ,∠DOA =π−2θ,由正弦定理DA sin(π−2θ)=OD sinθ∴DA =sin2θsinθ=2cosθ∴l =2+4sin θ2+2cosθ=2+4sin θ2+2(1−2sin 2θ2),0<θ<π2令t =sin θ2(0<t <√22) ∴l =2+4t +2(1−2t 2)=4+4t −4t 2=−4(t −12)2+5∴t =12时,即θ=π3,l 的最大值为5小提示:本题考查了三角函数和解三角形综合实际应用问题,考查了学生综合分析,数学建模,转化划归,数学运算能力,属于较难题17、已知函数f (x )=sin(ωx +π3)(ω>0). (1)当ω=2时,求f (x )在[0,π2]的值域;(2)若至少存在三个x 0∈(0,π3),使得f (x 0)=−1,求f (x )最小正周期的取值范围; (3)若f (x )在(π2,π)上单调递增,且存在m ∈(π2,π),使得f(2m −π3ω)>√22,求ω的取值范围. 答案:(1)[−√32,1] (2)(0,4π31) (3)18<ω≤16分析:(1)当ω=2时,求出2x +π3的范围,根据三角函数的性质,可得答案; (2)由题意,设f (x )最小正周期为T ,则可得T 满足的不等式,由此求得T 的范围.(3)由题意f(x)在(π2,π)上单调递增,列出相应不等式组,可得0<ω≤16,再根据存在m ∈(π2,π),使得f(2m −π3ω)>√22能成立,列出不等式,即可求得ω的范围.(1) 当ω=2时,f (x )=sin(ωx +π3)(ω>0),由x ∈[0,π2]知π3≤2x +π3≤4π3, −√32≤sin(2x +π3)≤1,∴f (x )的值域为[−√32,1]. (2)∵对于函数f (x )=sin(ωx +π3)(ω>0), 至少存在三个x 0∈(0,π3),使得f (x 0)=−1, 设f (x )最小正周期为T ,∴(2π−π32π⋅T +T +34⋅T)<π3,即3112T <π3,∴0<T <4π31, ∴f (x )的最小正周期的取值范围为(0,4π31).(3) 若f (x )在(π2,π)上单调递增,ωx +π3∈(ωπ2+π3,ωπ+π3) , ∴{ωπ+π3≤π2+2kπ2kπ−π2≤ωπ2+π3,k ∈Z ,∴4k −53≤ω≤16+2k,k ∈Z , 当k =0时,−53≤ω≤16,又ω>0,故0<ω≤16,当k =1时, 73≤ω≤136,ω 不存在,同理k 取其它整数时,ω不存在,故0<ω≤16∵存在m ∈(π2,π),使得f(2m −π3ω)>√22, 即sin[ω(2m −π3ω)+π3]>√22能成立, 即sin2ωm >√22能成立. ∵2ωm ∈(ωπ,2ωπ),∴需π4+2kπ<2ωπ<3π4+2kπ,k ∈Z ,∴18+k <ω<38+k,k ∈Z .,而0<ω≤16,故18<ω≤16 综上可得,18<ω≤16. 18、如图,点A,B,C 是圆O 上的点.(1)若AB =4,∠ACB =π6,求劣弧AB ⌢的长; (2)已知扇形AOB 的周长为8,求这个扇形的面积取得最大值时圆心角的大小. 答案:(1)4π3 (2)2分析:(1)由圆心角为π3可知△AOB 为等边三角形,由扇形弧长公式可求得结果; (2)设圆O 的半径为r ,扇形AOB 的弧长为l ,圆心角为α,可知2r +l =8; 方法一:由S =12l ⋅r ,利用基本不等式可知当2r =l =4时,S 取得最大值,由α=l r 可求得结果; 方法二:由S =12l ⋅r ,将S 表示成关于r 的二次函数的形式,根据二次函数性质可确定最大值点,由此可得r,l ,由α=l r 可求得结果.(1)∵∠ACB=π6,∴∠AOB=2∠ACB=π3,又OA=OB,∴△AOB为等边三角形,∴OA=AB=4,则劣弧AB⌢的长为π3⋅OA=4π3.(2)设圆O的半径为r,扇形AOB的弧长为l,圆心角为α,∵扇形AOB的周长为8,∴2r+l=8,方法一:扇形面积S=12l⋅r=14l⋅2r≤14⋅(2r+l2)2=4(当且仅当2r=l=4时取等号),∴当扇形面积取得最大值时,圆心角α=lr=2.方法二:扇形面积S=12l⋅r=12(8−2r)⋅r=−r2+4r=−(r−2)2+4,则当r=2时,S取得最大值,此时l=8−2r=4,∴当扇形面积取得最大值时,圆心角α=lr=2.19、已知3sinα+4cosα=5,求tanα.答案:34.分析:将给定等式两边平方,再利用同角公式变形求解作答.将3sinα+4cosα=5两边平方得:9sin2α+24sinαcosα+16cos2α=25=25sin2α+25cos2α,整理得:16sin2α−24sinαcosα+9cos2α=0,即(4sinα−3cosα)2=0,有4sinα=3cosα,所以tanα=34.。
高中数学必修一第五章三角函数知识汇总大全(带答案)
高中数学必修一第五章三角函数知识汇总大全单选题1、若α∈(0,π2),tan2α=cosα2−sinα,则tanα=( ) A .√1515B .√55C .√53D .√153答案:A分析:由二倍角公式可得tan2α=sin2αcos2α=2sinαcosα1−2sin 2α,再结合已知可求得sinα=14,利用同角三角函数的基本关系即可求解.∵tan2α=cosα2−sinα∴tan2α=sin2αcos2α=2sinαcosα1−2sin 2α=cosα2−sinα,∵α∈(0,π2),∴cosα≠0,∴2sinα1−2sin 2α=12−sinα,解得sinα=14, ∴cosα=√1−sin 2α=√154,∴tanα=sinαcosα=√1515. 故选:A.小提示:关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出sinα. 2、已知2tan θ–tan(θ+π4)=7,则tan θ=( ) A .–2B .–1C .1D .2 答案:D分析:利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案. ∵2tanθ−tan(θ+π4)=7,∴2tanθ−tanθ+11−tanθ=7,令t =tanθ,t ≠1,则2t −1+t1−t =7,整理得t 2−4t +4=0,解得t =2,即tanθ=2. 故选:D.小提示:本题主要考查了利用两角和的正切公式化简求值,属于中档题.3、要得到函数y =sin (2x +π6)的图象,可以将函数y =cos (2x −π6)的图象( ) A .向右平移π12个单位长度B .向左平移π12个单位长度C .向右平移π6个单位长度D .向左平移π6个单位长度答案:A分析:利用诱导公式将平移前的函数化简得到y =sin (2x +π3),进而结合平移变换即可求出结果. 因为y =cos (2x −π6)=sin (2x −π6+π2)=sin (2x +π3),而y =sin [2(x −π12)+π3],故将函数y =cos (2x −π6)的图象向右平移π12个单位长度即可, 故选:A. 4、已知sinα=2√67,cos (α−β)=√105,且0<α<3π4,0<β<3π4,则sinβ=( )A .9√1535B .11√1035C .√1535D .√1035答案:A解析:易知sinβ=sin(α−(α−β)),利用角的范围和同角三角函数关系可求得cosα和sin (α−β),分别在sin (α−β)=√155和−√155两种情况下,利用两角和差正弦公式求得sinβ,结合β的范围可确定最终结果. ∵sinα=2√67<√22且0<α<3π4,∴0<α<π4,∴cosα=√1−sin 2α=57. 又0<β<3π4,∴−3π4<α−β<π4,∴sin (α−β)=±√1−cos 2(α−β)=±√155. 当sin (α−β)=√155时, sinβ=sin(α−(α−β))=sinαcos (α−β)−cosαsin (α−β) =2√67×√105−57×√155=−√1535, ∵0<β<3π4,∴sinβ>0,∴sinβ=−√1535不合题意,舍去; 当sin (α−β)=−√155,同理可求得sinβ=9√1535,符合题意.综上所述:sinβ=9√1535.故选:A .小提示:易错点睛:本题中求解cosα时,易忽略sinα的值所确定的α的更小的范围,从而误认为cosα的取值也有两种不同的可能性,造成求解错误.5、已知简谐振动f (x )=Asin (ωx +φ)(|φ|<π2)的振幅是32,图象上相邻最高点和最低点的距离是5,且过点(0,34),则该简谐振动的频率和初相是( ) A .16,π6B .18,π3C .18,π6D .16,π3答案:C分析:根据正弦型函数的图象与性质求出振幅、周期,再由过点(0,34)求出初相即可得解. 由题意可知,A =32,32+(T2)2=52, 则T =8,ω=2π8=π4,∴ y =32sin (π4x +φ). 由32sin φ=34,得sin φ=12.∵|φ|<π2, ∴φ=π6.因此频率是18,初相为π6.故选:C6、下列函数中为周期是π的偶函数是( ) A .y =|sinx |B .y =sin|x| C .y =−sinx D .y =sinx +1 答案:A分析:根据偶函数定义可判断选项,由三角函数的图像与性质可得周期,即可得解. 对于A ,y =|sinx |为偶函数,且最小正周期为π,所以A 正确; 对于B ,y =sin |x |为偶函数,但不具有周期性,所以B 错误; 对于C ,y =−sinx 为奇函数,所以C 错误; 对于D, y =sinx +1为非奇非偶函数,所以D 错误. 综上可知,正确的为A 故选:A7、已知扇形的圆心角为3π4,半径为4,则扇形的面积S 为( )A .3πB .4πC .6πD .2π 答案:C解析:利用S =12αr 2即可求得结论. 由扇形面积公式得:S =12×3π4×42=6π.故选:C.8、已知A 为三角形的内角,且sinA +cosA =713,则tanA =( ) A .−125B .−512C .512D .125答案:A分析:根据同角三角函数的基本关系,运用“弦化切”求解即可.∵sinA +cosA =713∴(sinA +cosA )2=(713)2计算得2sinAcosA =−120169<0,所以sinA >0,cosA <0,从而可计算的(sinA −cosA )2=1−2sinAcosA =289169∴sinA −cosA =1713, ∴sinA =1213,cosA =−513∴tanA =sinAcosA =−125,选项A 正确,选项BCD 错误. 故选:A. 多选题9、[多选题]下列说法正确的有( ) A .终边相同的角一定相等 B .钝角一定是第二象限角 C .第一象限角可能是负角 D .小于90°的角都是锐角 答案:BC分析:对于A :取特殊角30°和390°.即可否定结论;对于B :由第二象限角的范围直接判断; 对于C :取特殊角-330°即可判断; 对于D :取特殊角-45°角进行否定结论.对于A :终边相同的角不一定相等,比如30°和390°.故A 不正确;对于B :因为钝角的大小在(90°,180°),所以钝角一定是第二象限角,故B 正确; 对于C :如-330°角是第一象限角,所以C 正确; 对于D :−45°<90°,-45°角它不是锐角,所以D 不正确. 故选:BC .10、已知sin (x +π4)=−√55,x ∈(π2,π),则( )A .cos (x +π4)=−2√55B .tan (x +π4)=2C .cos (π4−x)=−√55D .sin (π4−x)=2√55答案:AC分析:依题意,可得x +π4∈(π,5π4),再结合sin (x +π4)=−√55,利用同角三角函数间的关系及诱导公式,对四个选项逐一判断可得答案. 解:∵x ∈(π2,π),∴x +π4∈(3π4,5π4),又sin (x +π4)=−√55,∴x +π4∈(π,5π4),∴cos (x +π4)=−√1−sin 2(x +π4)=−2√55,故A 正确;∴tan (x +π4)=sin(x+π4)cos(x+π4)=12,故B 错误;又cos (π4−x)=cos [π2−(x +π4)]=sin (x +π4)=−√55,故C 正确;sin (π4−x)=sin [π2−(x +π4)]=cos (x +π4)=−2√55≠2√55,故D 错误,故选:AC .11、设θ的终边在第二象限,则√1−sinθcos θ2−sinθ2的值可能为( )A .1B .-1C .-2D .2 答案:AB分析:先求得θ2的范围,由此进行分类讨论,结合二倍角公式、同角三角函数的基本关系式,化简求得所求表达式的值.∵θ的终边在第二象限,∴2k π+π2<θ<2k π+π,k ∈Z ,∴k π2+π4<θ2<k π2+π2,k ∈Z ,√1−sinθcos θ2−sinθ2=√sin 2θ2+cos 2θ2−2sin θ2cosθ2cos θ2−sinθ2=√(sin θ2−cos θ2)2cos θ2−sinθ2=|sin θ2−cos θ2|cos θ2−sinθ2,故当2k π+π4<θ2<2k π+π2,k ∈Z 时, sin θ2−cos θ2>0,√1−sinθcos θ2−sinθ2=sin θ2−cosθ2cos θ2−sinθ2=−1当2k π+5π4<θ2<2k π+3π2,k ∈Z 时,sin θ2−cos θ2<0,√1−sinθcos θ2−sinθ2=cos θ2−sinθ2cos θ2−sinθ2=1.故选:AB 填空题12、已知120°的圆心角所对的弧长为4πm ,则这个扇形的面积为_________m 2. 答案:12π分析:选求出半径,再用扇形面积公式计算即可. 由题意,120°=2π3,且圆心角所对的弧长为4πm ,∴2π3R =4π,解得R =6,∴扇形的面积为S =12×4π×6=12π(m 2). 所以答案是:12π.13、已知tan α=2,则1sin 2α−cos 2α_____.答案:53分析:根据弦切互化即可求解.因为tan α=2 ,所以1sin 2α−cos 2α=sin 2α+cos 2αsin 2α−cos 2α=tan 2α+1tan 2α−1=4+14−1=53 所以答案是:53 14、已知tan(α+β2)=√62,tanαtanβ=137,则cos(α−β)的值为______.答案:23分析:应用三角函数的恒等变换公式对tanβ=sinαsinβcosαcosβ变形求得cos(α−β)=−103cos(α+β),再由tanα+β2求得cos(α+β),可得结论. tanαtanβ=sinαsinβcosαcosβ=12[cos(α−β)−cos(α+β)]12(cos(α−β)+cos(α+β)]=137,所以cos(α−β)=−103cos(α+β),cos(α+β)=1−tan 2α+β21+tan 2α+β2=1−(√62)21+(√62)=−15,所以cos(α−β)=−103×(−15)=23.所以答案是:23. 解答题15、已知函数f (x )=sin (5π6−2x)−2sin (x −π4)cos (x +3π4).(1)解不等式f (x )≥−12;(2)若x ∈[π12,π3],且F (x )=−4λf (x )−cos (4x −π3)的最小值是−32,求实数λ的值. 答案:(1)[kπ,kπ+2π3],k ∈Z ;(2)λ=12. 分析:(1)利用三角恒等变换公式化简,再结合三角函数图像解不等式;(2) 利用三角恒等变换公式化简,再转化为关于λ的一元二次不等式,利用分类讨论的思想求出λ的值. (1)∵f (x )=sin (5π6−2x)−2sin (x −π4)cos (x +3π4)=12cos2x+√32sin2x+(sinx−cosx)(sinx+cosx) =12cos2x+√32sin2x+sin2x−cos2x=12cos2x+√32sin2x−cos2x=sin(2x−π6)由2kπ−π6≤2x−π6≤2kπ+7π6,得kπ≤x≤kπ+2π3,解集为[kπ,kπ+2π3],k∈Z(2)F(x)=−4λf(x)−cos(4x−π3)=−4λsin(2x−π6)−[1−2sin2(2x−π6)]=2sin2(2x−π6)−4λsin(2x−π6)−1=2[sin(2x−π6)−λ]2−1−2λ2∵x∈[π12,π3],∴0≤2x−π6≤π2,0≤sin(2x−π6)≤1,①当λ<0时,当且仅当sin(2x−π6)=0时,f(x)取得最小值−1,这与已知不相符;②当0≤λ≤1时,当且仅当sin(2x−π6)=λ时,f(x)取最小值−1−2λ2,由已知得−1−2λ2=−32,解得λ=12;③当λ>1时,当且仅当sin(2x−π6)=1时,f(x)取得最小值1−4λ,由已知得1−4λ=−32,解得λ=58,这与λ>1相矛盾.综上所述,λ=12.小提示:解三角函数的不等式问题需要利用数形结合的思想,而二次函数含参的最值问题需要利用分类讨论的思想.。
部编版高中数学必修一第五章三角函数带答案笔记重点大全
(名师选题)部编版高中数学必修一第五章三角函数带答案笔记重点大全单选题1、已知函数f(x)=2sin (ωx −π6)(ω>12,x ∈R ),若f(x)的图像的任何一条对称轴与x 轴交点的横坐标均不属于区间(3π,4π),则ω的取值范围是( ) A .(12,23]∪[89,76]B .(12,1724]∪[1718,2924]C .[59,23]∪[89,1112]D .[1118,1724]∪[1718,2324]2、《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中具有表现力的瞬间(如图).现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为π4m ,肩宽约为π8m ,“弓”所在圆的半径约为54m ,则掷铁饼者双手之间的距离约为(参考数据:√2≈1.414,√3≈1.732)( )A .1.012mB .1.768mC .2.043mD .2.945m3、已知sin (α−π3)+√3cosα=13,则sin (2α+π6)的值为( )A .13B .−13C .79D .−79 4、已知函数f(x)=cos 2ωx 2+√32sinωx −12(ω>0,x ∈R),若函数f(x)在区间(π,2π)内没有零点,则ω的取值范围是( ) A .(0,512]B .(0,56)C .(0,512]∪[56,1112]D .(0,512]∪(56,1112]5、已知函数y =√2sin(x +π4),当y 取得最小值时,tanx 等于( )A .1B .−1C .√32D .−√326、若α∈(0,π2),tan2α=cosα2−sinα,则tanα=( ) A .√1515B .√55C .√53D .√153 7、已知2tan θ–tan(θ+π4)=7,则tan θ=( ) A .–2B .–1C .1D .28、要得到函数y =sin (2x +π6)的图象,可以将函数y =cos (2x −π6)的图象( )A .向右平移π12个单位长度B .向左平移π12个单位长度C .向右平移π6个单位长度D .向左平移π6个单位长度 多选题9、给出下列四个关系式,其中不正确的是( ). A .sinαsinβ=12[cos(α+β)−cos(α−β)]B .sinαcosβ=12[sin(α+β)+sin(α−β)] C .cosαcosβ=−12[cos(α+β)−cos(α−β)] D .cosαsinβ=12[sin(α+β)−sin(α−β)] 10、下列与412°角的终边相同的角是( ) A .52°B .778°C .−308°D .1132°11、已知x ∈R ,则下列等式恒成立的是( ) A .sin (3π−x )=sinx B .sinπ−x 2=cos x2C .cos (5π2+3x)=sin3x D .cos (3π2+2x)=−sin2x 填空题12、若角α的终边落在直线y =-x 上,则√1−sin 2α+√1−cos 2αcosα的值等于________.13、已知α为锐角,且sinα=34,则cos (π−α)的值为_________.部编版高中数学必修一第五章三角函数带答案(四十六)参考答案1、答案:C 分析:由已知得12×2πω≥4π−3π,kπ+π2≤3ωπ−π6,且kπ+π+π2≥4ωπ−π6,解之讨论k ,可得选项.因为f(x)的图像的任何一条对称轴与x 轴交点的横坐标均不属于区间(3π,4π),所以12×2πω≥4π−3π,所以12<ω≤1,故排除A ,B ;又kπ+π2≤3ωπ−π6,且kπ+π+π2≥4ωπ−π6,解得3k +29≤ω≤3k +512,k ∈Z ,当k =0时,29≤ω≤512,不满足12<ω≤1, 当k =1时,59≤ω≤23,符合题意,当k =2时,89≤ω≤1112,符合题意, 当k =3时,119≤ω≤149,不满足12<ω≤1,故C 正确,D 不正确, 故选:C.小提示:关键点睛:本题考查根据正弦型函数的对称性求得参数的范围,解决问题的关键在于运用整体代换的思想,建立关于ω的不等式组,解之讨论可得选项. 2、答案:B分析:由题意分析得到这段弓形所在的弧长,结合弧长公式求出其所对的圆心角,双手之间的距离,求得其弦长,即可求解.如图所示,由题意知“弓”所在的弧ACB⌢ 的长l =π4+π4+π8=5π8,其所对圆心角α=5π854=π2,则两手之间的距离|AB |=2|AD |=2×54×sin π4≈1.768(m ). 故选:B .3、答案:D解析:利用两角和与差的正弦公式,诱导公式化简已知等式可得cos(α−π6)=13,进而利用诱导公式,二倍角公式化简所求即可求解.因为sin (α−π3)+√3cosα=12sinα−√32cosα+√3cosα=12sinα+√32cosα =sin (α+π3)=sin (π2+α−π6)=cos (α−π6)=13,所以sin (2α+π6)=sin (π2+2α−π3)=cos (2α−π3)=2cos 2(α−π6)−1=2×(13)2−1=−79, 故选:D 4、答案:C分析:先化简函数解析式,由π<x <2π得,求得πω+π6<ωx +π6<2πω+π6,利用正弦函数图象的性质可得2πω+π6≤π或{2πω+π6≤2ππω+π6≥π ,求解即可. f(x)=cosωx+12+√32sinωx −12=√32sinωx +12cosωx =sin(ωx +π6).由π<x <2π得,πω+π6<ωx +π6<2πω+π6, ∵函数f(x)在区间(π,2π)内没有零点,且πω+π6>π6, ∴2πω+π6≤π或{2πω+π6≤2ππω+π6≥π , 解得0<ω⩽512或56⩽ω⩽1112,则ω的取值范围是(0,512]∪[56,1112].故选:C . 5、答案:A分析:由正弦函数的性质,先求出当y 取得最小值时x 的取值,从而求出tanx . 函数y =√2sin(x +π4),当y 取得最小值时,有x +π4=2kπ+3π2,故x =2kπ+5π4,k ∈Z .∴tanx =tan (2kπ+5π4)=tan (π4)=1,k ∈Z . 故选:A . 6、答案:A分析:由二倍角公式可得tan2α=sin2αcos2α=2sinαcosα1−2sin 2α,再结合已知可求得sinα=14,利用同角三角函数的基本关系即可求解.∵tan2α=cosα2−sinα∴tan2α=sin2αcos2α=2sinαcosα1−2sin 2α=cosα2−sinα,∵α∈(0,π2),∴cosα≠0,∴2sinα1−2sin 2α=12−sinα,解得sinα=14, ∴cosα=√1−sin 2α=√154,∴tanα=sinαcosα=√1515. 故选:A.小提示:关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出sinα. 7、答案:D分析:利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案. ∵2tanθ−tan(θ+π4)=7,∴2tanθ−tanθ+11−tanθ=7,令t =tanθ,t ≠1,则2t −1+t1−t =7,整理得t 2−4t +4=0,解得t =2,即tanθ=2. 故选:D.小提示:本题主要考查了利用两角和的正切公式化简求值,属于中档题. 8、答案:A分析:利用诱导公式将平移前的函数化简得到y =sin (2x +π3),进而结合平移变换即可求出结果.因为y =cos (2x −π6)=sin (2x −π6+π2)=sin (2x +π3), 而y =sin [2(x −π12)+π3],故将函数y =cos (2x −π6)的图象向右平移π12个单位长度即可, 故选:A. 9、答案:AC分析:根据sin(α±β)=sinαcosβ±cosαsinβ,cos(α±β)=cosαcosβ∓sinαsinβ,进行化简可得结果. 由sin(α+β)=sinαcosβ+cosαsinβ,sin(α−β)=sinαcosβ−cosαsinβ 两式相加可得sinαcosβ=12[sin(α+β)+sin(α−β)],故B 正确两式相减可得cosαsinβ=12[sin(α+β)−sin(α−β)],故D 正确由cos(α+β)=cosαcosβ−sinαsinβ,cos(α−β)=cosαcosβ+sinαsinβ 两式相减可得sinαsinβ=−12[cos(α+β)−cos(α−β)],故A,C 错 故选:AC小提示:本题考核从两角和与差的正弦公式与余弦公式,重在对公式的考查与计算,属基础题. 10、答案:ACD解析:首先求出与412°角的终边相同角的表达式,然后判断选项是否与412°角是终边相同角. 因为412°=360°+52°,所以与412°角的终边相同角为β=k ×360°+52°,k ∈Z , 当k =−1时,β=−308°, 当k =0时,β=52°, 当k =2时,β=772°, 当k =3时,β=1132°, 当k =4时,β=1492°, 综上,选项A 、C 、D 正确. 故选:ACD.小提示:本题主要考查了终边相同角,属于基础题.11、答案:AB分析:利用诱导公式可判断各选项的正误.sin(3π−x)=sin(π−x)=sinx,sinπ−x2=sin(π2−x2)=cos x2,cos(5π2+3x)=cos(π2+3x)=−sin3x,cos(3π2+2x)=sin2x,故选:AB. 12、答案:0解析:先求出α=2kπ+34π或2kπ+74π,k∈Z,再分类讨论得解.因为角α的终边落在直线y=-x上,所以α=2kπ+34π或2kπ+74π,k∈Z,当α=2kπ+34π,k∈Z,即角α的终边在第二象限时,sinα>0,cosα<0;所以√1−sin2α+√1−cos2αcosα=sinα|cosα|+|sinα|cosα=sinα−cosα+sinαcosα=0当α=2kπ+74π,k∈Z,即角α的终边在第四象限时,sinα<0,cosα>0.所以√1−sin2α+√1−cos2αcosα=sinα|cosα|+|sinα|cosα=sinαcosα+−sinαcosα=0综合得√1−sin2α√1−cos2αcosα的值等于0.所以答案是:013、答案:−√74分析:利用同角三角函数的基本关系结合诱导公式可求得结果.因为α为锐角,且sinα=34,则cosα=√1−sin2α=√74,因此,cos(π−α)=−cosα=−√74.所以答案是:−√74.。
高中数学必修一第五章三角函数知识点总结全面整理(带答案)
高中数学必修一第五章三角函数知识点总结全面整理单选题1、已知函数f (x )=sin (2x +π3),为了得到函数g (x )=cos (2x +π3)的图象只需将y =f (x )的图象( ) A .向左平移π4个单位B .向右平移π4个单位 C .向左平移π2个单位D .向右平移π2个单位 答案:A分析:利用三角函数的平移结合诱导公式即可求解. 解:因为sin (2x +π3+π2)=cos (2x +π3) 所以sin(2x +π3)→sin(2x +π2+π3),只需将f (x )的图象向左平移π4个单位, 故选:A.2、已知tanα=−2,则2sinα+cosαcosα−sinα=( )A .−4B .−12C .−1D .−13答案:C分析:利用齐次化可求三角函数式的值.2sinα+cosαcosα−sinα=2tanα+11−tanα=−4+11−(−2)=−1,故选:C . 3、若sinα+cosαsinα−cosα=12,则tan (α+π4)的值为( )A .−2B .2C .−12D .12 答案:C分析:利用弦化切和两角和的正切展开式化简计算可得答案. 因为sinα+cosαsinα−cosα=12.所以tanα+1tanα−1=12,解得tanα=−3, 于是tan (α+π4)=tanα+tanπ41−tanαtanπ4=−3+11−(−3)=−12.故选:C.4、已知sinαcosα=12,则tanα+1tanα的值为( ) A .12B .−12C .−2D .2答案:D解析:根据题中条件,由切化弦,将所求式子化简整理,即可得出结果. ∵sinαcosα=12, ∴tanα+1tanα=sinαcosα+cosαsinα=sin 2α+cos 2αsinαcosα=112=2,故选:D.5、设0<α<π,sinα+cosα=713,则1−tanα1+tanα的值为( )A .177B .717C .−177D .−717 答案:C分析:依题意可知π2<α<π,得到cosα−sinα<0,再利用正余弦和差积三者的关系可求得cosα−sinα的值,将所求关系式切化弦,代入所求关系式计算即可. 由sinα+cosα=713,平方得到1+sin2α=49169,∴sin2α=49169−1=−120169=2sinαcosα, 0<α<π, ∴ π2<α<π,∴cosα<0,而sinα>0, ∴cosα−sinα<0; 令t =cosα−sinα(t <0), 则t 2=1−sin2α,∴t 2=1−sin2α=1+120169=289169,t <0∴t =−1713∴1−tanα1+tanα=cosα−sinαcosα+sinα=137(cosα−sinα)=137×(−1713)=−177,故选:C . 6、cos 2π12−cos 25π12=( )A .12B .√33C .√22D .√32答案:D分析:由题意结合诱导公式可得cos 2π12−cos 25π12=cos 2π12−sin 2π12,再由二倍角公式即可得解. 由题意,cos 2π12−cos 25π12=cos 2π12−cos 2(π2−π12)=cos 2π12−sin 2π12=cos π6=√32. 故选:D.7、小说《三体》中的“水滴”是三体文明派往太阳系的探测器,由强相互作用力材料制成,被形容为“像一滴圣母的眼泪”.小刘是《三体》的忠实读者,他利用几何作图软件画出了他心目中的水滴(如图),由线段AB ,AC 和优弧BC 围成,其中BC 连线竖直,AB ,AC 与圆弧相切,已知“水滴”的水平宽度与竖直高度之比为74,则cos∠BAC =( ).A .1725B .4√37C .45D .57答案:A分析:设优弧BC 的圆心为O ,半径为R ,连接OA ,OB ,OC ,如图,进而可得“水滴”的水平宽度为|OA |+R ,竖直高度为2R ,根据题意求得OA =52R ,由切线的性质和正弦函数的定义可得sin∠BAO =25,结合圆的对称性和二倍角的余弦公式即可得出结果.设优弧BC 的圆心为O ,半径为R ,连接OA ,OB ,OC ,如下图所示易知“水滴”的水平宽度为|OA |+R ,竖直高度为2R ,则由题意知OA+R 2R=74,解得OA =52R ,AB 与圆弧相切于点B ,则OB ⊥AB ,∴在Rt △ABO 中,sin∠BAO =OB OA =R 52R=25,由对称性可知,∠BAO =∠CAO ,则∠BAC =2∠BAO , ∴cos∠BAC =1−2sin 2∠BAO =1−2×(25)2=1725, 故选:A .8、已知sinθ+sin (θ+π3)=1,则sin (θ+π6)=( ) A .12B .√33C .23D .√22 答案:B分析:将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值. 由题意可得:sinθ+12sinθ+√32cosθ=1,则:32sinθ+√32cosθ=1,√32sinθ+12cosθ=√33, 从而有:sinθcos π6+cosθsin π6=√33, 即sin (θ+π6)=√33. 故选:B.小提示:本题主要考查两角和与差的正余弦公式及其应用,属于中等题. 多选题9、关于函数f(x)=sin|x|+|sinx|,下列叙述正确的是( ) A .f(x)是偶函数B .f(x)在区间(π2,π)单调递增C .f(x)的最大值为2D .f(x)在[−π,π]有4个零点 答案:AC分析:根据函数的奇偶性、单调性、最值,零点等概念结合正弦函数性质判断各选项. f(−x)=sin |−x |+|sin(−x)|=sin |x |+|sinx |=f(x),f(x)是偶函数,A 正确; x ∈(π2,π)时,f(x)=sinx +sinx =2sinx ,单调递减,B 错误; f(x)=sin |x |+|sinx |≤1+1=2,且f(π2)=2,因此C 正确;在[−π,π]上,−π<x <0时,f(x)=sin(−x)+(−sinx)=−2sinx >0, 0<x <π时,f(x)=sinx +sinx =2sinx >0, f(x)的零点只有π,0,−π共三个,D 错. 故选:AC .10、已知tanα=4,tanβ=−14,则( ) A .tan(−α)tanβ=1B .α为锐角 C .tan(β+π4)=35D .tan2α=tan2β答案:ACD分析:由诱导公式可判断A ,由正切函数的定义可判断B ,由正切函数的两角和公式可判断C ,由二倍角公式可判断D.对于A ,∵tanα=4,tanβ=−14,∴tan(−α)tanβ=−tanαtanβ=1,故A 正确;对于B ,∵tanα=4>0,∴α为第一象限角或第三象限角,故B 错误; 对于C ,∵tanβ=−14,∴tan(β+π4)=1+tanβ1−tanβ=35,故C 正确;对于D ,∵tanα=4,tanβ=−14,∴tan2α=2tanα1−tan 2α=2×41−42=−815,tan2β=2×(−14)1−(−14)2=−815,故D 正确.故选:ACD11、下列等式成立的是( ) A .cos 215°−sin 215°=√32B .sin π8cos π8=√24C .12sin40°+√32cos40°=sin70°D .tan15°=2−√3答案:ABD分析:利用辅助角公式以及二倍角公式即可求解. 对于A ,cos 215°−sin 215°=cos (15°+15°)=cos30°=√32,故A 正确;对于B ,sin π8cos π8=12sin π4=√24,故B 正确;对于C ,12sin40°+√32cos40°=sin40°cos60°+sin60°cos40°=sin (40°+60°)=sin100°=sin80°,故C 错误; 对于D ,tan15°=tan (45∘−30∘) =tan45°−tan30°1+tan45°tan30°=1−√331+√33=2−√3,故D 正确.故选:ABD 填空题12、已知cos (π6+α)=√33,则cos (5π6−α)=________.答案:−√33分析:本题可根据诱导公式得出结果.cos (5π6−α)=cos [π−(π6+α)]=−cos (π6+α)=−√33, 所以答案是:−√3313、函数f (x )=sinx 的图象向左平移π6个单位得到函数g (x )的图象,则下列函数g (x )的结论:①一条对称轴方程为x =7π6;②点(5π6,0)是对称中心;③在区间(0,π3)上为单调增函数;④函数g (x )在区间[π2,π]上的最小值为−12.其中所有正确的结论为______.(写出正确结论的序号)答案:②③④解析:先求得g (x ),然后利用代入法判断①②,根据单调区间和最值的求法判断③④. 函数f (x )=sinx 的图象向左平移π6个单位得到函数g (x )=sin (x +π6), g (7π6)=sin (7π6+π6)=sin4π3=sin (π+π3)=−sin π3=−√32≠±1,所以①错误.g (5π6)=sin (5π6+π6)=sinπ=0,所以②正确.由2kπ−π2≤x +π6≤2kπ+π2,解得2kπ−2π3≤x ≤2kπ+π3,k ∈Z .令k =0得−2π3≤x ≤π3,所以g (x )在区间(0,π3)上为单调增函数,即③正确.由π2≤x ≤π得2π3≤x +π6≤7π6,所以当x =π,x +π6=7π6时,g (x )有最小值为sin7π6=sin (π+π6)=−sin π6=−12,所以④正确. 所以答案是:②③④小提示:解决有关三角函数对称轴、对称中心的问题,可以考虑代入验证法.考查三角函数单调区间的问题,可以考虑整体代入法.14、若α∈(π2,π),且cos 2α−sin α=14 ,则tan α=_____. 答案:−√33分析:根据同角平方和关系可解得sin α=12,进而根据角的范围可得α=5π6,进而可求.因为cos 2α−sin α=14,所以4(1-sin 2α)-4sin α-1=0即4sin 2α+4sin α-3=0 ,∴解得sin α=12或sin α=−32 (舍去). ∵α∈(π2,π),∴α=5π6,因此tan α=tan5π6=−√33. 所以答案是:−√33解答题15、求函数y =3sin(2x +π3)的对称轴和对称中心. 答案:对称轴为x =kπ2+π12,k ∈Z ;对称中心为(kπ2−π6,0),k ∈Z分析:结合y =3sinx 的性质,分别令2x +π3=kπ+π2和2x +π3=kπ可解得对称轴和对称中心.由2x+π3=kπ+π2,得x=kπ2+π12,k∈Z,所以对称轴为x=kπ2+π12,k∈Z.由2x+π3=kπ,得x=kπ2−π6,k∈Z,所以对称中心为(kπ2−π6,0),k∈Z.小提示:本题主要考查了正弦型三角函数的对称轴及对称中心,用到了整体代换的思想,属于基础题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章三角函数第一节任意角 知识点⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z例1(1)若将时针拨快10分钟,则分针转了______度,时针转了________度。
(2)若角θ是第四象限角,则90°+θ是第_______象限角。
(3)已知角α的终边与50°角的终边关于原点对称,则角α的集合_______________.例2在0°-360°内,找出与下列角终边相同的角,并判定是第几象限角。
(1)640°;(2)-120°;(3)-950°12‘ (4)10000°; (5)-10000° 例3求终边与直线y=√3x 重合的角的集合。
例4已知α是第一象限角,求2α,α2,α3所在的象限。
例5如图,(1)终边落在阴影部分(不包括边界)的角的集合是________________________.(2)写出角的终边落在下列阴影区域内角的集合。
°1.(1)-60;-5(2)一(3){α|α=k ∙360°+230°,kϵz }2.(1) 640°与280°终边相同;四(2)-120°和240°终边相同;三(3)与129°48’终边相同,二(4)与280°终边相同,四(5)与80°终边相同,一3.{β|β=n ∙180°+60°,n ∈z }4. 2α第一或第二象限或是终边在y 轴非负半轴上,α2第一或第三象限,α3第一或第二或第三象限5.(1){α|k ∙360°+150°<α<k ∙360°+225°,k ∈z } (2) {α|k ∙180°+30°≤α≤k ∙180°+90°,k ∈z }第2节弧度制 知识点1、长度等于半径长的弧所对的圆心角叫做1弧度.2、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lrα=. 3、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭. 4、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.例1将下列角度与弧度进行互化 (1)20°;(2)112°30’;(3)7π12例2 3π2−3是第几象限角?3,4,5分别是第几象限角?例3已知集合A={α|2kπ≤α≤(2k +1)π,kϵz},B={α|−4≤α≤4},则A ∩B=_____________例4扇形的周长为20cm,面积为25cm 2,求圆心角的弧度数。
例5已知一扇形的周长是10cm,求当扇形的圆心角是多少弧度时,此扇形面积最大?参考答案1.(1)π9(2)5π8(3)105°2.第二象限;3,4,5分别为二、三、四象限角。
3.{α|−4≤α≤−π或0≤α≤π}4.圆心角的弧度数为25.当圆心角为2弧度时,扇形面积最大为254cm 2 第3节任意角的三角函数 知识点1、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,(tan 0yx xα=≠2、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正, 第三象限正切为正,第四象限余弦为正.3、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .例1已知角α终边上一点P (2,-3),求角α的三个三角函数值。
例2已知角α终边落在直线y=3x 上,求角α的正弦、余弦、正切值。
例3已知角α的终边经过点(3a-9,a+2),且cos α≤0,sin α>0,求实数a 的取值范围。
例4函数y=sin x |sin x |+cos x |cos x |+tan x |tan x |的值域是__________参考答案 1. sin α=−3√1313,cos α=2√1313,tan α=−322. 当角α的终边在第一象限时sin α=3√1010,cos α=√1010,tan α=3当角α的终边在第三象限时sin α=−3√1010,cos α=−√1010,tan α=33. α∈(−2,3]4. {-1,3}第4节同角三角函数的基本关系 知识点1、 角三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.例1已知α是第四象限角,tan α=−2,求sin α,cos α。
例2(1)已知sin α=√55,则(sin α)4−(cos α)4的值为______________.(2)化简(1+(tan 15°)2)(cos 15°)2的值等于____________ (3)化简:√1−2sin 10°cos 10°cos 10°−√1−(sin 80°)2例3已知tan α=2,则(1)2sin α−3cos α4sin α−9cos α=______;(2)2sin 2α−3cos 2α4sin 2α−9cos 2α=_________; (3)4sin 2α−3sin αcos α−5cos 2α=__________.例4已知在ΔABC 中,sin A +cos B =15,(1)求sin A ∙cos A ;(2)判断ΔABC 是锐角三角形还是钝角三角形;(3)求tan A 的值。
参考答案 1. sin α=−2√55,cos α=√552. (1)−35(2)1(3)1 3. (1)-1(2)574. (1)sin A ∙cos A =−1225(2) ΔABC 是钝角三角形(3)tan A =−43第5节三角函数的诱导公式 知识点函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.例1求值(1) cos 240°;(2)sin (−16π3);(3)cos (−2040°);(4)tan23π6例2(1)化简cos (θ+4π)∙cos 2(θ+π)∙sin 2(θ+3π)sin (θ−4π)∙sin (θ+5π)∙cos 2(−π+θ) (2)已知角α终边经过点P (-4,3),求cos (π2+α)∙sin (−π−α)cos (11π2−α)∙sin (9π2+α)的值。
例3(1)已知sin (45°+α)=513,则sin (135°−α)=___________; (2)已知cos (π6−α)=√33,求cos (5π6+α)−sin 2(α−π6)的值;(3)已知cos (α−75°)=−13,且α为第四象限角,求sin (105°+α)的值。
参考答案1.(1)-12(2)√32(3)-12(4)-√33 2.(1)-cos θ(2)=tan α=−34 3.(1)513(2)-2+√33(3)2√23第6节正弦函数、余弦函数的图像和性质 知识点sin y x = cos y x = tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=- ()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性2π 2π π 奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称中心(),02k k ππ⎛⎫+∈Z ⎪⎝⎭对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭函数性 质例1求下列函数的周期(1)y=3cos x;(2)y=sin2x;(3)y=sin(x2−π6);(4)y=|sin x|例2设f(x)为定义在R上的偶函数,且满足f(x+2)=-f(x),当2<x<3时,f(x)=x,求f(100.5)及f(105.5)的值。
例3设f(x)是定义域为R的奇函数,且满足T=4,已知:当0≤x≤1时,f(x)=2x+ x−1,求当xϵ[7,8]时的解析式。