二次函数的应用专题复习课件

合集下载

二次函数的应用课件ppt课件ppt课件ppt

二次函数的应用课件ppt课件ppt课件ppt
要点一
导数在二次函数中的应用
利用导数研究二次函数的单调性、极值和拐点,解决实际 问题。
要点二
定积分在二次函数中的应用
利用定积分计算二次函数的面积,解决与面积相关的实际 问题。
THANKS
感谢观看
详细描述
二次函数是数学中一类重要的函数,其形式由参数$a$、$b$ 和$c$决定。当$a > 0$时,函数图像开口向上;当$a < 0$ 时,函数图像开口向下。
二次函数的图像
总结词
二次函数的图像是一个抛物线, 其形状由参数$a$、$b$和$c$决 定。
详细描述
二次函数的图像是一个抛物线, 其顶点的位置由参数$b$和$c$决 定,而开口的大小和方向则由参 数$a$决定。
在生产和生活中,经常需要解决诸如利润最大化、成本最小化等最优化问题。利 用二次函数开口方向和顶点坐标的性质,可以快速找到最优解,为决策提供依据 。
利用二次函数解决周期性问题
总结词
利用二次函数的对称性和周期性,解 决具有周期性规律的问题。
详细描述
在物理学、工程学和生物学等领域, 许多现象具有周期性规律。通过将实 际问题转化为二次函数模型,可以更 好地理解和预测这些周期性现象。
利用二次函数解决面积问题
总结词
利用二次函数与坐标轴的交点,解决 与面积相关的实际问题。
详细描述
在几何学和实际生活中,经常需要计 算图形的面积。通过将问题转化为求 二次函数与坐标轴围成的面积,可以 简化计算过程,提高解决问题的效率 。
04
如何提高二次函数的应用能力
掌握基本概念和性质
理解二次函数的一般 形式: $y=ax^2+bx+c$, 其中$a neq 0$。

中考数学专题:二次函数应用专题(共17张ppt)

中考数学专题:二次函数应用专题(共17张ppt)

解:当S=288时
s
-2(x-15)2+450=288
500
450
∴x1=6,x2=24
400 300
288
当S≥288时,
200
由图象可知 6≤x≤24. 又∵墙长为36m,
100
6
24
O 5 10 15 20 25 30 x
∴ 12≤x<30
综上所述:12≤x≤24.
变式5.如图,若将60m的篱笆改为79m,墙长为36m, 为了方便进出,在平行于墙的一边开一个1m宽的门. (1)求菜园的最大面积;(2)若菜园面积不小于750m2,求 x的取值范围.
解:设矩形垂直墙的一边为xm,
则平行墙的一边为(60-2x)m.
S=(60-2x)x=-2x2+60x
s
=-2(x-15)2+450
500
450
400
∵x>0且60-2x>0,∴ 0<x<30 300
Hale Waihona Puke ∵a=-2<0, ∴S有最大值
200 100
当x=15时,S的最大值是450m2 O
则:60-2x=30(m)
墙20m
解:S=(60-2x) x=-2x2+60x
=-2(x-15)2+450
s
∵x>0且0<60-2x≤20
500
450
∴ 20≤x<30
400 300
∵a=-2<0,对称轴x=15.
200
∴当x>15时,S随x的增大而减小. 100
∵20≤x<30,
O 5 10 15 20 25 30 x
∴当x=20时,S的最大值是400m2.

二次函数复习ppt课件

二次函数复习ppt课件
点坐标是(1/2,1) ; (2)若抛物线y = a (x+m) 2+n 开口向下,顶点在第四象限,则 a <刀
3.求下列二次函数的开口方向,对称轴,顶点坐标.
y=x2 - 2x + 3 y= -2x2 - 4x - 6
解:y=x2-2x+1+2 =(x-1)2+2
y
o
x
a <0,b 0<,c 0. =
y
5.抛物线y=ax2+bx+c(a≠0)的图象经过原点,
且它的顶点在第三象限,则a、b、c满足
的条件是:a >0,b 0>,c 0. =
o
x
6.二次函数y=ax2+bx+c中,如果a>0,b<0,c<0,
那么这个二次函数图象的顶点必在第 四象限
y 先根据题目的要求画出函数的草图,再根据 图象以及性质确定结果(数形结合的思想)
二次函数复习
6.二次函数的应用
1. 如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有 二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。
(1)求S与x的函数关系式及自变量的取值范围; (2)当x取何值时所围成的花圃面积最大,最大值是多少?
解:(1) ∵ AB为x米、篱笆长为24米
x
7.已知二次函数的图像如图所示,下列结论: ⑴a+b+c=0 ⑵a-b+c﹥0 ⑶abc ﹥0 ⑷ b=2a 其中正确的结论的个数是( D) A 1个 B 2个 C 3个 D 4个
y
-1 0 1
x
要点:寻求思路时,要着重观察抛物线的开口方 向,对称轴,顶点的位置,抛物线与x轴、y轴的 交点的位置,注意运用数形结合的思想。

二次函数的应用课件

二次函数的应用课件

02
二次函数在实际生活中的应用
最大利润问题
总结词
通过求解二次函数的最大值,可以解决实际生活中的最大利润问题。
详细描述
在生产和经营过程中,常常需要通过合理安排生产数量或优化资源配置等方式来获得最大利润。这可以通过建立 二次函数模型,求解最大值来实现,从而为决策者提供最优方案。
抛物线型拱桥的跨度问题
通过对历史股票数据进行分析和处理,可以建立二次函数模型来描述股票价格的走势。通过求解这个 二次函数,可以预测未来一段时间内的股票价格,为投资者提供决策依据。
03
二次函数与其他数学知识的结合
二次函数与一次函数的交点问题
01
02
03
交点坐标
通过解二次函数与一次函 数的联立方程,可以找到 它们的交点坐标。
二次函数具有对称性,其对称轴为直线$x = -frac{b}{2a}$。
详细描述
二次函数具有对称性,其对称轴为直线$x = -frac{b}{2a}$。对于任意一个二次 函数$f(x) = ax^2 + bx + c$,如果有一个点$(x_1, y_1)$满足该函数,那么对 称轴上的对称点$(x_2, y_2)$也满足该函数。
绘制对称轴
绘制与坐标轴的交点
二次函数的对称轴为$x = -frac{b}{2a}$。
令$x = 0$,解得与$y$轴的交点为$(0, c)$ ;令$y = 0$,解得与$x$轴的交点为$(frac{b}{a}, 0)$和$(+frac{b}{a}, 0)$。
二次函数的单调性
单调增区间
当$a > 0$时,函数在区间$(infty, -frac{b}{2a}]$上单调递增 ;当$a < 0$时,函数在区间$[frac{b}{2a}, +infty)$上单调递增 。

二次函数(复习课)课件

二次函数(复习课)课件
详细描述
伸缩变换包括横向伸缩和纵向伸缩。横向伸缩是指将图像在x轴方向上进行放大或缩小,纵向伸缩是指将图像在y轴方向上进行放大或缩小。具体来说,对于函数y=ax^2+bx+c,若图像在x轴方向上放大k倍,则新的函数为y=a(kx)^2+b(kx)+c;若图像在y轴方向上放大k倍,则新的函数为y=a(x)+b(x)/k+ck。通过这两种伸缩变换,我们可以得到原函数的放缩版函数。
02
二次函数的解析式
总结词
二次函数的一般形式是 $y = ax^2 + bx + c$,其中 $a neq 0$。
详细描述
一般式是二次函数的基本形式,它包含了二次函数的最高次项、一次项和常数项。通过一般式可以明确地看出函数的开口方向和开口大小,由系数 $a$ 决定。
VS
二次函数的顶点形式是 $y = a(x - h)^2 + k$,其中 $(h, k)$ 是函数的顶点坐标。
总结词
实际应用问题
总结词
与其他函数的综合
总结词
与几何图形的结合
01
02
03
04
05
06
总结词
详细描述
总结词与图像关系
这类问题需要探讨二次函数的系数与图像之间的关系,如开口大小、对称轴位置等。
一题多解法
这类问题通常有多种解法,需要灵活运用二次函数的性质和图像,寻找最简便的解法。
详细描述
二次函数具有对称性,其对称轴为直线$x = -frac{b}{2a}$。此外,二次函数的开口方向由系数$a$决定,当$a > 0$时,开口向上;当$a < 0$时,开口向下。顶点坐标为$left(-frac{b}{2a}, fleft(-frac{b}{2a}right)right)$。

中考数学专题复习之 二次函数的应用 课件

中考数学专题复习之 二次函数的应用 课件
中考数学专题复习
二次函数的应用
考点精讲·导析探究
B
( 1 )设 y = kx + b ,
把( 22 , 36 )与( 24 , 32 )代入得:
则 y =- 2x + 80 ;
( 2 )设当文具店每周销售这种纪念册获得 150元的利润时,每本纪念册的销售单价是
x 元,根据题意得:( x - 20 ) y = 150 ,
润是 192 元.
(1)∵ B ( 4 , m )在直线 y = x + 2 上
∴ m = 4 + 2 = ቤተ መጻሕፍቲ ባይዱ ,∴ B ( 4 , 6 )
∵抛物线 y =
ax2+
1 5
bx+ 6经过 A ( , ),B ( 4 , 6 )
2 2
∴抛物线的解析式为 y = 2x2 - 8x + 6 .
( 2 )设 P ( m , m + 2 ),则 D ( m , 2m2- 8m + 6 ).
整理得 w =-( x - 25 ) 2 + 225
∵- 1 < 0
∴当 x = 25 时, w 取得最大值,最大值为 225 元.
1
( 1 )根据题意得, y =- x + 50 ;
2
1
( 2 )根据题意得,( 40 + x )(- x + 50 )= 2 250 ,
2
解得: x 1 = 50 , x 2= 10 ,
=- 2 ( x - 30 ) 2 + 200 ,
此时当 x = 30 时, w 最大,
又∵售价不低于 20 元且不高于 28 元,
∴ x < 30 时, y 随 x 的增大而增大,即当 x = 28时, w 最大 =- 2 ( 28 - 30 ) 2 + 200 =

二次函数的应用ppt课件

二次函数的应用ppt课件

②根据题意,得绿化区的宽为
= (x-20)(m),
∴y=100×60-4x(x-20).又 ∵28≤100-2x≤52,∴24≤x≤36. 即 y 与 x 的函数关系式及 x 的取值范围为 y=-4x2+80x+6 000 (24≤x≤36);
-7-
2.4 二次函数的应用
(2)y=-4x2+80x+6 000=-4(x-10)2+6 400. ∵a=-4<0,抛物线的开口向下,对称轴为直线 x= 10. 当 24≤x≤36 时,y 随 x 的增大而减小, ∴ 当 x=24 时,y 最大=5 616,即停车场的面积 y 的最大值为 5 616 m2; (3)设费用为 w. 由题意,得 w=100(-4x2+80x+6 000)+50×4x(x- 20)=-200(x-10)2 +620 000, ∴ 当 w=540 000 时,解得 x1=-10,x2=30. ∵24≤x≤36,∴30≤x≤36,且 x 为整数, ∴ 共有 7 种建造方案. 题型解法:本题是确定函数表达式及利用函数的性质设计工程方案的问题. 解题过程中应理解:(1)工程总造价是绿化区造价和停车场造价两部分的和; (2)根据投资额得出方程,结合图象的性质求出完成工程任务的所有方案.
(1)解决此类问题的关键是建立恰当的平面直角坐标系; 注意事项
(2)根据题目特点,设出最容易求解的函数表达式形式
-9-
2.4 二次函数的应用
典题精析 例 1 赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系, 其函数的关系式为 y=- x2,当水面离桥拱顶的高度 DO 是 4 m 时,水面宽 度 AB 为 ( ) A. -20 m B. 10 m C. 20 m D. -10 m

二次函数复习(共36张PPT)

二次函数复习(共36张PPT)

y=ax2+bx+c的图 方程ax2+bx+c=0
象和x轴交点
的根
b2-4ac
有两个交点
方程有两个不相等的 b2-4ac>0
实数根
只有一个交点
方程有两个相等的 b2-4ac=0
实数根
没有交点
方程没有实数根 b2-4ac<0
函数的图象
y
.
. ox
y
o
x
y
o
x
根据下列表格中二次函数y=ax2+bx+c的自变量与函数 值的对应值,判断方程ax2+bx+c =0
(4)函数的自变量x的取值范围:任意实数
当二次函数表示某个实际问题时,还必须根据题意确定自变量的取值范
围.
二次函数的一般形式:
• 函数y=ax2+bx+c
– 其中a、b、c是常数 – 切记:a≠0 – 右边一个x的二次多项式(不能是分式或根式)
二次函数的特殊形式:
当b=0时, y=ax2+c 当c=0时, y=ax2+bx 当b=0,c=0时, y=ax2
向上
直线X=-h
(-h,k)
a < 0 向下
图象的平移规律:
对于抛物线y=a(x+h)2+k的平移有以下规律: (1)、平移不改变 a 的值; (2)、h决定图象沿x轴方向左右平移,左+右— (3)、k决定图象沿y轴方向上下平移,上+下—
知识运用
(坐1标)是抛物线,图(y0象=,0过)x32 第2的开口向一象、,限对上二称;轴是
二次函数 开 口 方 向 对 称 轴 顶 点 坐 标
y = ax 2
a > 0 向上 直线X=0 a < 0 向下 (或y轴)

初三数学中考复习:二次函数的应用 复习课 课件(共32张PPT)

初三数学中考复习:二次函数的应用 复习课 课件(共32张PPT)
二次函数的应用
知识总览 主要知识内容回顾 典型例题分析 小结
二次函数
一、 知识总览
二次函数
概念 图像性质 用函数观点看方程与不等式
应用
一1.从、二二次次函函数数角与度方看程二次、方不程等、式不等式
(形)
(数)
解法一:观察图像, 解法二:解方程,
(形)
(数)
解法一:观察图像,
一、二次函数与方程、不等式
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
例2:
某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50 元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种 水产品的销售情况,销售单价定为多少元时,获得的利润最多?
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
解决最值类的主要步骤:
第三步:确定自变量取值范围。(与自变量相关的量) 第四步:利用二次函数性质解决最值等问题。(顶点、图像) 第五步:回归实际题。
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
例2:
分析:
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
➢ 构造函数解方程,利用两个函数图象交点确定解。 ➢ 可对方程进行同解变形,再构造函数。

二次函数的应用经典ppt课件

二次函数的应用经典ppt课件
轴两个交点坐标求。
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
二次函数的交点式
已知二次函数的图象与x轴交于(-2,0)和 (1,0)两点,又通过点(3,-5), 求这个二次函数的解析式。 当x为何值时,函数有最值?最值是多少?
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
专题一: 待定系数法确定二次函数
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
最值应用题——运动观点
在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发, 沿AB边向点B以1cm/秒的速度移动,同时,点Q从点B
的表达式的区别与联系,你发现了什么?
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。

初三数学复习《二次函数》(专题复习)PPT课件

初三数学复习《二次函数》(专题复习)PPT课件

面积问题
面积问题
在二次函数中,可以通过求函数与坐标轴的交点来计算图形的面积。例如,当函数与x轴交于两点时 ,可以计算这两点之间的面积;当函数与y轴交于一点时,可以计算这一点与原点之间的面积。这些 方法在解决实际问题时非常有用,例如在计算利润、产量等方面。
求解方法ቤተ መጻሕፍቲ ባይዱ
求出二次函数与x轴和y轴的交点坐标,然后根据这些坐标计算图形的面积。对于更复杂的问题,可能 需要使用积分或其他数学方法来求解。
05
综合练习与提高
基础练习题
巩固基础 覆盖全面 由浅入深
基础练习题主要针对二次函数的基本概念、性质和公 式进行设计,旨在帮助学生巩固基础知识,提高解题的 准确性和速度。
基础练习题应涵盖二次函数的各个方面,包括开口方 向、顶点坐标、对称轴、与坐标轴的交点等,确保学生 对二次函数有全面的了解。
题目难度应从易到难,逐步引导学生深入理解二次函 数,从简单的计算到复杂的综合题,逐步提高学生的解 题能力。
初三数学复习《二次函数》(专题复习)ppt课 件
目录 Contents
• 二次函数的基本概念 • 二次函数的解析式 • 二次函数的图像与性质 • 二次函数的实际应用 • 综合练习与提高
01
二次函数的基本概念
二次函数的定义
总结词
理解二次函数的定义是掌握其性 质和图像的基础。
详细描述
二次函数是形式为$f(x) = ax^2 + bx + c$的函数,其中$a, b, c$是 常数,且$a neq 0$。这个定义表 明二次函数具有两个变量$x$和 $y$,并且$x$的最高次数为2。
03
二次函数的图像与性质
开口方向
总结词:根据二次项系数a的正负判断开口方向 a>0时,开口向上

备战 中考数学基础复习 第14课 二次函数的应用课件(33张ppt)

备战 中考数学基础复习 第14课 二次函数的应用课件(33张ppt)

cm;
(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和 方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着 D→C→B的方向匀速运动,设动点N的运动速度为v(cm/s).已知 两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M, N相遇后立即同时停止运动,记此时△APM与△DPN的面积分别 为S1(cm2),S2(cm2). ①求动点N运动速度v(cm/s)的取值范围; ②试探究S1·S2是否存在最大值,若存在,求出S1·S2的最大值并确定运动时间x 的值;若不存在,请说明理由.
【解析】(1)设y与销售单价x之间的函数解析式为:y=kx+b,将点
(60,100),(70,80)代入一次函数解析式得: 180007600kkbb,
解得
k b
2 ,
220
故函数的解析式为y=-2x+220;
(2)设药店每天获得的利润为W元,由题意得: W=(x-50)(-2x+220)=-2(x-80)2+1 800, ∵-2<0,函数有最大值, ∴当x=80时,W有最大值,此时最大值是1 800, 故销售单价定为80元时,该药店每天获得的利润最大,最大利润为1 800元.
第14课 二次函数的应用
【知识清单】 一、列二次函数解应用题 1.列二次函数解应用题与列整式方程解应用题的思路和方法 是一致的,不同的是,学习了二次函数后,表示量与量的关系的代数式是含有两 个变量的等式.对于应用题要注意以下步骤: (1)审清题意,弄清题中涉及哪些量,已知量有几个,已知量与变量之间的基本 关系是什么,找出等量关系(即函数关系). (2)设出两个变量,注意分清自变量和因变量,同时还要注意所设变量的单位要 准确.

中考数学专题复习 第十三讲二次函数的应用(共69张PPT)

中考数学专题复习 第十三讲二次函数的应用(共69张PPT)

t01 2 3 4 5 6 7…
h08
1 4
1 8
2 0
2 0
1 8
1 4

下列结论:①足球距离地面的最大高度为20m;②足球
飞行路线的对称轴是直线t= 9 ;③足球被踢出9s时落
2
地;④足球被踢出1.5s时,距离地面的高度是11m.其中
正确结论的个数是 ( )
A.1
B.2
C.3
D.4
【解析】选B.由表格可知抛物线过点(0,0),(1,8), (2,14),设该抛物线的解析式为h=at2+bt,将点(1,8), (2,14)分别代入,得:a+b=8,4a+2b=14, 即 a4ab2b8解,1得4. :a=-1,b=9.
3
3
(2)由(1)知抛物线解析式为y=- 2 (x-1)2+ 8
3
3
(0≤x≤3).
当x=1时,y=8 .
3
所以抛物线水柱的最大高度为 8 米.
3
【答题关键指导】 利用二次函数解决实际问题的步骤 (1)根据题意,列出抛物线表达式,或建立恰当的坐标 系,设出抛物线的表达式,将实际问题转化为数学模型. (2)列出函数表达式后,要标明自变量的取值范围.
5
考点二 利用二次函数解决最优化问题 【示范题2】(2017·济宁中考)某商店经销一种学生 用双肩包,已知这种双肩包的成本价为每个30元.市场 调查发现,这种双肩包每天的销售量y(个)与销售单价 x(元)有如下关系:y=-x+60(30≤x≤60).设这种双肩 包每天的销售利润为w元.
(1)求w与x之间的函数关系式. (2)这种双肩包销售单价定为多少元时,每天的销售利 润最大?最大利润是多少元? (3)如பைடு நூலகம்物价部门规定这种双肩包的销售单价不高于 42元,该商店销售这种双肩包每天要获得200元的销售 利润,销售单价应定为多少元?

二次函数复习课课件

二次函数复习课课件

对称变换
总结词
对称变换是指二次函数的图像关 于某条直线进行对称。
详细描述
对称变换包括关于x轴、y轴或原点 对称。在对称变换过程中,二次函 数的开口方向、顶点和对称轴等性 质可能发生变化。
举例
将二次函数$f(x) = x^2 - 2x$的图 像关于x轴对称,得到新的函数$f(x) = (-x)^2 - 2(-x) = x^2 + 2x$。
二次函数的图像
总结词
二次函数的图像是一个抛物线, 其形状由系数$a$决定。
详细描述
二次函数的图像是一个抛物线。 当$a > 0$时,抛物线开口向上; 当$a < 0$时,抛物线开口向下。 抛物线的对称轴是直线$x = frac{b}{2a}$,顶点位于该对称轴 上,坐标为$left(-frac{b}{2a}, fleft(-frac{b}{2a}right)right)$。
详细描述
顶点式是二次函数的一种特殊形式,它通过完全平方的形式简化了函数表达式 ,使得函数图像的顶点和对称轴更加直观。顶点式在解决与二次函数顶点相关 的问题时非常有用。
交点式
总结词
二次函数的交点式为y=a(x-x1)(x-x2),其中x1、x2为函数与x轴的交点。
详细描述
交点式是二次函数的一种特殊形式,它通过将函数表示为两个一次因式的乘积, 突出了函数与x轴的交点。交点式在解决与二次函数与x轴交点相关的问题时非常 有用。
03
二次函数的图像变换
平移变换
总结词
平移变换是指二次函数的图像在 平面坐标系中沿x轴或y轴方向移
动。
详细描述
平移变换包括向左或向右移动图 像,以及向上或向下移动图像。 在平移过程中,二次函数的开口 方向、顶点和对称轴等性质保持

(新)初三数学中考复习二次函数的应用复习课PPT幻灯片(32页)

(新)初三数学中考复习二次函数的应用复习课PPT幻灯片(32页)

一、二次函数与方程、不等式
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
(形)
(数)
解法一:观察图像,
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
一、二次函数与方程、不等式
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
一、二次函数与方程、不等式
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
三、典型例题分析
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
➢ 认识从函数角度看二次方程、不等式的联系 ➢ 抛物线与直线交点是关键点。
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】 (新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
(形)
(数)
解法一:观察图像,
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】

13、二次函数的综合与应用PPT课件

13、二次函数的综合与应用PPT课件
(3)已知-6≤k≤6,若平移后抛物线的对称 轴与x轴交于点Ak,以AkPk为边向右作正方形 AkPkBkCk,判断正方形的顶点Bk是否恰好是其 他的“整数系列抛物线”上的点,若恰好 是,求出该整数k的值;若不存在,说明理 由.
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
9
②依题意得,∠AkBkBk+1=∠AmBmBm+1=90°, 有两种情况:i)当 Rt△AkBkBk+1∽Rt△AmBmBm+1 时, AAmkBBkm=BBmkBBkm++11,121222mk--33=1212mk ,(12)2k-2m=(12)k-m, 所以,k=m(舍去), ii)当 Rt△AkBkBk+1∽Rt△Bm+1BmAm 时, BmA+kB1kBm=BBkBmkA+m1,12212k-m 3=12212m-k 3,(12)2k-3-m=(12)k-2m+3,∴k+m=6,
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
7
【思路点拨】 本题考查二次函数综合题.(1)直接把点 A1 的坐标代入 y=ax2 求出 a 的值;(2)由题意可知:A1B1 是点 A1 的纵坐标:则 A1B1=2×12=2;A2B2 是点 A2 的纵坐标:则 A2B2=2×(12)2=12;…则 AnBn=2x2=2×[( 12)n-1]2=(12)2n-3;B1B2 =1-12=12,B2B3=12-(12)2=14=(12)2,…,BnBn+1=(12)n;(3)①当 AnBn=BnBn+1 时, Rt△AnBnBn+1 是等腰三角形; ②因为 Rt△AkBkBk+1 与 Rt△AmBmBm+1 是直角 三角形,所以分两种情况讨论:根据(2)的结论代入所得的对应边的比例式,计算求 出 k 与 m 的关系,并与 1≤k<m≤n(k,m 均为正整数)相结合,得出两种符合条件 的值,分别代入两相似直角三角形计算相似比.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)求y与x满足的解析式,请说明一件产品的利润能否 是12万元;
(2)求k,并推断是否存在某个月既无盈利也不亏损;
(3)在这一年12个月中,若第m个月和第(m+1)个月的利 润相差最大,求m.
在求解最大利润、最大销量等问题时,关键是通过题意,
确定出二次函数的解析式,然后确定其最大值.实际问 题中自变量x的取值要使实际问题有意义,因此在求二次 函数的最值时,一定要注意自变量x的取值范围.
学会用方程的思想思考问题,考虑问题要全面,属于中 考常考题型.
3.(2015·河北)如图,已知点O(0,0),A(-5,0),
B(2,1),抛物线l:y=-(x-h)2+1(h为常数)与y轴 的交点为C. (1)l经过点B,求它的解析式,并写出此时l的对称轴 及顶点坐标;
(2)设点C的纵坐标为yC,求yC的最大值,此时l上有两
1.(2013·河北)某公司在固定线路上运输,拟用运营指
数Q量化考核司机的工作业绩.Q=W+100,而W的大小与 运输次数n及平均速度x(km/h)有关(不考虑其他因素),

W由两部分的和组成:一部分与x的平方成正比,另一部
分与x的n倍成正比.试行中得到了表中的数据.
(1)用含x和n的式子表示Q; (2)当x=70,Q=450时,求n的值;
(4)设L与双曲线有个交点的横坐标为x0,且满足4≤x0≤6,
通过L位置随t变化的过程,直接写出t的取值范围.
【分析】
(1)设点P(x,y),只要求出xy的值即可解决
问题;(2)先求出A,B的坐标,再求出对称轴以及点M坐 标即可解决问题;(3)根据对称轴的位置即可判断,当对 称轴在直线MP左侧,L的顶点就是最高点,当对称轴在MP 右侧,L与MP的交点就是最高点;(4)画出图形求出C,D两
点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的 大小;
(3)当线段OA被l只分为两部分,且这两部分的比是1∶4时,
求h的值.
4.(2014· 河北)如图,2×2网格(每个小正方形的边长为1) 中有A,B,C,D,E,F,G,H,O九个格点.抛物线 l的解析式为y=(-1)nx2+bx+c(n为整数).
第六节 二次函数的应用
考点一 二次函数的实际应用
(5年2考)
(2017·河北)某厂按用户的月需求量x(件)完成一
种产品的生产,其中x>0.每件的售价为18万元,每件的成
本y(万元)是基础价与浮动价的和,其中基础价保持不变, 浮动价与月需求量x(件)成反比.经市场调研发现,月需 求量x与月份n(n为整数,1≤n≤12)符合解析式x=2n2- 2kn+9(k+3)(k为常数),且得到了表中的数据.
(3)若n=3,要使Q最大,确定x的值;
(1)当a=18,且x=100时,w乙=
元;
(2)求w甲与x之间的函数解析式(不必写出x的取值范围), 当w甲=15 000时,若使销售量最大,求x的值; (3)为完成x件的年销售任务,请你通过分析帮助公司决 策,应选择在甲地还是在乙地的销售才能使该公司所获
(1)n为奇数,且l经过点H(0,1)和C(2,1),求b,c的值,
并直接写出哪个格点是该抛物线的顶点; (2)n为偶数,且l经过点A(1,0)和B(2,0),通过计算说 明点F(0,2)和H(0,1)是否在该抛物线上; (3)若l经过这九个格点中的三个,直接写出所有满足这
样条件的抛物线条数.
年利润最大.
考点二 二次函数的综合应用
(5年3考)
(2016·河北)如图,抛物线L:y=- 1(x-t)(x-t+4)
2 (常数t>0)与x轴从左到右的交点为B,A,过线段 OA的
中点M作MP⊥x轴,交双曲线y=
且OA·MP=12.
k x
(k>0,x>0)于点P,
(1)求k值;
(2)当t=1时,求AB的长,并求直线MP与L对称轴之间 的距离; (3)把L在直线MP左侧部分的图象(含与直线MP的交点) 记为G,用t表示图象G最高点的坐标;
点的纵坐标,利用方程即可解决问题.
【自主解答】
(1)设点P(x,y),则MP=y.
由OA的中点为M,可知OA=2x, 代入OA·MP=12, 得到2x·y=12,即xy=6. ∴k=xy=6.
本题考查二次函数综合题、待定系数法、平移等知识,
解题的关键是理解题意,学会利用图形信息解决问题,
相关文档
最新文档