河南省2020年中考数学模拟试卷一(含答案)

合集下载

2020年河南省安阳市中考数学(3月份)模拟测试试卷解析版

2020年河南省安阳市中考数学(3月份)模拟测试试卷解析版

2020年中考数学(3月份)模拟测试试卷一、选择题1.计算2﹣3的结果是()A.﹣B.C.﹣8D.82.PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm 用科学记数法可表示为()A.2.5×10﹣5m B.0.25×10﹣7m C.2.5×10﹣6m D.25×10﹣5m 3.某厂通过改进工艺降低了某种产品的成本,两个月内从每件产品250元降低到每件160元,则平均每月降低的百分率为()A.10%B.5%C.15%D.20%4.如果点P(2x+6,x﹣4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.5.二次函数y=﹣x2+4x+1的图象中,若y随x的增大而减小,则x的取值范围是()A.x<2B.x>2C.x<﹣2D.x>﹣26.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2,则点B的对应点B1的坐标是()A.(4,2)B.(1,)C.(1,)或(﹣1,﹣)D.(4,2)或(﹣4,﹣2)7.某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5B.5、5、6C.6、5、6D.5、6、68.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C 为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是()A.4B.﹣4C.8D.﹣89.如图是某几何体的三视图及相关数据,则该几何体的侧面积是()A.60πB.65πC.120πD.130π10.如图,矩形OABC的顶点O(0,0),B(﹣2,2),若矩形绕点O逆时针旋转,每秒旋转60°,则第2017秒时,矩形的对角线交点D的坐标为()A.(﹣1,)B.(﹣1,﹣3)C.(﹣2,0)D.(1,﹣3)二、填空题11.的算术平方根是.12.某校九年级共有1,2,3,4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和3班比赛的概率是.13.如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH 的长为.14.如图,在边长为2的正方形ABCD中,分别以点A,B为圆心,AB的长为半径作与,两弧交于点E,则阴影部分的面积为.15.如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点D是BC上一动点,连接AD,将△ACD沿AD折叠,点C落在点C',连接C'D交AB于点E,连接BC'.当△BC'D 是直角三角形时,DE的长为.三、解答题(共8个小题)16.先化简,再求值:÷(x﹣2﹣),其中x2+2x﹣1=0.17.持续大面积雾霾天气让环保和健康问题成为焦点,某校为了调查学生对雾霾天气知识的了解程度,在学生中做了一次抽样调査,跟进调查统计结果,绘制了不完整的三种统计图表.对雾霾天气了解程度统计表了解程度百分比A.非常了解5%B.比较了解mC.一般了解45%D.不太了解n请结合统计图表,回答下列问题(1)本次参与调查的学生共有人,m=,n=;(2)扇形统计图中D部分所对应的圆心角是度;(3)请补全条形统计图;(4)学校计划从对雾霾天气知识“非常了解”的同学中随机选择5名同学,到某社区开展防雾霾天气知识宣传,本次调查中对雾霾天气知识“非常了解”的小明被选中的概率是多少?18.如图,在△ABC中,∠B=60°,⊙O是△ABC的外接圆,过点A作⊙O的切线,交CO的延长线于点M,CM交⊙O于点D.(1)求证:AM=AC;(2)填空:①若AC=3,MC=;②连接BM,当∠AMB的度数为时,四边形AMBC是菱形.19.某处山坡上有一棵与水平面垂直的大树,狂风过后,大树被刮的倾斜后折断,倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,量得树干的倾斜角∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=4m.(1)求∠DAC的度数;(2)这棵大树折断前高约多少米?(结果精确到个位,参考数据:≈1.4,≈1.7,≈2.4)20.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A 型车数量的两倍,已知A型车每辆进价为1100元,B型车每辆进价为1400元,B型车售价为每辆2000元,应如何进货才能使这批车获利最多?21.小美对函数y=的图象进行了探究,下面是小美的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是;(2)表是y与x的几组对应值,表中m的值是;x﹣2﹣﹣1﹣123…y0﹣﹣1﹣m…(3)如图,小美根据上表在平面直角坐标系xOy中描出了该函数的图象,请结合函数的图象,写出该函数的一条性质;(4)试讨论一次函数y=kx+2(k>0)的图象与函数y=的图象的交点个数.22.如图1,△ABC是直角三角形,∠ACB=90°,点D在AC上,DE⊥AB于E,连接BD,点F是BD的中点,连接EF,CF.(1)EF和CF的数量关系为;(2)如图2,若△ADE绕着点A旋转,当点D落在AB上时,小明通过作△ABC和△ADE 斜边上的中线CM和EN,再利用全等三角形的判定,得到了EF和CF的数量关系,请写出此时EF和CF的数量关系;(3)若△AED继续绕着点A旋转到图3的位置时,EF和CF的数量关系是什么?写出你的猜想,并给予证明.23.如图,直线y=x﹣4与x轴、y轴分别交于A,B两点,抛物线y=x2+bx+c经过A,B 两点,与x轴的另一交点为C,连接BC.(1)求抛物线的解析式;(2)点M在抛物线上,连接MB,当∠MBA+∠CBO=45°时,求点M的横坐标;(3)点P从点C出发,沿线段CA由C向A运动,同时点Q从点B出发沿线段BC由B 向C运动,P,Q的运动速度都是每秒1个单位长度,当Q点到达C点时,P,Q同时停止运动,问在坐标平面内是否存在点D,使P,Q运动过程中的某些时刻t,以C,D,P,Q为顶点的四边形为菱形?若存在,直接写出t的值;若不存在,说明理由.参考答案一、选择题(每小题3分,共30分)1.计算2﹣3的结果是()A.﹣B.C.﹣8D.8解:2﹣3==.故选:B.2.PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm 用科学记数法可表示为()A.2.5×10﹣5m B.0.25×10﹣7m C.2.5×10﹣6m D.25×10﹣5m解:2.5μm×0.000001m=2.5×10﹣6m;故选:C.3.某厂通过改进工艺降低了某种产品的成本,两个月内从每件产品250元降低到每件160元,则平均每月降低的百分率为()A.10%B.5%C.15%D.20%解:如果设平均每月降低率为x,根据题意可得250(1﹣x)2=160,∴x1=20%,x2=180%(不合题意,舍去).故选:D.4.如果点P(2x+6,x﹣4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.解:根据题意得:,由①得:x>﹣3;由②得:x<4,则不等式组的解集为﹣3<x<4,表示在数轴上,如图所示:.故选:C.5.二次函数y=﹣x2+4x+1的图象中,若y随x的增大而减小,则x的取值范围是()A.x<2B.x>2C.x<﹣2D.x>﹣2解:∵二次函数y=﹣x2+4x+1=﹣(x﹣2)2+5,∴当x>2时,y随x的增大而减小,当x<2时,y随x的增大而增大,∴若y随x的增大而减小,则x的取值范围是x>2,故选:B.6.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2,则点B的对应点B1的坐标是()A.(4,2)B.(1,)C.(1,)或(﹣1,﹣)D.(4,2)或(﹣4,﹣2)解:由图可知,点B的坐标为(2,1),∵以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2,∴点B的对应点B1的坐标是(2×2,1×2)或(﹣2×2,﹣1×2),即(4,2)或(﹣4,﹣2),故选:D.7.某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5B.5、5、6C.6、5、6D.5、6、6解:5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数第10、11个数的平均数,则中位数是=6;平均数是:=6;故选:D.8.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C 为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是()A.4B.﹣4C.8D.﹣8解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8.故选:D.9.如图是某几何体的三视图及相关数据,则该几何体的侧面积是()A.60πB.65πC.120πD.130π解:根据图形可知圆锥的高为12,底面直径为10,则母线长为:=13,圆锥侧面积公式=底面周长×母线长×=×10π×13=65π,故选:B.10.如图,矩形OABC的顶点O(0,0),B(﹣2,2),若矩形绕点O逆时针旋转,每秒旋转60°,则第2017秒时,矩形的对角线交点D的坐标为()A.(﹣1,)B.(﹣1,﹣3)C.(﹣2,0)D.(1,﹣3)解:∵矩形OABC的顶点O(0,0),B(﹣2,2),∴D(﹣1,),过D作DE⊥x轴于点E,则OD=2,DE=2,∴,tan∠DOE=,∴∠DOE=60°,∵60°×2017÷360°=336,∵,又∵旋转336周时,D点刚好回到起始位置,∴第2017秒时,矩形绕点O逆时针旋转336周,此时D点在x轴负半轴上,∴此时D点的坐标为(﹣2,0),故选:C.二、填空题(每小题3分,共15分)11.的算术平方根是3.解:∵=9,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.即的算术平方根是3.故答案为:3.12.某校九年级共有1,2,3,4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和3班比赛的概率是.解:画树状图为:∵共有12种等可能的结果数,其中恰好抽到1班和3班的结果数为2,∴恰好抽到1班和3班的概率为=,故答案为:.13.如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH 的长为 4.8cm.解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4cm,OB=OD=3cm,∴AB=5cm,∴S菱形ABCD=AC•BD=AB•DH,∴DH==4.8cm.14.如图,在边长为2的正方形ABCD中,分别以点A,B为圆心,AB的长为半径作与,两弧交于点E,则阴影部分的面积为4+﹣π.解:连接AE、BE,∵AE=BE=AB=2,∴△ABE是等边三角形.∴∠EBA=∠BAE=60°,∴阴影部分的面积=S正方形ABCD﹣S扇形ABE﹣S扇形BAE+S△AEB=2×2﹣×2+2×=4+﹣π,故答案为:4+﹣π.15.如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点D是BC上一动点,连接AD,将△ACD沿AD折叠,点C落在点C',连接C'D交AB于点E,连接BC'.当△BC'D 是直角三角形时,DE的长为3或.解:如图所示;点E与点C′重合时.在Rt△ABC中,BC===8,由翻折的性质可知;AE=AC=6、DC=DE.则EB=10﹣6=4.设DC=ED=x,则BD=8﹣x.在Rt△DBE中,DE2+BE2=DB2,即x2+42=(8﹣x)2.解得x=3,如图所示:∠EDB=90时,由翻折的性质可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四边形ACDC′为矩形.又∵AC=AC′,∴四边形ACDC′为正方形.∴CD=AC=6.∴DB=BC﹣DC=8﹣6=2.∵DE∥AC,∴△BDE∽△BCA.=,即,解得DE=,点D在CB上运动,∠DBC′<90°,(假设∠DBC′≥90°,则AC′≥BD,这个显然不可能,故∠DBC′<90°),故∠DBC′不可能为直角.故答案为3或.三、解答题(共8个小题,满分75分)16.先化简,再求值:÷(x﹣2﹣),其中x2+2x﹣1=0.解:∵x2+2x﹣1=0,∴x2+2x=1,∴原式=÷=•===17.持续大面积雾霾天气让环保和健康问题成为焦点,某校为了调查学生对雾霾天气知识的了解程度,在学生中做了一次抽样调査,跟进调查统计结果,绘制了不完整的三种统计图表.对雾霾天气了解程度统计表了解程度百分比A.非常了解5%B.比较了解mC.一般了解45%D.不太了解n请结合统计图表,回答下列问题(1)本次参与调查的学生共有400人,m=15%,n=35%;(2)扇形统计图中D部分所对应的圆心角是126度;(3)请补全条形统计图;(4)学校计划从对雾霾天气知识“非常了解”的同学中随机选择5名同学,到某社区开展防雾霾天气知识宣传,本次调查中对雾霾天气知识“非常了解”的小明被选中的概率是多少?解:(1)本次参与调查的学生共有180÷45%=400(人),m=×100%=15%,则n=1﹣(5%+15%+45%)=35%,故答案为:400、15%,35%;(2)扇形统计图中D部分所对应的圆心角是360°×35%=126°,故答案为:126;(3)D等级人数为400×35%=140(人),补全图形如下:(4)本次调查中对雾霾天气知识“非常了解”的小明被选中的概率是=.18.如图,在△ABC中,∠B=60°,⊙O是△ABC的外接圆,过点A作⊙O的切线,交CO的延长线于点M,CM交⊙O于点D.(1)求证:AM=AC;(2)填空:①若AC=3,MC=3;②连接BM,当∠AMB的度数为60°时,四边形AMBC是菱形.【解答】(1)证明:连接OA,如图1:∵AM是⊙O的切线,∴∠OAM=90°,∵∠B=60°,∴∠AOC=120°,∵OA=OC,∴∠OCA=∠OAC=30°,∴∠AOM=60°,∴∠M=30°,∴∠OCA=∠M,∴AM=AC;(2)解:①作AG⊥CM于G,如图2:∵∠OCA=30°,AC=3,∴AG=AC=,∴CG=AG=,则MC=2CG=3;故答案为:3.②当∠AMB的度数为60°时,四边形AMBC是菱形;理由如下:如图3:由(1)得:AM=AC,∠MAC=180°﹣∠M﹣∠OCA=120°,∵∠AMB=60°,∴∠MAC+∠AMB=180°,∴AC∥BM,∴∠MAB=∠ABC=60°,∴△ABM是等边三角形,∠BAC=∠MAC﹣∠MAB=60°=∠ABC,∴AM=BM,△ABC是等边三角形,∴BC=AC,∴AM=AC=BC=BM,∴四边形AMBC是菱形;故答案为:60°.19.某处山坡上有一棵与水平面垂直的大树,狂风过后,大树被刮的倾斜后折断,倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,量得树干的倾斜角∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=4m.(1)求∠DAC的度数;(2)这棵大树折断前高约多少米?(结果精确到个位,参考数据:≈1.4,≈1.7,≈2.4)解:(1)延长BA交EF于点G,在RT△AGE中,∠E=23°,∴∠GAE=67°,又∠BAC=38°,∴∠CAE=180°﹣67°﹣38°=75°.(2)过点A作AH⊥CD,垂足为H,在△ADH中,∠ADC=60°,AD=4,cos∠ADC=,∴DH=2,sin∠ADC=,∴AH=2.在RT△ACH中,∠C=180°﹣75°﹣60°=45°,∴AC=2,CH=AH=2.∴AB=AC+CD=2+2+2≈10(米).答:这棵大树折断前高约10米.20.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A 型车数量的两倍,已知A型车每辆进价为1100元,B型车每辆进价为1400元,B型车售价为每辆2000元,应如何进货才能使这批车获利最多?解:(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由题意,得,解得:x=1600,经检验,x=1600是原方程的根;答:今年A型车每辆售价1600元;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由题意,得y=(1600﹣1100)a+(2000﹣1400)(60﹣a),y=﹣100a+36000,∵B型车的进货数量不超过A型车数量的两倍,∴60﹣a≤2a,∴a≥20.∵k=﹣100<0,∴y随a的增大而减小.∴a=20时,y最大=34000元.∴B型车的数量为:60﹣20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大.21.小美对函数y=的图象进行了探究,下面是小美的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是x≥﹣2且x≠0;(2)表是y与x的几组对应值,表中m的值是2;x﹣2﹣﹣1﹣123…y0﹣﹣1﹣m…(3)如图,小美根据上表在平面直角坐标系xOy中描出了该函数的图象,请结合函数的图象,写出该函数的一条性质;(4)试讨论一次函数y=kx+2(k>0)的图象与函数y=的图象的交点个数.解:(1)由题意得,,解得,x≥﹣2且x≠0.故答案为:x≥﹣2且x≠0;(2)把x=2代入y=中,得y=2,∴m=2,故答案为:2;(3)根据题意得,当x>0时,y随x的增大而减小.(4)当x=﹣2时,若y=kx+2=﹣2k+2≤0,即k≥1时,如图1,一次函数y=kx+2(k >0)的图象与函数y=的图象有两个交点.若y=kx+2=﹣2k+2>0,即k<1时,如图1,一次函数y=kx+2(k>0)的图象与函数y =的图象有一个交点.综上,当0<k<1时,一次函数y=kx+2(k>0)的图象与函数y=的图象有一个交点;当k≥1时,一次函数y=kx+2(k>0)的图象与函数y=的图象有两个交点.22.如图1,△ABC是直角三角形,∠ACB=90°,点D在AC上,DE⊥AB于E,连接BD,点F是BD的中点,连接EF,CF.(1)EF和CF的数量关系为EF=CF;(2)如图2,若△ADE绕着点A旋转,当点D落在AB上时,小明通过作△ABC和△ADE 斜边上的中线CM和EN,再利用全等三角形的判定,得到了EF和CF的数量关系,请写出此时EF和CF的数量关系EF=CF;(3)若△AED继续绕着点A旋转到图3的位置时,EF和CF的数量关系是什么?写出你的猜想,并给予证明.解:(1)EF=CF,理由:∵DE⊥AB,∴∠ACB=∠DEB=90°,∵F是BD的中点,∴EF=CF=BD;故答案为:EF=CF;(2)EF=CF,理由:∵∠AED=∠ACB=90°,CM和EN是△ABC和△ADE斜边上的中线,∴CM=BM=AM=AB,AN=EN=DN=AD,∵点F是BD的中点,∴BF=FD,∴AN+BF=DN+DF=FN=AB,∴FN=CM=AM,∵FM=FN﹣MN,AN=AM﹣MN,∴FM=AN,∴FM=EN,∵△ADE绕着点A旋转,当点D落在AB上,∴∠EAD=∠CAB,∵∠EAN=∠AEN,∠MAC=∠ACM,∴∠ENF=∠EAN+∠AEN=2∠EAN,∠CMF=∠CAM+∠ACM=2∠CAM,∴∠ENF=∠CMF,在△EFN与△FCM中,,∴△EFN≌△FCM(SAS),∴EF=CF;故答案为:EF=CF;(3)猜想,EF=CF,理由:如图3中,取AB的中点M,AD的中点N,连接MC,MF,EN,FN.∵BM=MA,BF=FD,∴MF∥AD,MF=AD,∵AN=ND,∴MF=AN,MF∥AN,∴四边形MFNA是平行四边形,∴NF=AM,∠FMA=∠ANF,在Rt△ADE中,∵AN=ND,∠AED=90°,∴EN=AD=AN=ND,同理CM=AB=AM=MB,在△AEN和△ACM中,∠AEN=∠EAN,∠MCA=∠MAC,∵∠MAC=∠EAN,∴∠AMC=∠ANE,又∵∠FMA=∠ANF,∴∠ENF=∠FMC,∵AM=FN,AM=CM,∴CM=NF,在△MFC和△NEF中,,∴△MFC≌△NEF(SAS),∴FE=FC.23.如图,直线y=x﹣4与x轴、y轴分别交于A,B两点,抛物线y=x2+bx+c经过A,B 两点,与x轴的另一交点为C,连接BC.(1)求抛物线的解析式;(2)点M在抛物线上,连接MB,当∠MBA+∠CBO=45°时,求点M的横坐标;(3)点P从点C出发,沿线段CA由C向A运动,同时点Q从点B出发沿线段BC由B 向C运动,P,Q的运动速度都是每秒1个单位长度,当Q点到达C点时,P,Q同时停止运动,问在坐标平面内是否存在点D,使P,Q运动过程中的某些时刻t,以C,D,P,Q为顶点的四边形为菱形?若存在,直接写出t的值;若不存在,说明理由.解:(1)直线解析式y=x﹣4,令x=0,得y=﹣4;令y=0,得x=4.∴A(4,0)、B(0,﹣4).∵点A、B在抛物线y=x2+bx+c上,∴,解得,∴抛物线解析式为:y=x2﹣x﹣4.(2)设M(x,y),令y=x2﹣x﹣4=0,解得:x=﹣3或x=4,∴C(﹣3,0).①当BM⊥BC时,如答图2﹣1所示.∵∠ABO=45°,∴∠MBA+∠CBO=45°,故点M满足条件.过点M1作M1E⊥y轴于点E,则M1E=x,OE=﹣y,∴BE=4+y.∵tan∠M1BE=tan∠BCO=,∴,∴直线BM1的解析式为:y=x﹣4,∴∴(舍去),∴点M1的坐标(,﹣)②当BM与BC关于y轴对称时,如答图2﹣2所示.∵∠ABO=∠MBA+∠MBO=45°,∠MBO=∠CBO,∴∠MBA+∠CBO=45°,故点M满足条件.过点M2作M2E⊥y轴于点E,则M2E=x,OE=y,∴BE=4+y.∵tan∠M2BE=tan∠CBO=,∴,∴直线BM2的解析式为:y=x﹣4,∴∴(舍去),∴点M2的坐标(5,),综上所述:点M的横坐标为:或5;(3)设∠BCO=θ,则tanθ=,sinθ=,cosθ=.假设存在满足条件的点D,设菱形的对角线交于点E,设运动时间为t.①若以CQ为菱形对角线,如答图3﹣1.此时BQ=t,菱形边长=t.∴CE=CQ=(5﹣t).在Rt△PCE中,cosθ===,解得t=.②若以PQ为菱形对角线,如答图3﹣2.此时BQ=t,菱形边长=t.∵BQ=CQ=t,∴t=,③若以CP为菱形对角线,如答图3﹣3.此时BQ=t,菱形边长=5﹣t.在Rt△CEQ中,cosθ===,解得t=.综上所述,当t=或或时,以C,D,P,Q为顶点的四边形为菱形.。

2020中考数学模拟试卷1+参考答案+评分标准

2020中考数学模拟试卷1+参考答案+评分标准

2020中考数学模拟试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1. 在-4,2,-1,3这四个数中,比-2小的数是( )A. -4B. 2C. -1D. 32. 计算 8×2的结果是( )A. 10B. 4C. 6D. 23. 移动互联网已经全面进入人们的日常生活.截至2015年3月,全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为( )A. 1.62×104B. 162×106C. 1.62×108D. 0.162×109 4. 下列几何体中,俯视图是矩形的是( )5. 与1+5最接近的整数是( )A. 4B. 3C. 2D. 16. 我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的年平均增长率为x ,则下列方程正确的是( )A. 1.4(1+x )=4.5B. 1.4(1+2x )=4.5C. 1.4(1+x )2=4.5D. 1.4(1+x )+1.4(1+x )2=4.57. 某校九年级(1)班全体学生2015年初中毕业体育学业考试的成绩统计如下表:成绩(分) 35 39 42 44 45 48 50 人数2566876根据上表中的信息判断,下列结论中错误..的是( ) A. 该班一共有40名同学B. 该班学生这次考试成绩的众数是45分C. 该班学生这次考试成绩的中位数是45分D. 该班学生这次考试成绩的平均数是45分8. 在四边形ABCD 中,∠A =∠B =∠C ,点E 在边AB 上,∠AED =60°,则一定有( ) A. ∠ADE =20° B. ∠ADE =30° C. ∠ADE =12∠ADC D. ∠ADE =13∠ADC9. 如图,矩形ABCD 中,AB =8,BC =4,点E 在AB 上,点F 在CD 上,点G 、H 在对角线AC 上,若四边形EGFH 是菱形,则AE 的长是( )第9题图A. 25B. 35C. 5D. 610. 如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 的图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能为( )二、填空题(本大题共4小题,每小题5分,满分20分)11. -64的立方根是________.12. 如图,点A 、B 、C 在⊙O 上,⊙O 的半径为9,AB ︵的长为2π,则∠ACB 的大小是________.第12题图13. 按一定规律排列的一列数:21,22,23,25,28,213,…,若x 、y 、z 表示这列数中的连续三个数,猜测x 、y 、z 满足的关系式是________.14. 已知实数a 、b 、c 满足a +b =ab =c ,有下列结论:①若c ≠0,则1a +1b=1;②若a =3,则b +c =9; ③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8.其中正确的是________.(把所有正确结论的序号都选上) 三、(本大题共2小题,每小题8分,满分16分)15. 先化简,再求值:(a 2a -1+11-a )·1a ,其中a =-12.16. 解不等式:x3>1-x -36.四、(本大题共2小题,每小题8分,满分16分)17. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.第17题图18. 如图,平台AB 高为12米,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度.(3≈1.7)第18题图五、(本大题共2小题,每小题10分,满分20分)19. A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的接球者将球随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.20. 在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图①,当PQ∥AB时,求PQ长;(2)如图②,当点P在BC上移动时,求PQ长的最大值.第20题图六、(本题满分12分)21. 如图,已知反比例函数y=k1x与一次函数y=k2x+b的图象交于A(1,8),B(-4,m).(1)求k1、k2、b的值;(2)求△AOB的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=k1x图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限,并简要说明理由.第21题图七、(本题满分12分)22. 为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度是x 米,矩形区域ABCD 的面积为y 平方米.(1)求y 与x 之间的函数关系式,并注明自变量x 的取值范围; (2)x 取何值时,y 有最大值?最大值是多少?第22题图八、(本题满分14分)23. 如图①,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接GA 、GB 、GC 、GD 、EF ,若∠AGD =∠BGC .(1)求证:AD =BC ;(2)求证:△AGD ∽△EGF ;(3)如图②,若AD 、BC 所在直线互相垂直,求ADEF的值.图① 图②第23题图参考答案与试题解析1. A 【解析】把-4,2,1,3和-2在数轴上分别表示出来如解图,由数轴上左边的数总比右边的数小,即-4<-2,故选A.第1题解图2. B 【解析】根据二次根式的运算法则可得8×2=8×2=16=4. 【一题多解】对于二次根式的运算,也可以先将二次根式化为最简二次根式,然后进行计算.8×2=22×2=22×2=24=4.3. C 【解析】大数的科学记数法的表示形式为a ×10n ,其中1≤a <10,n 的值等于原数的整数位数减1.含计数单位的数用科学记数法表示时,要把计数单位转化为数字.因为1亿=108,所以1.62亿=1.62×108.4. B 【解析】选项 逐项分析正误 A 圆锥的俯视图是带圆心的圆 B 水平放置的圆柱的俯视图是矩形 √ C 三棱柱的俯视图是三角形D球的俯视图是圆5. B 【解析】∵5≈2.236,∴1+5≈3.236,即1+5介于整数3和4之间,且距离3较近,故选B.【一题多解】∵22<5<32,∴2<5<3,∵(5)2=5,(52)2=6.25,∴5<52,1+5<72,∴1+5距离3较近.6. C 【解析】根据题意可知,2014年与2015年这两年的平均增长率均为x ,所以2014年的快递业务量为1.4(1+x ) 亿件,2015年的快递业务量1.4(1+x )(1+x )亿件,即1.4(1+x )2=4.5 亿件,故选C .选项 逐项分析正误 A 把表格中的人数相加,得:2+5+6+6+8+7+6=40,所以该班一共有40名同学 √ B由表格可知,这7列数据中成绩45出现的次数最多,出现了8次,所以众数是45分 √C中位数是把这7列数据中的分数按照从小到大的顺序排列,位于最中间的两个数(第20,21个数)的平均数,所以中位数为45+452=45分√ D平均数为:35×2+39×5+42×6+44×6+45×8+48×7+50×640=44.425分≠45分× =120°-x ,而在四边形ABCD 中,∠ADC =360°-∠A -∠B -∠C =360°-3x ,∵120°-x =13(360°-3x ),∴∠ADE =13∠ADC .第8题解图9. C 【解析】如解图①,连接EF ,交AC 于点O ,由四边形EGFH 是菱形,可得FH =GE ,FH ∥GE ,∴∠FHG =∠EGH ,所以∠AGE =∠CHF , 在矩形ABCD 中,AB =8,BC =4,则由勾股定理得AC =82+42=4 5.由矩形性质,可得∠GAE =∠HCF ,则△GAE ≌△HCF (AAS),∴AG =CH ,由菱形的对角线 EF 垂直平分GH ,可得OG =OH ,EO ⊥AC .∴AG +OG =CH +OH ,即OA =OC .∴AO =12AC =25,∵∠B =∠AOE =90°,∠BAC =∠OAE ,∴Rt △AOE ∽Rt △ABC .则AO AB =AE AC ,即258=AE45,解得AE =5.第9题解图① 第9题解图②【一题多解——最优解】如解图②,设G 点和A 点重合,H 点和C 点重合,设AE =x ,则CE =x ,EB =8-x ,在Rt △BCE 中,有x 2=42+(8-x )2,解得x =5,∴AE =5.10. A 【解析】本题考查二次函数与一元二次方程的关系.根据一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象在第一象限相交于P 、Q 两点,观察图象可知一元二次方程ax 2+bx +c = x 的根为两个正根,即关于x 的一元二次方程ax 2+bx +c -x =0有两个正实数根,故函数y =ax 2+(b -1)x +c 的图象与x 轴交点的横坐标均为正数,故选A.第10题解图11. -4 【解析】∵(-4)3=-64 ,∴-64的立方根是-4.12. 20° 【解析】如解图,连接OA 、OB ,由已知可得:l AB ︵=n πr 180=n π×9180=2π,解得n =40,即∠AOB=40°,∴∠ACB =12∠AOB =20°.第12题解图13. xy =z 【解析】观察这一列数可得:23=21·22,25=22·23,28=23·25,213=25·28,…,即从第三个数起每个数都等于前两个数之积 ,由x 、y 、z 表示这列数中的连续三个数,则有xy =z .序号 逐个分析正误 ①若c ≠0,则a ≠0,b ≠0,对于a +b =ab 两边同除以ab ,可得1b +1a=1√ ② 若a =3,则3+b =3b ,则b =32,c =ab =92, b +c =32+92=6× ③若a =b =c ,则2c =c 2=c ,所以c =0,则a =b =0, 则abc =0 √④ 若a 、b 、c 中只有两个数相等,假设a =b ≠c ,则c =b 2=2b ,有b =2,则a =2,c =4, 则a +b +c =8;若b =c ≠a ,a +c =ac =c ,由ac =c 可得a =1,由a +c =c ≠b ,可得a =0,矛盾;同理若a =c ≠b ,可得b =0,b =1,矛盾.故只能是a =b√15. 解:原式=(a 2a -1 - 1a -1)·1a=a 2-1a -1·1a.............(3分) =(a +1)(a -1)a -1·1a =a +1a. ......................(6分) 当a =-12时,原式=a +1a =-12+1-12=-1. ............(8分)16. 解:去分母得:2x >6-(x -3), .........(3分) 去括号得:2x >6-x +3,移项、合并同类项得:3x >9, 系数化为1得:x >3,所以,不等式的解集为x >3. .............(8分)17. (1)解:△A 1B 1C 1如解图①所示. ...................(4分)第17题解图①(2)解:线段A 2C 2和△A 2B 2C 2如解图②所示(符合条件的△A 2B 2C 2不唯一)......(8分)第17题解图②18. 解:如解图,作BE ⊥CD 于点E ,则CE =AB =12.在Rt △BCE 中,BE =CE tan ∠CBE =12tan30°=12 3. ...........(3分)第18题解图在Rt △BDE 中,∵∠DBE =45°,∠DEB =90°, ∴∠BDE =45°,∴DE =BE =123, ..............(5分) ∴CD =CE +DE =12+123≈32.4,∴楼房CD 的高度约为32.4米. ............(8分)19. (1)解:根据题意画树状图如解图①所示: .............(3分)第19题解图①由树状图知,两次传球共有4种等可能的情况,球恰在B 手中的情况只有一种, 所以两次传球后,球恰在B 手中的概率为:P =14 . .................(5分)(2)解:根据题意画树状图如解图②所示: .................(7分)第19题解图②由树状图知,三次传球共有8种等可能的情况,球恰在A 手中的情况有2种, 所以三次传球后,球恰在A 手中的概率为:P =28=14. .........(10分)20. (1)解:∵OP ⊥PQ ,PQ ∥AB ,∴OP ⊥AB .在Rt △OPB 中,OP =OB ·tan ∠ABC =3·tan30°= 3. ............(3分) 如解图①,连接OQ ,在Rt △OPQ 中,PQ =OQ 2-OP 2=32-(3)2= 6. ..........(5分) (2)解:如解图②,连接OQ ,∵OP ⊥PQ , ∴△OPQ 为直角三角形, ∴PQ 2=OQ 2-OP 2=9-OP 2,∴当OP 最小时,PQ 最大,此时OP ⊥BC . ..........(7分)OP =OB·sin ∠ABC =3·sin30°=32.∴PQ 长的最大值为9-(32)2=332. ...........(10分)图① 图②第20题解图21. (1)解:把A (1,8),代入y =k 1x ,得k 1=8,∴y =8x ,将B (-4,m )代放y =8x,得m =-2.∵A (1,8),B (-4,-2)在y =k 2x +b 图象上,∴⎩⎪⎨⎪⎧k 2+b =8-4k 2+b =-2, 解得k 2=2,b =6. ................(4分)(2)解:设直线y =2x +6与x 轴交于点C ,当y =0时,x =-3, ∴OC =3.∴S △AOB =S △AOC +S △BOC =12×3×8+12×3×2=15. ....................(8分)(3)解:点M 在第三象限,点N 在第一象限. ............(9分) 理由:由图象知双曲线y =8x在第一、三象限内,因此应分情况讨论:①若x 1<x 2<0,点M 、N 在第三象限分支上,则y 1>y 2,不合题意; ②若0<x 1<x 2,点M 、N 在第一象限分支上,则y 1>y 2,不合题意;③若x 1<0<x 2,点M 在第三象限,点N 在第一象限,则y 1<0<y 2,符合题意. .....(11分) ∴点M 在第三象限,点N 在第一象限. ..........(12分) 22. (1)解:设AE =a ,由题意,得AE ·AD =2BE ·BC ,AD =BC , ∴BE =12a ,AB =32a . ..........(3分)由题意,得2x +3a +2·12a =80,∴a =20-12x . ..............(4分)∵BC =x >0,AE =a =20-12x >0,∴0<x <40,∴y =AB ·BC =32a ·x =32(20-12x )x ,即y =-34x 2+30x (0<x <40). ........................(8分)(2)解:∵y =-34x 2+30x =-34(x -20)2+300, ...........(10分)∴当x =20时,y 有最大值,最大值是300平方米. .......(12分)23. (1)证明:∵点E 、F 分别是AB 、CD 的中点,且GE ⊥AB ,GF ⊥CD , .......(2分) ∴GE 、GF 分别是线段AB 、CD 的垂直平分线, ∴GA =GB ,GC =GD ,在△AGD 和△BGC 中,⎩⎪⎨⎪⎧GA =GB ∠AGD =∠BGC GD =GC ,∴△AGD ≌△BGC (SAS),∴AD =BC . ...........(5分)(2)证明:∵∠AGD =∠BGC ,∴∠AGB =∠DGC . 在△AGB 和△DGC 中,GA GD =GBGC ,∠AGB =∠DGC ,∴△ABG ∽△DCG , ........(8分) ∴AG DG =EGFG,∠GAE =∠GDF , 又∵∠GEA =∠GFD =90°,∴∠AGE =∠GEA -∠GAE ,∠DGF =∠GFD -∠GDF , 即∠AGE =∠DGF , ∴∠AGD =∠EGF ,∴△AGD ∽△EGF . .................(10分)(3)解:如解图①,延长AD 交GB 于点M ,交BC 的延长线于点H ,则AH ⊥BH . 由△AGD ≌△BGC ,知∠GAD =∠GBC .在△GAM 和△HBM 中,∠GAD =∠GBC ,∠GMA =∠HMB , ∴△GMA ∽△HMB , ∴∠AGB =∠AHB =90°, ...............(12分) ∴∠AGE =12∠AGB =45°,∴AG EG= 2.又∵△AGD ∽△EGF ,∴AD EF =AGEG= 2. ..............(14分)第23题解图【一题多解】解法一:如解图②,过点F 作FM ∥BC 交BD 于点M ,连接EM . ∵GF 是DC 的垂直平分线, ∴DF =CF ,∵FM ∥BC ,FM =12BC .∴DM =BM .∵GE 是AB 的垂直平分线, ∴AE =BE ,∴EM ∥AD ,EM =12AD .∵AD ⊥BC , ∴EM ⊥FM . ∵AD =BC , ∴EN =FM , ∴EF =2EM , ∴AD EF =2EM EF= 2. 解法二:如解图③,过点D 作DH ⊥AD ,交BF 的延长线于点H . ∵AD ⊥BC ,DH ⊥AD , ∴DH ∥BC ,∴∠DHF =∠CBF ,∠HDF =∠BCF , 又DF =CF ,∴△DHF ≌△CBF ,∴DH =BC ,HF =BF ,∴DH =AD . 在Rt △ADH 中,∠ADH =90°,AD =DH , ∴AH =2AD .∵AE =BE ,HF =BF , ∴EF ∥AH ,EF =12AH ,∴EF =22AD , ∴ADEF= 2.。

2020年河南省中考数学模拟考试试卷(经典一) (解析版)

2020年河南省中考数学模拟考试试卷(经典一) (解析版)

2020年河南省中考数学模拟试卷(经典一)一.选择题(共10小题)1.﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.2.2019年上半年,河南接待海内外旅游人数4.9亿人次,旅游总收入5150亿元,数据“5150亿”用科学记数法表示为()A.5150×108B.5.15×1011C.515×109D.0.515×1013 3.下列四个图案中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.4.下列运算结果正确的是()A.(﹣a3)2=﹣a6B.a8÷a2=a4C.(a+b)2=a2+b2D.(﹣)﹣2=45.如图由6个等大的小立方体搭成的,有关三视图的说法正确的是()A.正视图(主视图)面积最大B.左视图面积最大C.俯视图面积最大D.三种视图面积一样大6.一元二次方程(2x+1)(2x﹣1)=8x+15的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根7.某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是()A.88.5B.86.5C.90D.90.58.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=(x<0)的图象经过点C,则k的值为()A.﹣12B.﹣6C.6D.129.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S=CD•OE四边形OCED10.如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰直角三角形A2OB2,且A2O=2A1O…依此规律,得到等腰直角三角形A2020OB2020,则点B2020的坐标为()A.(22019,22019)B.(﹣22019,22019)C.(﹣22020,22020)D.(22020,22020)二.填空题(共5小题)11.﹣3﹣1=.12.不等式组的解集是.13.同时掷两枚普通的骰子,“出现数字之积为奇数”的概率为.14.如图,Rt△ABC中,∠BCA=90°,∠BAC=30°,AB=6.△ABC以点B为中心逆时针旋转,使点C旋转至AB边延长线上的C′处,那么AC边转过的图形(图中阴影部分)的面积是.15.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为.三.解答题(共8小题)16.先化简,再从2、3、4中选一个合适的数作为x的值代入求值.()÷17.在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,P为AC延长线上一点,且∠PBC=∠BAC,连接DE,BE.(1)求证:BP是⊙O的切线;(2)若sin∠PBC=,AB=10,求BP的长.18.九年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的条形统计图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将条形统计图补充完整;(4)如果全市有6000名九年级学生,那么在试卷评讲课中,“独立思考”的约有多少人?19.如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D 处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)20.学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A 型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.21.如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于点A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及B点坐标;(2)求△ABC的面积.22.如图,在Rt△ABC中,∠ACB=90°,=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则=;(2)数学思考:①如图2,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.23.如图,直线y=﹣2x+12与x轴交于点C,与y轴交于点B,抛物线y=3ax2+10x+3c经过B,C两点,与x轴交于另一点A,点E是直线BC上方抛物线上的一动点,过E作EF∥y轴交x轴于点F,交直线BC于点M.(1)求抛物线的解析式;(2)求线段EM的最大值;(3)在(2)的条件下,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P,Q,A,M为顶点的四边形为平行四边形?如果存在,请直接写出P 点坐标;如果不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.【分析】根据绝对值的定义直接进行计算.【解答】解:根据绝对值的概念可知:|﹣2020|=2020,故选:B.2.2019年上半年,河南接待海内外旅游人数4.9亿人次,旅游总收入5150亿元,数据“5150亿”用科学记数法表示为()A.5150×108B.5.15×1011C.515×109D.0.515×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5150亿=515000000000=5.15×1011.故选:B.3.下列四个图案中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选:A.4.下列运算结果正确的是()A.(﹣a3)2=﹣a6B.a8÷a2=a4C.(a+b)2=a2+b2D.(﹣)﹣2=4【分析】分别根据积的乘方运算法则,同底数幂的除法法则,完全平方公式以及负整数指数幂的定义逐一判断即可.【解答】解:A.(﹣a3)2=a6,故本选项不合题意;B.a8÷a2=a6,故本选项不合题意;C.(a+b)2=a2+2ab+b2,故本选项不合题意;D.(﹣)﹣2=,符合题意.故选:D.5.如图由6个等大的小立方体搭成的,有关三视图的说法正确的是()A.正视图(主视图)面积最大B.左视图面积最大C.俯视图面积最大D.三种视图面积一样大【分析】根据三视图可得主视图,左视图,俯视图都是4个正方形,因此面积一样大.【解答】解:正视图(主视图),左视图,俯视图都是4个正方形,因此面积一样大,故选项A、B、C错误,D正确;故选:D.6.一元二次方程(2x+1)(2x﹣1)=8x+15的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】先把方程化为一般式,再计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:方程化为x2﹣2x﹣4=0,∵△=(﹣2)2﹣4×(﹣4)=20>0,∴方程有两个不相等的实数根.故选:A.7.某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是()A.88.5B.86.5C.90D.90.5【分析】直接利用每部分分数所占百分比进而计算得出答案.【解答】解:由题意可得,小桐这学期的体育成绩是:95×20%+90×30%+85×50%=19+27+42.5=88.5(分).故选:A.8.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=(x<0)的图象经过点C,则k的值为()A.﹣12B.﹣6C.6D.12【分析】设菱形的两条对角线相交于点D,如图,根据菱形的性质得OB⊥AC,BD=OD =2,CD=AD=3,再由菱形ABCD的对角线OB在y轴上得到AC∥x轴,则可确定C (﹣3,2),然后根据反比例函数图象上点的坐标特征求k的值.【解答】解:设菱形的两条对角线相交于点D,如图,∵四边形ABCD为菱形,∴OB⊥AC,BD=OD=2,CD=AD=3,∵菱形ABCO的对角线OB在y轴上,∴AC∥x轴,∴C(﹣3,2),∴k=﹣3×2=﹣6.故选:B.9.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S=CD•OE四边形OCED【分析】利用基本作图得出角平分线的作图,进而解答即可.【解答】解:由作图步骤可得:OE是∠AOB的角平分线,∴∠CEO=∠DEO,CM=MD,S=CD•OE,四边形OCED但不能得出∠OCD=∠ECD,故选:C.10.如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰直角三角形A2OB2,且A2O=2A1O…依此规律,得到等腰直角三角形A2020OB2020,则点B2020的坐标为()A.(22019,22019)B.(﹣22019,22019)C.(﹣22020,22020)D.(22020,22020)【分析】根据题意得出B点坐标变化规律,进而得出点B2020的坐标位置,进而得出答案.【解答】解:∵△AOB是等腰直角三角形,OA=1,∴AB=OA=1,∴B(1,1),将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,∴每4次循环一周,B1(2,﹣2),B2(﹣4,﹣4),B3(﹣8,8),B4(16,16),∵2020÷4=505,∴点B2020与B同在一个象限内,∵﹣4=﹣22,8=23,16=24,∴点B2020(22020,22020).故选:D.二.填空题(共5小题)11.﹣3﹣1=.【分析】首先计算乘方、开方,然后计算减法,求出算式的值是多少即可.【解答】解:﹣3﹣1=3﹣=故答案为:.12.不等式组的解集是x<5.【分析】此题可通过对不等式组里的两个一元一次不等式求解,再写出两个不等式的公共解集.【解答】解:解不等式①得:x<5,解不等式②得:x≤9,∴不等式组的解集为x<5,故答案为:x<5.13.同时掷两枚普通的骰子,“出现数字之积为奇数”的概率为.【分析】列举出所有情况,看出现数字之积为奇数的情况数占所有情况数的多少即可.【解答】解:根据题意列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)共有36种等情况数,其中数字之积为奇数的有9种情况,所以“出现数字之积为奇数”的概率是=;故答案为:.14.如图,Rt△ABC中,∠BCA=90°,∠BAC=30°,AB=6.△ABC以点B为中心逆时针旋转,使点C旋转至AB边延长线上的C′处,那么AC边转过的图形(图中阴影部分)的面积是9π.【分析】根据旋转变换的性质可得△ABC与△A′BC′全等,从而得到阴影部分的面积=扇形ABA′的面积﹣小扇形CBC′的面积.【解答】解:根据旋转变换的性质,△ABC≌△A′BC′,∵∠BCA=90°,∠BAC=30°,AB=6,∴BC=AB=3,∴阴影面积=﹣=9π.15.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为3或6.【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=10,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=6,可计算出CB′=4,设BE=x,则EB′=x,CE=8﹣x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时四边形ABEB′为正方形.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=6,BC=8,∴AC==10,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,如图,∴EB=EB′,AB=AB′=6,∴CB′=10﹣6=4,设BE=x,则EB′=x,CE=8﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=6.综上所述,BE的长为3或6.故答案为:3或6.三.解答题(共8小题)16.先化简,再从2、3、4中选一个合适的数作为x的值代入求值.()÷【分析】首先计算括号里面的减法,然后再算括号外的除法,化简后,根据分式有意义的条件确定x的取值,再代入x的值即可.【解答】解:原式=[﹣]•,=(﹣)•,=•,=x+2,∵x﹣2≠0,x﹣4≠0,x+2≠0,∴x≠2或4或﹣2,∴x取3,当x=3时,原式=3+2=5.17.在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,P为AC延长线上一点,且∠PBC=∠BAC,连接DE,BE.(1)求证:BP是⊙O的切线;(2)若sin∠PBC=,AB=10,求BP的长.【分析】(1)连接AD,求出∠PBC=∠ABC,求出∠ABP=90°,根据切线的判定得出即可;(2)解直角三角形求出BD,求出BC,根据勾股定理求出AD,根据相似三角形的判定和性质求出BE,根据相似三角形的性质和判定求出BP即可.【解答】(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠BAD=∠BAC,∵∠ADB=90°,∴∠BAD+∠ABD=90°,∵∠PBC=∠BAC,∴∠PBC+∠ABD=90°,∴∠ABP=90°,即AB⊥BP,∴PB是⊙O的切线;(2)解:∵∠PBC=∠BAD,∴sin∠PBC=sin∠BAD,∵sin∠PBC==,AB=10,∴BD=2,由勾股定理得:AD==4,∴BC=2BD=4,∵由三角形面积公式得:AD×BC=BE×AC,∴4×4=BE×10,∴BE=8,∴在Rt△ABE中,由勾股定理得:AE=6,∵∠BAE=∠BAP,∠AEB=∠ABP=90°,∴△ABE∽△APB,∴=,∴PB===.18.九年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的条形统计图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了560名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54度;(3)请将条形统计图补充完整;(4)如果全市有6000名九年级学生,那么在试卷评讲课中,“独立思考”的约有多少人?【分析】(1)根据专注听讲的人数是224人,所占的比例是40%,即可求得抽查的总人数;(2)利用360乘以对应的百分比即可求解;(3)利用总人数减去其他各组的人数,即可求得讲解题目的人数,从而作出频数分布直方图;(4)利用6000乘以对应的比例即可.【解答】解:(1)调查的总人数是:224÷40%=560(人),故答案是:560;(2)“主动质疑”所在的扇形的圆心角的度数是:360×=54°,故答案是:54;(3)“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).(4)6000×=1800(人),答:在试卷评讲课中,“独立思考”的初三学生约有1800人.19.如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D 处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)【分析】延长AB交CD于H,利用正切的定义用CH表示出AH、BH,根据题意列式求出CH,计算即可.【解答】解:延长AB交CD于H,则AH⊥CD,在Rt△AHD中,∠D=45°,∴AH=DH,在Rt△AHC中,tan∠ACH=,∴AH=CH•tan∠ACH≈0.51CH,在Rt△BHC中,tan∠BCH=,∴BH=CH•tan∠BCH≈0.4CH,由题意得,0.51CH﹣0.4CH=33,解得,CH=300,∴EH=CH﹣CE=220,BH=120,∴AH=AB+BH=153,∴DH=AH=153,∴HF=DH﹣DF=103,∴EF=EH+FH=323,答:隧道EF的长度为323m.20.学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A 型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.【分析】(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据:“1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元”列方程组求解即可;(2)首先根据“A型节能灯的数量不多于B型节能灯数量的3倍”确定自变量的取值范围,然后得到有关总费用和A型灯的只数之间的关系得到函数解析式,确定函数的最值即可.【解答】解:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据题意,得:,解得:,答:一只A型节能灯的售价是5元,一只B型节能灯的售价是7元;(2)设购进A型节能灯m只,总费用为W元,根据题意,得:W=5m+7(50﹣m)=﹣2m+350,∵﹣2<0,∴W随m的增大而减小,又∵m≤3(50﹣m),解得:m≤37.5,而m为正整数,∴当m=37时,W=﹣2×37+350=276,最小此时50﹣37=13,答:当购买A型灯37只,B型灯13只时,最省钱.21.如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于点A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及B点坐标;(2)求△ABC的面积.【分析】(1)先把A(1,a)代入y=2x中求出a得到A(1,2);再把A点坐标代入y=中可确定k的值,然后利用反比例函数和正比例函数图象的性质确定B点坐标;(2)设C(1,t),根据两点间的距离公式和勾股定理得到(1+1)2+(t+2)2+(1+1)2+(2+2)2=(2﹣t)2,求出t得到C(1,﹣3),从而得到AC的长,然后关键三角形面积公式求得即可.【解答】解:(1)把A(1,a)代入y=2x得a=2,则A(1,2);把A(1,2)代入y=得k=1×2=2,∵点A与点B关于原点对称,∴B(﹣1,﹣2);(2)∵CA∥y轴,∴C点的横坐标为1,设C(1,t),∵∠ABC=90°.∴BC2+AC2=AB2,即(1+1)2+(t+2)2+(1+1)2+(2+2)2=(2﹣t)2,解得t=﹣3,∴C(1,﹣3),∴AC=5,=AC(x A﹣x B)==5.∴S△ABC22.如图,在Rt△ABC中,∠ACB=90°,=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则=1;(2)数学思考:①如图2,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.【分析】(1)先用等量代换判断出∠ADE=∠CDF,∠A=∠DCB,得到△ADE∽△CDF,再判断出△ADC∽△CDB即可;(2)方法和(1)一样,先用等量代换判断出∠ADE=∠CDF,∠A=∠DCB,得到△ADE ∽△CDF,再判断出△ADC∽△CDB即可;(3)由(2)的结论得出△ADE∽△CDF,判断出CF=2AE,求出DE,再利用勾股定理,计算出即可.【解答】解:(1)当m=n时,即:BC=AC,∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴=1,∴=1(2)①∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴②成立.如图,∵∠ACB=90°,∴∠A+∠ABC=90°,又∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE+∠CDE=∠ADC+∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴.(3)由(2)有,△ADE∽△CDF,∵=,∴=,∴CF=2AE,在Rt△DEF中,DE=2,DF=4,∴EF=2,①当E在线段AC上时,在Rt△CEF中,CF=2AE=2(AC﹣CE)=2(﹣CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(﹣CE)]2=40∴CE=2,或CE=﹣(舍)而AC=<CE,∴此种情况不存在,②当E在AC延长线上时,在Rt△CEF中,CF=2AE=2(AC+CE)=2(+CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(+CE)]2=40,∴CE=,或CE=﹣2(舍),③如图1,当点E在CA延长线上时,CF=2AE=2(CE﹣AC)=2(CE﹣),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(CE﹣)]2=40,∴CE=2,或CE=﹣(舍)即:CE=2或CE=.23.如图,直线y=﹣2x+12与x轴交于点C,与y轴交于点B,抛物线y=3ax2+10x+3c经过B,C两点,与x轴交于另一点A,点E是直线BC上方抛物线上的一动点,过E作EF∥y轴交x轴于点F,交直线BC于点M.(1)求抛物线的解析式;(2)求线段EM的最大值;(3)在(2)的条件下,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P,Q,A,M为顶点的四边形为平行四边形?如果存在,请直接写出P 点坐标;如果不存在,请说明理由.【分析】(1)点C、B的坐标分别为:(6,0)、(0,12),抛物线y=3ax2+10x+3c 经过B,C两点,则3c=12,将点C的坐标代入抛物线表达式,即可求解;(2)设点E(x,﹣2x2+10x+12),则点M(x,﹣2x+12),EM=﹣2x2+12x,即可求解;(3)分AM是边、AM是对角线两种情况,分别求解即可.【解答】解:(1)直线y=﹣2x+12与x轴交于点C,与y轴交于点B,则点C、B的坐标分别为:(6,0)、(0,12),抛物线y=3ax2+10x+3c经过B,C两点,则3c=12,故抛物线的表达式为:y=3ax2+10x+12,将点C的坐标代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣2x2+10x+12;(2)设点E(x,﹣2x2+10x+12),则点M(x,﹣2x+12),EM=(﹣2x2+10x+12)﹣(﹣2x+12)=﹣2x2+12x,∵﹣2<0,故EM有最大值,最大值为18,此时x=3;(3)y=﹣2x2+10x+12,令y=0,则x=﹣1或6,故点A(﹣1,0),由(2)知,x=3,则点M(3,6),设点P的横坐标为:m,点Q的坐标为:(,s),①当AM是边时,当点A向右平移4个单位向上平移6个单位得到点M,同样,点P(Q)向右平移4个单位向上平移6个单位得到点得到点Q(P),即m±4=,解得:m=﹣或,故点P(﹣,﹣)或(,﹣);②当AM是对角线时,由中点公式得:﹣1+2=m+,解得:m=﹣,故点P(﹣,);综上,点P的坐标为:(﹣,﹣)或(,﹣)或(﹣,).。

(完整word版)2020年河南省中考数学模拟试卷解析版

(完整word版)2020年河南省中考数学模拟试卷解析版

2020年河南省中考数学模拟试卷解析版一.选择题(共10小题,满分30分,每小题3分)1.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|2.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为( )A.1。

3×106B.130×104C.13×105D.1。

3×1053.将一个正方体沿图1所示切开,形成如图2的图形,则图2的左视图为()A.B.C.D.4.如图,直线a∥b,点C,D分别在直线b,a上,AC⊥BC,CD平分∠ACB,若∠1=65°,则∠2的度数为()A.65°B.70°C.75°D.80°5.为迎接体育中考,九年级(1)班八名同学课间练习垫排球,记录成绩(个数)如下:40,38,42,35,45,40,42,42,则这组数据的众数与中位数分别是( )A.40,41 B.42,41 C.41,42 D.41,406.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.如图,菱形ABCD中,对角线AC、BD交于点O,点E为AB的中点,连接OE,若OE=3,∠ADC=60°,则BD 的长度为()A.6B.6 C.3D.38.两个不透明的袋子中分别装有标号1、2、3、4和标号2、3、4的7个小球,7个小球除标号外其余均相同,随机从两个袋子中抽取一个小球,则其标号数字和大于6的概率为()A.B.C.D.9.如图,在平面直角坐标系中,等边△OBC的边OC在x轴正半轴上,点O为原点,点C坐标为(12,0),D 是OB上的动点,过D作DE⊥x轴于点E,过E作EF⊥BC于点F,过F作FG⊥OB于点G.当G与D重合时,点D的坐标为()A.(1,)B.(2,2)C.(4,4)D.(8,8)10.如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE 的长为x,y关于x的函数图象如图2,则△EFG的最小面积为( )A.B.C.2 D.二.填空题(共5小题,满分15分,每小题3分)11.计算:(﹣π)0﹣=.12.如图,在⊙O中,直径EF⊥CD,垂足为M,EM•MF=12,则CD的长度为.13.如果函数y=﹣2x与函数y=ax2+1有两个不同的交点,则实数a的取值范围是.14.如图,等腰三角形ABC中,AB=AC=2,∠B=75°,以C为旋转中心将△ABC顺时针旋转,当点B落在AB 上点D处时,点A的对应点为E,则阴影部分面积为.15.如图,将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处.若BC=10,BE=2,则AB2﹣AC2的值为.三.解答题(共8小题,满分75分)16.(8分)先化简,再求值:(x﹣2﹣)÷,其中x=2﹣4.17.(9分)某超市对今年“元旦"期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?18.(9分)如图,⊙O中,AB为直径,点P为⊙O外一点,且PA=AB,PA、PB交⊙O于D、E两点,∠PAB 为锐角,连接DE、OD、OE.(1)求证:∠EDO=∠EBO;(2)填空:若AB=8,①△AOD的最大面积为;②当DE=时,四边形OBED为菱形.19.(9分)济南大明湖畔的“超然楼"被称作“江北第一楼”.某校数学社团的同学对超然楼的高度进行了测量.如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为60°,若学生的身高忽略不计,则该楼的高度CD多少米?(结果保留根号)20.(9分)如图,已知一次函数y=mx﹣4(m≠0)的图象分别交x轴,y轴于A(﹣4,0),B两点,与反比例函数y=(k≠0)的图象在第二象限的交点为C(﹣5,n)(1)分别求一次函数和反比例函数的表达式;(2)点P在该反比例函数的图象上,点Q在x轴上,且P,Q两点在直线AB的同侧,若以B,C,P,Q为顶点的四边形是平行四边形,求满足条件的点P和点Q的坐标.21.(10分)开学前夕,某文具店准备购进A、B两种品牌的文具袋进行销售,若购进A品牌文具袋和B品牌文具袋各5个共花费125元,购进A品牌文具袋3个和B品牌文具袋各4个共花费90元.(1)求购进A品牌文具袋和B品牌文具袋的单价;(2)若该文具店购进了A,B两种品牌的文具袋共100个,其中A品牌文具袋售价为12元,B品牌文具袋售价为23元,设购进A品牌文具袋x个,获得总利润为y元.①求y关于x的函数关系式;②要使销售文具袋的利润最大,且所获利润不超过进货价格的40%,请你帮该文具店设计一个进货方案,并求出其所获利润的最大值.22.(10分)已知:AD是△ABC的高,且BD=CD.(1)如图1,求证:∠BAD=∠CAD;(2)如图2,点E在AD上,连接BE,将△ABE沿BE折叠得到△A′BE,A′B与AC相交于点F,若BE=BC,求∠BFC的大小;(3)如图3,在(2)的条件下,连接EF,过点C作CG⊥EF,交EF的延长线于点G,若BF=10,EG=6,求线段CF的长.23.(11分)如图1,抛物线y=x2+(m﹣2)x﹣2m(m>0)与x轴交于A、B两点(A在B左边),与y轴交于点C.连接AC、BC,D为抛物线上一动点(D在B、C两点之间),OD交BC于E点.(1)若△ABC的面积为8,求m的值;(2)在(1)的条件下,求的最大值;(3)如图2,直线y=kx+b与抛物线交于M、N两点(M不与A重合,M在N左边),连MA,作NH⊥x轴于H,过点H作HP∥MA交y轴于点P,PH交MN于点Q,求点Q的横坐标.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据绝对值的定义进行分析即可得出正确结论.【解答】解:选项A、B、C中,a与b的关系还有可能互为相反数.故选D.【点评】绝对值相等的两个数的关系是相等或互为相反数.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将130万用科学记数法表示为1。

2023年河南省郑州市桐柏一中中考数学模拟试卷+答案解析

2023年河南省郑州市桐柏一中中考数学模拟试卷+答案解析

2023年河南省郑州市桐柏一中中考数学模拟试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列为负数的是()A. B. C.0 D.2.下列四个几何体的主视图是三角形的是()A. B. C. D.3.下列计算,正确的是()A. B. C. D.4.2022年3月11日,新华社发文总结2021年中国取得的科技成就,其中包括“奋斗者”号载人潜水器最深下潜至10909米.其中数据10909用科学记数法表示为()A. B. C. D.5.如图,,,DA平分,则的度数为()A.B.C.D.6.一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定7.如图是小明某一天测得的7次体温情况的折线统计图,下列信息不正确的是()A.测得的最高体温为B.前3次测得的体温在下降C.这组数据的众数是D.这组数据的中位数是8.《九章算术》中有一道关于古代驿站送信的题目,其白话译文为:一份文件,若用慢马送到900里远的城市,所需时间比规定时间多1天;若改为快马派送,则所需时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间,设规定时间为x天,则可列出正确的方程为()A. B.C. D.9.如图1,点P从的顶点B出发,沿匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则的面积是()A.12B.24C.36D.4810.四盏灯笼的位置如图.已知A,B,C,D的坐标分别是,,,,平移y轴右侧的一盏灯笼,使得y轴两侧的灯笼对称,则平移的方法可以是()A.将B向左平移个单位B.将C向左平移4个单位C.将D向左平移个单位D.将C向左平移个单位二、填空题:本题共5小题,每小题3分,共15分。

11.写出一个比大且比小的整数是__________.12.不等式组的解集是______.13.不透明的袋子中有四个完全相同的小球,上面分别写着数字1,2,3,随机摸出一个小球,记录其数字,放回并摇匀,再随机摸出一个小球,记录其数字,则两次记录的数字不相同的概率是______.14.如图,AB是的切线,B为切点,OA与交于点C,以点A为圆心、以OC的长为半径作,分别交AB,AC于点E,若,,则图中阴影部分的面积为__________.15.如图,在矩形ABCD中,,,有一动点P以的速度沿着的方向移动,连接AP,沿AP翻折,得到,则经过______s点落在边CD所在直线上.三、解答题:本题共8小题,共64分。

2023年河南省信阳市罗山县青山一中、二中中考数学模拟试卷(含解析)

2023年河南省信阳市罗山县青山一中、二中中考数学模拟试卷(含解析)

2023年河南省信阳市罗山县青山一中、二中中考数学模拟试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 若|a|=3,则a的值是( )A. −3B. 3C. 13D. ±32. 每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为( )A. 1.05×105B. 0.105×10−4C. 1.05×10−5D. 105×10−73.如图所示的几何体的俯视图为( )A.B.C.D.4. 计算2aa+1÷aa+1的结果是( )A. 2B. 2a+2C. 1D. 4aa+15.如图,将一副三角尺按图中所示位置摆放,点F在AC上,AB//DE,则∠EFC的度数是( )A. 65°B. 60°C. 70°D. 75°6. 防晒衣的主要作用是阻隔太阳紫外线的直接照射,如图为某品牌防晒衣某分店2022年1~8月的销量(单位:件)情况.这8个月销量(单位:件)的中位数是( )A. 1952B. 2387C. 2822D. 29847.如图,E是四边形ABCD的边BC延长线上的一点,且AB//CD,则下列条件中不能判定四边形ABCD是平行四边形的是( )A. ∠D=∠5B. ∠3=∠4C. ∠1=∠2D. ∠B=∠D8. 若关于x的一元二次方程x2+6x−a=0有实数根,则a的取值范围是( )A. a≤−9B. a>−9C. a≥−9D. a≥99.如图,等边△ABC的边长为1,D是AC和BC边上的一点,过D作AB边的垂线,交AB于G,设线段AG的长度为x,Rt△AGD的面积为y,则y与关于x的函数图象正确的是( )A. B.C. D.10. 如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,都是斜边在x轴上,斜边长分别为2,4,6,……的等腰直角三角形,若A1A2A3的顶点坐标分别为A1(2,0),A2 (1,−1),A3(0,0),则依图中所示规律,A2022的坐标为( )A. (2,1010)B. (2,1011)C. (1,−1010)D. (1,−1011)二、填空题(本大题共5小题,共15.0分)11. 一个二次三项式分解因式后,其中一个因式为x+1,请写出一个满足条件的二次三项式:______.12. 如图,在△ABC中,AC=BC,以点A为圆心,任意长为半径画弧,分别交AB、AC于点M、N,再分别以点M、N为圆心,MN的长为半径画弧,两弧交于点P,连接AP并延长交BC大于12于点D,若∠C=36°,则∠ADB的度数是______.13. 2022年2月4日,北京冬奥会在北京一张家口隆重开幕,在北京冬奥会举办期间,小亮想到现场观看两场比赛,于是搜集了如图所示编号为A,B,C,D的四张图片(四张图片除正面图案不同外,图片大小、材质都相同),他将四张图片背面朝上洗匀后,随机抽取其中的两张,到现场观看抽中图片上所对应的比赛,则小亮抽中短道速滑和花样滑冰双人滑的概率是______.14.正方形ABCD的边长为4.E为AD的中点,连接CE,过点B作BF⊥CE交CD于点F,垂足为G,则EG=______.15. 如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形AB CD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为____________.三、解答题(本大题共8小题,共75.0分。

2022——2023学年河南省洛阳市中考数学专项提升仿真模拟试题(3月4月)含答案

2022——2023学年河南省洛阳市中考数学专项提升仿真模拟试题(3月4月)含答案

第1页/总64页2022-2023学年河南省洛阳市中考数学专项提升仿真模拟试题(3月)第I 卷(选一选)请点击修正第I 卷的文字阐明评卷人得分一、单选题1.﹣3的值是()A .﹣3B .3C .-13D .132.2022年1月13日,国家电网召开了年度工作会议,计划2022年电网金额为5012亿元.此次电网额打破5000亿元,创历史新高.数据“5012亿”用科学记数法表示为()A .11501210⨯.B .10501210⨯.C .120501210⨯.D .8501210⨯.3.如图是一个由8个相反的小正方体搭成的几何体,则其左视图是()A .B .C .D .4.下列计算正确的是()A .2323m m m +=B .2422xy xy xy ÷=C .()()2224n n n -+--=-D .()2222m n m mn n --=-+5.已知点(),A a m ,()(),10B b m m -<<分别在函数1y x =-和函数21y x =-的图象上,则a 与b 的大小关系是()试卷第2页,共8页○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※A .a b >B .a b =C .a b <D .无法确定6.若一元二次方程()2110m x mx -++=有两个不相等的实数根,则正整数m 的值可以是()A .1B .2C .D .37.如图,现有4张外形大小质地均相反的卡片,正面分别印有短道速滑、花样滑冰、冰球、冰壶四种不同的卡通图案,背面完全相反,现将这4张卡片洗匀后正面向下放在桌子上,从中随机抽取两张,则这两张卡片正面图案恰好是冰球图案和冰壶图案的概率是()A .12B .14C .16D .188.定义一种新运算:2a b ab a =+ ,则不等式组(2)2152x x -<⎧⎪⎨≤⎪⎩的负整数解有()A.1个B .2个C .3个D .4个9.如图,在ABC 中,2AB AC ==,45A ∠=︒.以点C 为圆心,BC 长为半径画弧,交AB 于点D ,再分别以点B ,D 为圆心,大于12BD 的长为半径画弧,两弧在线段AB 的左侧交于点F ,作射线CF ,交AB 于点E ,则BEC △的面积为()A 1B 1+C .2D .210.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标是()0,4,顶点B 的坐标是()2,0,第3页/总64页对角线AC ,BD 的交点为M .将正方形ABCD 绕着原点O 逆时针旋转,每次旋转45°,则第2022次旋转结束时,点M 的坐标为()A .()3,3B .()3,3-C .()3,3--D .()3,3-第II 卷(非选一选)请点击修正第II 卷的文字阐明二、填空题=______.12.如图,一副直角三角板按如图所示的方式叠放在一同,其中30B ∠=︒,45D ∠=︒,DE 交AC 于点M .若DF AB ∥,则∠AME =______.13.“每天锻炼一小时,健康生活一辈子”.为了解先生每天的锻炼情况,某班体有委员随机调查了若干名先生的每天锻炼时长,统计如下表:每天锻炼时长(分钟)30406080先生人数3421则下列说法:①随机调查了10名先生;②平均每天锻炼时长是45分钟;③锻炼时长为40分钟试卷第4页,共8页○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※的人数最多;④中位数是40分钟.其中一切正确说法的序号是______.14.如图,在扇形OBA 中,120AOB ∠=︒,2OA =,点C ,D 分别是线段OB 和AB 的中点,连接CD ,交AB 于点E ,则图中暗影部分的面积为______.15.如图,在矩形ABCD 中,AB m =,3AD =,点E 是AB 边上的动点(不与点A ,B 重合),连接CE ,将BCE 沿直线CE 翻折得到B CE ' ,连接AB '.当点B '落在边AD 上,且点B '恰好是AD 的三等分点时,AEB '△的周长为______.评卷人得分三、解答题16.先化简,再求值:22111244x x x x x x ⎛⎫---+÷ ⎪+++⎝⎭,其中4x =-.上面是小宇同窗的化简过程,请认真阅读并完成相应任务.解:原式()()2212144221x x x x x x x x ⎡⎤++-++=-⋅⎢⎥++-⎣⎦步()223321x x x x +--=⋅+-第二步()()3321x x x --+=-第三步()()3121x x x ++=--.第四步(1)任务一:填空:①以上化简步骤中,第__________步是约分得到的,约分的根据是__________;②第__________步开始出现错误,这一步错误的缘由是__________.第5页/总64页(2)任务二:请直接写出该分式化简后的正确结果,并代入求值.17.某广告设计公司要在一座高楼的临街墙体(图2中AB )上安装星空图案霓虹灯(图2中AE ),需求用到如图1所示的云梯送料车已知云梯底端距离墙体10m 远,然后升起云梯自上而下安装霓虹灯,经测量,云梯顶端落在A 处时,云梯与程度面的夹角为65°,云梯顶端落在E 处时,云梯与程度面的夹角为45°,求这个星空图案霓虹灯的高度.(结果到1m .参考数据:sin650.91︒≈,cos650.42︒≈,tan65 2.14︒≈)18.如图,在Rt △ABC 中,∠B =90°,点O 在线段AC 上,⊙O 点A ,且与BC 边相切于点D ,与AB 边交于点F ,与AC 边交于点E.(1)求证:DE =DF;(2)若AE =10,AB =8,求EC 的长.19.2022年1月初,郑州市新型冠状肺炎疫情再度发生,为防止疫情扩散,确保教育教学质量,各校及时调整教学方式,改为线上教学.某中学在一周网课结束之后,针对家长开展了“做好配合,进步先生网课质量”的直播宣传,为了解先生在家上网课的实践情况,在前和后分别随机抽取了部分家长进行线上问卷调查(单选),并根据调查结果绘制成了如下统计图表.根据以上信息,解答下列成绩:前网课情况统计表试卷第6页,共8页○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※类别人数A 80B 364C 430D 126合计1000根据以上信息,解答下列成绩:(1)直播宣传前,抽取到的家长反馈中,类别______的先生最多,占被调查人数的百分比为______.(2)若该校有4500名先生,请估计直播宣传前经常在网课期间打游戏的先生人数.(3)小雨发现,直播宣传后经常在网课期间打游戏的有130名先生,相比直播宣传前添加了4人,因此小雨认为学校的直播宣传没有.统计图表,你认为小雨的分析合理吗?请阐明理由.20.如图,直线12y k x =+与x 轴、y 轴分别交于点A ,B ,与反比例函数()20k y x x=>的图象交于点C ,其中2OB OA =,2BC AB =.第7页/总64页(1)求反比例函数的解析式.(2)点D 是反比例函数()20k y x x=>的图象上一动点,过点D 作DE x ∥轴,交直线AB 于点E ,连接CD ,BD .若2BDE CDE S S =△△,求点D 的纵坐标.21.在同不断线上有甲、乙、丙三地,丙地在甲、乙两地之间.小刚和小强分别从甲、乙两地同时出发,相向而行.小刚匀速行进到丙地后,立即以原速度前往甲地;小强从乙地匀速行进到甲地.在整个行进过程中,他们两人到甲地的距离y (m )与行进的工夫x (min )之间的函数关系图象如图所示,请图象信息解答下列成绩.(1)a =______,小强的速度为______m/min .(2)求点C 的坐标,并阐明点C 的实践意义.(3)直接写出小刚和小强两人相距200m 时小强行进的工夫.22.已知抛物线()210y x tx t t =-+++>过点()4,h ,交x 轴于A ,B 两点(点A 在点B 左侧),交y 轴于点C ,且对于任意实数m ,恒有214m tm t -+++≤成立.(1)求抛物线的解析式.(2)作直线BC ,点是直线BC 上一点,将点E 向右平移2个单位长度得到点F ,连接EF .若线试卷第8页,共8页○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※段EF 与抛物线只要1个交点,求点E 横坐标的取值范围,(3)若()112,P n y -,()22,P n y ,()332,P n y +三点都在抛物线上且总有132y y y <<,直接写出n 的取值范围.23.(1)【探求发现】小明在学习等边三角形的相关知识时,遇到这样一个成绩:如图1,ABC 是等边三角形,点O 是ABC 的外心,D 是AB 边的中点,连接OC,OD ,OA ,OB .猜想:①∠AOB =______°;②OCOD的值为______.(2)【猜想验证】如图2,若点O 在等边三角形ABC 的内部运动,且∠AOB 的度数和(1)中一样,D 是AB 边的中点,连接OC ,OD .小明想经过三角形全等或类似来探求OCOD的值能否发生变化,上面是小明的探求过程:OCOD的值没有发生变化.证明如下:以OA ,OB 为邻边构造AEBO ,在边OC 左侧构造等边三角形COF ,连接AF ,DE ,如图3所示.……请你根据以上辅助线,将后面的证明过程补充残缺.(3)【拓展运用】在(2)的条件下,若AB =OA ,OB ,OC 三条线段组成的三角形恰好为直角三角形时,直接写出线段OA 的长.答案:1.B【分析】根据负数的值是它的相反数,可得出答案.【详解】根据值的性质得:|-3|=3.故选B.本题考查值的性质,需求掌握非负数的值是它本身,负数的值是它的相反数.2.A【分析】科学记数法的表示方式为a×10n的方式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点挪动了多少位,n的值与小数点挪动的位数相反.当原数值≥10时,n 是正整数,当原数值<1时,n是负整数.【详解】解:5012亿=501200000000=5.012×1011.故选:A.此题考查科学记数法的表示方法.科学记数法的表示方式为a×10n的方式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.D【分析】找到从左面看所得到的图形即可.【详解】解:从左面看易得左视图有3列,左边一列有1个小正方形,两头一列有3个小正方形,左边一列有1个正方形,故选:D.本题次要考查了几何体的三视图,从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,难度适中.4.C【分析】分别根据合并同类项运算法则,单项式除以单项式运算法则、平方差公式以及完全平方公式分别计算出各项后,再进行判断即可.【详解】解:A.22m 与m 不是同类项,不能合并,故此选项错误,不符合题意;B.2422xy xy y ÷=,故此选项错误,不符合题意;C.()()2224n n n -+--=-,计算正确,故此选项符合题意;D.()2222m n m mn n --=++,故此选项错误,不符合题意;故选:C .本题次要考查了合并同类项,单项式除以单项式、平方差公式以及完全平方公式,纯熟掌握运算法则和乘法公式是解答本题的关键.5.A【分析】根据题意可求出1a m =+,12m b +=,两者作差可得12m a b +-=,利用10m -<<求出011m <+<,即可知a b >.【详解】解:∵点(),A a m ,()(),10B b m m -<<分别在函数1y x =-和函数21y x =-的图象上,∴1m a =-,21m b =-,∴1a m =+,12m b +=,∴12m a b +-=,∵10m -<<∴011m <+<,∴102m a b +-=>,即a b >.故选:A .本题考查函数,不等式的性质,解题的关键是求出1a m =+,12m b +=,两者作差比较其与0的大小.6.D 【分析】根据一元二次方程定义和根的判别式即可求解.【详解】解:依题意得()()210410m m m ⎧-≠⎪⎨--⎪⎩>解得1m ≠且2m ≠,∵m 为正整数.故选:D .此题次要考查一元二次方程定义和根的判别式,解题的关键是熟知一元二次方程定义:只含有一个未知数,并且未知数的次数2的整式方程,叫做一元二次方程;一元二次方程有两个不相等的实数根对应△>0.7.C【分析】根据题意画出树状图得出一切等情况数,找出印有冰球图案和冰壶图案的卡片被抽中的情况数,然后根据概率公式即可得出答案.【详解】解:分别用A ,B ,C ,D 表示短道速滑、花样滑冰、冰球、冰壶四种不同的卡通图案,画树状图如下:由图可知:共有AB 、AC 、AD 、BA 、BC 、BD 、CA 、CB 、CD 、DA 、DB 、DC 共12种等可能的结果,其中抽到冰球图案和冰壶图案的有2种,则印有冰球图案和冰壶图案的卡片被抽中的概率是21=126.故选C 此题考查的是树状图法求概率.树状图法合适两步或两步以上完成的;解题时要留意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.8.B【分析】根据新运算的定义将不等式组(2)2152x x -<⎧⎪⎨≤⎪⎩变构成2421252x x x --<⎧⎪⎨+≤⎪⎩,解不等式组,找出其中的负数解即可;【详解】解:由题意可知:(2)2152x x -<⎧⎪⎨≤⎪⎩变构成2421252x x x --<⎧⎪⎨+≤⎪⎩,解不等式组可知不等式组的解集为:32x -≤<∴负整数解为:2-,1-,有2个,故选:B 本题考查解不等式组中的整数解,解题的关键是将(2)2152x x -<⎧⎪⎨≤⎪⎩变构成2421252x x x --<⎧⎪⎨+≤⎪⎩,掌握解不等式组的方法,9.A【分析】由尺规作图的步骤,可知CE 是线段BD 的垂直平分线,再根据45A ∠=︒,推出AEC △是等腰直角三角形,即可求出AE 的长度,从而求出BE 的长度,再根据三角形的面积公式求解即可.【详解】解:由尺规作图的步骤,可知CE 是线段BD 的垂直平分线,∴90BEC AEC ∠=∠=︒,又∵45A ∠=︒,∴45ACE ∠=︒,∴AE CE =,∴AEC △是等腰直角三角形,∴2AE CE AC ==,∴2BE AB AE =-=-,∴(112122BEC S BE CE =⋅=⨯-=△故选A .本题考查了基本作图、等腰三角形的性质、等腰直角三角形的判定与性质、三角形的面积公式等知识点,解答本题的关键是要掌握基本作图.10.D【分析】过点D 作DN y ⊥轴,垂足为N ,证明()ADN BAO AAS ≌△△.求出点D 的坐标为()4,6.进一步求出点M 的坐标为()3,3.分析可知点M 旋转一周需求旋转360458︒÷︒=(次),利用202282526÷=⋅⋅⋅⋅⋅⋅,645270⨯︒=︒,可知第2022次旋转结束时和第6次旋转结束时,点M 的坐标相反,且此时点M 的地位就是()3,3M 绕点O 逆时针旋转270°(或顺时针旋转90°)的地位.故可知点M 的坐标为()3,3-.【详解】解:∵()0,4A ,()2,0B ,∴4AO =,2BO =.过点D 作DN y ⊥轴,垂足为N ,如解图所示,则90DNA AOB ∠=∠=︒.∵四边形ABCD 为正方形,∴DA AB =,90DAB ∠=︒.∴90NAD OBA OAB ∠=∠=︒-∠.∴()ADN BAO AAS ≌△△.∴2AN BO ==,4DN AO ==.∴点D 的坐标为()4,6.∵点M 为BD 的中点,∴点M 的坐标为()3,3.由题意,可知正方形ABCD 绕着原点O 逆时针旋转,每次旋转45°,点M 也绕着原点O 逆时针旋转,每次旋转45°,则点M 旋转一周需求旋转360458︒÷︒=(次).又∵202282526÷=⋅⋅⋅⋅⋅⋅,645270⨯︒=︒,∴第2022次旋转结束时和第6次旋转结束时,点M 的坐标相反,且此时点M 的地位就是()3,3M 绕点O 逆时针旋转270°(或顺时针旋转90°)的地位.∴第2022次旋转结束时,点M 的坐标为()3,3-,故选:D .本题考查坐标与旋转规律,正方形性质,全等三角形的判定及性质,解题的关键是理解第2022次旋转结束时和第6次旋转结束时,点M 的坐标相反,且此时点M 的地位就是()3,3M 绕点O 逆时针旋转270°(或顺时针旋转90°)的地位.11.0【分析】本题涉及负整数指数幂、二次根式化简.对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】解:1112022-=-=故0本题次要考查了实数的综合运算能力,是各地中考题中常见的计算题型.处理此类标题的关键是纯熟掌握负整数指数幂、二次根式等知识点的运算.12.75°【分析】根据平行线的性质和三角形内角和定理可求解.【详解】解:在Rt △ABC 中,90,30C B ∠=︒∠=︒,∴903060A ∠=︒-︒=︒∵DF AB ∥,45D ∠=︒,∴45AED D ∠=∠=︒,又180A AEM AME ∠+∠+∠=︒,∴180180604575AME A AEM ∠=︒-∠-∠=︒-︒-︒=︒,故75°本题次要考查了平行线的性质,三角形内角和定理等知识,纯熟掌握相关性质和定理是解答本题的关键.13.①②③④【分析】分别根据众数、加权平均数、样本容量及中位数的定义求解可得.【详解】解:根据题意,样本容量为:3+4+2+1=10,故①正确;平均锻炼工夫是:3034046028014510⨯+⨯+⨯+⨯=,故②正确;锻炼时长为40分钟的人数是4人,人数最多,故③正确;第5个数是40,第6个数是40,∴中位数为:4040402+=,故④正确;故①②③④.本题次要考查众数、加权平均数、样本容量及中位数的定义,解题的关键是掌握众数:一组数据中出现次数最多的那个数据;加权平均数:普通地,对于n 个数12,,,n x x x ,我们把121()n x x x n+++ 叫做这n 个数的算术平均数,简称平均数,样本容量:样本中个体的数目;中位数:将一组数据按照由小到大(或由大到小)的顺序陈列,如果数据的个数是奇数,则处于两头地位的数就是这组数据的中位数;如果数据的个数是偶数,则两头两个数据的平均数就是这组数据的中位数.14.23π-【分析】连接OD ,BD ,先证明OBD 为等边三角形,由三线合一可知1OC BC ==,由锐角三角函数的知识求出CD 、CE 的长,然后根据OCD BCE OBD S S S S =--阴影扇形△△求解即可.【详解】解:连接OD ,BD ,如解图所示.在扇形OBA 中,∵120AOB ∠=︒,点D 为 AB 的中点,∴60BOD ∠=︒.∵2OB OD OA ===,∴OBD 为等边三角形.又∵C 为线段OB 的中点,∴1OC BC ==,90OCD BCD ∠=∠=︒.所以在Rt OCD △中,tan 60CD OC =︒⋅=∴122OCD S CD =⋅=△.∵OA OB =,120AOB ∠=︒,∴30OBA ∠=︒,即30CBE ∠=︒,∴在Rt BCE 中,tan 30EC BC =︒⋅=∴1112236BCE S BC EC =⋅=⨯⨯△,∵260223603OBD S ππ=⨯⨯=扇形,∴2233OCD BCE OBD S S S S ππ=--==阴影扇形△△故23π-.本题考查了等边三角形的判定与性质,锐角三角函数的知识,弧、弦、圆心角的关系,以及扇形的面积公式,纯熟掌握各知识点是解答本题的关键.151或2【分析】分以下两种情况进行讨论.①当点B '恰好是AD 的三等分点且靠近A 点时;②当点B '恰好是AD 的三等分点且靠近D 点时,根据折叠性质及勾股定理求解即可.【详解】解:∵四边形ABCD 是矩形,∴AB CD m ==,3AD BC ==.由题意,可知需分以下两种情况进行讨论.①当点B '恰好是AD 的三等分点且靠近A 点时,如图1所示.又∵3AD =,∴1AB '=,2DB '=.由折叠的性质,可知3BC B C '==,BE B E '=,∴CD ===.∴AB CD ==.∴1AEB C AE B E AB AB AB ''''=++=++△.②当点B '恰好是AD 的三等分点且靠近D 点时,如图2所示.又∵3AD =,∴2AB '=,1DB '=.由折叠的性质,可知3BC B C '==,BE B E '=,∴CD ===∴AB CD ==.∴2AEB C AE B E AB AB AB ''''=++=+=△.综上所述,当点B '落在边AD 上,且点B '恰好是AD 的三等分点时,AEB '△1或2.1或2本题考查矩形及其折叠成绩,勾股定理,解题的关键是纯熟掌握矩形性质和折叠的性质,对点B '地位进行分情况讨论.16.(1)①三,分式的基本性质;②一;添括号时,括号里面的第二项没有变号;(2)2x --;2【分析】(1)①根据分式的运算法则观察化简步骤即可知答案;②观察分式化简的步骤可知答案;(2)将分式进行正确的化简,再将4x =-代入化简之后的式子即可.(1)解:由题意可知:①化简步骤中,第三步是约分得到的,约分的根据是:分式的基本性质;故三,分式的基本性质;②步开始出现错误,这一步错误的缘由是:添括号时,括号里面的第二项没有变号.故答案为:一,添括号时,括号里面的第二项没有变号.(2)解:原式()()2212144221x x x x x x x x ⎡⎤-+-++=-⋅⎢⎥++-⎣⎦()()21221x x x x --+=⋅+-2x =--.当4x =-时,原式422=-=.本题考查分式的化简求值,解题的关键是掌握约分的根据以及分式的运算法则.17.11m【分析】过点D 作DF AB ⊥于点F ,利用三角函数在Rt DEF △中求出EF ,在Rt ADF 中求出AF ,从而可得AE 的长.【详解】解:过点D 作DF AB ⊥于点F ,如图所示,则四边形DFBC 为矩形,45EDF ∠=︒,65ADF ∠=︒.∴10BC DF ==m .在Rt DEF △中,tan tan451EF EDF DF ∠=︒==.∴10EF DF ==m .在Rt ADF 中,tan tan6521410AF AF ADF DF ∠=︒==≈..∴214.AF ≈m .∴2141011.AE AF EF =-≈-≈m .答:这个星空图案霓虹灯的高度大约为11m .本题考查利用三角函数测距的实践运用,纯熟掌握三角函数的概念是解题的关键.18.(1)见解析(2)103【分析】(1)连接OF ,OD ,利用切线的性质证明AB ∥OD ,推出∠1=∠2,从而证明结论;(2)证明△ODC ∽△ABC ,利用类似三角形的性质即可求解.(1)证明:连接OF ,OD ,标记∠1,∠2,∠3,∠4,如解图所示.∵⊙O与BC相切于点D,∴OD⊥BC,∴∠ODC=90°,∵∠B=90°,∴AB∥OD,∴∠1=∠4,∠2=∠3,∴OA=OF,∴∠3=∠4.∴∠1=∠2,∴DE =DF ;(2)解:∵AE=10,∴OA=OE=OD=5,∵∠ODC=∠B=90°,∠C=∠C,∴△ODC∽△ABC,∴OC ACOD AB=,即51058CE CE++=,∴103 CE=.本题考查了切线的性质:圆的切线垂直于切点的半径.也考查了类似三角形的判定和性质.处理本题的关键是掌握切线的性质.19.(1)C,43%(2)567(3)不合理,学校开展的直播宣传有,见解析【分析】(1)根据前网课情况统计表中的数据解答;(2)先计算前经常在网课期间打游戏的先生人数的百分比,再乘以4500即可;(3)分别计算直播宣传前后,“经常在网课期间打游戏”的先生人数占被调查人数的百分比,再作比较即可解答.(1)解:直播宣传前,抽取到的家长反馈中,类别C 的先生最多,有430人,占被调查人数的百分比为430=43%1000故答案为;C ,43%;(2)12645005671000⨯=(名).答:估计直播宣传前经常在网课期间打游戏的先生人数为567.(3)小雨的分析不合理.理由:直播宣传前,“经常在网课期间打游戏”的先生人数占被调查人数的百分比为126100%126%1000.⨯=;直播宣传后“经常在网课期间打游戏”的先生人数占被调查人数的百分比为130100% 6.5%836780254130⨯=+++.∵65%126%..<,∴学校开展的直播宣传有.本题考查频数分布表、条形统计图、用样本估计总体等知识,是基础考点,掌握相关知识是解题关键.20.(1)()120y x x =>;(2)143或10.【分析】(1)证明CBF ABO ∽,进一步可求出C 点的坐标,利用待定系数求解析式即可;(2)对点D 的地位分情况讨论,当点D 在直线AC 下方;当点D 在直线AC 上方;利用2BDE CDE S S =△△即可求出点D 的纵坐标.(1)解:直线12y k x =+与y 轴交于点B ,∴()0,2B .即2OB =.∵2OB OA =,∴1OA =.过点C 作CF y ⊥轴于点F ,如图1所示,则90CFB AOB ∠=∠=︒.∵CBF ABO ∠=∠,∴CBF ABO ∽.∴CF BF BC AO BO BA==.∵2BC AB =,∴212CF BF ==,解得2CF =,4BF =.∴6OF BF BO =+=.∴点C 的坐标为()2,6.把点()2,6C 代入2k y x=,得212k =.∴反比例函数的解析式为()120y x x =>.(2)解:由题意,可分以下两种情况进行讨论.①当点D 在直线AC 下方的反比例函数图象上时,过点C 作CM DE ⊥于点M ,延伸DE 交y 轴于点N ,如图2所示,则CM BN ∥.∵2BDE CDE S S =△△,12BDE S DE BN =⋅△,12CDE S DE CM =⋅△,∴2BN CM =.由(1)得4BN CM +=,∴43CM =,83BN =.∴点D 的纵坐标为814233+=.②当点D 在直线AC 上方的反比例函数图象上时,过点C 作CM DE ⊥于点M ,延伸ED 交y 轴于点N ,如解图3所示,则CM BN ∥.∵2BDE CDE S S =△△,12BDE S DE BN =⋅△,12CDE S DE CM =⋅△,∴2BN CM =.由(1)得4BN CM -=,∴4CM =,8BN =.∴点D 的纵坐标为8210+=.综上所述,当2BDE CDE S S =△△时,点D 的纵坐标为143或10.本题考查反比例函数和函数综合,类似三角形的判定及性质,解题的关键是掌握待定系数法求反比例函数解析式,对点D 的地位分情况讨论.21.(1)20,40;(2)点C 的坐标为()20,1200;点C 的实践意义:当行进工夫为20min 时,小刚和小强在丙地相遇,且两人距离甲地1200m ;(3)18min 或30min 或45min .【分析】(1)函数图象可知:折线OCD 代表的是小刚行走的,直线AB 代表小强行走的,利用小刚匀速行走用的工夫为40min ,故a =20;利用小强用的工夫为50min ,故其速度为40m/min ;(2)利用待定系数法求出直线AB 的解析式为402000y x =-+.进一步可求出点C 的坐标为()20,1200.图象可知点C 的实践意义:当行进工夫为20min 时,小刚和小强在丙地相遇,且两人距离甲地1200m .(3)求出直线OC 的解析式为60y x =,直线CD 的解析式为602400y x =-+,分情况进行讨论:①当小刚、小强相遇前相距200m 时,则40200060200x x -+-=,解得18x =;②当小刚、小强相遇后相距200m 且小刚未到达甲地时,()402000602400200x x -+--+=,解得30x =;③当小刚、小强相遇后相距200m 且小刚已到达甲地时,4020000200x -+-=,解得45x =.(1)解:由图像可知:折线OCD 代表的是小刚行走的,直线AB 代表小强行走的,∵小刚匀速行走用的工夫为40min ,∴a =20,∵小强用的工夫为50min ,∴其速度为2000=40m/min 50,故20,40.(2)解:设直线AB 的解析式为y kx b =+.将点()02000,A ,()500,B 代入y kx b =+,得2000500b k b =⎧⎨+=⎩,解得402000k b =-⎧⎨=⎩,∴直线AB 的解析式为402000y x =-+.将20x =代入402000y x =-+,得1200y =.∴点C 的坐标为()20,1200.点C 的实践意义:当行进工夫为20min 时,小刚和小强在丙地相遇,且两人距离甲地1200m .(3)18min 或30min 或45min .理由:由图可知,O (0,0),D (40,0)由(2)可知点C (20,1200)设OC 解析式为1y k x =,设CD 解析式为2y k x m=+将坐标代入可知1120020k =22040120020k m k m=+⎧⎨=+⎩解得160k =,2602400k m =-⎧⎨=⎩∴直线OC 的解析式为60y x =,直线CD 的解析式为602400y x =-+.由题意,可分以下三种情况进行讨论①当小刚、小强相遇前相距200m 时,则40200060200x x -+-=,解得18x =;②当小刚、小强相遇后相距200m 且小刚未到达甲地时,()402000602400200x x -+--+=,解得30x =;③当小刚、小强相遇后相距200m 且小刚已到达甲地时,4020000200x -+-=,解得45x =.综上所述,小刚和小强两人相距200m 时小强行进的工夫为18min 或30min 或45min .本题考查函数的实践运用:行程成绩,解题的关键是掌握待定系数法求解析式,函数图象获取信息.22.(1)2y x 2x 3=-++;(2)10x -≤<或03x <≤;(3)01n <<.【分析】(1)分析可知:点()4,h 是拋物线()210y x tx t t =-+++>的顶点.即2t h =,21422t t t t ⎛⎫-+⋅++= ⎪⎝⎭,求出2t =即可求出解析式;(2)求出点()1,0A -,()3,0B ,()0,3C ,顶点坐标为()1,4,进一步可知直线BC 的解析式为3y x =-+.分情况讨论:当点F 与抛物线顶点重合时,当点E 与点C 重合时,当点E 与点B 重合时,图象求解即可;(3)分析可知点2P 不可能在抛物线的对称轴上,点1P 在对称轴的左侧,点3P 在对称轴的右侧且点3P 到对称轴的距离比点1P 近.故可得()2112n n +-<--,解得1n <.再利用点2P 在对称轴的左侧,且点2P 到对称轴的距离比点3P 近.可知121n n -<+-,解得0n >.故可知n 的取值范围为01n <<.(1)解:∵对于任意实数m ,恒有214m tm t -+++≤成立,且抛物线()210y x tx t t =-+++>过点()4,h ,∴点()4,h 是拋物线()210y x tx t t =-+++>的顶点.∴2t h =,21422t t t t ⎛⎫-+⋅++= ⎪⎝⎭,即24120t t +-=,解得6t =-或2t =.∵0t >,∴2t =.∴抛物线的解析式为2y x 2x 3=-++.(2)解:令223=0x x -++,解得:1=1-x ,2=3x ,∴()1,0A -,()3,0B ,令=0x ,可得:3y =,∴()0,3C ,∵()2223=14y x x x =-++--+,∴抛物线的顶点坐标为()1,4,∴设直线BC 的解析式为y kx b =+,将()3,0B ,()0,3C 代入可得:303k b b +=⎧⎨=⎩,解得:=13k b -⎧⎨=⎩,∴直线BC 的解析式为3y x =-+.①当点F 与抛物线顶点重合时,如解图1所示,此时点F 的坐标为()1,4.平移的性质,可知此时点E 的坐标为()1,4-.∴点E 在直线BC 上,且线段EF 与抛物线只要1个交点.②当点E 与点C 重合时,如解图2所示,此时点()0,3E ,点()2,3F .∴点F 在抛物线上,此时线段EF 与抛物线有2个交点③当点E 与点B 重合时,如解图3所示,此时线段EF 与抛物线只要1个交点.综上所述,当线段EF 与抛物线只要1个交点时,点E 横坐标的取值范围为10x -≤<或03x <≤.(3)解:01n <<.理由:当抛物线开口向下时,在对称轴的左侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小,且抛物线上的点到对称轴的距离越近,其对应的y 值越大.题意,可知点2P 不可能在抛物线的对称轴上,点1P 在对称轴的左侧,点3P 在对称轴的右侧且点3P 到对称轴的距离比点1P 近.∴()2112n n +-<--,解得1n <.∴点2P 在对称轴的左侧,且点2P 到对称轴的距离比点3P 近.∴121n n -<+-,解得0n >.∴n 的取值范围为01n <<.本题考查二次函数综合,解题的关键是掌握待定系数法求函数解析式,掌握二次函数性质,以及平移的性质.23.(1)①120;②2;(2)不变,是定值2;见解析;(3)2或4【分析】(1)作等边三角形ABC 的外接圆O ,可知OC OA OB ==,2120AOB ACB ∠=∠=︒,进一步可得2OA OD =,2OC OD =,故可知2OC OD=;(2)证明()ACF BCO SAS ≌△△可得AF BO =,FAC OBC ∠=∠.再证明≌OAF OAE△△(SAS ),可得OF OE OC ==.利用D 是AB 的中点,四边形AEBO 是平行四边形,得到2OE OD =,2OC OD =,即2OC OD=;(3)由(2),可知OC OE =,AE OB =,则以OA ,OB ,OC 三条线段组成的三角形恰好为直角三角形时,即AOE △为直角三角形.可分以下两种情况进行讨论.①若90AOE ∠=︒,②若90AEO ∠=︒,图象求解即可.【详解】解:(1)①120;②2.作等边三角形ABC 的外接圆O ,如解图1所示,则OC OA OB ==,2120AOB ACB ∠=∠=︒,∵OA OB =,D 是AB 边的中点,∴⊥OD AB ,1602AOD BOD AOB ∠=∠=∠=︒,∴90ODA =∠°,30OAD ∠=︒,∴2OA OD =,∴2OC OD =,∴2OC OD=;(2)补充的证明过程如下:∵COF 是等边三角形,∴CF CO OF ==,60FCO ∠=︒.∵ABC 是等边三角形,∴CA CB =,60ACB ∠=︒,∴60ACF BCO OCA =∠=︒-∠,∴()ACF BCO SAS ≌△△,∴AF BO =,FAC OBC ∠=∠,∵四边形AEBO 是平行四边形,120AOB ∠=︒,∴AE BO AF ==,18060OBE OAE AOB ∠=∠=︒-∠=︒,60OAB OBA ∠+∠=︒,又∵60OBA OBC ∠+∠=︒,∴OAB OBC ∠=∠.∵60CAO OAB ∠+∠=︒,∴60CAO FAC ∠+∠=︒,∴FAO OBE OAE ∠=∠=∠,∴()OAF OAE SAS ≌△△,∴OF OE OC ==,∵D 是AB 的中点,四边形AEBO 是平行四边形,∴2OE OD =,∴2OC OD =,即2OC OD=,(3)2或4.由(2)可知OC OE =,AE OB =,则以OA ,OB ,OC 三条线段组成的三角形恰好为直角三角形时,即AOE △为直角三角形.由题意,可分以下两种情况进行讨论.①若90AOE ∠=︒,如解图2所示,则30EOB AEO ∠=∠=︒,设OA x =,则OE =.∵2OE OD =,∴OD DE x ==.∵AB =,D 为AB 的中点,AD BD ==在Rt AOD △中,由勾股定理,得222OA OD AD +=,即222x x ⎫+=⎪⎪⎝⎭,解得2x =或2x =-(舍去).∴2OA =.②若90AEO ∠=︒,如解图3所示,则 90EOB ∠=︒,30AOE ∠=︒.设AE OB x ==,则2OA x =,OE =.∴OD DE x ==.由①,可知AD BD ==.在Rt BOD 中,由勾股定理,得222OB OD BD +=,即222x x ⎫+=⎪⎪⎝⎭,解得2x =或2x =-(舍去).∴2AE =.∴4OA =.综上所述,当OA ,OB ,OC 三条线段组成的三角形恰好为直角三角形时,线段OA 的长为2或4.本题考查等边三角形的性质,全等三角形的判定及性质,平行四边形的性质,勾股定理,解题的关键是纯熟掌握以上性质,添加适当的辅助线进行求解.。

2020年河南省普通高中招生考试数学模拟试卷含答案解析-2020年河南高中试卷数学

2020年河南省普通高中招生考试数学模拟试卷含答案解析-2020年河南高中试卷数学

2020年河南省普通高中招生考试数学模拟试卷一、选择题(每小题3分,共24分)1.在﹣2,0,3,这四个数中,最大的数是()A.﹣2 B.3 C.0 D.2.如图所示的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是()A.B.C.D.3.十八大报告指出:“建设生态文明,是关系人民福祉、关乎民族未来的长远大计”,这些年党和政府在生态文明的发展进程上持续推进,在“十一五”期间,中国减少二氧化碳排放1 460 000 000吨,赢得国际社会广泛赞誉.将1 460 000 000用科学记数法表示为()A.146×107B.1.46×107 C.1.46×109 D.1.46×10104.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30°B.36°C.38°D.45°5.若方程组的解x,y满足0<x+y<1,则k的取值范围是()A.﹣4<k<0 B.﹣1<k<0 C.0<k<8 D.k>﹣46.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n个图案中正三角形的个数为()(用含n的代数式表示).A.2n+1 B.3n+2 C.4n+2 D.4n﹣27.在平面直角坐标系xOy中,四边形OABC是矩形,且A,C在坐标轴上,满足OA=,OC=1.将矩形OABC绕原点0以每秒15°的速度逆时针旋转.设运动时间为t秒(0≤t≤6),旋转过程中矩形在第二象限内的面积为S,表示S与t的函数关系的图象大致如图所示,则矩形OABC的初始位置是()A. B. C.D.8.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是()A.B.C.D.2二、填空题(每小题3分,共21分)9.计算:(﹣1)2020+(π﹣3.14)0﹣()﹣2=______.10.二次函数y=ax2+bx+c的图象如图所示,下列关系式中:①a<0;②abc>0;③a+b+c >0;④b2﹣4ac>0.其中不正确的序号是______.11.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x,乙立方体朝上一面上分别标有数字为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线y=上的概率为______.12.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为______.13.如图所示,直角三角形中较长的直角边是较短的直角边长度的2倍,且两个顶点在数轴上对应的数分别为﹣1和1,以斜边为半径的弧交数轴于点A,点C所表示的数为2,点A 与点B关于点C对称,则点B表示的数为______.14.如图,点A,B分别在函数y=(k1>0)与y=(k2<0)的图象上,线段AB的中点M在y轴上.若△AOB的面积为2,则k1﹣k2的值是______.15.如图,菱形ABCD和菱形ECGF的边长分别为2和4,∠A=120°.则阴影部分面积是______.(结果保留根号)三、计算题(本题共8个小题,75分)16.先化简,再求值:,其中x+2=.17.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,点E是边BC的中点.(1)求证:BC2=BD•BA;(2)判断DE与⊙O位置关系,并说明理由.18.居民区内的“广场舞”引起媒体关注,小明想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:A.非常赞同;B.赞同但要有时间限制;C.无所谓;D.不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图.请你根据图中提供信息回答下列问题:(1)求本次被抽查的居民有多少人?(2)将图1和图2补充完整;(3)求图2中“C”层次所在扇形的圆心角的度数;(4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人..19.先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?20.为响应国家的“节能减排”政策,某厂家开发了一种新型的电动车,如图,它的大灯A射出的光线AB、AC与地面MN的夹角分别为22°和31°,AT⊥MN,垂足为T,大灯照亮地面的宽度BC的长为m.(1)求BT的长(不考虑其他因素).(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到电动车完全停下所行驶的距离叫做最小安全距离.某人以20km/h的速度驾驶该车,从做出刹车动作到电动车停止的刹车距离是,请判断该车大灯的设计是否能满足最小安全距离的要求(大灯与前轮前端间水平距离忽略不计),并说明理由.(参考数据:sin22°≈,tan22°≈,sin31°≈,tan31°≈)21.黄岩岛是我国南沙群岛的一个小岛,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并立即返航,渔政船接到报告后,立即从该港口出发赶往黄岩岛.下图是渔政船及渔船与港口的距离s和渔船离开港口的时间t之间的函数图象.(假设渔船与渔政船沿同一航线航行)(1)直接写出渔船离港口的距离s和它离开港口的时间t的函数关系式.(2)求渔船和渔政船相遇时,两船与黄岩岛的距离.(3)在渔政船驶往黄岩岛的过程中,求渔船从港口出发经过多长时间与渔政船相距30海里?22.已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0)、B(0,6),点P为BC边上的动点(点P不与点点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(1)如图1,当∠BOP=30°时,求点P的坐标;(2)如图2,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(3)在(2)的条件下,当点C′恰好落在边OA上时如图3,求点P的坐标(直接写出结果即可).23.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?2020年河南省普通高中招生考试数学模拟试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.在﹣2,0,3,这四个数中,最大的数是()A.﹣2 B.3 C.0 D.【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣2<0<<3,故在﹣2,0,3,这四个数中,最大的数是3,故选:B.2.如图所示的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图是从上面看得到的图形,可得答案.【解答】解:从上面看外边是一个矩形,里面是一个圆,故选:C.3.十八大报告指出:“建设生态文明,是关系人民福祉、关乎民族未来的长远大计”,这些年党和政府在生态文明的发展进程上持续推进,在“十一五”期间,中国减少二氧化碳排放1 460 000 000吨,赢得国际社会广泛赞誉.将1 460 000 000用科学记数法表示为()A.146×107B.1.46×107 C.1.46×109 D.1.46×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1 460 000 000有10位,所以可以确定n=10﹣1=9.【解答】解:1 460 000 000=1.46×109.故选C.4.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30°B.36°C.38°D.45°【考点】平行线的性质;等腰三角形的性质;多边形内角与外角.【分析】首先根据多边形内角和计算公式计算出每一个内角的度数,再根据等腰三角形的性质计算出∠AEB,然后根据平行线的性质可得答案.【解答】解:∵ABCDE是正五边形,∴∠BAE=(5﹣2)×180°÷5=108°,∴∠AEB=÷2=36°,∵l∥BE,∴∠1=36°,故选:B.5.若方程组的解x,y满足0<x+y<1,则k的取值范围是()A.﹣4<k<0 B.﹣1<k<0 C.0<k<8 D.k>﹣4【考点】解二元一次方程组;解一元一次不等式组.【分析】理解清楚题意,运用二元一次方程组的知识,解出k的取值范围.【解答】解:∵0<x+y<1,观察方程组可知,上下两个方程相加可得:4x+4y=k+4,两边都除以4得,x+y=,所以>0,解得k>﹣4;<1,解得k<0.所以﹣4<k<0.故选A.6.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n个图案中正三角形的个数为()(用含n的代数式表示).A.2n+1 B.3n+2 C.4n+2 D.4n﹣2【考点】规律型:图形的变化类.【分析】由题意可知:每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,由此规律得出答案即可.【解答】解:第一个图案正三角形个数为6=2+4;第二个图案正三角形个数为2+4+4=2+2×4;第三个图案正三角形个数为2+2×4+4=2+3×4;…;第n个图案正三角形个数为2+(n﹣1)×4+4=2+4n=4n+2.故选:C.7.在平面直角坐标系xOy中,四边形OABC是矩形,且A,C在坐标轴上,满足OA=,OC=1.将矩形OABC绕原点0以每秒15°的速度逆时针旋转.设运动时间为t秒(0≤t≤6),旋转过程中矩形在第二象限内的面积为S,表示S与t的函数关系的图象大致如图所示,则矩形OABC的初始位置是()A. B. C.D.【考点】动点问题的函数图象.【分析】根据图象计算0秒、2秒、6秒的时候,矩形在第二象限内的面积为S,即可分析出矩形OABC的初始位置.【解答】解:由图象可以看出在0秒时,S=0,在2秒时,S=,在6秒时,S=;由题意知,矩形OABC绕原点0以每秒15°的速度逆时针旋转,6秒逆时针旋转90°,S=,不难发现B和D都符合,但在2秒时,S=,即矩形OABC绕原点0逆时针旋转30°时,S=,则只有D符合条件.故选:D.8.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是()A.B.C.D.2【考点】正多边形和圆.【分析】首先设⊙O的半径是r,则OF=r,根据AO是∠EAF的平分线,求出∠COF=60°,在Rt△OIF中,求出FI的值是多少;然后判断出OI、CI的关系,再根据GH∥BD,求出GH的值是多少,再用EF的值比上GH的值,求出的值是多少即可.【解答】解:如图,连接AC、BD、OF,,设⊙O的半径是r,则OF=r,∵AO是∠EAF的平分线,∴∠OAF=60°÷2=30°,∵OA=OF,∴∠OFA=∠OAF=30°,∴∠COF=30°+30°=60°,∴FI=r•sin60°=,∴EF=,∵AO=2OI,∴OI=,CI=r﹣=,∴,∴,∴=,即则的值是.故选:C.二、填空题(每小题3分,共21分)9.计算:(﹣1)2020+(π﹣3.14)0﹣()﹣2=﹣2.【考点】负整数指数幂;零指数幂.【分析】首先根据有理数的乘方的运算方法,求出(﹣1)2020的值是多少;然后根据零指数幂的运算方法,求出(π﹣3.14)0的值是多少;最后根据负整数指数幂的运算方法,求出()﹣2的值是多少;再从左向右依次计算,求出算式(﹣1)2020+(π﹣3.14)0﹣()﹣2的值是多少即可.【解答】解:(﹣1)2020+(π﹣3.14)0﹣()﹣2=1+1﹣4=2﹣4=﹣2.故答案为:﹣2.10.二次函数y=ax2+bx+c的图象如图所示,下列关系式中:①a<0;②abc>0;③a+b+c >0;④b2﹣4ac>0.其中不正确的序号是③.【考点】二次函数图象与系数的关系.【分析】根据函数图象可得各系数的关系:a<0,b<0,c>0,再结合图象判断各结论.【解答】解:由函数图象可得各系数的关系:a<0,b<0,c>0,则①a<0,正确;②abc>0,正确;③当x=1时,y=a+b+c<0,错误;④抛物线与x轴有两个不同的交点,b2﹣4ac>0,正确.故不正确的序号是③.11.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x,乙立方体朝上一面上分别标有数字为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线y=上的概率为.【考点】反比例函数图象上点的坐标特征;列表法与树状图法.【分析】利用列表法找出点P的所有坐标,再根据反比例函数图象上点的坐标特征找出符合题意的点的个数,由此即可得出结论.【解答】解:∵点P在双曲线y=的图象上,∴xy=6.利用列表法找出所用点P的坐标,如下表所示.其中满足xy=6的点有:(1,6)、(2,3)、(3,2)、(6,1).∴点P落在双曲线y=上的概率为:=.故答案为:.12.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为22cm.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质求出AD=DC,根据△ABD的周长求出AB+BC=14cm,即可求出答案.【解答】解:∵DE是AC的垂直平分线,AE=4cm,∴AC=2AE=8cm,AD=DC,∵△ABD的周长为14cm,∴AB+AD+BD=14cm,∴AB+AD+BD=AB+DC+BD=AB+BC=14cm,∴△ABC的周长为AB+BC+AC=14cm+8cm=22cm,故答案为:22cm13.如图所示,直角三角形中较长的直角边是较短的直角边长度的2倍,且两个顶点在数轴上对应的数分别为﹣1和1,以斜边为半径的弧交数轴于点A,点C所表示的数为2,点A 与点B关于点C对称,则点B表示的数为5﹣.【考点】实数与数轴.【分析】先根据勾股定理计算出斜边的长,进而得到A的坐标,再根据A点表示的数,可得B点表示的数.【解答】解:∵直角三角形中较长的直角边是较短的直角边长度的2倍,∴斜边的长==,∴A点表示的数为﹣1,∵C所表示的数为2,点A与点B关于点C对称,∴点B表示的数为5﹣,故答案为:5﹣.14.如图,点A,B分别在函数y=(k1>0)与y=(k2<0)的图象上,线段AB的中点M在y轴上.若△AOB的面积为2,则k1﹣k2的值是4.【考点】反比例函数系数k的几何意义.【分析】设A(a,b),B(﹣a,d),代入双曲线得到k1=ab,k2=﹣ad,根据三角形的面积公式求出ad+ad=4,即可得出答案.【解答】解:作AC⊥x轴于C,BD⊥x轴于D,∴AC∥BD∥y轴,∵M是AB的中点,∴OC=OD,设A(a,b),B(﹣a,d),代入得:k1=ab,k2=﹣ad,∵S△AOB=2,∴(b+d)•2a﹣ab﹣ad=2,∴ab+ad=4,∴k1﹣k2=4,故选:4.15.如图,菱形ABCD和菱形ECGF的边长分别为2和4,∠A=120°.则阴影部分面积是.(结果保留根号)【考点】菱形的性质;相似三角形的判定与性质.【分析】设BF交CE于点H,根据菱形的对边平行,利用相似三角形对应边成比例列式求出CH,然后求出DH,根据菱形邻角互补求出∠ABC=60°,再求出点B到CD的距离以及点G到CE的距离;然后根据阴影部分的面积=S△BDH+S△FDH,根据三角形的面积公式列式进行计算即可得解.【解答】解:如图,设BF交CE于点H,∵菱形ECGF的边CE∥GF,∴△BCH∽△BGF,∴,即,解得CH=,所以,DH=CD﹣CH=2﹣,∵∠A=120°,∴∠ECG=∠ABC=180°﹣120°=60°,∴点B到CD的距离为2×,点G到CE的距离为4×,∴阴影部分的面积=S△BDH+S△FDH,=,=.故答案为:三、计算题(本题共8个小题,75分)16.先化简,再求值:,其中x+2=.【考点】分式的化简求值.【分析】通分计算括号里面的加法,再算除法,由此顺序化简,进一步代入求得答案即可.【解答】解:原式=•=x+1,∵x+2=,∴x=﹣2,则原式=x+1=﹣1.17.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,点E是边BC的中点.(1)求证:BC2=BD•BA;(2)判断DE与⊙O位置关系,并说明理由.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)通过证明△BCD∽△BAC,利用相似比得到结论;(2)连结DO,如图,根据直角三角形斜边上的中线性质,由∠BDC=90°,E为BC的中点得到DE=CE=BE,则利用等腰三角形的性质得∠EDC=∠ECD,∠ODC=∠OCD,由于∠OCD+∠DCE=∠ACB=90°,所以∠EDC+∠ODC=90°,即∠EDO=90°,于是根据切线的判定定理即可得到DE与⊙O相切.【解答】(1)证明:∵AC为⊙O的直径,∴∠ADC=90°,∴∠BDC=90°,又∵∠ACB=90°,∴∠ACB=∠BDC,又∵∠B=∠B,∴△BCD∽△BAC,∴,即BC2=BA•BD;(2)解:DE与⊙O相切.理由如下:连结DO,如图,∵∠BDC=90°,E为BC的中点,∴DE=CE=BE,∴∠EDC=∠ECD,又∵OD=OC,∴∠ODC=∠OCD,而∠OCD+∠DCE=∠ACB=90°,∴∠EDC+∠ODC=90°,即∠EDO=90°,∴DE⊥OD,∴DE与⊙O相切.18.居民区内的“广场舞”引起媒体关注,小明想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:A.非常赞同;B.赞同但要有时间限制;C.无所谓;D.不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图.请你根据图中提供信息回答下列问题:(1)求本次被抽查的居民有多少人?(2)将图1和图2补充完整;(3)求图2中“C”层次所在扇形的圆心角的度数;(4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人..【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据条形统计图和扇形统计图可知A有90人占调查总数的30%,从而可以求出被调查的居民数;(2)根据条形统计图和扇形统计图可知A有90人占调查总数的30%,可以求得选B和选C的人数以及B、D所占的百分比,从而可以将统计图补充完整;(3)由C所占的百分比可以求得图2中“C”层次所在扇形的圆心角的度数;(4)根据条形统计图和扇形统计图,估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人..【解答】解:(1)由条形统计图和扇形统计图可知A有90人占调查总数的30%,∴本次被抽查的居民有:90÷30%=300(人),即本次被抽查的居民有300人;(2)由条形统计图和扇形统计图可得,选B的人数有:300﹣(30%+20%)×300﹣30=120(人),选C的人数有:300×20%=60人,B所占的百分比为:120÷300=40%,D所占的百分比为:30÷300=10%,∴补全的图1和图2如右图所示,(3)由题意可得,图2中“C”层次所在扇形的圆心角的度数是:360°×20%=72°,即图2中“C”层次所在扇形的圆心角的度数是72°;(4)由题意可得,该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有:4000×(30%+40%)=2800(人),即该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有2800人.19.先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?【考点】配方法的应用;非负数的性质:偶次方.【分析】(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值;(3)根据题意列出关系式,配方后根据完全平方式恒大于等于0,即可求出最大值以及x 的值即可.【解答】解:(1)m2+m+4=(m+)2+,∵(m+)2≥0,∴(m+)2+≥,则m2+m+4的最小值是;(2)4﹣x2+2x=﹣(x﹣1)2+5,∵﹣(x﹣1)2≤0,∴﹣(x﹣1)2+5≤5,则4﹣x2+2x的最大值为5;(3)由题意,得花园的面积是x(20﹣2x)=﹣2x2+20x,∵﹣2x2+20x=﹣2(x﹣5)2+50=﹣2(x﹣5)2≤0,∴﹣2(x﹣5)2+50≤50,∴﹣2x2+20x的最大值是50,此时x=5,则当x=5m时,花园的面积最大,最大面积是50m2.20.为响应国家的“节能减排”政策,某厂家开发了一种新型的电动车,如图,它的大灯A 射出的光线AB、AC与地面MN的夹角分别为22°和31°,AT⊥MN,垂足为T,大灯照亮地面的宽度BC的长为m.(1)求BT的长(不考虑其他因素).(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到电动车完全停下所行驶的距离叫做最小安全距离.某人以20km/h的速度驾驶该车,从做出刹车动作到电动车停止的刹车距离是,请判断该车大灯的设计是否能满足最小安全距离的要求(大灯与前轮前端间水平距离忽略不计),并说明理由.(参考数据:sin22°≈,tan22°≈,sin31°≈,tan31°≈)【考点】解直角三角形的应用.【分析】(1)在直角△ACT中,根据三角函数的定义,若AT=3x,则CT=5x,在直角△ABT 中利用三角函数即可列方程求解;(2)求出正常人作出反应过程中电动车行驶的路程,加上刹车距离,然后与BT的长进行比较即可.【解答】解:(1)根据题意及图知:∠ACT=31°,∠ABT=22°∵AT⊥MN∴∠A TC=90°在Rt△ACT中,∠ACT=31°∴tan31°=可设AT=3x,则CT=5x在Rt△ABT中,∠ABT=22°∴tan22°=即:解得:∴,∴;(2),,∴该车大灯的设计不能满足最小安全距离的要求.21.黄岩岛是我国南沙群岛的一个小岛,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并立即返航,渔政船接到报告后,立即从该港口出发赶往黄岩岛.下图是渔政船及渔船与港口的距离s和渔船离开港口的时间t之间的函数图象.(假设渔船与渔政船沿同一航线航行)(1)直接写出渔船离港口的距离s和它离开港口的时间t的函数关系式.(2)求渔船和渔政船相遇时,两船与黄岩岛的距离.(3)在渔政船驶往黄岩岛的过程中,求渔船从港口出发经过多长时间与渔政船相距30海里?【考点】一次函数的应用.【分析】(1)由图象可得出渔船离港口的距离s和它离开港口的时间t的函数关系式,分为三段求函数关系式;(2)由图象可知,当8<t≤13时,渔船和渔政船相遇,利用“两点法”求渔政船的函数关系式,再与这个时间段,渔船的函数关系式联立,可求相遇时,离港口的距离,再求两船与黄岩岛的距离;(3)在渔政船驶往黄岩岛的过程中,8<t≤13,渔船与渔政船相距30海里,有两种可能:①s渔﹣s渔政=30,②s渔政﹣s渔=30,将函数关系式代入,列方程求t.【解答】解:(1)当0≤t≤5时,s=30t,当5<t≤8时,s=150,当8<t≤13时,s=﹣30t+390;(2)设渔政船离港口的距离s 与渔政船离开港口的时间t 之间的函数关系式为s=kt +b (k ≠0),则,解得.所以s=45t ﹣360;联立,解得.所以渔船离黄岩岛的距离为150﹣90=60(海里);(3)s 渔=﹣30t +390,s 渔政=45t ﹣360,分两种情况:①s 渔﹣s 渔政=30,﹣30t +390﹣(45t ﹣360)=30,解得t=(或9.6); ②s 渔政﹣s 渔=30,45t ﹣360﹣(﹣30t +390)=30,解得t=(或10.4).所以,当渔船离开港口9.6小时或10.4小时时,两船相距30海里.22.已知一个矩形纸片OACB ,将该纸片放置在平面直角坐标系中,点A (11,0)、B (0,6),点P 为BC 边上的动点(点P 不与点点B 、C 重合),经过点O 、P 折叠该纸片,得点B ′和折痕OP .设BP=t .(1)如图1,当∠BOP=30°时,求点P 的坐标;(2)如图2,经过点P 再次折叠纸片,使点C 落在直线PB ′上,得点C ′和折痕PQ ,若AQ=m ,试用含有t 的式子表示m ;(3)在(2)的条件下,当点C ′恰好落在边OA 上时如图3,求点P 的坐标(直接写出结果即可).【考点】几何变换综合题.【分析】(1)根据题意得,∠OBP=90°,OB=6,在Rt △OBP 中,由∠BOP=30°,BP=t ,得OP=2t ,然后利用勾股定理,即可得方程,解此方程即可求得答案;(2)由△OB ′P 、△QC ′P 分别是由△OBP 、△QCP 折叠得到的,可知△OB ′P ≌△OBP ,△QC ′P ≌△QCP ,易证得△OBP ∽△PCQ ,然后由相似三角形的对应边成比例,即可求得答案;(3)首先过点P作PE⊥OA于E,易证得△PC′E∽△C′QA,由勾股定理可求得C′A的长,然后利用相似三角形的对应边成比例与m和t的关系,即可求得t的值.【解答】解:(1)根据题意,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=2,t2=﹣2(舍去).∴点P的坐标为(2,6);(2)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,∴△OB′P≌△OBP,△QC′P≌△QCP,∴∠OPB′=∠OPB,∠QPC′=∠QPC,∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°,∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ,又∵∠OBP=∠C=90°,∴△OBP∽△PCQ,∴,由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11﹣t,CQ=6﹣m.∴,∴m=t2﹣t+6(0<t<11);(3)过点P作PE⊥OA于E,如图3,∴∠PEA=∠QAC′=90°,∴∠PC′E+∠EPC′=90°,∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A,∴△PC′E∽△C′QA,∴,在△PC′E和△OC′B′中,∴△PC′E≌△OC′B′,∴PC'=OC'=PC,∴BP=AC',∵AC′=PB=t,PE=OB=6,AQ=m,EC′=11﹣2t,∴,∵m=t2﹣t+6,∴3t2﹣22t+36=0,解得:t1=,t2=故点P的坐标为(,6)或(,6).23.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?【考点】二次函数综合题.【分析】(1)将点A、B代入抛物线解析式,求出a、b值即可得到抛物线解析式;(2)根据已知求出点D的坐标,并且由线段OC、OB相等、CD∥x轴及等腰三角形性质证明△CDB≌△CGB,利用全等三角形性质求出点G的坐标,写出直线BP解析式,联立二次函数解析式,求出点P坐标;(3)分两种情况,第一种情况重叠部分为四边形,利用大三角形减去两个小三角形求得解析式,第二种情况重叠部分为三角形,可利用三角形面积公式求得.【解答】解:(1)将A(﹣1,0)、B(3,0)代入抛物线y=ax2+bx+3(a≠0),,解得:a=﹣1,b=2.故抛物线解析式为:y=﹣x2+2x+3.(2)存在将点D代入抛物线解析式得:m=3,∴D(2,3),令x=0,y=3,∴C(0,3),∴OC=OB,∴∠OCB=∠CBO=45°,如下图,设BP交y轴于点G,∵CD∥x轴,∴∠DCB=∠BCO=45°,在△CDB和△CGB中:∵∠∴△CDB≌△CGB(ASA),∴CG=CD=2,∴OG=1,∴点G(0,1),设直线BP:y=kx+1,代入点B(3,0),∴k=﹣,∴直线BP:y=﹣x+1,联立直线BP和二次函数解析式:,解得:或(舍),∴P(﹣,).(3)直线BC:y=﹣x+3,直线BD:y=﹣3x+9,当0≤t≤2时,如下图:设直线C′B′:y=﹣(x﹣t)+3联立直线BD求得F(,),S=S△BCD﹣S△CC′E﹣S△C′DF=×2×3﹣×t×t﹣×(2﹣t)(3﹣)整理得:S=﹣t2+3t(0≤t≤2).当2<t≤3时,如下图:H(t,﹣3t+9),I(t,﹣t+3)S=S△HIB= [(﹣3t+9)﹣(﹣t+3)]×(3﹣t)整理得:S=t2﹣6t+9(2<t≤3)综上所述:S=.2020年9月19日。

2020年河南省郑州外国语学校分校中考数学模拟试卷(6月份) 解析版

2020年河南省郑州外国语学校分校中考数学模拟试卷(6月份)  解析版

2020年河南省郑州外国语学校分校中考数学模拟试卷(6月份)一、选择题(每小题3分,共30分)1.(3分)﹣的相反数为()A.B.﹣C.D.2.(3分)2020年5月22日,第十三届全国人民代表大会第三次会议顺利召开,李克强总理在政府工作报告中指出,2019年国内生产总值达到99.1万亿,增长6.1%,将99.1万亿用科学记数法表示是()A.9.91×104B.9.91×108C.99.1×1012D.9.91×1013 3.(3分)下列运算正确的是()A.2+3=5B.(a3)2=a5C.a3•a2=a6D.34.(3分)如图所示的几何体是由一个圆柱体挖去一个长方体后得到的,它的主视图是()A.B.C.D.5.(3分)将一副三角板按照如图所示的方式摆放,DF∥AC,则∠AGF的度数为()A.105°B.90°C.75°D.60°6.(3分)以下情形,适合采用抽样调查的是()A.疫情防控期间,省教育厅通过各学校师生每日在线打卡了解健康状况B.北京某中学有一位同学确诊感染新冠肺炎,现需了解全校师生的健康情况C.某疫苗研发团队获批在人群中开展II期临床研究,评估疫苗的安全性D.疫情防控取得重大战略成果后,武汉市对1000多万常住人口进行核酸检测7.(3分)一元二次方程(x+3)(x+6)=x+1的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根8.(3分)如图,面积为2的Rt△OAB的斜边OB在x轴上,∠ABO=30°,反比例函数y=图象恰好经过点A,则k的值为()A.﹣2B.2C.D.﹣9.(3分)如图,在矩形ABCD中,∠BAC=60°,以点A为圆心、任意长为半径作弧分别交AB,AC于点M,N,再分别以点M,N为圆心,大于MN的长为半径作弧,两弧交于点P,作射线AP交BC于点E,若BE=2,则矩形ABCD的面积为()A.B.12C.12D.810.(3分)在平面直角坐标系中,若干个半径为1个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P从原点O出发,沿这条曲线向右上下起伏运动,点在直线上的速度为1个单位长度/秒,点在弧线上的速度为个单位长度/秒,则2021秒时,点P的坐标是()A.(2021,)B.C.D.(2021,0)二、填空题(每小题3分,共15分)11.(3分)(﹣2)﹣1﹣﹣2cos60°=.12.(3分)不等式组的整数解的和为.13.(3分)某社团中有两名男生和三名女生,暑假将至,该社团将派两位同学作为代表参加市级比赛,恰好选中一男一女的概率是.14.(3分)如图,AC是半圆O的一条弦,以弦AC为折线将弧AC折叠后过圆心O,⊙O 的半径为2,则圆中阴影部分的面积为.15.(3分)如图,在▱ABCD中,AB=6,BC=6,∠D=30°,点E是AB边的中点,点F是BC边上一动点,将△BEF移沿直线EF折叠,得到△GEF,当FG∥AC时,BF 的长为.三、解答题(本大题共8个小题,满分16分)16.(8分)先化简,再求值:,其中x=+1.17.(8分)某学校要调查学生关于“新冠肺炎”防治知识的了解情况,从七、八年级各随机抽取了10名学生进行测试(百分制),测试成绩整理、描述和分析如下:(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),七年级10名学生的成绩是:96,80,96,86,99,96,90,100,89,82.八年级10名学生的成绩在C组中的数据是:94,90,92.七、八年级抽取的学生成绩统计表年级七年级八年级平均数9292中位数93b众数c100方差5250.4根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握“新冠肺炎”知识较好?请说明理由.(3)该校七、八年级共1200人参加了此次调查活动,估计参加此次调查活动成绩优秀(x≥90)的学生人数是多少?18.(10分)如图,在Rt△ABC中,∠C=30°,以AC上一点O为圆心、OA长为半径作圆,与边AC相交于点F,BC与⊙O相切于点D.(1)求证:点D为线段BC的中点.(2)若AB=3,点E是半圆上一动点,连接AE,AD,DE,DF,EF.①当AE=时,四边形DAEF为矩形;②当点E运动到半圆中点时,DE=.19.(10分)某数学兴趣小组学过锐角三角函数后,计划测量中原福塔的总高度.如图所示,在B处测得福塔主体建筑顶点A的仰角为45°,福塔顶部桅杆天线AD高120m,再沿CB方向前进20m到达E处,测得桅杆天线顶部D的仰角为53.4°.求中原福塔CD的总高度.(结果精确到1m.参考数据:sin53.4°≈0.803,cos53.4°≈0.596,tan53.4°≈1.346)20.(9分)如图,平面直角坐标系中,点A(0,2),点B(3,﹣2),以AB为边在y轴右侧作正方形ABCD,反比例函数y=(x>0)恰好经过点D.(1)求D点坐标及反比例函数解析式;(2)在x轴上有两点E,F,其中点E使得ED+EA的值最小,点F使得|FD﹣F A|的值最大,求线段EF的长.21.(10分)某药店出售普通口罩和N95口罩.如表为两次销售记录:普通口罩/个N95口罩/个总销售额/元50040050006003004200(1)求普通口罩和N95口罩的销售单价分别是多少?(2)该药店计划再次购进1000个口罩,根据市场实际需求,普通口罩的数量不低于N95口罩数量的4倍.已知普通口罩的进价为1元/个,N95口罩的进价为6元/个.为使该药店售完这1000个口罩后的总利润最大,该药店应如何进货?并求出最大利润.2020年河南省郑州外国语学校分校中考数学模拟试卷(6月份)参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)﹣的相反数为()A.B.﹣C.D.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣的相反数为.故选:D.2.(3分)2020年5月22日,第十三届全国人民代表大会第三次会议顺利召开,李克强总理在政府工作报告中指出,2019年国内生产总值达到99.1万亿,增长6.1%,将99.1万亿用科学记数法表示是()A.9.91×104B.9.91×108C.99.1×1012D.9.91×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将99.1万亿用科学记数法表示是9.91×1013.故选:D.3.(3分)下列运算正确的是()A.2+3=5B.(a3)2=a5C.a3•a2=a6D.3【分析】根据二次根式的加减法对A进行判断;根据幂的乘方法则对B进行判断;根据同底数幂的乘法对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、2与3不能合并,所以A选项错误;B、原式=a6,所以B选项错误;C、原式=a5,所以C选项错误;D、原式==,所以D选项正确.故选:D.4.(3分)如图所示的几何体是由一个圆柱体挖去一个长方体后得到的,它的主视图是()A.B.C.D.【分析】主视图是从几何体的正面看所得到的视图,注意圆柱内的长方体的放置.【解答】解:其主视图是,故选:B.5.(3分)将一副三角板按照如图所示的方式摆放,DF∥AC,则∠AGF的度数为()A.105°B.90°C.75°D.60°【分析】直接利用平行线的性质得出∠AEG的度数,再利用三角形外角的性质得出答案.【解答】解:由题意可得:∠F=45°,∠A=60°,∵DF∥AC,∴∠AEG=∠F=45°,∴∠AGF=∠AEG+∠A=45°+60°=105°.故选:A.6.(3分)以下情形,适合采用抽样调查的是()A.疫情防控期间,省教育厅通过各学校师生每日在线打卡了解健康状况B.北京某中学有一位同学确诊感染新冠肺炎,现需了解全校师生的健康情况C.某疫苗研发团队获批在人群中开展II期临床研究,评估疫苗的安全性D.疫情防控取得重大战略成果后,武汉市对1000多万常住人口进行核酸检测【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、疫情防控期间,省教育厅通过各学校师生每日在线打卡了解健康状况,人数众多,应采用抽样调查,故此选项符合题意;B、北京某中学有一位同学确诊感染新冠肺炎,现需了解全校师生的健康情况,意义重大,人数不多,应采用全面调查,故此选项不合题意;C、某疫苗研发团队获批在人群中开展II期临床研究,评估疫苗的安全性,意义重大,应采用全面调查,故此选项不合题意;D、疫情防控取得重大战略成果后,武汉市对1000多万常住人口进行核酸检测,意义重大,应采用全面调查,故此选项不合题意;故选:A.7.(3分)一元二次方程(x+3)(x+6)=x+1的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】先化为一般形式,再求出b2﹣4ac的值,根据b2﹣4ac的正负即可得出答案.【解答】解:(x+3)(x+6)=x+1,x2+8x+17=0,这里a=1,b=8,c=17,∵b2﹣4ac=82﹣4×1×17=﹣4<0,∴没有实数根.故选:D.8.(3分)如图,面积为2的Rt△OAB的斜边OB在x轴上,∠ABO=30°,反比例函数y=图象恰好经过点A,则k的值为()A.﹣2B.2C.D.﹣【分析】作AD⊥OB于D,根据30°角的直角三角形的性质得出OA=OB,然后通过证得△AOD∽△BOA,求得△AOD的面积,然后根据反比例函数xsk的几何意义即可求得k的值.【解答】解:作AD⊥OB于D,∵Rt△OAB中,∠ABO=30°,∴OA=OB,∵∠ADO=∠OAB=90°,∠AOD=∠BOA,∴△AOD∽△BOA,∴=()2=,∴S△AOD=S△BOA=×2=,∵S△AOD=|k|,∴|k|=,∵反比例函数y=图象在二、四象限,∴k=﹣,故选:D.9.(3分)如图,在矩形ABCD中,∠BAC=60°,以点A为圆心、任意长为半径作弧分别交AB,AC于点M,N,再分别以点M,N为圆心,大于MN的长为半径作弧,两弧交于点P,作射线AP交BC于点E,若BE=2,则矩形ABCD的面积为()A.B.12C.12D.8【分析】求出AB,BC即可解决问题.【解答】解:∵四边形ABCD是矩形,∴∠B=90°,由作图可知,AE平分∠BAC,∴∠BAE=∠BAC=30°,∴AB=BE,BC=AB,∵BE=2,∴AB=2,BC=6,∴矩形ABCD的面积=12.故选:B.10.(3分)在平面直角坐标系中,若干个半径为1个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P从原点O出发,沿这条曲线向右上下起伏运动,点在直线上的速度为1个单位长度/秒,点在弧线上的速度为个单位长度/秒,则2021秒时,点P的坐标是()A.(2021,)B.C.D.(2021,0)【分析】设第n秒运动到P n(n为自然数)点,根据点P的运动规律找出部分P n点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论.【解答】解:设第n秒运动到P n(n为自然数)点,观察,发现规律:P1(,),P2(1,0),P3(,﹣),P4(2,0),P5(,),…,∴P4n+1(,),P4n+2(,0),P4n+3(,﹣),P4n+4(,0),∵2021=4×505+1,∴P2021为(,),故选:B.二、填空题(每小题3分,共15分)11.(3分)(﹣2)﹣1﹣﹣2cos60°=﹣4.5.【分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解(﹣2)﹣1﹣﹣2cos60°=﹣0.5﹣3﹣2×=﹣3.5﹣1=﹣4.5.故答案为:﹣4.5.12.(3分)不等式组的整数解的和为﹣3.【分析】分别求出各不等式的解集,再求出其公共解集.【解答】解:,解不等式①得:x≥﹣3,解不等式②得:x<3,所以不等式组的解集为:﹣3≤x<3.不等式组的整数解有﹣3,﹣2,﹣1,0,1,2,所以数解的和为﹣3.13.(3分)某社团中有两名男生和三名女生,暑假将至,该社团将派两位同学作为代表参加市级比赛,恰好选中一男一女的概率是.【分析】列表得出所有等可能的情况数,找出恰好选出一男一女的情况数,即可求出所求的概率.【解答】解:列表如下:男男女女女男﹣﹣﹣(男,男)(女,男)(女,男)(女,男)男(男,男)﹣﹣﹣(女,男)(女,男)(女,男)女(男,女)(男,女)﹣﹣﹣(女,女)(女,女)女(男,女)(男,女)(女,女)﹣﹣﹣(女,女)女(男,女)(男,女)(女,女)(女,女)﹣﹣﹣所有等可能的情况有20种,其中恰好一男一女的情况有12种,∴恰好选中一男一女的概率是=,故答案为:.14.(3分)如图,AC是半圆O的一条弦,以弦AC为折线将弧AC折叠后过圆心O,⊙O 的半径为2,则圆中阴影部分的面积为.【分析】过点O作OE⊥AC,交AC于D,连接OC,BC,证明弓形OC的面积=弓形BC的面积,这样图中阴影部分的面积=△OBC的面积.【解答】解:过点O作OE⊥AC,交AC于D,连接OC,BC,∵OD=DE=OE=OA,∴∠A=30°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠B=60°,∵OB=OC=2,∴△OBC是等边三角形,∴OC=BC,∴弓形OC面积=弓形BC面积,∴阴影部分面积=S△OBC=×2×=.故答案为:15.(3分)如图,在▱ABCD中,AB=6,BC=6,∠D=30°,点E是AB边的中点,点F是BC边上一动点,将△BEF移沿直线EF折叠,得到△GEF,当FG∥AC时,BF 的长为3+3或3﹣3.【分析】由平行四边形的性质得出∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,则CH=CD=3,DH=CH=3=AD,得出AH=DH,由线段垂直平分线的性质得出CA=CD=AB=6,由等腰三角形的性质得出∠ACB=∠B=30°,由平行线的性质得出∠BFG=∠ACB=30°,分两种情况:①作EM⊥BF于M,在BF上截取EN=BE=3,则∠ENB=∠B=30°,由直角三角形的性质得出EM=BE=,BM=NM=EM=,得出BN=2BM=3,再证出FN=EN=3,即可得出结果;②作EM⊥BC于M,在BC上截取EN=BE=3,连接EN,则∠ENB=∠B=30°,得出EN∥AC,EM=BE=,BM=NM=EM=,BN=2BM=3,证出FG∥EN,则∠G=∠GEN,证出∠GEN=∠ENB=∠B=∠G=30°,推出∠BEN=120°,得出∠BEG=120°﹣∠GEN=90°,由折叠的性质得∠BEF=∠GEF=∠BEG=45°,证出∠NEF=∠NFE,则FN=EN=3,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,则CH=CD=3,DH=CH=3=AD,∴AH=DH,∴CA=CD=AB=6,∴∠ACB=∠B=30°,∵FG∥AC,∴∠BFG=∠ACB=30°,∵点E是AB边的中点,∴BE=3,分两种情况:①作EM⊥BF于M,在BF上截取EN=BE=3,连接EN,如图1所示:则∠ENB=∠B=30°,∴EM=BE=,BM=NM=EM=,∴BN=2BM=3,由折叠的性质得:∠BFE=∠GFE=15°,∵∠NEF=∠ENB﹣∠BFE=15°=∠BFE,∴FN=EN=3,∴BF=BN+FN=3+3;②作EM⊥BC于M,在BC上截取EN=BE=3,连接EN,如图2所示:则∠ENB=∠B=30°,∴EN∥AC,EM=BE=,BM=NM=EM=,∴BN=2BM=3,∵FG∥AC,∴FG∥EN,∴∠G=∠GEN,由折叠的性质得:∠B=∠G=30°,∴∠GEN =∠ENB=∠B=∠G=30°,∵∠BEN=180°﹣∠B﹣∠ENB=180°﹣30°﹣30°=120°,∴∠BEG=120°﹣∠GEN=120°﹣30°=90°,由折叠的性质得:∠BEF=∠GEF=∠BEG=45°,∴∠NEF=∠NEG+∠GEF=30°+45°=75°,∠NFE=∠BEF+∠B=45°+30°=75°,∴∠NEF=∠NFE,∴FN=EN=3,∴BF=BN﹣FN=3﹣3;故答案为:3+3或3﹣3.三、解答题(本大题共8个小题,满分16分)16.(8分)先化简,再求值:,其中x=+1.【分析】先把括号内通分,再把除法运算化为乘法运算,约分后得到原式=x2﹣x,然后把x的值代入计算即可.【解答】解:原式=•=•=x(x﹣1)=x2﹣x,当x=+1时,原式=(+1)2﹣(+1)=2+.17.(8分)某学校要调查学生关于“新冠肺炎”防治知识的了解情况,从七、八年级各随机抽取了10名学生进行测试(百分制),测试成绩整理、描述和分析如下:(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),七年级10名学生的成绩是:96,80,96,86,99,96,90,100,89,82.八年级10名学生的成绩在C组中的数据是:94,90,92.七、八年级抽取的学生成绩统计表年级七年级八年级平均数9292中位数93b众数c100方差5250.4根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握“新冠肺炎”知识较好?请说明理由.(3)该校七、八年级共1200人参加了此次调查活动,估计参加此次调查活动成绩优秀(x≥90)的学生人数是多少?【分析】(1)利用扇形统计图,用1分别减去A、B、C组的百分比可得到a的值;(2)根据中位数和众数的定义求解;(3)利用样本估计总体,把1200乘以样本中七、八年级的优秀率即可.【解答】解:(1)a%=1﹣10%﹣20%﹣×100%=40%,则a=40;b==93;c=96;(2)八年级掌握得更好.理由如下:因为七八年级的平均数、中位数相同,而八年级的众数比七年级高,说明八年级高分的同学更多;八年级方差比七年级小,说明八年级两极分化差距小.(3)1200×=780,所以参加此次调查活动成绩优秀的学生人数约为780名.18.(10分)如图,在Rt△ABC中,∠C=30°,以AC上一点O为圆心、OA长为半径作圆,与边AC相交于点F,BC与⊙O相切于点D.(1)求证:点D为线段BC的中点.(2)若AB=3,点E是半圆上一动点,连接AE,AD,DE,DF,EF.①当AE=时,四边形DAEF为矩形;②当点E运动到半圆中点时,DE=.【分析】(1)连接DO,根据切线的性质得到∠ODC=90°,根据圆周角定理求出∠DAO,根据等腰三角形的判定定理得到DA=DC,根据等边三角形的性质得到DB=DA,等量代换证明结论;(2)①根据直角三角形的性质求出AD,根据矩形的四个角都是直角得到∠EAF=60°,根据余弦的定义计算,求出AE;②作AG⊥DE,根据圆心角、弧、弦之间的关系得到AE=EF,根据圆周角定理得到∠ADE=∠FDE=45°,根据等腰直角三角形的性质求出AE,解直角三角形得到答案.【解答】(1)证明:如图1,连接DO,∵BC与⊙O相切于点D,∴∠ODC=90°,∵∠C=30°,∴∠DOC=60°,由圆周角定理得,∠DAO=∠DOC=30°,∴DA=DC,∵∠BAC=90°,∴∠B=60°,∠BAD=60°,∴DB=DA,∴DB=DC,即点D为线段BC的中点;(2)解:①在Rt△ABC中,∠BAC=90°,∠C=30°,则BC=2AB=6,∵BD=DC,∴AD=BC=3,∴AF===2,当四边形DAEF为矩形时,∠DAE=90°,∵∠DAC=30°,∴∠EAF=60°,∴AE=AF•cos∠EAF=;②如图2,过点A作AG⊥DE于G,∵点E为半圆中点,∴=,∴AE=EF,∠ADE=∠FDE=45°,∴AG=DG=AD=,∵AF=2,∴AE=EF=,由圆周角定理得,∠AED=∠AFD=60°,∴EG=AE•cos∠AED=×=,∴DE=DG+EG=,故答案为:①;②.19.(10分)某数学兴趣小组学过锐角三角函数后,计划测量中原福塔的总高度.如图所示,在B处测得福塔主体建筑顶点A的仰角为45°,福塔顶部桅杆天线AD高120m,再沿CB方向前进20m到达E处,测得桅杆天线顶部D的仰角为53.4°.求中原福塔CD的总高度.(结果精确到1m.参考数据:sin53.4°≈0.803,cos53.4°≈0.596,tan53.4°≈1.346)【分析】设AC为xm,根据等腰直角三角形的性质得到BC=AC=x,根据正切的定义列出方程,解方程即可得到答案.【解答】解:设AC为xm,则CD=(x+120)m,在Rt△ACB中,∠ABC=45°,∴BC=AC=x,∴CE=x+20,在Rt△DCE中,tan∠DEC=,即≈1.346,解得,x≈269.0,∴CD=x+120=389.0≈389,答:中原福塔CD的总高度约为389m.20.(9分)如图,平面直角坐标系中,点A(0,2),点B(3,﹣2),以AB为边在y轴右侧作正方形ABCD,反比例函数y=(x>0)恰好经过点D.(1)求D点坐标及反比例函数解析式;(2)在x轴上有两点E,F,其中点E使得ED+EA的值最小,点F使得|FD﹣F A|的值最大,求线段EF的长.【分析】(1)作DM⊥y轴于M,BN⊥y轴于N,通过证得△ANB≌△DMA(AAS),求得D的坐标,然后根据待定系数法即可求得双曲线的解析式.(2)利用轴对称求最短路线得出A点关于x轴对称点的性质,进而得出DA′的解析式,可得点E坐标,延长DA交x轴于F,此时|FD﹣F A|的值最大,求出直线AD的解析式可得点F坐标,由此即可解决问题.【解答】解:(1)作DM⊥y轴于M,BN⊥y轴于N,∵点A(0,2),点B(3,﹣2),∴OA=2,ON=2,∴AN=4,BN=3,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠NAB+∠DAM=90°,∵∠NAB+∠ABN=90°,∴∠DAM=∠ABN,在△ANB和△DMA中,∴△ANB≌△DMA(AAS),∴AM=BN=3,DM=AN=4,∴OM=5,∴D(4,5),∵反比例函数y=(x>0)恰好经过点D.∴k=4×5=20,∴双曲线为y=;(2)如图2所示:作A点关于x轴对称点A′,连接DA′,交x轴于点E,此时ED+EA 的值最小,∵A(0,2),∴A′(0,﹣2),设直线DA′的解析式为:y=ax+b,把A(0,﹣2),D(4,5)代入得,解得:,故直线DA′解析式为:y=x﹣2,当y=0则x=,故E点坐标为:(,0),延长DA交x轴于F,此时|FD﹣F A|的值最大,设直线AD的解析式为y=mx+n,把A(0,2),D(4,5)代入得,解得,∴直线AD的解析式为y=x+2,当y=0则x=﹣,∴F(﹣,0),∴EF=+=.21.(10分)某药店出售普通口罩和N95口罩.如表为两次销售记录:普通口罩/个N95口罩/个总销售额/元50040050006003004200(1)求普通口罩和N95口罩的销售单价分别是多少?(2)该药店计划再次购进1000个口罩,根据市场实际需求,普通口罩的数量不低于N95口罩数量的4倍.已知普通口罩的进价为1元/个,N95口罩的进价为6元/个.为使该药店售完这1000个口罩后的总利润最大,该药店应如何进货?并求出最大利润.【分析】(1)根据题意和表格中的数据,可以列出相应的二元一次方程组,从而可以求得普通口罩和N95口罩的销售单价;(2)根据题意,可以得到利润与购进普通口罩数量的函数关系式,再根据普通口罩的数量不低于N95口罩数量的4倍.可以求得普通口罩数量的取值范围,再根据一次函数的性质,即可解答本题.【解答】解:(1)设普通口罩的销售单价为a元/个,N95口罩的销售单价为b元/个,,解得,,即普通口罩和N95口罩的销售单价分别是2元/个,10元/个;(2)设购买普通口罩x个,获得的利润为w元,w=(2﹣1)x+(10﹣6)×(1000﹣x)=﹣3x+4000,∴w随x的增大而减小,∵普通口罩的数量不低于N95口罩数量的4倍.∴x≥4×(1000﹣x),解得,x≥200,∴当x=200时,w取得最大值,此时w=3400,100﹣x=800,答:为使该药店售完这1000个口罩后的总利润最大,该药店购进普通口罩200个,N95口罩800个,最大利润是3400元.。

人教版中考模拟考试数学试卷及答案(共七套)

人教版中考模拟考试数学试卷及答案(共七套)
∴ME=MC+EC= 。
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号

√ቤተ መጻሕፍቲ ባይዱ

由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,

河南省2020年中考模拟数学试卷及答案参考(一) 解析版 (1)

河南省2020年中考模拟数学试卷及答案参考(一)  解析版 (1)

河南省2020年中考模拟数学试卷 (一)一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡上1.(3分)下列四个数:﹣3,﹣0.5,,中,绝对值最大的数是()A.﹣3 B.﹣0.5 C.D.2.(3分)港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程投资总额1269亿元,1269亿用科学记数法表示为()A.1.269×1010B.1.269×1011C.12.69×1010D.0.1269×10123.(3分)下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是()A.B.C.D.4.(3分)如图,OC是∠AOB的角平分线,l∥OB,若∠1=52°,则∠2的度数为()A.52°B.54°C.64°D.69°5.(3分)在中考体育加试中,某班30名男生的跳远成绩如下表:成绩/m 1.95 2.00 2.05 2.10 2.15 2.25人数 2 3 9 8 5 3 这些男生跳远成绩的众数、中位数分别是()A.2.10,2.05 B.2.10,2.10 C.2.05,2.10 D.2.05,2.05 6.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.7.(3分)如图,正比例函数y=x的图象与一次函数y=x+的图象交于点A,若点P 是直线AB上的一个动点,则线段OP长的最小值为()A.1 B.C.D.28.(3分)如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°9.(3分)如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON 分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE ≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=OG•OC.其中正确的是()A.①②③④B.①②③C.①②④D.③④10.(3分)在边长为的正方形ABCD中,对角线AC与BD相交于点O,P是BD上一动点,过P作EF∥AC,分别交正方形的两条边于点E,F.设BP=x,△OEF的面积为y,则能反映y与x之间关系的图象为()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)计算:﹣()﹣1+=.12.(3分)2019年永州市初中体育学业水平考试实行改革,增加了两类自选类项目:一类是运动技能测试,学生可以从篮球、足球、排球向上垫球三个项目中必须自选一项;另一类是身体力量测试,学生从一分钟跳绳、仰卧起坐(女)或引体向上(男)、原地正面掷实心球、立定跳远四个项目中再选一项,则某一初三男学生同时选择篮球和立定跳远这两项的概率是.13.(3分)关于x的一元二次方程a(x﹣h)2+k=x+n两根为x1=﹣1,x2=3,则方程a(x﹣h﹣3)2+k+3=x+n的两根为.14.(3分)如图,7个腰长为1的等腰直角三角形(Rt△B1AA1,Rt△B2A1A2,Rt△B3A2A3…)有一条腰在同一条直线上,设△A1B2C1的面积为S1,△A2B3C2的面积为S2,△A3B4C3的面积为S3,则S1+S2+S3+S4+S5+S6=.15.(3分)如图,Rt△ABC中,∠ACB=90°,AC=2,BC=4,CD是△ABC的中线,E是边BC上一动点,将△BED沿ED折叠,点B落在点F处,EF交线段CD于点G,当△DFG是直角三角形时,则CE=.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:,其中a是方程a2+a﹣6=0的解.17.(9分)如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,以D为圆心,DB长为半径作作⊙D.(1)求证:AC是⊙D的切线.(2)设AC与⊙D切于点E,DB=1,连接DE,BF,EF.①当∠BAD=时,四边形BDEF为菱形;②当AB=时,△CDE为等腰三角形.18.(9分)设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级;75≤x<85为B级;60≤x<75为C级;x<60为D级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,A级人数占本次抽取人数的百分比为%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有1000名学生,请你估计该校D级学生有多少名?19.(9分)如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,景区管委会又开发了风景优美的景点D,经测量景点D位于景点A的北偏东30°方向8km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.(1)景区管委会准备由景点D向公路a修建一条距离最短的公路,不考虑其它因素,求出这条公路的长;(结果精确到0.1km)(2)求景点C与景点D之间的距离.(结果精确到1km)(参考数据:=1.73,=2.24,sin53°=cos37°=0.80,sin37°=cos53°=0.60,tan53°=1.33,tan37°=0.75,sin38°=cos52°=0.62,sin52°=cos38°=0.79,tan38°=0.78,tan52°=1.28,sin75°=0.97,cos75°=0.26,tan75°=3.73.)20.(9分)如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB 于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)观察图象,直接写出当x>0时,不等式2x+6<0的解集;(3)当n为何值时,△BMN的面积最大?最大值是多少?21.(10分)某商场计划经销A,B两种新型节能台灯共50盏,这两种台灯的进价、售价如下表所示.A型B型进价(元/盏)40 65售价(元/盏)60 100(1)若该商场购进这批台灯共用去2500元,问这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少需购进B种台灯多少盏?(3)若该商场预计用不多于2600元的资金购进这批台灯,其中A种台灯不超过30盏,为了打开B种台灯的销路,商场决定每售出一盏B种台灯,返还顾客现金a元(10<a <20),问该商场该如何进货,才能获得最大的利润?22.(10分)(1)问题发现如图1,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=45°,点D 时线段AB上一动点,连接BE.填空:①的值为;②∠DBE的度数为.(2)类比探究如图2,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,点D 是线段AB上一动点,连接BE.请判断的值及∠DBE的度数,并说明理由;(3)拓展延伸如图3,在(2)的条件下,将点D改为直线AB上一动点,其余条件不变,取线段DE的中点M,连接BM、CM,若AC=2,则当△CBM是直角三角形时,线段BE的长是多少?请直接写出答案.23.(11分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点A、C的坐标分别为(﹣1,0),(0,﹣3),直线x=1为抛物线的对称轴.点D为抛物线的顶点,直线BC与对称轴相交于点E.(1)求抛物线的解析式并直接写出点D的坐标;(2)点P为直线x=1右方抛物线上的一点(点P不与点B重合).记A、B、C、P四点所构成的四边形面积为S,若S=S△BCD,求点P的坐标;(3)点Q是线段BD上的动点,将△DEQ延边EQ翻折得到△D′EQ,是否存在点Q使得△D′EQ与△BEQ的重叠部分图形为直角三角形?若存在,请求出BQ的长,若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡上1.(3分)下列四个数:﹣3,﹣0.5,,中,绝对值最大的数是()A.﹣3 B.﹣0.5 C.D.【分析】根据绝对值的性质以及正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小判断即可.【解答】解:∵|﹣3|=3,|﹣0.5|=0.5,||=,||=且0.5<<<3,∴所给的几个数中,绝对值最大的数是﹣3.故选:A.2.(3分)港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程投资总额1269亿元,1269亿用科学记数法表示为()A.1.269×1010B.1.269×1011C.12.69×1010D.0.1269×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:1269亿=126900000000,用科学记数法表示为1.269×1011.故选:B.3.(3分)下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是()A.B.C.D.【分析】根据图形、找出几何体的左视图与俯视图,判断即可.【解答】解:A、左视图第一层两个小正方形,俯视图第一层一个小正方形,故A不符合题意;B、左视图和俯视图相同,故B符合题意;C、左视图第一层两个小正方形,俯视图第一层一个小正方形,故C不符合题意;D、左视图是一列两个小正方形,俯视图一层三个小正方形,故D不符合题意;故选:B.4.(3分)如图,OC是∠AOB的角平分线,l∥OB,若∠1=52°,则∠2的度数为()A.52°B.54°C.64°D.69°【分析】依据平行线的性质以及角平分线的定义,即可得到∠BOC=64°,再根据平行线的性质,即可得出∠2的度数.【解答】解:∵l∥OB,∴∠1+∠AOB=180°,∴∠AOB=128°,∵OC平分∠AOB,∴∠BOC=64°,又l∥OB,且∠2与∠BOC为同位角,∴∠2=64°,故选:C.5.(3分)在中考体育加试中,某班30名男生的跳远成绩如下表:成绩/m 1.95 2.00 2.05 2.10 2.15 2.25人数 2 3 9 8 5 3 这些男生跳远成绩的众数、中位数分别是()A.2.10,2.05 B.2.10,2.10 C.2.05,2.10 D.2.05,2.05 【分析】中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:由表可知,2.05出现次数最多,所以众数为2.05;由于一共调查了30人,所以中位数为排序后的第15人和第16人的平均数,即:2.10.故选:C.6.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别解不等式进而得出不等式组的解集,进而得出答案.【解答】解:,解①得:x>﹣6,解②得:x≤13,故不等式组的解集为:﹣6<x≤13,在数轴上表示为:.故选:B.7.(3分)如图,正比例函数y=x的图象与一次函数y=x+的图象交于点A,若点P 是直线AB上的一个动点,则线段OP长的最小值为()A.1 B.C.D.2【分析】判断出OP⊥AB时,OP最小,利用三角形的面积建立方程求解即可得出结论.【解答】解:由得,∴A(2,3),由一次函数y=x+,令y=0,解得x=﹣2,∴(﹣2,0),∴S△AOB=OB•|y A|==3,AB==5,∵当OP⊥AB时,OP最小,∴S△AOB=AB•OP最小,∴×5OP最小=3∴OP最小=,故选:C.8.(3分)如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°【分析】分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于M,交OB于N,△PMN的周长=P1P2,然后得到等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,即可得出∠MPN =∠OPM+∠OPN=∠OP1M+∠OP2N=100°.【解答】解:分别作点P关于OA、OB的对称点P1、P2,连接P1P2,交OA于M,交OB于N,则OP1=OP=OP2,∠OP1M=∠MPO,∠NPO=∠NP2O,根据轴对称的性质,可得MP=P1M,PN=P2N,则△PMN的周长的最小值=P1P2,∴∠P1OP2=2∠AOB=80°,∴等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°,故选:B.9.(3分)如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON 分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE ≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=OG•OC.其中正确的是()A.①②③④B.①②③C.①②④D.③④【分析】①由正方形证明OC=OD,∠ODF=∠OCE=45°,∠COM=∠DOF,便可得结论;②证明点O、E、C、F四点共圆,得∠EOG=∠CFG,∠OEG=∠FCG,进而得OGE∽△FGC便可;③先证明S△COE=S△DOF,∴便可;④证明△OEG∽△OCE,得OG•OC=OE2,再证明OG•AC=EF2,再证明BE2+DF2=EF2,得OG•AC=BE2+DF2便可.【解答】解:①∵四边形ABCD是正方形,∴OC=OD,AC⊥BD,∠ODF=∠OCE=45°,∵∠MON=90°,∴∠COM=∠DOF,∴△COE≌△DOF(ASA),故①正确;②∵∠EOF=∠ECF=90°,∴点O、E、C、F四点共圆,∴∠EOG=∠CFG,∠OEG=∠FCG,∴OGE∽△FGC,故②正确;③∵△COE≌△DOF,∴S△COE=S△DOF,∴,故③正确;④)∵△COE≌△DOF,∴OE=OF,又∵∠EOF=90°,∴△EOF是等腰直角三角形,∴∠OEG=∠OCE=45°,∵∠EOG=∠COE,∴△OEG∽△OCE,∴OE:OC=OG:OE,∴OG•OC=OE2,∵OC=AC,OE=EF,∴OG•AC=EF2,∵CE=DF,BC=CD,∴BE=CF,又∵Rt△CEF中,CF2+CE2=EF2,∴BE2+DF2=EF2,∴OG•AC=BE2+DF2,故④错误,故选:B.10.(3分)在边长为的正方形ABCD中,对角线AC与BD相交于点O,P是BD上一动点,过P作EF∥AC,分别交正方形的两条边于点E,F.设BP=x,△OEF的面积为y,则能反映y与x之间关系的图象为()A.B.C.D.【分析】分析,EF与x的关系,他们的关系分两种情况,依情况来判断抛物线的开口方向.【解答】解:∵四边形ABCD是正方形,∴AC=BD=2,OB=OD=,①当P在OB上时,即0≤x≤1,∵EF∥AC,∴△BEF∽△BAC,∴EF:AC=BP:OB,∴EF=2BP=2x,∴y=EF•OP=×2x(1﹣x)=﹣x2+x;②当P在OD上时,即1<x≤2,∵EF∥AC,∴△DEF∽△DAC,∴EF:AC=DP:OD,即EF:2=(2﹣x):1,∴EF=4﹣2x,∴y=EF•OP==﹣x2+3x﹣2,这是一个二次函数,根据二次函数的性质可知:二次函数的图象是一条抛物线,开口方向取决于二次项的系数.当系数>0时,抛物线开口向上;系数<0时,开口向下.根据题意可知符合题意的图象只有选项B.故选:B.二、填空题(每小题3分,共15分)11.(3分)计算:﹣()﹣1+=0 .【分析】直接利用负指数幂的性质以及二次根式的性质分别化简得出答案.【解答】解:原式=﹣4+4=0.故答案为:0.12.(3分)2019年永州市初中体育学业水平考试实行改革,增加了两类自选类项目:一类是运动技能测试,学生可以从篮球、足球、排球向上垫球三个项目中必须自选一项;另一类是身体力量测试,学生从一分钟跳绳、仰卧起坐(女)或引体向上(男)、原地正面掷实心球、立定跳远四个项目中再选一项,则某一初三男学生同时选择篮球和立定跳远这两项的概率是.【分析】用A、B、C分别表示篮球、足球、排球向上垫球三个项目,用a、b、c、d分别表示一分钟跳绳、仰卧起坐(女)或引体向上(男)、原地正面掷实心球、立定跳远四个项目,画树状图展示所有9种等可能的结果数,找出某一初三男学生同时选择篮球和立定跳远这两项的结果数,然后根据概率公式求解.【解答】解:用A、B、C分别表示篮球、足球、排球向上垫球三个项目,用a、b、c、d 分别表示一分钟跳绳、仰卧起坐(女)或引体向上(男)、原地正面掷实心球、立定跳远四个项目,画树状图为:共有12种等可能的结果数,其中某一初三男学生同时选择篮球和立定跳远这两项的结果数为1,所以某一初三男学生同时选择篮球和立定跳远这两项的概率=.故答案为.13.(3分)关于x的一元二次方程a(x﹣h)2+k=x+n两根为x1=﹣1,x2=3,则方程a(x ﹣h﹣3)2+k+3=x+n的两根为2或6 .【分析】根据函数与方程的关系及函数平移的规律,变形要求的方程,利用平移规律可解.【解答】解:由方程a(x﹣h﹣3)2+k+3=x+n得a(x﹣h﹣3)2+k=x+n﹣3①方程①可看作左边是二次函数y=a(x﹣h﹣3)2+k,右边是一次函数y=x+n﹣3根据平移知识,可知方程①相当于关于x的一元二次方程a(x﹣h)2+k=x+n②,左右两边都向右平移3个单位而方程②的两根为x1=﹣1,x2=3∴方程①的两根为x1=2,x2=6故答案为2或6.14.(3分)如图,7个腰长为1的等腰直角三角形(Rt△B1AA1,Rt△B2A1A2,Rt△B3A2A3…)有一条腰在同一条直线上,设△A1B2C1的面积为S1,△A2B3C2的面积为S2,△A3B4C3的面积为S3,则S1+S2+S3+S4+S5+S6=.【分析】连接B1、B2、B3、B4点,显然它们共线且平行于AC1,依题意可知△B1B2C1与△C1AA1相似,求出相似比,根据三角形面积公式可得出S1,同理:B2B3:AA2=1:2,所以B2C2:C2A=1:2,进而S2的值可求出,同样的道理,即可求出S3,S4…S6的值,即可求解.【解答】解:解:连接B1、B2、B3、B4.∵n+1个边长为1的等腰三角形有一条边在同一直线上,∴=×1×1=,=×2×1=1,=×3×1=,…==3,连接B1、B2、B3点,显然它们共线且平行于AA1易知S1=,∵B2B3∥AA2,∴△B2C2B3∽△A2C2A,∴=,∴S2==,同理可求,S3==,S4=×2=,S5==,S6==,∴S1+S2+S3+S4+S5+S6==,故答案为:.15.(3分)如图,Rt△ABC中,∠ACB=90°,AC=2,BC=4,CD是△ABC的中线,E是边BC上一动点,将△BED沿ED折叠,点B落在点F处,EF交线段CD于点G,当△DFG是直角三角形时,则CE=1或﹣.【分析】分两种情形:①如图1中,当∠DGF=90°时,作DH⊥BC于H.②如图2中,当∠GDF=90°,作DH⊥BC于H,DK⊥FG于K.【解答】解:①如图1中,当∠DGF=90°时,作DH⊥BC于H.在Rt△ACB中,∵∠ACB=90°,AC=2,BC=4,∴AB===2,∵AD=DB,∴CD=AB=,∵DH∥AC,AD=DB,∴CH=BH,∴DH=DG=AC=1,∴CG=﹣1,∵DC=DB,∴∠DCB=∠B,∴cos∠DCB=cos∠B=,∴CE=CG÷cos∠DCB=﹣.②如图2中,当∠GDF=90°,作DH⊥BC于H,DK⊥FG于K.易证四边形DKEH是正方形,可得EH=DH=1,∵CH=BH=2,∴CE=1,综上所述,满足条件的CE的值为1或﹣.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:,其中a是方程a2+a﹣6=0的解.【分析】根据分式的减法和除法可以化简题目中的式子,然后由方程a2+a﹣6=0可以求得a的值,然后将a的值代入化简后的式子即可解答本题,注意代入a的值必须使得原分式有意义.【解答】解:====,由a2+a﹣6=0,得a=﹣3或a=2,∵a﹣2≠0,∴a≠2,∴a=﹣3,当a=﹣3时,原式==.17.(9分)如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,以D为圆心,DB长为半径作作⊙D.(1)求证:AC是⊙D的切线.(2)设AC与⊙D切于点E,DB=1,连接DE,BF,EF.①当∠BAD=30°时,四边形BDEF为菱形;②当AB=+1 时,△CDE为等腰三角形.【分析】(1)作DM⊥AC于M,由角平分线的性质可得DM=DB,由切线的判定可证AC是⊙D的切线;(2)①由菱形的性质可得BD=BF,且BD=DF,可证△BDF是等边三角形,可得∠ADB=60°,即可求解;②由切线的性质可得DE⊥AC,由等腰直角三角形的性质可得CD=DE=,∠C=45°,可证AB=BC=+1.【解答】证明:(1)如图1,作DM⊥AC于M,∵∠B=90°,AD平分∠BAC,DM⊥AC,∴DM=DB,∵DB是⊙D的半径,∴AC是⊙D的切线;(2)①如图2,∵四边形BDEF是菱形,∴BD=DE=EF=BF,∵BD=DF=DE,∴BD=DF=DE=EF=BF,∴△BDF,△DEF是等边三角形,∴∠ADB=∠ADE=60°,∵∠ABC=90°,∴∠BAD=30°,∴当∠BAD=30°时,四边形BDEF是菱形,故答案为:30°;②∵AC与⊙D切于点E,∴DE⊥AC,∵△DEC是等腰三角形,且DE⊥AC,∴DE=EC,∠C=∠EDC=45°,∴DC=DE,∵∠ABC=90°,∠C=45°,∴∠BAC=∠C=45°,∴AB=BC,∵BD=DE=EC=1,∴DC=x,∴AB=BC=+1,∴当AB=+1时,△CDE为等腰三角形,故答案为:+1.18.(9分)设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级;75≤x<85为B级;60≤x<75为C级;x<60为D级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了50 名学生,A级人数占本次抽取人数的百分比为24 %;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为72 度;(4)若该校共有1000名学生,请你估计该校D级学生有多少名?【分析】(1)根据B级的人数和所占的百分比求出抽取的总人数,再用A级的人数除以总数即可求出α;(2)用抽取的总人数减去A、B、D的人数,求出C级的人数,从而补全统计图;(3)用360度乘以C级所占的百分比即可求出扇形统计图中C级对应的圆心角的度数;(4)用D级所占的百分比乘以该校的总人数,即可得出该校D级的学生数.【解答】解:(1)在这次调查中,一共抽取的学生数是:24÷48%=50(人),α=×100%=24%;故答案为:50,24;(2)等级为C的人数是:50﹣12﹣24﹣4=10(人),补图如下:(3)扇形统计图中C级对应的圆心角为×360°=72°;故答案为:72;(4)根据题意得:1000×=80(人),答:该校D级学生有80人.19.(9分)如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,景区管委会又开发了风景优美的景点D,经测量景点D位于景点A的北偏东30°方向8km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.(1)景区管委会准备由景点D向公路a修建一条距离最短的公路,不考虑其它因素,求出这条公路的长;(结果精确到0.1km)(2)求景点C与景点D之间的距离.(结果精确到1km)(参考数据:=1.73,=2.24,sin53°=cos37°=0.80,sin37°=cos53°=0.60,tan53°=1.33,tan37°=0.75,sin38°=cos52°=0.62,sin52°=cos38°=0.79,tan38°=0.78,tan52°=1.28,sin75°=0.97,cos75°=0.26,tan75°=3.73.)【分析】过点D作DE⊥AC于点E,过点A作AF⊥DB,交DB的延长线于点F,求DE的问题就可以转化为求∠DBE的度数或三角函数值的问题.Rt△DCE中根据三角函数就可以求出CD的长.【解答】解:(1)如图,过点D作DE⊥AC于点E,过点A作AF⊥DB,交DB的延长线于点F,在Rt△DAF中,∠ADF=30°,∴AF=AD=×8=4,∴DF=,在Rt△ABF中BF==3,∴BD=DF﹣BF=4﹣3,sin∠ABF=,在Rt△DBE中,sin∠DBE=,∵∠ABF=∠DBE,∴sin∠DBE=,∴DE=BD•sin∠DBE=×(4﹣3)=≈3.1(km),∴景点D向公路a修建的这条公路的长约是3.1km;(2)由题意可知∠CDB=75°,由(1)可知sin∠DBE==0.8,所以∠DBE=53°,∴∠DCB=180°﹣75°﹣53°=52°,在Rt△DCE中,sin∠DCE=,∴DC=≈4(km),∴景点C与景点D之间的距离约为4km.20.(9分)如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB 于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)观察图象,直接写出当x>0时,不等式2x+6<0的解集;(3)当n为何值时,△BMN的面积最大?最大值是多少?【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)结合函数图象找到直线在双曲线下方对应的x的取值范围;(3)构建二次函数,利用二次函数的性质即可解决问题.【解答】解:(1)∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴k=8,∴反比例函数的解析式为y=;(2)不等式2x+6<0的解集为0<x<1;(3)由题意,点M,N的坐标为M(,n),N(,n),∵0<n<6,∴<0,∴>0∴S△BMN=|MN|×|y M|==(n﹣3)2+,∴n=3时,△BMN的面积最大,最大值为.21.(10分)某商场计划经销A,B两种新型节能台灯共50盏,这两种台灯的进价、售价如下表所示.A型B型进价(元/盏)40 65售价(元/盏)60 100(1)若该商场购进这批台灯共用去2500元,问这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少需购进B种台灯多少盏?(3)若该商场预计用不多于2600元的资金购进这批台灯,其中A种台灯不超过30盏,为了打开B种台灯的销路,商场决定每售出一盏B种台灯,返还顾客现金a元(10<a <20),问该商场该如何进货,才能获得最大的利润?【分析】(1)首先设该商场购进A种台灯x盏,购进B种台灯(50﹣x)盏,然后根据题意,即可得方程,解方程即可求得答案;(2)设至少需购进B种台灯x盏,然后由该商场销售这批台灯的总利润不少于1400元,即可得一元一次不等式35y+20(50﹣y)≥1400,解此不等式即可求得答案;(3)首先设该商场购进A种台灯m盏,由该商场预计用不多于2600元的资金购进这批台灯,可通过不等式组求得m的取值范围,然后求得该商场获得的总利润与该商场购进A种台灯的盏数的一次函数,由10<a<20,根据一次函数的增减性即可求得答案.【解答】解:(1)设该商场购进A种台灯x盏,购进B种台灯(50﹣x)盏,由题意得:40x+65(50﹣x)=2500,解得:x=30,∴该商场购进A种台灯30盏,购进B种台灯20盏.(2)设购进B种台灯y盏,由题意得:35y+20(50﹣y)≥1400,解得:y≥,∴y的最小整数解为27,∴至少需购进B种台灯27盏;(3)设该商场购进A种台灯m盏,由题意得:40m+65(50﹣m)≤2600,解得:m≥26,∴26≤m30,设该商场获得的总利润为w元,则w=20m+(35﹣a)(50﹣m)=(a﹣15)m+1750﹣50a,∵10<a<20,∴当10<a≤15时,m=26,即购进A种台灯26盏,购进B种台灯24盏,该商场获得的总利润最大,当15<a<20时,m=30,即购进A种台灯30盏,购进B种台灯20盏,该商场获得的总利润最大.22.(10分)(1)问题发现如图1,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=45°,点D 时线段AB上一动点,连接BE.填空:①的值为 1 ;②∠DBE的度数为90°.(2)类比探究如图2,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,点D 是线段AB上一动点,连接BE.请判断的值及∠DBE的度数,并说明理由;(3)拓展延伸如图3,在(2)的条件下,将点D改为直线AB上一动点,其余条件不变,取线段DE的中点M,连接BM、CM,若AC=2,则当△CBM是直角三角形时,线段BE的长是多少?请直接写出答案.【分析】(1)由直角三角形的性质可得∠ABC=45°,可得∠DBE=90°,通过证明△ACD ∽△BCE,可得的值;(2)通过证明△ACD∽△BCE,可得的值,∠CBE=∠CAD=60°,即可求∠DBE的度数;(3)分点D在线段AB上和BA延长线上两种情况讨论,由直角三角形的性质可证CM=BM=,即可求DE=2,由相似三角形的性质可得∠ABE=90°,BE=AD,由勾股定理可求BE的长.【解答】解:(1)∵∠ACB=90°,∠CAB=45°∴∠ABC=∠CAB=45°∴AC=BC,∠DBE=∠ABC+∠CBE=90°∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,且∠CAB=∠CDE=45°,∴△ACD∽△BCE∴故答案为:1,90°(2),∠DBE=90°理由如下:∵∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,∴∠ACD=∠BCE,∠CED=∠ABC=30°∴tan∠ABC=tan30°==∵∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,∴Rt△ACB∽Rt△DCE∴∴,且∠ACD=∠BCE∴△ACD∽△BCE∴=,∠CBE=∠CAD=60°∴∠DBE=∠ABC+∠CBE=90°(3)若点D在线段AB上,如图,由(2)知:=,∠ABE=90°∴BE=AD∵AC=2,∠ACB=90°,∠CAB=90°∴AB=4,BC=2∵∠ECD=∠ABE=90°,且点M是DE中点,∴CM=BM=DE,且△CBM是直角三角形∴CM2+BM2=BC2=(2)2,∴BM=CM=∴DE=2∵DB2+BE2=DE2,∴(4﹣AD)2+(AD)2=24∴AD=+1∴BE=AD=3+若点D在线段BA延长线上,如图同理可得:DE=2,BE=AD∵BD2+BE2=DE2,∴(4+AD)2+(AD)2=24,∴AD=﹣1∴BE=AD=3﹣综上所述:BE的长为3+或3﹣23.(11分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点A、C的坐标分别为(﹣1,0),(0,﹣3),直线x=1为抛物线的对称轴.点D为抛物线的顶点,直线BC与对称轴相交于点E.(1)求抛物线的解析式并直接写出点D的坐标;(2)点P为直线x=1右方抛物线上的一点(点P不与点B重合).记A、B、C、P四点所构成的四边形面积为S,若S=S△BCD,求点P的坐标;(3)点Q是线段BD上的动点,将△DEQ延边EQ翻折得到△D′EQ,是否存在点Q使得△D′EQ与△BEQ的重叠部分图形为直角三角形?若存在,请求出BQ的长,若不存在,请说明理由.【分析】(1)利用抛物线的对称性得到B(3,0),则设交点式为y=a(x+1)(x﹣3),把C(0,﹣3)代入求出a即可得到抛物线解析式,然后把解析式配成顶点式即可得到D 点坐标;(2)设P(m,m2﹣2m﹣3),先确定直线BC的解析式y=x﹣3,再确定E(1,﹣2),则可根据三角形面积公式计算出S△BDC=S△BDE+S△CDE=3,然后分类讨论:当点P在x轴上方时,即m>3,如图1,利用S=S△PAB+S△CAB=S△BCD得到2m2﹣4m=;当点P在x轴下方时,即1<m<3,如图2,连结OP,利用S=S△AOC+S△COP+S△POB=S△BCD得到﹣m2+m+6=,再分别解关于m的一元二次方程求出m,从而得到P点坐标;(3)存在.直线x=1交x轴于F,利用两点间的距离公式计算出BD=2,分类讨论:①如图3,EQ⊥DB于Q,证明Rt△DEQ∽Rt△DBF,利用相似比可计算出DQ=,则BQ=BD﹣DQ=;②如图4,ED′⊥BD于H,证明Rt△DEQ=H∽Rt△DBF,利用相似比计算出DH=,EH=,在Rt△QHD′中,设QH=x,D′Q=DQ=DH﹣HQ=﹣x,D′H=D′E﹣EH=DE﹣EH=2﹣,则利用勾股定理可得x2+(2﹣)2=(﹣x)2,解得x=1﹣,于是BQ=BD﹣DH+HQ﹣=+1;③如图5,D′Q⊥BC于G,作EI⊥BD于I,利用①得结论可得EI=,BI=,而BE=2,则BG=BE﹣EG=2﹣,根据折叠性质得∠EQD=∠EQD′,则根据角平分线性质得EG=EI=,接着证明△BQG∽△BEI,利用相似比可得BQ=﹣,所以当BQ为或+1或﹣时,将△DEQ沿边EQ翻折得到△D′EQ,使得△D′EQ与△BEQ 的重叠部分图形为直角三角形.【解答】解:(1)∵点A与点B关于直线x=1对称,∴B(3,0),设抛物线解析式为y=a(x+1)(x﹣3),把C(0,﹣3)代入得﹣3a=﹣3,解得a=1,∴抛物线就笑着说为y=(x+1)(x﹣3)=x2﹣2x﹣3,∵y=(x﹣1)2﹣4,∴抛物线顶点D的坐标为(1,﹣4);(2)设P(m,m2﹣2m﹣3),易得直线BC的解析式为y=x﹣3,当x=1时,y=x﹣3=﹣3,则E(1,﹣2),∴S△BDC=S△BDE+S△CDE=×3×(﹣2+4)=3,当点P在x轴上方时,即m>3,如图1,S=S△PAB+S△CAB=•3•(3+1)+•(3+1)•(m2﹣2m﹣3)=2m2﹣4m,∵S=S△BCD,∴2m2﹣4m=,整理得4m2﹣8m﹣15=0,解得m1=,m2=(舍去),∴P点坐标为(,);当点P在x轴下方时,即1<m<3,如图2,连结OP,S=S△AOC+S△COP+S△POB=•3•1+•3•m+•3•(﹣m2+2m+3)=﹣m2+m+6,∵S=S△BCD,∴﹣m2+m+6=,整理得m2﹣3m+1=0,解得m1=,m2=(舍去)∴P点坐标为(,),综上所述,P点坐标为(,)或(,);(3)存在.直线x=1交x轴于F,BD==2,①如图3,EQ⊥DB于Q,△DEQ沿边EQ翻折得到△D′EQ,∵∠EDQ=∠BDF,∴Rt△DEQ∽Rt△DBF,∴=,即=,解得DQ=,∴BQ=BD﹣DQ=2﹣=;②如图4,ED′⊥BD于H,∵∠EDH=∠BDF,∴Rt△DEQ=H∽Rt△DBF,∴==,即==,解得DH=,EH=,在Rt△QHD′中,设QH=x,D′Q=DQ=DH﹣HQ=﹣x,D′H=D′E﹣EH=DE﹣EH=2﹣,∴x2+(2﹣)2=(﹣x)2,解得x=1﹣,∴BQ=BD﹣DQ=BD﹣(DH﹣HQ)=BD﹣DH+HQ=2﹣+1﹣=+1;③如图5,D′Q⊥BC于G,作EI⊥BD于I,由①得EI=,BI=,∵BE==2,∴BG=BE﹣EG=2﹣,∵△DEQ沿边EQ翻折得到△D′EQ,∴∠EQD=∠EQD′,∴EG=EI=,∵∠GBQ=∠IBE,∴△BQG∽△BEI,∴=,即=,∴BQ=﹣,综上所述,当BQ为或+1或﹣时,将△DEQ沿边EQ翻折得到△D′EQ,使得△D′EQ与△BEQ的重叠部分图形为直角三角形.。

2020年河南省郑州市中考数学模拟试卷(C卷)

2020年河南省郑州市中考数学模拟试卷(C卷)

中考数学模拟试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.-的相反数是()A. B. - C. D. -2.华为Mate 30 5G系列是近期相当火爆的5G国产手机,它采用的麒麟990 5G芯片在指甲盖大小的尺寸上集成了103亿个晶体管,将103亿用科学记数法表示为()A. 1.03×109B. 10.3×109C. 1.03×1010D. 1.03×10113.下列运算正确的是()A. 3x-2x=xB. 3x+2x=5x2C. 3x•2x=6xD. 3x÷2x=4.如图是由5个完全相同的小正方体搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的()A. 左视图会发生改变B. 俯视图会发生改变C. 主视图会发生改变D. 三种视图都会发生改变5.如图,平行四边形ABCD中,AB=3,BC=5.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是()A. B. C. 1 D. 26.郑州市某中学获评“2019年河南省中小学书香校园”,学校在创建过程中购买了一批图书.已知购买科普类图书花费12000元,购买文学类图书花费10500元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本,求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A. -=100B. -=100C. -=100D. -=1007.2019年9月8日第十一届全国少数民族传统体育运动会在郑州奥体中心隆重开幕,某单位得到了两张开幕式的门票,为了弘扬劳动精神,决定从本单位的劳动模范小李、小张、小杨、小王四人中选取两人去参加开幕式,那么同时选中小李和小张的概率为()A. B. C. D.8.已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=-1,-1的差倒数是=,如果a1=-2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,那么a2020的值是()A. -2B.C.D.9.用三个不等式a>b,ab>0,>中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A. 0B. 1C. 2D. 310.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0°<x≤90°)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用节能燃气灶烧开同一壶水的旋钮的旋转角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮的旋转角度约为()A. 33°B. 36°C. 42°D. 49°二、填空题(本大题共5小题,共15.0分)11.计算:(-1)0+()-2=______.12.如图,五边形ABCDE是正五边形.若l1∥l2,则∠1-∠2=______°.13.如果一元二次方程9x2-6x+m=0有两个不相等的实数根,那么m的值可以为______.(写出一个值即可)14.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC,CD于点P,Q.平行四边形ABCD的面积为6,则图中阴影部分的面积为______.15.如图,在矩形ABMN中,AN=1,点C是MN的中点,分别连接AC,BC,且BC=2,点D为AC的中点,点E为边AB上一个动点,连接DE,点A关于直线DE的对称点为点F,分别连接DF,EF.当EF⊥AC时,AE的长为______.三、解答题(本大题共8小题,共75.0分)16.已知分式1-÷(1+).(1)请对分式进行化简;(2)如图,若m为正整数,则该分式的值对应的点落在数轴上的第______段上.(填写序号即可)17.某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.分组6.2≤x<6.66.6≤x<7.07.0≤x<7.47.4≤x<7.87.8≤x<8.28.2≤x<8.6频数2m10621.实心球成绩在<这一组的是:,,,,,,7.2,7.2,7.3,7.3c.一分钟仰卧起坐成绩如图所示:根据以上信息,回答下列问题:(1)①表中m的值为______;②一分钟仰卧起坐成绩的中位数为______;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的女生代码A B C D E F G H实心球8.17.77.57.57.37.27.06.5一分钟仰卧起坐*4247*4752*49其中有名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.18.在△ABC中,∠BAC=90°,AD是BC边上的中线,点E为AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.(1)求证:AD=AF;(2)填空:①当∠ACB=______°时,四边形ADCF为正方形;②连接DF,当∠ACB=______°时,四边形ABDF为菱形.19.某校“趣味数学”社团开展了测量本校旗杆高度的实践活动.“综合与实践”小组制订了测量方案,并完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,该小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如表(不完整)课题测量旗杆的高度成员组长:xxx,组员:xxx,xxx,xxx测量工具测量角度的仪器,皮尺等测量示意图说明:线段GH表示学校旗杆,测量角度的仪器的高度AC=BD=1.5m,测点A,B与H在同一条水平直线上,A,B之间的距离可以直接测得,且点G,H,A,B,C,D都在同一竖直平面内,点C,D,E在同一条直线上,点E在GH上.测量数据测量项目第一次第二次平均值∠GCE的度数26.4°26.6°26.5°∠GDE的度数32.7°33.3°33°A,B之间的距离 5.9m 6.1m……任务一:两次测量A,B之间的距离的平均值=______m任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH的高度.(参考数据:sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50,sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)任务三:该“综合与实践”小组在制定方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)20.如图,在平面直角坐标系中,已知点B(0,4),等边三角形OAB的顶点A在反比例函数y=(x>0)的图象上.(1)求反比例函数的表达式;(2)把△OAB沿y轴向上平移a个单位长度,对应得到△O'A'B'.当这个函数的图象经过△O'A'B'一边的中点时,求a的值.21.《郑州市城市生活垃圾分类管理办法》于2019年12月起施行.某社区要投放A,购买数量购买数量少于100个购买数量不少于100个种类A原价销售以原价的7.5折销售B原价销售以原价的8折销售若购买种垃圾桶个,种垃圾桶个,则共需付款元;若购买种垃圾桶100个,B种垃圾桶100个,则共需付款6150元.(1)求A,B两种垃圾桶的单价各为多少元?(2)若需要购买A,B两种垃圾桶共200个,且B种垃圾桶不多于A种垃圾桶数量的,如何购买使花费最少,最少费用为多少元?请说明理由.22.(一)发现探究在△ABC中,AB=AC,点P在平面内,连接AP并将线段AP绕点A顺时针方向旋转与∠BAC相等的角度,得到线段AQ,连接BQ.【发现】如图1,如果点P是BC边上任意一点(不与端点B,C重合),则线段BQ 和线段PC的数量关系是______;【探究】如图2,如果点P为平面内任意一点.前面发现的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.请仅以图2所示的位置关系加以证明(或说明);(二)拓展应用【应用】如图3,在△DEF中,DE=8,∠EDF=60°,∠DEF=75°,P是线段EF上的任意一点,连接DP,将线段DP绕点D顺时针方向旋转60°,得到线段DQ,连接EQ.请直接写出线段EQ长度的最小值.23.如图,在平面直角坐标系中,直线y=-x+n与x轴,y轴分别交于点B,点C,抛物线y=ax2+bx+(a≠0)过B,C两点,且交x轴于另一点A(-2,0),连接AC.(1)求抛物线的表达式;(2)已知点P为第一象限内抛物线上一点,且点P的横坐标为m,请用含m的代数式表示点P到直线BC的距离;(3)抛物线上是否存在一点Q(点C除外),使以点Q,A,B为顶点的三角形与△ABC相似?若存在,直接写出点Q的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:-的相反数是.故选A.根据相反数的定义解答即可.本题考查了实数的性质,主要利用了相反数的定义,熟记概念是解题的关键.2.【答案】C【解析】解:103亿=10300000000=1.03×1010,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】A【解析】解:A、结果是x,故本选项符合题意;B、结果是5x,故本选项不符合题意;C、结果是6x2,故本选项不符合题意;D、结果是,故本选项不符合题意;故选:A.先根据合并同类项法则,单项式乘以单项式和单项式除以单项式进行计算,再判断即可.本题考查了合并同类项法则,单项式乘以单项式和单项式除以单项式,能正确求出每个式子的值是解此题的关键.4.【答案】C【解析】解:如果将小正方体A放到小正方体B的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选:C.根据从上面看得到的图形是俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,掌握三视图的概念是关键.5.【答案】D【解析】解:∵由题意可知CE是∠BCD的平分线,∴∠BCE=∠DCE.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠DCE=∠E,∴∠BCE=∠AEC,∴BE=BC=5,∵AB=3,∴AE=BE-AB=2,故选:D.只要证明BE=BC即可解决问题.本题考查的是作图-基本作图和平行四边形的性质,熟知角平分线的作法是解答此题的关键.6.【答案】D【解析】解:设科普类图书平均每本的价格是x元,则可列方程为:-=100.故选:D.直接利用购买科普书的数量比购买文学书的数量少100本得出等式进而得出答案.此题主要考查了由实际问题抽象出分式方程,正确得出等量关系是解题关键.7.【答案】D【解析】解:根据题意画图如下:共有12种等可能的结果数,其中同时选中小李和小张的有2种,则同时选中小李和小张的概率为=;故选:D.根据题意画出树状图得出所有等可能的结果数和同时选中小李和小张的情况数,然后根据概率公式即可得出答案.此题考查的是用树状图法求概率,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.8.【答案】A【解析】解:∵a1=-2,∴a2==,a3==,a4==-2,……∴这个数列以-2,,依次循环,∵2020÷3=673……1,∴a2020=a1=-2.故选:A.求出数列的前4个数,从而得出这个数列以-2,,依次循环,用2020除以3,再根据余数可求a2020的值.本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.9.【答案】A【解析】【分析】本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.由题意得出3个命题,由不等式的性质逐个判断真假即可.【解答】解:①若a>b,ab>0,则>;假命题:理由:∵a>b,ab>0,∴在不等式a>b的两边同除以ab,得,即<;②若ab>0,>,则a>b,假命题;理由:∵ab>0,>,∴在不等式>的两边同乘ab,得,即a<b;③若a>b,>,则ab>0,假命题;理由:∵a>b,>,∴a、b异号,即ab<0.∴组成真命题的个数为0个.故选:A.10.【答案】C【解析】【分析】本题考查二次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.根据题意和二次函数的性质,可以确定出对称轴与横轴交点的横坐标x的取值范围,从而可以解答本题.【解答】解:由图象可知,物线开口向上,从(18,0.136)和(72,0.150)两个点可以看出对称轴与横轴交点的横坐标x<,得x<45,从(18,0.136)和(54,0.125)两个点可以看出对称轴与横轴交点的横坐标x>,得x>36,∴36<x<45,即对称轴位于直线x=36与直线x=45之间,分析各选项可得只有42°符合,故选:C.11.【答案】5【解析】解:原式=1+4=5.故答案为:5.首先计算零次幂和负整数指数幂,然后再计算加法即可.此题主要考查了实数运算,零次幂和负整数指数幂,关键是掌握零指数幂:a0=1(a≠0),负整数指数幂:a-p=(a≠0,p为正整数).12.【答案】72【解析】解:过B点作BF∥l1,∵五边形ABCDE是正五边形,∴∠ABC=108°,∵BF∥l1,l1∥l2,∴BF∥l2,∴∠3=180°-∠1,∠4=∠2,∴180°-∠1+∠2=∠ABC=108°,∴∠1-∠2=72°.故答案为:72.过B点作BF∥l1,根据正五边形的性质可得∠ABC的度数,再根据平行线的性质以及等量关系可得∠1-∠2的度数.考查了多边形内角,平行线的性质,关键是熟练掌握正五边形的性质,以及添加辅助线.13.【答案】0(答案不唯一)【解析】解:根据题意得Δ=(-6)2-4×9m>0,解得m<1,所以m可取0.故答案为0(答案不唯一).先利用判别式的意义得到Δ=(-6)2-4×9m>0,再解不等式得到m的范围,然后在此范围内取一个值即可.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.14.【答案】【解析】解:∵四边形ABCD和四边形ACED都是平行四边形,∴AD=BC=CE,AB∥CD,AC∥DE,∴平行四边形ACED的面积=平行四边形ABCD的面积=6,△BCP∽△BER,△ABP∽△CQP∽△DQR,∴△ABC的面积=△CDE的面积=3,CP:ER=BC:BE=1:2,∵点R为DE的中点,∴CP:DR=1:2,∴CP:AC=CP:DE=1:4,∵S△ABC=3,∴S△ABP=S△ABC=,∵CP:AP=1:3,∴S△PCQ=S△ABP=,∵CP:DR=1:2,∴S△DQR=4S△PCQ=1,∴S阴影=S△PCQ+S△DQR=.故答案为:.由四边形ABCD和四边形ACED都是平行四边形,易证得△BCP∽△BER,△ABP∽△CQP∽△DQR,又由点R为DE的中点,可求得各相似三角形的相似比,继而求得答案.此题考查了平行四边形的性质以及相似三角形的判定与性质.熟记相似三角形的面积比等于相似比的平方是解题的关键.15.【答案】或【解析】解:∵四边形ABMN是矩形,∴AN=BM=1,∠M=∠N=90°,∵点C是MN的中点,∴CM=CN,∴△BMC≌△ANC(SAS),∴BC=AC=2,∴AC=2AN,∴∠ACN=30°,∵AB∥MN,∴∠CAB=∠CBA=30°,①如图1中,当DF⊥AB时,∠ADF=60°,∵DA=DF,∴△ADF是等边三角形,∴∠AFD=60°,∵∠DFE=∠DAE=30°,∴EF平分∠AFD,∴EF⊥AD,此时AE=.②如图2中,当△AEF是等边三角形时,EF⊥AC,此时AE=EF=.综上所述,满足条件的EF的值为或.首先证明∠CAB=∠CBA=30°.分两种情形画出图形分别求解即可.本题考查矩形的性质,解直角三角形,翻折变换等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.16.【答案】解:(1)原式=1-÷=1-•=1-==;(2)②【解析】【分析】本题考查了数轴和分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.(1)先算减法,再把除法变成乘法,孙乘法,最后算减法即可;(2)根据化简的结果和数轴得出即可.【解答】解:(1)见答案;(2)∵原式=1-,m为正整数且m≠1,∴m≥2,∴该分式的值应落在数轴的②处,故答案为:②.17.【答案】解:(1)①9;②45;(2)①∵实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3,∴实心球成绩在7.0≤x<7.4这一组优秀的有4人,∴全年级女生实心球成绩达到优秀的人数是:150×=65,答:全年级女生实心球成绩达到优秀的有65人;②同意,理由:如果女生E的仰卧起坐成绩未到达优秀,那么只有A、D、F有可能两项测试成绩都达到优秀,这与恰有4个人两项成绩都达到优秀,矛盾,因此,女生E的一分钟仰卧起坐成绩达到了优秀.【解析】【分析】本题考查频数分布表、条形统计图、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.(1)①根据题意和表格中的数据可以求得m的值;②根据条形统计图中数据和中位数的定义可以得到这组数据的中位数;(2)①根据题意和表格中的数据可以求得全年级女生实心球成绩达到优秀的人数;②根据题意和表格中的数据可以解答本题.【解答】解:(1)①m=30-2-10-6-2-1=9,故答案为:9;②由条形统计图可得,一分钟仰卧起坐成绩按从小到大排列,第15个数和第16个数都为45,所以其中位数为45,故答案为:45;(2)①②见答案.18.【答案】(1)证明:∵∠BAC=90°,AD是BC边上的中线,∵AD=CD=BD,∵点E为AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,∵∠AEF=∠DEB,∴△AEF≌△DEB(AAS),∴AF=BD,∴AD=AF;(2)①45;②30.【解析】【分析】本题考查了正方形的判定,菱形的性质和判定,直角三角形的性质,正确的识别图形是解题的关键.(1)根据直角三角形的性质得到AD=CD=BD,根据全等三角形的判定和性质即可得到结论;(2)①根据菱形的判定定理得到四边形ADCF是菱形,求得∠DCF=90°,于是得到结论;②根据菱形的性质得到CD=CF,推出△DCF是等边三角形,得到DF=BD,于是得到结论.【解答】(1)见答案;(2)解:①当∠ACB=45°时,四边形ADCF为正方形.理由如下:∵AD=AF,∴AF=CD,∵AF∥CD,∴四边形ADCF是菱形,∴∠ACD=∠ACF=45°,∴∠DCF=90°,∴四边形ADCF是正方形,故答案为:45;②当∠ACB=30°时,四边形ABDF为菱形.理由如下:如图,∵四边形ADCF是菱形,四边形ABDF是平行四边形,∴CD=CF,∵∠ACB=∠ACF=30°,∴∠DCF=60°,∴△DCF是等边三角形,∴DF=CD,∴DF=BD,又AF∥BD,AF=BD,∴四边形ABDF为菱形.故答案为:30.19.【答案】解:任务一:6;任务二:设EG=xm,在Rt△DEG中,∠DEG=90°,∠GDE=33°,∵tan33°=,∴DE=,在Rt△CEG中,∠CEG=90°,∠GCE=26.5°,∵tan26.5°=,CE=,∵CD=CE-DE,∴-=6,∴x=13,∴GH=EG+EH=13+1.5=14.5,答:旗杆GH的高度为14.5米;任务三:旗杆底部不可能到达(答案不唯一).【解析】【分析】本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.任务一:根据两次测量结果直接求平均值就可以得到答案;任务二:设EG=xm,解直角三角形即可得到结论;任务三:根据题意得到,未被采纳的原因为没有太阳光,或旗杆底部不可能到达等,答案不唯一,写出其中一条即可.【解答】解:任务一:=(5.9+6.1)=6,故答案为:6;任务二:见答案;任务三:见答案.20.【答案】解:(1)∵点B(0,4),等边三角形OAB的顶点A在反比例函数y=(x>0)的图象上,∴点A的坐标为(2,2),∴2=,得k=4,即反比例函数的表达式是y=;(2)当反比例函数y=过边A′B′的中点时,∵边A′B′的中点是(,3+a),∴3+a=,得a=1;当反比例函数y=过边O′A′的中点时,∵边O′A′的中点是(,1+a),∴1+a=,得a=3;由上可得,a的值是1或3.【解析】本题考查反比例函数的图象、待定系数法求反比例函数解析式、等边三角形的性质,解答本题的关键是明确题意,利用反比例函数的性质和数形结合的思想解答.(1)根据题意,可以求得点A的坐标,从而可以求得该反比例函数的解析式;(2)根据题意,可分两种情况,求出a的值,本题得以解决.21.【答案】解:(1)设A种垃圾桶的单价为x元,B种垃圾桶的单价为y元,根据题意得,解得,答:A种垃圾桶的单价为50元,B种垃圾桶的单价为30元;(2)设购买A种垃圾桶为a个,则购买B种垃圾桶为(200-a)个,根据题意得,解得a≥150;设购买A,B两种垃圾桶的总费用为W元,则W=0.75×50a+30(200-a)=7.5a+6000,∵k=7.5>0,∴W随x的增大而增大,∴当a=150时,花费最少,最少费用为:7.5×150+6000=7125(元).答:购买A种垃圾桶150个,B种垃圾桶50个花费最少,最少费用为7125元.【解析】(1)设A种垃圾桶的单价为x元,B种垃圾桶的单价为y元,根据“购买A 种垃圾桶80个,B种垃圾桶120个,则共需付款6880元;若购买A种垃圾桶100个,B种垃圾桶100个,则共需付款6150元”列出方程组并解答;(2)设购买A种垃圾桶为a个,则购买B种垃圾桶为(200-a)个,根据“B种垃圾桶不多于A种垃圾桶数量的”列出不等式并求得a的取值范围,再根据一次函数的性质解答即可.本题考查了一次函数的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.22.【答案】【发现】BQ=PC;【探究】结论:BQ=PC仍然成立,理由:由旋转知,AQ=AP,∵∠PAQ=∠BAC,∴∠PAQ-∠BAP=∠BAC-∠BAP,∴∠BAQ=∠CAP,∵AB=AC,∴△BAQ≌△CAP(SAS),∴BQ=CP.【应用】如图3,在DF上取一点H,使DH=DE=8,连接PH,过点H作HM⊥EF于M,由旋转知,DQ=DP,∠PDQ=60°,∵∠EDF=60°,∴∠PDQ=∠EDF,∴∠EDQ=∠HDP,∴△DEQ≌△DHP(SAS),∴EQ=HP,要使EQ最小,则有HP最小,而点H是定点,点P是EF上的动点,∴当HM⊥EF(点P和点M重合)时,HP最小,即:点P与点M重合,EQ最小,最小值为HM,过点E作EG⊥DF于G,在Rt△DEG中,DE=8,∠EDF=60°,∴∠DEG=30°,∴DG=DE=4,∴EG=DG=4,在Rt△EGF中,∠FEG=∠DEF-∠DEG=75°-30°=45°,∴∠F=90°-∠FEG=45°=∠FEG,∴FG=EG=4,∴DF=DG+FG=4+4,∴FH=DF-DH=4+4-8=4-4,在Rt△HMF中,∠F=45°,∴HM=FH=(4-4)=2-2,即:EQ的最小值为2-2.【解析】【分析】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,解直角三角形,找出点P和点M重合时,EQ最小,最小值为HM是解本题的关键.【发现】先判断出∠BAQ=∠CAP,进而用SAS判断出△BAQ≌△CAP,即可得出结论;【探究】结论BQ=PC仍然成立,理由同【发现】的方法;【应用】先构造出△DEQ≌△DHP,得出EQ=HP,进而判断出要使EQ最小,当HM⊥EF (点P和点M重合)时,EQ最小,最后用解直角三角形即可得出结论.【解答】解:【发现】由旋转知,AQ=AP,∵∠PAQ=∠BAC,∴∠PAQ-∠BAP=∠BAC-∠BAP,∴∠BAQ=∠CAP,∵AB=AC,∴△BAQ≌△CAP(SAS),∴BQ=CP,故答案为:BQ=PC;【探究】见答案;【应用】见答案.23.【答案】解:(1)在抛物线y=ax2+bx+中,令x=0,得y=,即点C(0,),因为点C在直线y=-x+n上,将点C坐标代入直线方程得n=,则直线方程为y=-x+,令y=0,得x=3,则点B(3,0),则抛物线的表达式为:y=a(x-3)(x+2)=a(x2-x-6),代入点C坐标得-6a=,解得:a=-,故抛物线的表达式为:y=-x2+x+;(2)过点P作y轴的平行线交BC于点G,作PH⊥BC于点H,则∠HPG=∠CBA=α,因为OC=,则OB=3,由勾股定理得CB=,则cosα==,设点P(m,-m2+m+),则点G(m,-m+),则PH=PG cosα=(-m2+m++m-)=-m2+m;(3)①当点Q在x轴上方时,则点Q,A,B为顶点的三角形与△ABC全等,此时点Q与点C关于函数对称轴对称,则点Q(1,);②当点Q在x轴下方时,(Ⅰ)当∠BAQ=∠CAB时,△QAB∽△BAC,则=,由勾股定理得:AC=,AQ===10,过点Q作QH⊥x轴于点H,由△HAQ∽△OAC得:==,∵OC=,AQ=10,∴QH=6,AH=8,则OH=8-2=6,∴Q(6,-6);根据点的对称性,当点Q在第三象限时,符合条件的点Q(-5,-6);经检验(6,-6)或(-5,-6)均在抛物线上,符合题意,故点Q的坐标为:(6,-6)或(-5,-6);(Ⅱ)当∠BAQ=∠CBA时,△QAB∽△ABC,则,由勾股定理得:BC=,AQ===,过点Q作QH⊥x轴于点H,由△HAQ∽△OBC得:==,∵OC=,AQ=,∴QH=,AH=,则OH=-2=,∴Q(,-),根据点的对称性,当点Q在第三象限时,符合条件的点Q(-,-),而当x=时,y==-≠-,即点Q不在抛物线上,不符合题意,同理可得点Q(-,-)不符合题意,都舍去;综上,点Q的坐标为:(1,)或(6,-6)或(-5,-6).【解析】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、三角形相似等,其中(3)要注意分类求解,避免遗漏.(1)由抛物线方程求出点C(0,),则可得直线y=-x+,得点B(3,0),则可设抛物线的表达式为:y=a(x-3)(x+2)=a(x2-x-6),即可求解;(2)则PH=PG cosα=(-m2+m++m-)=-m2+m;(3)分当点Q在x轴上方、点Q在x轴下方两种情况,分别求解即可.。

2020年河南省中考数学模拟示范试卷(一) 解析版

2020年河南省中考数学模拟示范试卷(一) 解析版

2020年河南中考数学模拟示范试卷(一)一.选择题(共10小题)1.下列各数中比﹣1小的数是()A.﹣B.C.0D.22.据统计,截止2019年12月2日,“学习强国”河南学习平台注册用户已达到906.3万人,日活跃用户达到586.6万人,将数据“906.3万”用科学记数法表示为9.063×10n,则n 为()A.7B.4C.8D.63.如图,由五个完全相同的小正方体组合搭成一个几何体,把正方体A向右平移到正方体P前面,其“三视图”中发生变化的是()A.主视图B.左视图C.俯视图D.主视图和左视图4.某部队一军人在一次射击训练时,连续10次的成绩为6次10环,1次9环,3次8环,则该军人这10次射击的平均成绩为()A.9.6环B.9.5环C.9.4环D.9.3环5.方程=的解为()A.x=﹣5B.x=5C.x=D.x=﹣6.某小区的两个检查组分别对违规停车和垃圾投放的情况进行抽查,各组随机抽取小区内三个单元中的一个单元进行检查,则两个组恰好抽到同一个单元的概率是()A.B.C.D.7.将一块含有30°角的直角三角板和一把直尺按如图所示方式摆放,若∠1=85°,则∠2的度数是()A.70°B.65°C.55°D.60°8.如图,在四边形ABCD中,对角线AC,BD相交于点O,添加下列条件后仍不能判定四边形ABCD是平行四边形的是()A.AD∥BC,AO=CO B.AD=BC,AO=OCC.AD=BC,CD=AB D.S△AOD=S△COD=S△BOC9.在平面直角坐标系中,抛物线y=(x﹣5)(x+3)经平移变换后得到抛物线y=(x﹣3)(x+5),则这个变换可以是()A.向左平移2个单位长度B.向右平移2个单位长度C.向左平移8个单位长度D.向右平移8个单位长度10.如图,已知点O(0,0),P(1,2),将线段PO绕点P按顺时针方向以每秒90°的速度旋转,则第19秒时,点O的对应点坐标为()A.(0,0)B.(3,1)C.(﹣1,3)D.(2,4)二.填空题(共5小题)11.计算:|﹣3|﹣=.12.若关于x的一元二次方程x2﹣2x﹣k=0没有实数根,则k的取值范围是.13.不等式组的整数解的个数为.14.如图,在扇形ABO中,∠AOB=90°,C是弧AB的中点,若OD:OB=1:3,OA=3,则图中阴影部分的面积为.15.如图,在矩形ABCD中,AB=4,BC=6,E是BC的中点,连接AE,P是边AD上一动点,沿过点P的直线将矩形折叠,使点D落在AE上的点D′处,当△APD′是直角三角形时,PD=.三.解答题(共8小题)16.先化简,再求值:(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2,其中x=,y=﹣.17.某校开展了以“不忘初心,牢记使命”为主题的知识竞赛,现从该校八、九年级各随机抽取10名学生的成绩进行整理,描述和分析(成绩用m表示),共分成四个组:A.80≤m<85,B.85≤m<90,C.90≤m<95,D.95≤m≤100.另外给出了部分信息如下:八年级10名学生的成绩:99,80,99,86,99,96,90,100,89,82.九年级10名学生的成绩在C组的数据:94,90,94.八、九年级抽取学生成绩统计表年级八年级九年级平均数9292中位数93b众数c100方差5250.4根据以上信息,解答下列问题:(1)上面图表中的a=,b=,c=.(2)扇形统计图中“D组”所对应的圆心角的度数为.(3)根据以上信息,你认为哪个年级的学生对“不忘初心,牢记使命”的内容掌握较好?说明理由.(一条即可)(4)该校九年级共有840名学生参加了知识竞赛活动,估计九年级参加此次知识竞赛活动成绩为较好(90≤m<95)的学生有多少人?18.如图,从A城市到B城市要翻过一座大山,现需要打通隧道,修建高铁方便两地出行,已知在A城市的北偏东30°方向和B城市的北偏西67°方向有一C地,A,C相距230km,求A,B两个城市之间的距离.(参考数据:sin67°≈,cos67°≈,tan67°≈,≈1.7,结果精确到1km)19.某校为了丰富同学们的课外活动,决定给全校20个班每班配4副乒乓球拍和若干乒乓球,两家体育用品商店对同一款乒乓球拍和乒乓球推出让利活动,甲商店买一副乒乓球拍送10个乒乓球,乙商店所有商品均打九折(按标价的90%)销售,已知2副乒乓球拍和10个乒乓球共110元,3副乒乓球拍和20个乒乓球共170元.请解答下列问题:(1)求每副乒乓球拍和每个乒乓球的单价各为多少元?(2)若全校20个班每班配4副乒乓球拍和40个乒乓球,则在甲商店购买的费用为元,在乙商店的买的费用为元.(3)若全校20个班每班配4副乒乓球拍和m(m>100)个乒乓球,且只在一家商店购买,你认为在哪家商店购买更划算?20.如图,点A是⊙O直径BD延长线上的一点,AC是⊙O的切线,C为切点.AD=CD.(1)求证:AC=BC;(2)若⊙O的半径为1,求△ABC的面积.21.如图,关于x的一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(﹣2,8),B(4,m)两点.(1)求一次函数与反比例函数的解析式.(2)设一次函数y=k1x+b的图象与x轴,y轴的交点分别为M,N,P是x轴上一动点,当以P,M,N三点为顶点的三角形是等腰三角形时,求点P的坐标.22.某校八年级数学兴趣小组在研究等腰直角三角形与图形变换时,作了如下研究:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为腰作等腰直角三角形DAF,使∠DAF=90°,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①CF与BC的位置关系为;②CF,DC,BC之间的数量关系为(直接写出结论);(2)数学思考如图2,当点D在线段CB的延长线上时,(1)中的①、②结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点B在线段BC的延长线上时,将△DAF沿线段DF翻折,使点A与点E重合,连接CE,若已知4CD=BC,AC=2,请求出线段CE的长.23.如图,直线y=kx+2与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求k的值和抛物线的解析式.(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,连接BN.①若△BPN是直角三角形,求点N的坐标.②当∠PBN=45°时,请直接写出m的值.(注:当k1•k2=﹣1时,直线y=k1x+b1与直线y=k2x+b2垂直)参考答案与试题解析一.选择题(共10小题)1.下列各数中比﹣1小的数是()A.﹣B.C.0D.2【分析】根据两个负数比较大小,绝对值大的负数反而小,可得答案.【解答】解:A、﹣<﹣1,故A正确;B、﹣>﹣1,故B错误;C、0>﹣1,故C错误;D、2>﹣1,故D错误;故选:A.2.据统计,截止2019年12月2日,“学习强国”河南学习平台注册用户已达到906.3万人,日活跃用户达到586.6万人,将数据“906.3万”用科学记数法表示为9.063×10n,则n 为()A.7B.4C.8D.6【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将906.3万用科学记数法表示为:906.3万=9063000=9.063×106,故n=6.故选:D.3.如图,由五个完全相同的小正方体组合搭成一个几何体,把正方体A向右平移到正方体P前面,其“三视图”中发生变化的是()A.主视图B.左视图C.俯视图D.主视图和左视图【分析】根据三视图的意义,可得答案.【解答】解:若把正方体A向右平移到正方体P前面,俯视图发生变化,故选:C.4.某部队一军人在一次射击训练时,连续10次的成绩为6次10环,1次9环,3次8环,则该军人这10次射击的平均成绩为()A.9.6环B.9.5环C.9.4环D.9.3环【分析】根据题目中的数据和加权平均数的计算方法,可以求得该军人这10次射击的平均成绩.【解答】解:===9.3(环),即该军人这10次射击的平均成绩为9.3环,故选:D.5.方程=的解为()A.x=﹣5B.x=5C.x=D.x=﹣【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+2=x﹣3,解得:x=﹣5,经检验x=﹣5是分式方程的解,故选:A.6.某小区的两个检查组分别对违规停车和垃圾投放的情况进行抽查,各组随机抽取小区内三个单元中的一个单元进行检查,则两个组恰好抽到同一个单元的概率是()A.B.C.D.【分析】将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.【解答】解:将三个小区分别记为A、B、C,列表如下:A B CA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,∴两个组恰好抽到同一个单元的概率是=,故选:C.7.将一块含有30°角的直角三角板和一把直尺按如图所示方式摆放,若∠1=85°,则∠2的度数是()A.70°B.65°C.55°D.60°【分析】根据平行线的性质和三角形的外角的性质即可得到结论.【解答】解:如图所示,∵AB∥CD,∴∠1=∠BAC=85°,又∵∠BAC是△ABE的外角,∴∠2=∠BAC﹣∠E=85°﹣30°=55°,故选:C.8.如图,在四边形ABCD中,对角线AC,BD相交于点O,添加下列条件后仍不能判定四边形ABCD是平行四边形的是()A.AD∥BC,AO=CO B.AD=BC,AO=OCC.AD=BC,CD=AB D.S△AOD=S△COD=S△BOC【分析】利用平行四边形的判定进行推理,即可求解.【解答】解:若∵AD∥BC,∴∠ADO=∠CBO,且AO=CO,∠AOD=∠BOC,∴△AOD≌△COB(AAS)∴AD=BC,∴四边形ABCD是平行四边形,故A选项不合题意;若AD=BC,CD=AB,∴四边形ABCD是平行四边形,故C选项不合题意;若S△AOD=S△COD=S△BOC,∴AO=CO,BO=DO,∴四边形ABCD是平行四边形,故D选项不合题意;故选:B.9.在平面直角坐标系中,抛物线y=(x﹣5)(x+3)经平移变换后得到抛物线y=(x﹣3)(x+5),则这个变换可以是()A.向左平移2个单位长度B.向右平移2个单位长度C.向左平移8个单位长度D.向右平移8个单位长度【分析】直接利用抛物线解析式得出变化前后对称轴进而得出变化规律.【解答】解:∵抛物线y=(x﹣5)(x+3),∴当y=0时,x=5或﹣3,∴此抛物线与坐标轴一定相交于(5,0)和(﹣3,0),∴其对称轴为:直线x=1,∵抛物线y=(x﹣3)(x+5),∴当y=0时,x=﹣5或3,∴此抛物线与坐标轴一定相交于(﹣5,0)和(3,0),∴其对称轴为:直线x=﹣1,∴抛物线y=(x﹣5)(x+3)经平移变换后得到抛物线y=(x﹣3)(x+5),则这个变换可以是向左平移2个单位长度.故选:A.10.如图,已知点O(0,0),P(1,2),将线段PO绕点P按顺时针方向以每秒90°的速度旋转,则第19秒时,点O的对应点坐标为()A.(0,0)B.(3,1)C.(﹣1,3)D.(2,4)【分析】依据线段PO绕点P按顺时针方向以每秒90°的速度旋转,即可得到19秒后点O旋转到点O'的位置,再根据全等三角形的对应边相等,即可得到点O的对应点O'的坐标.【解答】解:如图所示,∵线段PO绕点P按顺时针方向以每秒90°的速度旋转,每4秒一个循环,19=4×4+3,∴3×90°=270°,∴19秒后点O旋转到点O'的位置,∠OPO'=90°,如图所示,过P作MN⊥y轴于点M,过O'作O'N⊥MN于点N,则∠OMP=∠PNO'=90°,∠POM=∠O'PN,OP=PO',∴△OPM≌△PO'N(AAS),∴O'N=PM=1,PN=OM=2,∴MN=1+2=3,点O'离x轴的距离为2﹣1=1,∴点O'的坐标为(3,1),故选:B.二.填空题(共5小题)11.计算:|﹣3|﹣=﹣1.【分析】直接利用二次根式的性质以及绝对值的性质分别化简得出答案.【解答】解:原式=3﹣4=﹣1.故答案为:﹣1.12.若关于x的一元二次方程x2﹣2x﹣k=0没有实数根,则k的取值范围是k<﹣1.【分析】根据关于x的一元二次方程x2﹣2x﹣k=0没有实数根,得出△=4+4k<0,再进行计算即可.【解答】解:∵一元二次方程x2﹣2x﹣k=0没有实数根,∴△=(﹣2)2﹣4×1×(﹣k)=4+4k<0,∴k的取值范围是k<﹣1;故答案为:k<﹣1.13.不等式组的整数解的个数为6.【分析】根据解不等式组的方法可以求得原不等式组的解集,从而可以求得满足不等式组的整数解的个数.【解答】解:解不等式x﹣4≤0,得x≤4,解不等式1<,得x>﹣2,∴﹣2<x≤4,∴整数x有﹣1,0,1,2,3,4共6个.故答案为6.14.如图,在扇形ABO中,∠AOB=90°,C是弧AB的中点,若OD:OB=1:3,OA=3,则图中阴影部分的面积为π﹣.【分析】连接OC,过C作CE⊥OB于E,根据已知条件得到∠AOC=∠BOC=45°,推出△OCE是等腰直角三角形,求得CE=×3=,OD=1,根据三角形和扇形的面积公式即可得到结论.【解答】解:连接OC,过C作CE⊥OB于E,∵∠AOB=90°,C是弧AB的中点,∴∠AOC=∠BOC=45°,∴△OCE是等腰直角三角形,∵OD:OB=1:3,OA=3,∴CE=×3=,OD=1,∴图中阴影部分的面积=S扇形COB﹣S△COD=﹣=π﹣,故答案为:π﹣.15.如图,在矩形ABCD中,AB=4,BC=6,E是BC的中点,连接AE,P是边AD上一动点,沿过点P的直线将矩形折叠,使点D落在AE上的点D′处,当△APD′是直角三角形时,PD=或.【分析】根据矩形的性质得到AD=BC=6,∠BAD=∠D=∠B=90°,根据勾股定理得到AE===5,设PD′=PD=x,则AP=6﹣x,当△APD′是直角三角形时,①当∠AD′P=90°时,②当∠APD′=90°时,根据相似三角形的性质列出方程,解之即可得到结论.【解答】解:∵在矩形ABCD中,AB=4,BC=6,∴AD=BC=6,∠BAD=∠D=∠B=90°,∵E是BC的中点,∴BE=CE=3,∴AE===5,∵沿过点P的直线将矩形折叠,使点D落在AE上的点D′处,∴PD′=PD,设PD′=PD=x,则AP=6﹣x,当△APD′是直角三角形时,①当∠AD′P=90°时,∴∠AD′P=∠B=90°,∵AD∥BC,∴∠P AD′=∠AEB,∴△ABE∽△PD′A,∴=,∴=,∴x=,∴PD=;②当∠APD′=90°时,∴∠APD′=∠B=90°,∵∠P AE=∠AEB,∴△APD′∽△EBA,∴,∴=,∴x=,∴PD=,综上所述,当△APD′是直角三角形时,PD=或,故答案为:或.三.解答题(共8小题)16.先化简,再求值:(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2,其中x=,y=﹣.【分析】原式利用完全平方公式,以及平方差公式,去括号合并得到最简结果,把x与y 的值代入计算即可求出值.【解答】解:原式=x2﹣4xy+4y2﹣x2+y2﹣2y2=3y2﹣4xy,当x=,y=﹣时,原式=3×(﹣)2﹣4××(﹣)=3×3+4××=9+4=13.17.某校开展了以“不忘初心,牢记使命”为主题的知识竞赛,现从该校八、九年级各随机抽取10名学生的成绩进行整理,描述和分析(成绩用m表示),共分成四个组:A.80≤m<85,B.85≤m<90,C.90≤m<95,D.95≤m≤100.另外给出了部分信息如下:八年级10名学生的成绩:99,80,99,86,99,96,90,100,89,82.九年级10名学生的成绩在C组的数据:94,90,94.八、九年级抽取学生成绩统计表年级八年级九年级平均数9292中位数93b众数c100方差5250.4根据以上信息,解答下列问题:(1)上面图表中的a=40,b=94,c=99.(2)扇形统计图中“D组”所对应的圆心角的度数为144°.(3)根据以上信息,你认为哪个年级的学生对“不忘初心,牢记使命”的内容掌握较好?说明理由.(一条即可)(4)该校九年级共有840名学生参加了知识竞赛活动,估计九年级参加此次知识竞赛活动成绩为较好(90≤m<95)的学生有多少人?【分析】(1)根据题意和统计图中的数据、表格中的数据可以分别得到a、b、c的值;(2)根据扇形统计图中的数据可以得到扇形统计图中“D组”所对应的圆心角的度数;(3)根据表格中的数据,可以解答本题,注意理由写出一条即可;(4)根据统计图中的数据可以计算出九年级参加此次知识竞赛活动成绩为较好(90≤m <95)的学生有多少人.【解答】解:(1)∵九年级10名学生的成绩在C组的数据:94,90,94,∴C所占的百分比为:3÷10×100%=30%,∴a%=1﹣20%﹣10%﹣30%=40%,即a的值为40,b=94,c=99,故答案为:40,94,99;(2)扇形统计图中“D组”所对应的圆心角的度数为360°×40%=144°,故答案为:144°;(3)九年级的学生对“不忘初心,牢记使命”的内容掌握较好,理由:九年级的中位数大于八年级的中位数,说明九年级的成绩好于八年级;(4)840×30%=252(人),答:九年级参加此次知识竞赛活动成绩为较好(90≤m<95)的学生有252人.18.如图,从A城市到B城市要翻过一座大山,现需要打通隧道,修建高铁方便两地出行,已知在A城市的北偏东30°方向和B城市的北偏西67°方向有一C地,A,C相距230km,求A,B两个城市之间的距离.(参考数据:sin67°≈,cos67°≈,tan67°≈,≈1.7,结果精确到1km)【分析】过点C作CD⊥AB于点D,利用锐角三角函数的定义求出AD及BD的长,进而可得出结论.【解答】解:过点C作CD⊥AB于点D,∵C在A城市的北偏东30°方向,距离A地230km,∴∠ACD=30°,∴AD==115(km),CD=115(km),∵B城市的北偏西67°方向有一C地,∴∠BCD=67°,∴BD=CD•tan67°≈115×≈469(km).∴AB=AD+BD=115+469=584(km).答:A,B两个城市之间的距离为584km.19.某校为了丰富同学们的课外活动,决定给全校20个班每班配4副乒乓球拍和若干乒乓球,两家体育用品商店对同一款乒乓球拍和乒乓球推出让利活动,甲商店买一副乒乓球拍送10个乒乓球,乙商店所有商品均打九折(按标价的90%)销售,已知2副乒乓球拍和10个乒乓球共110元,3副乒乓球拍和20个乒乓球共170元.请解答下列问题:(1)求每副乒乓球拍和每个乒乓球的单价各为多少元?(2)若全校20个班每班配4副乒乓球拍和40个乒乓球,则在甲商店购买的费用为4000元,在乙商店的买的费用为4320元.(3)若全校20个班每班配4副乒乓球拍和m(m>100)个乒乓球,且只在一家商店购买,你认为在哪家商店购买更划算?【分析】(1)设每副乒乓球拍的单价为x元,每个乒乓球的单价为y元,根据“2副乒乓球拍和10个乒乓球共110元,3副乒乓球拍和20个乒乓球共170元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据两商店的优惠政策结合总价=单价×数量,即可分别求出在甲、乙两商店购买所需费用;(3)根据两商店的优惠政策结合总价=单价×数量,即可用含m的代数式表示出在甲、乙两商店购买所需费用,分20m+3200<18m+3600、20m+3200=18m+3600及20m+3200>18m+3600,找出m的值或取值范围,此题得解.【解答】解:(1)设每副乒乓球拍的单价为x元,每个乒乓球的单价为y元,根据题意得:,解得:.答:每副乒乓球拍的单价为50元,每个乒乓球的单价为1元.(2)在甲商店购买的费用为20×4×50=4000(元),在乙商店的买的费用为20×90%×(4×50+1×40)=4320(元).故答案为:4000;4320.(3)在甲商店购买的费用为20×[4×50+1×(m﹣40)]=20m+3200(元),在乙商店的买的费用为20×90%×(4×50+1×m)=18m+3600(元).当20m+3200<18m+3600时,m<200;当20m+3200=18m+3600时,m=200;当20m+3200>18m+3600时,m>200.∴当100<m<200时,在甲商店购买划算;当m=200时,在甲、乙两商店购买总钱数相等;当m>200时,在乙商店购买划算.20.如图,点A是⊙O直径BD延长线上的一点,AC是⊙O的切线,C为切点.AD=CD.(1)求证:AC=BC;(2)若⊙O的半径为1,求△ABC的面积.【分析】(1)连接OC,证得∠1=∠2,可得∠A=∠B,则结论得证;(2)易证∠A=∠B=∠1=∠2=30°,即可求得AC的长,作CE⊥AB于点E,求得CE的长,利用三角形面积公式求解.【解答】(1)证明:连接OC,∵AC为切线,C为切点,∴∠ACO=90°,即∠DCO+∠2=90°,又∵BD是直径,∴∠BCD=90°,即∠DCO+∠1=90°,∴∠1=∠2,∵AD=CD,OB=OC,∴∠A=∠2∠B=∠1,∴∠A=∠B,∴AC=BC;(2)解:由题意可得△DCO是等腰三角形,∵∠CDO=∠A+∠2,∠DOC=∠B+∠1,∴∠CDO=∠DOC,即△DCO是等边三角形,∴∠A=∠B=∠1=∠2=30°,CD=AD=1,∴BC===,在Rt△BCD中,作CE⊥AB于点E,在Rt△BEC中,∠B=30°,∴CE=,BE=,∴S△ABC==.21.如图,关于x的一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(﹣2,8),B(4,m)两点.(1)求一次函数与反比例函数的解析式.(2)设一次函数y=k1x+b的图象与x轴,y轴的交点分别为M,N,P是x轴上一动点,当以P,M,N三点为顶点的三角形是等腰三角形时,求点P的坐标.【分析】(1)先把A点坐标代入y=可求出k2的值,从而确定反比例函数解析式;再把B(4,m)代入反比例函数解析式求出m的值,可确定点B的坐标,然后利用待定系数法求一次函数解析式;(2)先根据一次函数的解析式确定M和N的坐标,根据以P,M,N三点为顶点的三角形是等腰三角形分三种情况讨论:①NP=NM;②MP=MN;③PN=PM;前两种直接根据线段的长得出点P的坐标,第三种根据两点的距离列方程可得结论.【解答】解:(1)把A(﹣2,8),B(4,m)代入反比例函数y=得:k2=﹣2×8=4m,∴k2=﹣16,m=﹣4,所以反比例函数解析式为y=﹣,且B(4,﹣4),把A(﹣2,8),B(4,﹣4)代入y=k1x+b得:,解得,所以一次函数解析式为y=﹣2x+4;(2)y=﹣2x+4,当x=0时,y=4,当y=0时,﹣2x+4=0,x=2,∴N(0,4),ON=4,M(﹣2,0),OM=2,①当NP=NM时,如图1,∵ON⊥PM,∴OP=OM=2,∴P(﹣2,0);②当MP=MN时,如图2,由勾股定理得:MN==2,∴P(2+2,0)或(2﹣2,0);③当PN=PM时,如图3,∵P是x轴上一动点,∴设P(x,0),∵PM=PN,∴x2+42=(2﹣x)2,∴x=3,∴P(﹣3,0),综上,点P的坐标是(﹣2,0)或(2+2,0)或(2﹣2,0)或(﹣3,0).22.某校八年级数学兴趣小组在研究等腰直角三角形与图形变换时,作了如下研究:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为腰作等腰直角三角形DAF,使∠DAF=90°,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①CF与BC的位置关系为CF⊥BC;②CF,DC,BC之间的数量关系为BC=DC+CF(直接写出结论);(2)数学思考如图2,当点D在线段CB的延长线上时,(1)中的①、②结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点B在线段BC的延长线上时,将△DAF沿线段DF翻折,使点A与点E重合,连接CE,若已知4CD=BC,AC=2,请求出线段CE的长.【分析】(1)①由∠BAC=∠DAF=90°,推出△DAB≌△F AC,根据全等三角形的性质即可得到结论;②由正方形ADEF的性质可推出△DAB≌△F AC,根据全等三角形的性质得到CF=BD,∠ACF=∠ABD,根据余角的性质即可得到结论;(2)由∠BAC=∠DAF=90°,推出△DAB≌△F AC,根据全等三角形的性质以及等腰直角三角形的角的性质可得到结论.(3)过A作AH⊥BC于H,过E作EM⊥BD于M如图3所示,想办法证明△ADH≌△DEM(AAS),推出EM=DH=3,DM=AH=2,推出CM=EM=3,即可解决问题;【解答】解:(1)①等腰直角△ADF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△F AC中,,∴△DAB≌△F AC(SAS),∴∠B=∠ACF,∴∠ACB+∠ACF=90°,即BC⊥CF;②△DAB≌△F AC,∴CF=BD,∵BC=BD+CD,∴BC=CF+CD;故答案为:垂直,BC=CF+CD;(2)CF⊥BC成立;BC=CD+CF不成立,结论:CD=CF+BC.理由如下:∵等腰直角△ADF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△F AC中,,∴△DAB≌△F AC(SAS),∴∠ABD=∠ACF,∵∠BAC=90°,AB=AC,∴∠ACB=∠ABC=45°,∴∠ABD=180°﹣45°=135°,∴∠BCF=∠ACF﹣∠ACB=135°﹣45°=90°,∴CF⊥BC.∵CD=DB+BC,DB=CF,∴CD=CF+BC.(3)解:过A作AH⊥BC于H,过E作EM⊥BD于M如图3所示:∵∠BAC=90°,AB=AC=2,∴BC=AB=4,AH=BH=CH=BC=2,∴CD=BC=1,∴DH=CH+CD=3,∵四边形ADEF是正方形,∴AD=DE,∠ADE=90°,∵BC⊥CF,EM⊥BD,EN⊥CF,∴四边形CMEN是矩形,∴NE=CM,EM=CN,∵∠AHD=∠ADC=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠DEM=90°,∴∠ADH=∠DEM,在△ADH与△DEM中,,∴△ADH≌△DEM(AAS),∴EM=DH=3,DM=AH=2,∴CM=EM=3,∴CE==3.23.如图,直线y=kx+2与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求k的值和抛物线的解析式.(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,连接BN.①若△BPN是直角三角形,求点N的坐标.②当∠PBN=45°时,请直接写出m的值.(注:当k1•k2=﹣1时,直线y=k1x+b1与直线y=k2x+b2垂直)【分析】(1)把A点坐标代入直线解析式可求得k,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)①分∠NBP=90°和∠BNP=90°两种情况讨论,即可求解;②有两解,N点在AB的上方或下方,作辅助线,构建等腰直角三角形,由∠PBN=45°得∠GBP=45°,设GH=BH=t,则由△AHG∽△AOB,得AH=t,GA=t,根据AB=AH+BH=t+t=,可得BG和BN的解析式,分别与抛物线联立方程组,可得结论.【解答】解:(1)把A(3,0)代入y=kx+2中得,0=3k+2,∴k=﹣,∴直线AB的解析式为:y=﹣x+2,∴B(0,2),把A(3,0)和B(0,2)代入抛物线y=﹣x2+bx+c中,则,解得:,二次函数的表达式为:y=﹣x2+x+2;(2)①当∠BNP=90°时,且∠AMN=90°,∴∠BNP=∠AMN,∴BN∥AO,∴点N的纵坐标为2,∴2=﹣x2+x+2,∴x=0(舍去),x=,∴点N坐标(,2);当∠NBP=90°时,直线BN的解析式为:y=x+2,∴x+2=﹣x2+x+2,∴x=0(舍去),x=,∴点N(,)②有两解,N点在AB的上方或下方,如图2,过点B作BN的垂线交x轴于点G,过点G作BA的垂线,垂足为点H.由∠PBN=45°得∠GBP=45°,∴GH=BH,设GH=BH=t,则由△AHG∽△AOB,∴,得AH=t,GA=t,由AB=AH+BH=t+t=,解得t=,∴AG=×=,从而OG=OA﹣AG=3﹣=,即G(,0),由B(0,2),G(,0)得:直线BG:y=﹣5x+2,直线BN:y=0.2x+2.则,解得:x1=0(舍),x2=,即m=;则,解得:x1=0(舍),x2=;即m=;故m=与m=为所求.。

2024年河南省平顶山中考数学一模模拟试题(解析版)

2024年河南省平顶山中考数学一模模拟试题(解析版)

2024年平顶山市中招学科第-次调研试卷九年级数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上.答在试卷上的答案无效.一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1. 的相反数是( )A. B. C. D. 【答案】D【解析】【分析】本题考查相反数的定义,根据相反数定义直接求解即可得到答案,熟记相反数定义是解决问题的关键.【详解】解:的相反数是,故选:D .2. 已知某几何体的俯视图如图所示,该几何体可能是( )A. B. C. D.【答案】A【解析】【分析】本题考查由三视图判断几何体.由于俯视图是从物体的上面看得到的视图,所以先得出四个选项中各几何体的俯视图,再与题目图形进行比较即可.【详解】解:图示是一个圆且这个圆的圆心.A 、圆柱的俯视图是一个圆,没有圆心,故选项符合题意;B 、三棱柱的俯视图是三角形,故选项不符合题意;C 、圆锥的俯视图是一个圆,有圆心,故选项不符合题意;D 、长方体的俯视图是一个长方形,故选项不符合题意;故选:A.20241202412024-20242024-20242024-3. 龙年伊始,平顶山市迎来了新年文旅“满堂红”.今年春节期间,平顶山市共接待游客万人次,实现旅游收入亿元.数据亿用科学记数法表示为( )A. B. C. D. 【答案】D【解析】【分析】本题考查了科学记数法.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值大于等于时与小数点移动的位数相同.【详解】解:亿,故选:D .4. 如图,直线,等边的顶点B ,C 分别在直线m ,n 上,若,则∠2的度数为( )A. B. C. D. 【答案】B【解析】【分析】本题考查了平行线的性质,等边三角形的性质.由平行线的性质求得的度数,根据等边三角形的性质求得,再利用平角的性质求解即可.【详解】解:∵直线,∴,∵是等边三角形,∴,∴,599.6636.436.483.6410⨯836.410⨯90.36410⨯93.6410⨯10n a ⨯110a ≤<n n a n 1036.48936.410 3.6410=⨯=⨯m n ∥ABC 170=︒∠45︒50︒55︒60︒3∠60ABC ∠=︒m n ∥3170∠=∠=︒ABC 60ABC ∠=︒2180706050∠=︒-︒-︒=︒故选:B .5. 下列计算中,正确的是( )A.B. C. D. 【答案】D【解析】【分析】本题考查了同底数幂相乘、积的乘方、幂的乘方,合并同类项,根据相关运算法则进行逐项分析,即可作答.【详解】解:A 、不是同类项,不能合并,故该选项是错误的;B 、,故该选项是错误的;C 、,故该选项是错误的;D 、,故该选项是正确的故选:D6. 如图所示,是的内接三角形.若则的度数等于( )A. 70°B. 65°C. 60°D. 55°【答案】A【解析】【分析】本题考查了圆周角定义,三角形的内角和性质,同弧所对的圆周角是圆心角的一半,据此即可作答.【详解】解:∵,∴,,∴,故选:A.247a a a +=()328=a a ()55210a a =235a a a = 24a a ,()326a a =()55232a a =235a a a = ABC O 20OAC ∠=︒,ABC ∠20OAC OA OC ∠=︒=,20180220140OAC ACO AOC ∠=∠=︒∠=︒-⨯︒=︒ AC AC = 1702ABC AOC ∠=∠=︒7. -元二次方程根的情况是( )A. 没有实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 只有一个实数根【答案】C【解析】【分析】本题主要考查根的判别式.先整理成一般式,再计算判别式即可判断一元二次方程的跟的情况.【详解】解:整理得,∴,∴有两个不相等的实数根.故选:C .8. 若反比例函数经过点.则一次函数的图像一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】本题考查反比例函数图像上点的坐标特征.先确定反比例函数解析式,从而可得一次函数解析式,进而求解.【详解】解:∵反比例函数的图像经过点,∴,解得:,∴一次函数的解析式为,∴该直线经过第二、三、四象限,不经过第一象限,故选:A .9. 如图,电路图上有4个开关A 、B 、C 、D 和1个小灯泡,同时闭合开关A 、B 或同时闭合开关C 、D 都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是( )()23x x -=24b ac ∆=-()23x x -=2230x x --=()()2242413412160b ac ∆=-=--⨯⨯-=+=>()0k y k x =≠()1,2-y kx k =+()0k y k x =≠()1,2-21k =-2k =-22y x =--A. 只闭合1个开关B. 只闭合2个开关C. 只闭合3个开关D. 闭合4个开关【答案】B【解析】【分析】本题考查了事件的分类,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.根据必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,对每一项进行分析即可.【详解】解:A 、只闭合1个开关,小灯泡不会发光,属于不可能事件,不符合题意;B 、只闭合2个开关,小灯泡可能发光也可能不发光,是随机事件,符合题意;C 、只闭合3个开关,小灯泡一定会发光,是必然事件,不符合题意;D 、闭合4个开关,小灯泡一定会发光,是必然事件,不符合题意;故选:B .10. 如图1,在中,.动点P 从点A 出发沿折线A →B →C 匀速运动至点C 后停止.设点P 运动路程为x ,线段的长度为y ,图2是y 随x 变化的关系图像,其中M 为曲线的最低点,则的面积为( )A. B. C. D. 【答案】C【解析】【分析】本题考查了动点问题的函数图象,勾股定理,垂线段最短.作,当动点P 运动到点时,线段的长度最短,此时,当动点P 运动到点时,运动结束,此时的ABC 60ABC ∠=︒AP DE ABC AD BC ⊥D AP AB BD +=C AC =根据直角三角形的性质结合勾股定理求解即可.【详解】解:作,垂足为,当动点P 运动到点时,线段的长度最短,此时点P 运动的路程为,即,当动点P 运动到点时,运动结束,线段的长度就是的长度,此时,∵,∴,∴,∴,∴,∴,在中,,∴,∴,∴的面积为故选:C .二、填空题(每小题3分,共15分)11. 已知点P 在数轴上,且到原点的距离大于2,写出一个点P 表示的负数:______.【答案】【解析】【分析】本题考查了数轴上两点之间的距离,在数轴上表示有理数,根据“点P 在数轴上,且到原点的距离大于2,还是负数”这三个条件,写出一个即可作答.答案不唯一AD BC ⊥D D AP AB BD +=C AP AC AC =60ABC ∠=︒30BAD ∠=︒2AB BD =3AB BD BD +==BD =AB =2AD ==Rt △ABD AC =CD ==BC BD CD =+=ABC 11222BC AD ⨯=⨯=3-【详解】解:依题意,当点P 在数轴的负半轴上,即点P 表示为满足“到原点的距离大于2,还是负数”故答案为:12.分式方程的解是______.【答案】【解析】【分析】本题考查解分式方程.方程两边乘以得出,求出方程的解,再进行检验即可【详解】解:方程两边乘以得,解这个方程,得,检验:当时,,所以是原分式方程的解.即原分式方程的解为.故答案为:.13. 某校为了解学生对篮球、足球、乒乓球、羽毛球四类运动的参与情况,随机调查本校部分学生,让他们从中选择参与最多的一类运动,以选择各项目的人数制作了条形统计图.若从该校学生中任意抽取1人,则该学生恰好选择篮球这项运动的概率约为______.【答案】##0.375【解析】【分析】本题考查了概率公式.用恰好选择篮球这项运动的人数除以调查的总人数即可求解.【详解】解:∵调查的总人数为(人),其中选择篮球这项运动的人数为人,∴从该校学生中任意抽取1人,则该学生恰好选择篮球这项运动的概率约为,故答案为:.3-,3-2111x x x-=+2x =x 211x x -=+x 211x x -=+2x =2x =0x ≠2x =2x =2x =383020181280+++=30303808=3814. 如图,直线与y 轴交于点A ,与反比例函数图象交于点C ,过点C 作轴于点B ,,则k 的值为______.【答案】【解析】【分析】本题考查了反比例函数与一次函数图象的交点问题.先求出点A 的坐标,然后求出的长,即知点C 的横坐标,再将点C 的横坐标代入反比例函数解析式,可求得点C 的坐标,最后将点C 的坐标代入一次函数解析式,即得答案.【详解】解:对于函数中,令,则,,,,,即点C 的横坐标为,把代入,得,,把代入,得,解得.故答案为:.15. 在矩形中,,,若是射线上一个动点,连接,点关于直线的对称点为.连接,,当,,三点共线时,的长为______.3y kx =+()40y x x=-<CB x ⊥3AO BO =1-BO 3y kx =+0x =3y =()03A ∴,3OA ∴=3AO BO =Q 1BO ∴=1-=1x -4y x=-4y =()14C ∴-,()14C -,3y kx =+43k =-+1k =-1-ABCD 3AB =5BC =P AD BP A BP M MP MC P M C AP【答案】1或9【解析】【分析】本题考查了矩形的性质,折叠的性质,勾股定理,分情况讨论,当点在线段上时,当点在的延长线时,根据折叠的性质和勾股定理即可得到结论.【详解】解:当点线段上时,如图,与关于直线对称,,,,,,,,设,,,,解得,;当点在的延长线时,如图,与关于直线对称,P AD P AD P AD ABP MBP BP 90BMP A ∴∠=∠=︒3BM AB ==AP PM =90BMC ∴∠=︒222BM CM BC += 22235CM ∴+=4CM ∴=AP PM x ==90D ∠=︒ 222DP CD CP ∴+=222(5)3(4)x x ∴-+=+1x =1AP ∴=P AD ABP MBP BP,,,,,,,,,,,,,综上所述,的长为1或9,故答案为:1或9.三、解答题(本大题共8小题,满分75分)16. (1)计算:;(2)解不等式组:【答案】(1)2;(2).【解析】【分析】此题考查了一元一次不等式组的求解,负整指数幂,乘方,绝对值以及算术平方根的运算,解题的关键是熟练掌握相关运算法则.(1)根据乘方,负整数指数幂,绝对值以及算术平方根的运算求解即可;(2)求得每个不等式的解集,取公共部分即可.【详解】解:(1);(2),90BMP A ∴∠=∠=︒3BM AB ==AP PM =APB MPB ∠=∠AP BC ∥APB CBP ∴∠=∠CPB CBP ∴∠=∠5CP BC ∴==90BMC ∠=︒ 222BM CM BC ∴+=22235CM ∴+=4CM ∴=549AP PM ∴==+=AP 2132-122113x x ->⎧⎪⎨+≥⎪⎩①②3x>21332-÷--19322=÷-⨯31=-2=122113x x ->⎧⎪⎨+≥⎪⎩①②解不等式①可得:,解不等式②可得:,则不等式组的解集为:.17. 为了解A ,B 两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A ,B 两款智能玩具飞机各10架,记录下它们运行的最长时间(单位:min ),并对数据进行整理描述和分析(运行最长时间用x 表示,共分为三组:合格,中等,优等),下面给出了部分信息.a .10架A 款智能玩具飞机一次充满电后运行的最长时间(单位min )分别是:60,64,67,69,71,71,72,72,72,82.b .10架B 款智能玩具飞机一次充满电后运行的最长时间(单位:min )在中等组的数据分别是:70,71,72,72,73.C .两款智能玩具飞机运行最长时间统计表d .B 款智能玩具飞机运行最长时间扇形统计图类别A B 平均数7070中位数71b 众数a 67方差30.431.6根据以上信息,解答下列问题:(1)上述图表中,______,______,______.(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由.(写出一条理由即可)(3)若某玩具仓库有A 款智能玩具飞机200架,B 款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架?【答案】(1),,;3x >1x ≥3x >6070x ≤<7080x ≤<80x ≥=a b =m =7270.510(2)A 款智能玩具飞机运行性能更好;因为A 款智能玩具飞机运行时间的方差比B 款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)两款智能玩具飞机运行性能在中等及以上的大约共有架.【解析】【分析】(1)由A 款数据可得A 款的众数,即可求出,由B 款扇形数据可求得合格数及优秀数,从而求得中位数及优秀等次的百分比;(2)根据方差越小越稳定即可判断;(3)用样本数据估计总体,分别求出两款飞机中等及以上的架次相加即可.【小问1详解】解:由题意可知架A 款智能玩具飞机充满电后运行最长时间中,只有出现了三次,且次数最多,则该组数据的众数为,即;由B 款智能玩具飞机运行时间的扇形图可知,合格的百分比为,则B 款智能玩具飞机运行时间合格的架次为:(架)则B 款智能玩具飞机运行时间优等的架次为:(架)则B 款智能玩具飞机的运行时间第五、第六个数据分别为:,故B 款智能玩具飞机运行时间的中位数为:,B 款智能玩具飞机运行时间优等的百分比为:,即,故答案为:,,;【小问2详解】解:A 款智能玩具飞机运行性能更好;因为A 款智能玩具飞机运行时间的方差比B 款智能玩具飞机运行时间的方差小,运行时间比较稳定;【小问3详解】解:架A 款智能玩具飞机运行性能在中等及以上的架次为:(架)架B 款智能玩具飞机运行性能在中等及以上的架次为:(架)则两款智能玩具飞机运行性能在中等及以上的共有:架,192a 10727272a =40%1040%4⨯=10451--=70,71707170.52+=1100%10%10⨯=10m =7270.510200620012010⨯=12061207210⨯=12072192+=答:两款智能玩具飞机运行性能在中等及以上的大约共有架.【点睛】本题考查了扇形统计图,中位数、众数、百分比,用方差做决策,用样本估计总体;解题的关键是熟练掌握相关知识综合求解.18. 如图,已知中,,,.(1)作的垂直平分线,分别交、于点、;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接,求的周长.【答案】(1)见解析(2)13【解析】【分析】(1)利用基本作图,作BC 的垂直平分线分别交、于点、即可;(2)由作图可得CD =BD ,继而可得AD =CD ,再结合三角形周长的求解方法进行求解即可.【小问1详解】如图所示,点D 、H 即为所求【小问2详解】∵DH 垂直平分BC ,∴DC =DB ,∴∠B =∠DCB ,∵∠B +∠A =90°,∠DCB +∠DCA =∠ACB =90°,∴∠A =∠DCA ,∴DC = DA,192Rt ABC 90ACB ∠=︒8AB =5BC =BC AB BC D H CD BCD △AB BC D H∴△BCD 的周长=DC +DB +BC =DA +DB +BC =AB +BC =8+5=13.【点睛】本题考查了作垂直平分线,垂直平分线的性质,等腰三角形的判定与性质等,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.19. 如图,为直径,点是的中点,过点作的切线,与的延长线交于点,连接.(1)求证:(2)连接,当时:①连接,判断四边形的形状,并说明理由.②若,图中阴影部分的面积为(用含有的式子表示).【答案】(1)见解析(2)①菱形,理由见解析;②【解析】【分析】(1)连接,证明,即可得到结论.(2)①根据(1)的结论和已知条件先证明四边形是平行四边形,根据平行线的性质以及点是的中点,可得从而证明邻边相等,即可得出结论;②连接,如图所示,设交于点,证明得,从而可求出,解直角三角形得出,根据,从而可得,求出扇形的面积即可得到阴影部分的面积.小问1详解】证明:如图所示,连接,的【AB O C AD C O CE BD E BC 90CEB ∠=︒CD CD AB ∥OC OBDC 3BE =______π23πOC OC BE ∥OBDC C AD DCB DBC ∠=∠OD ,OD BC F AC DCBC ==60AOC ∠=︒30CBE ∠=︒2OB =CD AB ∥COD BCD S S =△△COD OC∵点是的中点,∴,∴,∵,∴,∴,∴,∵是的切线.∴,∴,即:;【小问2详解】①如图所示,由(1)可得∵∴,四边形是平行四边形,又∵∴∴,∴四边形是菱形,C AD AC DC=ABC EBC ∠=∠OB OC =ABC OCB ∠=∠EBC OCB ∠=∠OC BE ∥CE O OC CE ⊥BE CE ⊥90CEB ∠=︒OC BE∥CD AB∥DCB ABC ∠=∠OBDC ABC EBC∠=∠DCB EBC∠=∠DC DB =OBDC②连接,如图所示,设交于点∵,∴,∵,,∴,∴,∴,∵,,∴∴∵,∴,∴.∴.【点睛】本题考查了圆周角定理,切线的判定,弧弦圆心角的关系,平行线的判定与性质,等腰三角形的性质,等边三角形的判定与性质,解直角三角形,扇形的面积等知识,熟练掌握切线的判断定理以及扇形面积的求法是解题的关键.20. 近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?OD ,OD BC FCD BD = CDBD = CD BD = AC DC= AC DCBC ==60AOC COD BOD ∠=∠=∠=︒1302ABC CBE AOC ∠=∠=∠=︒cos BE CBE BC ∠=3BE =3cos30BC ==︒BF =2cos30OF OB ===︒CD AB ∥COD BCD S S =△△COD S S =阴影扇形260223603COD S S ππ⨯===阴影扇形(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?【答案】(1)甲、乙两种头盔的单价各是65元, 54元.(2)购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.【解析】【分析】(1)设购买乙种头盔的单价为x 元,则甲种头盔的单价为元,根据题意,得,求解;(2)设购m 只甲种头盔,此次购买头盔的总费用最小,设总费用为w ,则,解得,故最小整数解为,,根据一次函数增减性,求得最小值=.【小问1详解】解:设购买乙种头盔的单价为x 元,则甲种头盔的单价为元,根据题意,得解得,,,答:甲、乙两种头盔的单价各是65元, 54元.小问2详解】解:设购m 只甲种头盔,此次购买头盔的总费用最小,设总费用为w ,则,解得,故最小整数解为,,∵,则w 随m 的增大而增大,∴时,w 取最小值,最小值.答:购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.【点睛】本题考查一元一次方程的应用,一次函数的性质,一次函数的应用、一元一次不等式的应用;根据题意列出函数解析式,确定自变量取值范围是解题的关键.21. 下图是某篮球架的侧而示意图,四边形为平行四边形.其中为长度固定的支【(11)x +20(11)302920x x ++=1(40)2m m ³-1313m ≥14m =41920w m =+41419201976´+=(11)x +20(11)302920x x ++=54x =1165x +=1(40)2m m ³-1313m ≥14m =0.865(546)(40)41920w m m m =´+--=+40>14m =41419201976=⨯+=ABCD BE CD GF ,,架,支架在A ,D ,G 处与立柱连接(垂直于,垂足为H ),在B ,C 处与篮板连接,旋转点F 处的螺栓可以调节长度,使支架绕点A 旋转,进而调节篮板的高度,已知.(1)如图1,当时,测得点C 离地面的高度为,求的长度;(2)如图2,调节伸缩臂,将由调节为时,请判断点C 离地面的高度是升高了还是降低了?并计算升(或降)的距离.(参考数据,)【答案】(1);(2)点离地面的高度升高了,升高了.【解析】【分析】本题考查是平行四边形性质,矩形的判定与性质,解直角三角形的实际应用,理解题意,作出合适的辅助线是解本题的关键.(1)如图,延长与底面交于点,过作于,则四边形为矩形,可得,根据四边形是平行四边形,可得,当时,则,此时,,即可求得;(2)当时,则,解直角三角形得,从而可得答案.【小问1详解】解:如图,延长与底面交于点,过作于,则,四边形为矩形,∴,的AH AH MN EF BE 209cm DH =60GAE ∠=︒289cm CD EF GAE ∠60︒54︒sin540.8cos540.6︒≈︒≈,tan 54 1.4︒≈160cm CD =C 16cm BC K D D Q C K ^Q DHKQ 208QK DH ==ABCD AB CD ∥60GAE ∠=︒60QCD QBA GAE ∠=∠=∠=︒30CDQ ∠=︒28920980CQ =-=2160CD CQ ==54GAE ∠=︒54QCD QBA GAE ∠=∠=∠=︒cos541600.696CQ CD =︒≈⨯= BC K D DQ C K ^Q 90DHK DQK HKQ ∠=∠=∠=︒DHKQ 209QK DH ==∵四边形是平行四边形,∴,当时,则,此时,,∴;【小问2详解】解:当时,则,∴,而,,∴点离地面的高度升高了,升高了.22. 一次足球训练中,小明从球门正前方的A 处射门,球射向球门的路线呈抛物线,其函数表达式为.当球飞行的水平距离为时,球达到最高点,此时球离地面.已知球门高为,现以O 为原点建立如图所示平面直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素).(2)经过教练指导,小明改变了射球的力度和角度,在同一地点再次射门,球射向球门的路线呈抛物线,其表达式为.结果足球“画出一-条美妙的曲线”在点O 正上方处精彩落入球网内.求两次射门,足球经过的路线最高点之间的距离.ABCD AB CD ∥60GAE ∠=︒60QCD QBA GAE ∠=∠=∠=︒30CDQ ∠=︒28920980CQ cm =-=()2160cm CD CQ ==54GAE ∠=︒54QCD QBA GAE ∠=∠=∠=︒·cos541600.696CQ CD cm =︒≈⨯=96>80968016cm -=C 16cm 8m ()2y a x h k =-+6m 3m OB 2.44m 2116y x bx c =-++2m(注:题中的x 表示球到球门的水平距离,y 表示球飞行的高度)【答案】(1),球不能射进球门 (2)【解析】【分析】本题考查二次函数的应用,理解题意,求出解析式是解题的关键.(1)先确定抛物线的顶点坐标,利用待定系数法求出解析式即可;(2)求出第二次射门的解析式,求出顶点坐标即可求出答案.【小问1详解】由题意,可知抛物线的顶点坐标为,∴把代入,得,解得,∴抛物线的函数表达式为,当时,,∴球不能射进球门;【小问2详解】把,代入,得,∴,∴,∴顶点坐标为,()212312y x =--+3m 4()23,()223y a x =-+()80A ,()223y a x =-+3630a +=112a =-()212312y x =--+0x =8 2.443y =>()80A ,()0,22116y x bx c =-++210 88162b c c⎧=-⨯++⎪⎨⎪=⎩142b c ⎧=⎪⎨⎪=⎩()221119 2 2164164y x x x =-++=--+92,4⎛⎫ ⎪⎝⎭∵.∴两次射门,足球经过的路线最高点之间的距离为.23. (1)观察发现:已知是直角三角形,.将绕点B 顺时针旋转得到,旋转角为,直线交直线AC 于点F .如图1,当时,判断:四边形的形状为_____,与的数量关系为_____;(2)深入探究:在图1的基础上,将绕点B 逆时针旋转,旋转角为,如图2,当时,直接写出线段的数量关系______;继续旋转,如图3,当时,请写出线段的数量关系,并说明理由;(3)拓展应用:在(2)的基础上当时,若,请直接写出的长.【答案】(1)正方形,;(2);;理由见解析;(3)的长为或.【解析】【分析】(1)先证明四边形为矩形,根据,证明四边形为正方形,推出;(2)当时,连接,证明,据此即可求得;当时,同理求得;(3)当时,根据角的转换求得,推出,得到,进而求得,据此求解即可;当时,同理即可求解.【详解】解:(1)根据题意,由旋转的性质得,∴四边形为矩形,由旋转的性质得,933m 44-=3m 4ABC 90ACB ∠=︒ABC DBE αDE 90α=︒BCFE CF EF DBE β090β︒<<︒AF EF DE ,,90180β︒<<︒AF EF DE ,,CBE BAC ∠=∠912BC AC ==,AF CF EF =AF EF DE +=AF EF DE -=AF 915BCFE BC BE =BCFE CF EF =090β︒<<︒BF ()Rt Rt HL BCF BEF ≌AF EF DE +=90180β︒<<︒AF EF DE -=090β︒<<︒ABD BAC ∠=∠DB AC ∥A D AFD ABD ∠=∠=∠=∠15DF AB ==90180β︒<<︒90C DEB BEF ∠=∠=∠=︒90BCE ∠=︒BCFE BC BE =∴四边形为正方形,∴;故答案为:正方形,;(2)当时,连接,∵,,,∴,∴,∵,∴,即;当时,连接,同理,,∴,∵,∴,即;故答案为:;;(3)当时,BCFE CF EF =CF EF =090β︒<<︒BF BC BE =90B BEF ∠=∠=︒BF BF =()Rt Rt HL BCF BEF ≌EF CF =DE AC =AF CF AC +=AF EF DE +=90180β︒<<︒BF ()Rt Rt HL BCF BEF ≌EF CF =DE AC =AF CF AC -=AF EF DE -=AF EF DE +=AF EF DE -=090β︒<<︒∵,∴,∴,∴,∵,∴,∴,∵,∴,∴,∵,∴,∴,,∴,即,解得,∴;当时,同理,求得.综上,的长为或.【点睛】本题考查了勾股定理,正方形的判定和性质,全等三角形的判定和性质,平行线的判定和性质,正确引出辅助线解决问题是解题的关键.912BC AC ==,15AB ==912BE DE ==,15DB =ABC DBE ∠=∠ABC ABE DBE ABE ∠-∠=∠-∠CBE ABD ∠=∠CBE BAC ∠=∠ABD BAC ∠=∠DB AC ∥A D ∠=∠A D AFD ABD ∠=∠=∠=∠AG FG =DG BG =15DF AB ==1215DE EF EF +=+=3EF CF ==1239AF =-=90180β︒<<︒15AF BD ==AF 915。

2023年河南省开封市中考数学模拟试卷(含解析)

2023年河南省开封市中考数学模拟试卷(含解析)

2023年河南省开封市中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 2023的倒数是( )A. 2023B. −2023C. −12023D. 120232.如图所示的几何体是由五个小正方体组合而成的,它的左视图是( )A.B.C.D.3. 若2+a在实数范围内有意义,则a的取值范围是( )A. a>−2B. a<−2C. a≥−2D. a≤−24. 第19届亚运会将于2023年9月23日至10月8日在中国浙江省杭州市举行,杭州奥体博览城游泳馆区建筑总面积272000平方米,将数272000用科学记数法表示为( )A. 0.272×107B. 2.72×106C. 2.72×105D. 272×1045. 某学校将国家非物质文化遗产——“抖空竹”引入阳光特色大课间,某同学“抖空竹”的一个瞬间如图所示,若将左图抽象成右图的数学问题:在平面内,AB//CD,DC的延长线交AE于点F;若∠BAE=75°,∠AEC=35°,则∠DCE的度数为( )A. 120°B. 115°C. 110°D. 75°6.每年的4月23日为“世界读书日”,某学校为了鼓励学生多读书,开展了“书香校园”的活动.如图是初三某班班长统计的全班50名学生一学期课外图书的阅读量(单位:本),则这50名学生图书阅读数量的中位数、众数和平均数分别为( )A. 18,12,12B. 12,12,12C. 15,12,14.8D. 15,10,14.57. 如图,某数学兴趣小组测量一棵树CD的高度,在点A处测得树顶C的仰角为45°,在点B处测得树顶C的仰角为60°,且A,B,D三点在同一直线上,若AB=16m,则这棵树CD的高度是( )A. 8(3−3)mB. 8(3+3)mC. 6(3−3)mD. 6(3+3)m8.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,以下结论错误的是( )A. AD是∠BAC的平分线B. ∠ADC=60°C. 点D在线段AB的垂直平分线上D. S△A B D:S△A B C=1:29. 如图,在平面直角坐标系xOy 中,点A ,B 都在反比例函数y =kx(x <0)的图象上,且△OAB 是等边三角形,若AB =6,则k 的值为( )A. −8B. −9C. −6 3D. −1210. 如图,点E 在矩形ABCD 的AB 边上,将△ADE 沿DE 翻折,点A 恰好落在BC 边上的点F 处,若CD =3BF ,BE =4,则AD 的长为( )A. 9B. 12C. 15D. 16第II 卷(非选择题)二、填空题(本大题共5小题,共15.0分)11. 因式分解:x 2+2x +1= .12. 已知关于x 的一元二次方程x 2+kx−6=0的一个根是2,则另一个根是______.13. 不等式组{1−x <013x −1≤0的解集是______.14. 若关于x 的一元二次方程x 2−4x +m =0没有实数根,则m 的取值范围是______.15. 甲、乙两地高速铁路建设成功,一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),图中的折线表示y 与x 之间的函数关系,则图中m 的值为______ .三、解答题(本大题共8小题,共64.0分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档