2014第十二届希望杯五年级第1试试题及答案(纯word)
第十二届小学“希望杯”全国数学邀请赛试卷(四年级第2试)
2014年第十二届小学“希望杯”全国数学邀请赛试卷(四年级第2试)一、填空题(每空5分,共60分)1.(5分)计算:29+42+87+55+94+31+68+76+13=.2.(5分)21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装盒.3.(5分)190表示成10个连续偶数的和,其中最大的偶数是.4.(5分)当小红3岁时,妈妈的年龄和小红今年的年龄相同;当妈妈78岁时,小红的年龄和妈妈今年的年龄相同.妈妈今年岁.5.(5分)从1、2、3、4、…、30这30个数中任意取10个连续的数,其中恰有2个质数的情况有种.6.(5分)将面积为36的正方形按如图的方式分成4个周长相等的长方形,取图中阴影长方形的面积为.7.(5分)如图的“蝙蝠”图案由若干个等腰直角三角形和正方形组成,已知阴影部分的面积为1,则“蝙蝠”图案的面积是.8.(5分)一列快车和一列慢车相向而行,快车的车长是315米,慢车的车长是300米.坐在慢车上的人看见快车驶过的时间是21秒,那么坐在快车上的人看见慢车驶过的时间是秒.9.(5分)有4个互不相等的自然数,它们的平均数是10.其中最大的数至少是.10.(5分)如图中共有三角形个.11.(5分)两个数的和是830,其中较大的数除以较小的数,得商22余2,则这两个数中较大的一个是.12.(5分)有白棋子和黑棋子共2014个,按照如图的规律从左到右排成一行,其中黑棋子的个数是.○●○●●○●●●○●○●●○●●●○●○●●○…二、解答题(每题15分,共60分.)每题都要写出推算过程.13.(15分)如果数A增加2,则它与数B的积比A、B的积大60;如果数A 不变,数B减少3,则它们的积比A、B的积小24,那么,如果数A增加2,数B减少3,则它们的积比A、B的积大多少?14.(15分)水果店用三种水果搭配果篮,每个果篮里有2个哈密瓜,4个火龙果,10个猕猴桃,店里现有的火龙果的数量比哈密瓜的3倍多10个,猕猴桃的数量是火龙果的2倍,当用完所有的哈密瓜后,还剩130个火龙果.问:(1)水果店原有多少个火龙果?(2)用完所有的哈密瓜后,还剩多少个猕猴桃?15.(15分)如图1,从边长是6厘米的正方形纸片的正中间挖去一个正方形,得到一个宽为1厘米的方框,将四个这样的方框如图6所示依次垂直交叉放在桌面上,求桌面被这些方框盖住的面积(图2中阴影部分的面积).16.(15分)如图,小红和小丽的家分别在电影院的正西和正东方向,某日她们同时从自己家出发,小红每分钟走52米,小丽每分钟走70米,两人同时到达电影院.看完电影后,小红先回家,速度不变,4分钟后小丽也开始往家走,每分钟走90米,两人同时到家.求两人的家相距多少米.2014年第十二届小学“希望杯”全国数学邀请赛试卷(四年级第2试)参考答案与试题解析一、填空题(每空5分,共60分)1.(5分)计算:29+42+87+55+94+31+68+76+13=495 .【分析】根据加法交换律及结合律计算.【解答】解:29+42+87+55+94+31+68+76+13=(29+31)+(42+68)+(87+13)+(94+76)+55=60+110+100+170+55=495故答案为:495.【点评】完成本题要注意分析式中数据,运用合适的简便方法计算.2.(5分)21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装36 盒.【分析】根据乘法的意义,可用21乘48计算出鸡蛋的总个数,然后再根据除法的意义,用总的鸡蛋个数除以28进行计算即可得到需要的盒子数.【解答】解:21×48÷28=1008÷28=36(盒)答:可以装36盒.故答案为:36.【点评】此题主要考查的是乘法意义和除法意义的应用.3.(5分)190表示成10个连续偶数的和,其中最大的偶数是28 .【分析】根据题意,可设最小的偶数是2N,因为是连续的10个偶数,从小到大排列出来,后一个都比前一个大2,再根据题意解答即可.【解答】解:设最小的一个偶数为2N,由题意可得:2N+2(N+1)+2(N+2)+…+2(N+7)+2(N+8)+2(N+9)=19010×2N+0+2+4+…+14+16+18=19020N+(0+18)×10÷2=19020N+18×5=19020N+90=19020N=100N=5那么最大的一个偶数是:2(N+9)=2×(5+9)=2×14=28.答:其中最大的那个偶数是28.故答案为:28.【点评】根据题意可知,连续的偶数每相邻的两个相差都是2,设出最小的,一次排列出来,再根据题意列出方程进一步解答即可.4.(5分)当小红3岁时,妈妈的年龄和小红今年的年龄相同;当妈妈78岁时,小红的年龄和妈妈今年的年龄相同.妈妈今年53 岁.【分析】设妈妈与小红的年龄差为x岁,则根据“当小红3岁时,妈妈的年龄和小红今年的年龄相同;”得出小红今年的年龄为:x+3岁;根据“当妈妈78岁时,小红的年龄和妈妈今年的年龄相同”得出小红现在的年龄为:78﹣x岁;根据小红的年龄+年龄差=妈妈的年龄,列出方程即可解决问题.【解答】解:设妈妈与小红的年龄差为x岁,则小红现在的年龄是x+3岁,妈妈现在的年龄是78﹣x岁,根据题意可得方程:x+3+x=78﹣x2x+3=78﹣x2x+x=78﹣33x=75x=2578﹣25=53(岁)答:妈妈今年53岁.故答案为:53.【点评】设出年龄差,抓住年龄差不变,分别得出二人现在的年龄是解决本题的关键.5.(5分)从1、2、3、4、…、30这30个数中任意取10个连续的数,其中恰有2个质数的情况有 4 种.【分析】一个自然数,如果只有1和它本身两个因数,这样的数叫做质数;一个自然数,如果除了1和它本身还有别的因数,这样的数叫做合数;由此解答.【解答】解:在1~30这30个数中,一共有2、3、5、7、11、13、17、19、23、29共10个质数,从1、2、3、4、…、30这30个数中任意取10个连续的数,其中恰有2个质数的情况有:18~27,19~28,20~29,或21~30,有4种;故答案为:4.【点评】此题的解答关键是明确质数与合数的意义.6.(5分)将面积为36的正方形按如图的方式分成4个周长相等的长方形,取图中阴影长方形的面积为10 .【分析】如图:因为面积为36的正方形,边长是6,所以设上面长方形的宽为x,则下面的长方形的长是6﹣x,再根据小长方形的周长相等,列出方程求出x,再根据长方形的面积公式S=ab进行解答.【解答】解:因为6×6=36,所以面积为36的正方形,边长是6,小长方形的宽是6÷3=2设上面长方形的宽为x2×(6﹣x)+2+2=6+6+2x12﹣2x+4=12+2x4x=4x=1阴影部分的面积是:2×(6﹣1)=10;答:图中阴影长方形的面积为10.故答案为:10.【点评】关键是根据题意,算出上面长方形的宽为x,再根据小长方形的周长相等,列出方程解答.7.(5分)如图的“蝙蝠”图案由若干个等腰直角三角形和正方形组成,已知阴影部分的面积为1,则“蝙蝠”图案的面积是27 .【分析】最大正方形有两个,每个的面积是8,则两个总面积是16;中等正方形有两个,每个的面积是4,则两个总面积是面积是8;剩余3个三角形的面积是3;据此解答即可.【解答】解:1×8×2+1×4×2+3×1=16+8+3=27答:“蝙蝠”图案的面积是27.故答案为:27.【点评】此题解答的关键在于弄清阴影部分与各部分的面积关系,分类求出各部分面积.8.(5分)一列快车和一列慢车相向而行,快车的车长是315米,慢车的车长是300米.坐在慢车上的人看见快车驶过的时间是21秒,那么坐在快车上的人看见慢车驶过的时间是20 秒.【分析】坐在慢车上的人看见快车驶过的时间是21秒:既为人与快车的相遇问题,人此时具有慢车的速度,相遇路程为快车的车长315米,相遇时间为21秒,即人与慢车的速度和为快车与慢车的速度和为:315÷21=15(米/秒);那么坐在快车上的人看见慢车驶过的时间,既为人与慢车的相遇问题,人此时具有快车的速度,相遇路程为慢车的车长300米,由于两车为相向而行,所以坐在车上的人看到车通过的速度为两车的速度和.用快车车长除以快车与慢车的速度和即可.【解答】解:根据题意可得:快车与慢车的速度和:315÷21=15(米/秒);坐在快车上的人看见慢车驶过的时间是:300÷15=20(秒);答:坐在快车上的人看见慢车驶过的时间是20秒.故答案为:20.【点评】完成本题的关键是根据坐在慢车上的人见快车通过的时间求出两车的速度和,然后再根据相遇问题进一步解答即可.9.(5分)有4个互不相等的自然数,它们的平均数是10.其中最大的数至少是12 .【分析】有4个互不相等的自然数,它们的平均数是10,且是4个互不相等的自然数,求最大至少是多少,那么这4个数就要最接近,则10就相当于中间两个数的平均数,那么中间两个数是9和11,那么另两个数是9﹣1=8,11+1=12,所以其中最大的数至少是12,据此解答即可.【解答】解:因为要使最大的数至少是多少,那么这4个数就要最接近,则10就相当于中间两个数的平均数,那么中间两个数是10﹣1=9和10+1=11,那么另两个数是9﹣1=8,11+1=12,所以其中最大的数至少是12,答:其中最大的数至少是12.故答案为:12.【点评】明确要求最大的数至少是多少,那么这4个数就要最接近,则10就相当于中间两个数的平均数.10.(5分)如图中共有三角形30 个.【分析】此题可通过分类列举解答:①单个的三角形;②由2个三角形构成;③由3个三角形构成;④由4个三角形构成;⑤最大三角形.【解答】解:由1个三角形构成:10个,由2个三角形构成:10个,由3个三角形构成:0个,由4个三角形构成:8个,最大的三角形:2个,共有:10+10+0+8+2=30(个)故答案为:30.【点评】此题通过分类,列举出每类中有几个三角形.在列举时,注意防止遗漏.11.(5分)两个数的和是830,其中较大的数除以较小的数,得商22余2,则这两个数中较大的一个是794 .【分析】根据大数除以小数,商22余数是2,所以大数减去2后是小数的22倍,则和830减去2就是小数的(22+1)倍,因此,根据除法的意义,小数可求得,然后进一步可以求出大数.【解答】解:(830﹣2)÷(22+1)=828÷23=36830﹣36=794答:两个数中较大的一个是 794.故答案为:794.【点评】此题属于和倍问题的应用题,解答的关键是理解大数减去2后是小数的22倍.12.(5分)有白棋子和黑棋子共2014个,按照如图的规律从左到右排成一行,其中黑棋子的个数是1342 .○●○●●○●●●○●○●●○●●●○●○●●○…【分析】根据每9个棋子是一个循环,用2014除以9,用得到的商乘以一个循环中黑棋子的个数,再根据余数的情况判断最后需加上几个黑棋子即可.【解答】解:2014÷9=223…7,循环了223次后,还剩7个,里面有4个黑棋子,223×6+4=1338+4=1342(个)答:其中黑棋子的个数是1342个.故答案为:1342.【点评】答此类问题的关键是找出每几个数或每几个图形是一个循环.二、解答题(每题15分,共60分.)每题都要写出推算过程.13.(15分)如果数A增加2,则它与数B的积比A、B的积大60;如果数A 不变,数B减少3,则它们的积比A、B的积小24,那么,如果数A增加2,数B减少3,则它们的积比A、B的积大多少?【分析】这两个数是A和B,由“如果数A增加2,则它与数B的积比A、B的积大60”列出方程,解答求出A和B,然后根据“如果数A增加2,数B减少3”把A和B代入,即可求出它们的积比A、B的积大多少.【解答】解:这两个数是A和B,可得:AB+60=(A+2)×B,AB﹣24=A(B﹣3);因为AB+60=(A+2)×B则AB+60=AB+2B则 B=30把B=30代入AB﹣24=A(B﹣3),可得:30A﹣24=A(30﹣3)30A﹣24=27AA=8(8+2)×(30﹣3)﹣30×8=10×27﹣240=30答:它们的积比A、B的积大30.【点评】此题属于用字母表示数,根据题意,列出等式,进而求出A、B 的值,是解答此题的关键.14.(15分)水果店用三种水果搭配果篮,每个果篮里有2个哈密瓜,4个火龙果,10个猕猴桃,店里现有的火龙果的数量比哈密瓜的3倍多10个,猕猴桃的数量是火龙果的2倍,当用完所有的哈密瓜后,还剩130个火龙果.问:(1)水果店原有多少个火龙果?(2)用完所有的哈密瓜后,还剩多少个猕猴桃?【分析】(1)所有的果篮用掉2个哈密瓜,4个火龙果,8个猕猴桃.当哈密瓜全部用完时,用掉火龙果的数量是哈密瓜的2倍,依题意,可画出线段图帮助理解:剩下的130个对应着箭头部分,然后列式解答;(2)先求出水果店原有的猕猴桃,即370×2=740(个);再求用完所有的哈密瓜后,还剩下的猕猴桃数即可.【解答】解:(1)(130﹣10)÷2=120÷2=60(个)60×6+10=360+10=370(个)答:水果店原有370个火龙果.(2)370×2=740(个)740﹣60×10=740﹣600=140(个)答:还剩140个猕猴桃.【点评】此题属于比较难的题目,解答的关键在于画出线段图来理解,找出数量关系式,列式解答.15.(15分)如图1,从边长是6厘米的正方形纸片的正中间挖去一个正方形,得到一个宽为1厘米的方框,将四个这样的方框如图6所示依次垂直交叉放在桌面上,求桌面被这些方框盖住的面积(图2中阴影部分的面积).【分析】先观察每个方框,方框的面积就是外面正方形的面积,减去里面正方形的面积,外面正方形的边长是6厘米,里面正方形的边长是(6﹣1×2)厘米,由此根据正方形的面积公式求出每个方框都得面积;再观察图2,发现4个方框有6处重叠,重叠部分的是一个边长是1厘米的正方形;再用4个方框的面积和减去6个小正方形的面积就是方框盖住的面积.【解答】解:6×6﹣(6﹣1×2)×(6﹣1×2)=36﹣16=20(平方厘米)20×4﹣1×1×6=80﹣6=74(平方厘米)答:桌面被这些方框盖住的面积是74平方厘米.【点评】解决本题关键是通过图找出方框的面积,以及重叠部分的面积,正确的运用正方形的面积公式进行求解.16.(15分)如图,小红和小丽的家分别在电影院的正西和正东方向,某日她们同时从自己家出发,小红每分钟走52米,小丽每分钟走70米,两人同时到达电影院.看完电影后,小红先回家,速度不变,4分钟后小丽也开始往家走,每分钟走90米,两人同时到家.求两人的家相距多少米.【分析】根据题意知:小丽第一次用的时间×第一次的速度=(第一次用的时间﹣4)×第二次用的速度,可设第一次用的时间是x小时,据此可求出用的时间,再根据路程=速度和×时间可求出两家的距离.据此解答.【解答】解:设第一次相遇用的时间是x分钟70x=90×(x﹣4)70x=90x﹣36090x﹣70x=36020x=360x=360÷20x=18(52+70)×18=122×18=2196(米)答:两家相距2196米.【点评】本题的重点是求出两人相遇时用的时间,再根据路程=速度和×时间进行解答.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/4/22 16:48:30;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
五年级数学希望杯试题
五年级数学希望杯试题第五届“希望杯”全国数学邀请赛(五年级第1试)1.2007÷=______。
2.对不为零的⾃然数a,b,c ,规定新运算“☆”:☆(a,b ,c)= ,则☆(1,2,3)=______。
3.判断:“⼩明同学把⼀张电影票夹在数学书的51页⾄52页之间”这句话是______的。
(填“正确”或“错误”)4.已知a,b,c是三个连续⾃然数,其中a是偶数。
则a+1,b+2,c+3的积是奇数还是偶数5.某个⾃然数除以2余1,除以3余2,除以4余1,除以5也余1,则这个数最⼩是______。
6.当p和p3+5都是质数时,+5=______.7.下列四个图形是由四个简单图形A、B、C、D(线段和正⽅形)组合(记为*)⽽成。
则图中①~④中表⽰A*D的是______。
(填序号)8.下⾯四幅图形中不是轴对称图形的是______。
(填序号)9.⼩华⽤相同的若⼲个⼩正⽅形摆成⼀个⽴体(如图)。
从上⾯看这个⽴体,看到的图形是图①~③中的______。
(填序号)10.图中内部有阴影的正⽅形共有______个。
11.下图中的阴影部分BCGF是正⽅形,线段FH长18厘⽶,线段AC长24厘⽶,则长⽅形ADHE的周长是______厘⽶。
12.图中的熊猫图案的阴影部分的⾯积是______平⽅厘⽶。
(注:阴影部分均由半圆和正⽅形组成,图中⼀个⼩正⽅形的⾯积是1平⽅厘⽶,π取3.14) 13.⼩红看⼀本故事书,第⼀天看了这本书的⼀半⼜10页,第⼆天看了余下的⼀半⼜10页,第三天看了10页正好看完。
这本故事书共有______页。
14.有⼀副扑克牌中(去掉⼤、⼩王),最少取______张牌就可以保证其中3张牌的点数相同。
15.如图,摩托车⾥程表显⽰的数字表⽰摩托车已经⾏驶了24944千⽶,经过两⼩时后,⾥程表上显⽰的数字从左到右与从右到左的读数相同,若摩托车的时速不超过90千⽶,则摩托车在这两⼩时内的平均速度是______千⽶/时。
历届(9—13届)希望杯五年级答案及解析
历届五年级希望杯答案及解析2010年第八届2011年第九届1、解:原式=1.25 ×31.3 ×3 ×8 = 100 ×93.9 = 9392、解:将循环节多写一次即可逐位比较3、解:十位数之前应该有1 + 2 + 3 +……+9 = 45位。
1位数有9位,10—19有20位,20—27有16位,所以十位数的开头应为28,为28293031324、解:从A到B一定会经过三步,第一步要从A走到中间,最后一步应该是从中间走到B,而第二步为从中间走到中间只能有一种走法。
从A到中间一条线上共有5种走法,从B到中间一条线上也有5种走法。
所以共有5 ×1 ×5 = 25种走法。
5、解:在3 ×4的长方形中有20个横平竖直的正方形。
斜着的有1 ×1正方形17个,2 ×2的正方形8个,还有1个3 ×3的大正方形。
共46个。
6、解:47 ÷b = c ……c ,即b ×c + c = 47,即c ×( b + 1 ) = 47,所以c一定是47的约数,c为47肯定不符合条件,所以c = 1,即除数是46,余数是1.7、解:能被90整除说明即能被9整除也能被10整除,被10整除说明最后一位是0,被9整除说明数字和应为9的倍数,即2 + 0 + 1 + 1 + a +0 是9的倍数,所以a = 5,即后两位是50.8、解:约数个数为奇数说明这个自然数为完全平方数,1000以内最大的完全平方数是31²= 9619、解:首先最下面的一个角肯定没有,最上面的中部也会少一部分,所以是丁。
10、解:一圈共400米,甲是乙速度的1.5倍,所以甲共走了240米,乙走了160米。
DE为60米,CE为40米。
SADE = 3000平方米,SBCE = 2000平方米,差为1000平方米。
11、解:弟弟如果不多跑半小时应比哥哥少跑80 ×30 — 900 = 1500米,所以哥哥共跑了1500 ÷(110—80)= 50分钟,共跑了50 ×110 = 5500米。
2014年第十二届小学“希望杯”全国数学邀请赛(四年级第2试)
第十二届小学“希望杯”全国数学邀请赛四年级第2试试题2014年4月13日上午9:00至11:00一、填空题(每空5分,共60分。
)1. 计算:29+42+87+55+94+31+68+76+13=_______。
2. 21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装_______盒。
3. 190表示成10个连续偶数的和,其中最大的偶数是_______。
4. 当小红3岁时,妈妈的年龄和小红今年的年龄相同;当妈妈78岁时,小红的年龄和妈妈今年的年龄相同。
妈妈今年_______岁。
5. 从1,2,3,4,…,30这30个数中任意取10个连续的数,其中恰有2个质数的情况有_______种。
6. 将面积为36的正方形按图1的方式分成4个周长相等的长方形,则图中阴影长方形的面积为_______。
7. 图2的“蝙蝠”图案由若干个等腰直角三角形和正方形组成,已知阴影部分的面积为1,则“蝙蝠”图案的面积是_______。
8. 一列快车和一列慢车相向而行,快车的车长是315米,慢车的车长是300米。
坐在慢车上的人看见快车驶过的时间是21秒,那么坐在快车上的人看见慢车驶过的时间是_______秒。
9. 有4个互不相等的自然数,它们的平均数是10。
其中最大的数至少是_______。
10. 图3中共有三角形_______个。
11. 两个数的和是830,其中较大的数除以较小的数,得商22余2,则这两个数中较大的一个是_______。
12. 有白棋子和黑棋子共2014个,按照如图4的规律从左到右排成一行,其中黑棋子的个数是_______。
二、解答题(每题15分,共60分。
)每题都要写出推算过程。
13. 如果数A增加2,则它与数B的积比A,B的积大60;如果数A不变,数B减少3,则它们的积比A,B的积小24。
那么,如果数A增加2,数B减少3,则它们的积比A,B的积大多少?14. 水果店用三种水果搭配果篮,每个果篮里有2个哈密瓜,4个火龙果,10个猕猴桃。
2021希望杯五年级1-2试 参考答案
2021希望杯五年级1-2试参考答案1第十二届小学“希望杯”全国数学邀请赛五年级第1试试题1.202103165?,余数是 .【考点】数论,整除特征【答案】1【分析】5的整除特征是看个位除以5的余数即可.6除以5余1,故原数除以5也余1.2. 用1、5、7组成各位数字不同的三位数,其中最小的质数是 2.【考点】数论,质数判别,最值【答案】157【分析】首先考虑百位为1;多位数质数的个位不可能为5,故若1在百位,则5只能在十位,进而7在个位.检验157是否为质数:157不是2、3、5、7、11的倍数,故157是质数.3. 10个2021相乘,积的末位数是 3.【考点】数论,余数性质【答案】6【分析】末尾即为此数除以10的余数.根据余数的可乘方性,101025520214(4)66(mod10)oooo, 4.有一列数:1、2、2、3、3、3、4、4、4、4、??每个数n都写了n次.当写到20的时候,数字1出现了. 【考点】计算,数列,页码问题变型【答案】157 【分析】出现过1的数有:1(1个)、10(10个)、11(21122′=个)、12(12个)、13(13个)、??、 19(19个),共有1101121213 一个小数,若去掉小数点,则得到的整数与原小数的和是201.3,那么这个小数是 .【考点】数论,位值原理【答案】18.3【分析】和是201.3,说明原小数的小数部分必定为0.3.故当去掉小数点时,此数扩大到了原来的10倍;再加上自身,得到的和应为原来的11倍,故此数原来是201.31118.3?=.6. 已知三位数abc与cba的差198abccba-=,则abc最大是 .【考点】数论,位值原理,最值【答案】997【分析】用位值原理将条件式按数位拆开:(10010)(10010)9999198abccbaac++-++=-=,故 2ac-=.要abc最大,则要a最大,令9a=,则7c=.b没有限制,故令9b=.abc最大是997. 7.若将20表示成若干个互不相同的奇数的和,那么,不同的表示方法有种.(加数相同,相加的次序不同,算作同一种表示方法.如119+与191+算作同一种表示方法.)【考点】计数,整数分拆,奇偶性【答案】7【分析】20是偶数,故只能分拆成偶数个奇数的和,但6个不同的奇数相加至少是135791136+++++=,故知20最多只能分拆成4个不同的奇数相加.字典排列法:20219317515713911=+=+=+=+=+135111379=+++=+++.共7种. 8.A、B两家面包店销售同样的面包,售价相同.某天,A面包店的面包售价打八折,A面包店这天的营业额是B面包店营业额的1.2倍,则A面包店售出的面包数量是B面包店的倍. 【考点】应用题,经济问题【答案】1.5 【分析】售价×数量=营业额 B:111′=;A:0.8?1.2′=.故知答案是1.20.81.5?=倍. 9.甲桶内有水4升,乙桶内有水13升,向两个桶内加入同样多的水后,乙桶内的水是甲桶内的水的3倍(水不溢出),那么,向每个桶内加入的水是升.【考点】应用题,列方程解应用题【答案】0.5(或可写作 1 2 )【分析】设每个桶内加入的水是x升,则有方程133(4)xx+=+,解得0.5x=. 10.一只蚂蚁从墙根竖直向上爬到墙头用了4分钟,从墙头沿原路返回到出发点用了3分钟.若蚂蚁第二分钟比第一分钟多爬1分米,第三分钟比第二分钟多爬1分米,??,整个过程中,每分钟爬过的路程都比前一分钟多爬1分米,则墙高米.【考点】应用题,列方程解应用题,等差数列【答案】4.2【分析】设第一分钟爬了x分米,则有方程(1)(2)(3)(4)(5)(6)xxxxxxx++++++=+++++,即46315xx+=+,解得9x=,故墙高910111242+++=分米,即4.2米.11.如图,五边形ABCDE内有一点O,O点到五条边的垂线段的长都是4厘米,五边形的周长是30厘米,则五边形ABCDE的面积是平方厘米. 444 44E D C B AO【考点】几何,图形分割,三角形面积公式 3【答案】60【分析】连接OA、OB、OC、OD、OE,则ABCDEOABOBCOCDODEOEASSSSSS=++++△△△△△4242424242ABBCCDDEEA=′?+′?+′?+′?+′?()42 ABBCCDDEEA=++++′?3042=′?60=(平方厘米)12.一天,小华去一栋居民楼做社会调查,这栋楼有15层,每层有35个窗户,每两户人家有5个窗户.若每户人家需要一份调查表,则小华至少应带调查表份. 【考点】应用题【答案】210【分析】每层有355214?′=户人家,故共有1415210′=户人家.13.如图,一个四边形花园的四条边长分别是63米、70米、84米、98米,规定:在花园的四角和边上种树,相邻两棵树的间距是相等的整数(单位:米),则至少植树棵. 84米 70米 63米 98米【考点】数论,最大公因数,间隔问题【答案】45【分析】由于是首尾相连的图形,故树的棵数与间隔数相等,而(63,70,84,98)7=,故相邻两棵树的最大间距是7.总间隔数最少是(63708498)7910121445+++?=+++=个,即至少植树45棵.14.小红和小亮玩“石头剪刀布”的游戏,约定:在每个回合中,如果赢了就得3分,输了就扣2分,每个回合都分出胜负.游戏开始前,两人各有20分,玩了10个回合后,小红的得分是40分,则小红赢了个回合.【考点】应用题,鸡兔同笼型问题【答案】8【分析】方法一(算术):如果小红全输,最终应得202100-′=分,与实际得分相差40分;一个回合之内,赢比输多得325+=分,故知小红赢了4058?=个回合. 方法二(代数):设小红赢了x个回合,则小红输了(10)x-个回合,故有方程 2032(10)40xx+--=,解得8x=.15.如图,线段AB和CD垂直且相等,点E、F、G是线段AB的四等分点,点E、H是线段CD的三等分点,从A、B、C、D、E、F、G、H这8个点中任选3个作为顶点构成三角形,其中,面积与△CFE面积相等的三角形(不包括△CFE)有个.4HGFE D CBA【考点】组合,几何,计数【答案】10【分析】设3AEEFFGGB====,则4CHHEED===.则283CEFSCEEF=′=′△,同样为83 ′型的三角形还有△CEA、△HDF、△HDA;但246CEFS=′△,46′型的三角形有△CHG、△HAF、△HEG、△HFB、△DAF、△DEG、△DFB.共有10个. 16.一个长方体的长、宽、高都是两位数(其中长的值最大),并且它们的和是偶数.若这个长方体的体积是2772、2380、3261、4125这四个数中的一个,则这个长方体的长是. 【考点】数论,奇偶性,分解质因数【答案】21【分析】长、宽、高不可能都是奇数,否则和不可能是偶数.所以这三个数中必有偶数,乘积必为偶数,故体积只可能是2772和2380这两个数中的一个.但2238025717=′′′,故知2380分拆成三个两位数相乘只有一种拆法:2380101417=′′,但此时长、宽、高的和不是偶数,所以体积是2772.22277223711=′′′,分拆成三个两位数相乘有两种拆法:111418′′(舍,和不是偶数)或111221′′,故知长为21.17.如图,用35个棱长为1的小正方体堆成一个大的几何体,这个几何体的表面积(含底面积)是 .【考点】立体几何,三视图法求表面积【答案】90 【分析】三视图法:()2=+++′堆叠体表面积正视图面积俯视图面积侧视图面积凹槽数(1415160)2=+++′90=18.若115、200、268被某个大于1的自然数除,得到的余数都相同,那么,用2021除以这个自然数,得到的余数是 .【考点】数论,同余定理【答案】8【分析】设这个自然数为x,则(200115)x-,且(268200)x-,即85x且68x,故知x是85和68的公因数.(85,68)17=,故17x.又x是大于1的自然数,故 519.一辆汽车从甲地开往乙地,若每小时行45千米,则将比原计划迟到1小时;若每小时行60千米,则将比原计划早到1小时.那么,甲、乙两地的距离是千米.【考点】行程问题,列方程解行程【答案】360 【分析】设原计划用时为x小时,以两地全长为等量关系列方程:45(1)60(1)xx+=-,解得7x=.故两地全长为45(71)360′+=千米. 20.若算式11个的得数是整数,则m的值最大是. 【考点】数论,质因数分解【答案】102【分析】2021!中11的数量:[202111]183?=,[18311]16?=,[1611]1?=,共183161200++=个; 999!中11的数量:[99911]90?=,[9011]8?=,共90898+=个;则中11的数量为20218102-=个2021年第十二届小学“希望杯”全国数学邀请赛五年级第2 试详细解答一、填空题(每题5 分,共60 分。
2014第十二届希望杯五年级第1试试题及答案(纯word)
第十二届小学“希望杯”全国数学邀请赛五年级第1试试题及答案2014年3月16日上午8:30至10:001、20140316÷5,余数是。
2、用1,5,7组成各位数字不同的三位数,其中最小的质数是。
3、10个2014相乘,积的末位数是。
4、有一列数:1,2,2,3,3,3,4,4,4,4,…每个数n都写了n次,当写到20的时候,数字“1”出现了次。
5、一个小数,若去掉小数点,则得到的整数与原小数的和是201.3,那么这个小数是。
6、已知三位数abc与cba的差abc-cba=198,则abc最大是。
7、若将20表示为若干个互不相同的奇数的和,那么,不同的表示方法有(加数相同,相加的次序不同,算作同一种表示方法,如:1+19和19+1算作同一种表示方法)8、A,B两家面包店销售同样的面包,售价相同,某天,A面包店的面包售价打八折,A面包店这天的营业额是B面包店营业额的 1.2倍,则A面包店售出的面包数量是B面包的倍。
9、如图1,甲桶内有水4升,乙桶内有水13升,向两个桶内加入同样多的水后,乙桶内的水是甲桶内的水的3倍(水不溢出),那么,向每个桶内加入的水是升。
10、如图2,一只蚂蚁从墙根竖直向上爬到墙头用了4分钟,从墙头沿原路返回到出发点用了3分钟,若蚂蚁第二分钟比第一分钟多爬1分米,第三分钟比第二分钟多爬1分米,……,整个过程中,每分钟爬过的路程都比前一分钟多1分米,则墙高米。
11、如图3,五边形ABCDE 内有一点O ,O 点到五条边的垂线段的长都是4厘米,五边形的周长是30厘米,则五边形ABCDE 的面积是 平方厘米。
12、一天,小华去一栋居民楼做社会调查,这栋楼有15层,每层有35个窗户,每两户人家有5个窗户,若每户人家需要一份调查表,则小华至少应带调查表 分。
13、如图4,一个四边形花园的四条边长分别是63米,73米,84米,98米,规定:在花园的四角和边长植树,相邻两棵树的间距是相等的整数(单位:米),则至少植树 课。
小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)
第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
希望杯数学竞赛第一届至十历届四年级全部试题与答案(打印版)
球的正上方悬挂有相同的灯泡。A 灯泡位置比 B 灯泡位置低。当灯泡点亮时,受
光照部分更多的是
球。
18.用 20 厘米长的铜丝弯成边长是整数的长方形,这样的长方形不只一种。 其中,面积最小的,长______ 厘米,宽______ 厘米;面积最大的长方形的长 ______ 厘米,宽______ 厘米。
千米。
13.甲、乙、丙三人中只有 1 人会开汽车。甲说:“我会开。”乙说:“我
不会开。”丙说:“甲不会开。”三人的话只有一句是真话。会开车的是
。
14.为了支援西部,1 班班长小明和 2 班班长小光带了同样多的钱买了同一
种书 44 本,钱全部用完,小明要了 26 本书,小光要了 18 本书。回校后,小明
第一届小学“希望杯”全国数学邀请赛(第 1 试)
四年级 第 1 试
1.下边三个图中都有一些三角形,在图 A 中,有
在图 C 中,有
个。
个;在图 B 中,有
个;
2.写出下面等式右边空白处的数,使等式能够成立:
0.6+0.06+0.006+…=2002÷
。
3.观察 1,2,3,6,12,23,44,x,164 的规律,可知 x =
目录
1. 第一届小学“希望杯”全国数学邀请赛(第 1 试) ........................................2 2. 第一届小学“希望杯”全国数学邀请赛(第 2 试) ........................................5 3. 第二届小学“希望杯”全国数学邀请赛(第 1 试) ........................................7 4. 第二届小学“希望杯”全国数学邀请赛(第 2 试) ......................................10 5. 第三届小学“希望杯”全国数学邀请赛(第 1 试) ......................................13 6. 第三届小学“希望杯”全国数学邀请赛(第 2 试) ......................................16 7. 第四届小学“希望杯”全国数学邀请赛(第 1 试) ......................................18 8. 第四届小学“希望杯”全国数学邀请赛(第 2 试) ......................................21 9. 第五届小学“希望杯”全国数学邀请赛(第 1 试) ......................................23 10. 第五届小学“希望杯”全国数学邀请赛(第 2 试) ......................................26 11. 第六届小学“希望杯”全国数学邀请赛(第 1 试) ......................................28 12. 第六届小学“希望杯”全国数学邀请赛(第 2 试) ......................................30 13. 第七届小学“希望杯”全国数学邀请赛(第 1 试) ......................................32 14. 第七届小学“希望杯”全国数学邀请赛(第 2 试) ......................................36 15. 第八届小学“希望杯”全国数学邀请赛(第 1 试) ......................................39 16. 第八届小学“希望杯”全国数学邀请赛(第 2 试) ......................................41 17. 第九届小学“希望杯”全国数学邀请赛(第 1 试) ......................................44 18. 第九届小学“希望杯”全国数学邀请赛(第 2 试) ......................................46 19. 第十届小学“希望杯”全国数学邀请赛(第 1 试) ......................................48 20. 第十届小学“希望杯”全国数学邀请赛(第 2 试) ......................................50 21. 第一届---第八届“希望杯”全国数学邀请赛参考答案………………………53
五年级希望杯试题
19
★★★☆ 三、解答题 17
木材厂加工一批木材,原计划每天加工16.5吨,实际每
天比原计划多加工1.5吨,结果提前3.5天完成了任务。 实际完成任务用了多少天?
20
★★★☆ 三、解答题 18
如果长方形的长减少3.6厘米,宽减少2.5厘米,面积就
比原来减少57.8平方厘米,且剩下部分正好是一个正方 形,求这个正方形的面积。
③ 广西人与四川人、江苏人相隔的层数一样;
④ 广西人在的层数是湖南人和四川人在的层数的和。 根据以上条件可知,甲是( )。
A.广西人
B.湖南人
C.四川人
D.江苏人
9
★★ 二、填空题 计算:(81.8+818.818)÷8.18= 07
。
10
★★ 二、填空题 将两条长度分别是1.49米、1.17米的绳子接起来,接口处 08 共用去绳子0.28米,接好后的绳子长 米。
60
★★★☆
二、填空题
16
星星和贝贝各骑一辆自行车从学校出发,到相隔45千米的森林公园
游玩。贝贝比星星早出发20分,而星星比贝贝早到40分,星星到达 时,贝贝在他的后面10千米处。星星每小时行 千米。
61
★★★
三、解答题
17
食堂第一次运来6袋大米和5袋面粉,一共重360千克;第二次
又运来8袋大米和5袋面粉,一共重440千克。每袋大米和每袋 面粉各重多少千克?
子中各取一个球放入这个盒子;……如此继续,当第2017位小朋友
放完后,A、B、C、D、E五个盒子中各放有几个球?
44
五年级训练题(三)
45
★★ 一、选择题 01 下列说法正确的是(
)。
A. 一个分数的分母越小,它的分数单位就越小
第十二届小学“希望杯”全国数学邀请赛试卷(六年级第2试)
2014年第十二届小学“希望杯”全国数学邀请赛试卷(六年级第2试)一、填空题(每题5分,共60分)1.(5分)若0.4285+x=1.5,则x=.2.(5分)同一款遥控飞机,网上售价为300元,比星星玩具店的售价低20%,则这款遥控飞机在星星玩具店的售价是元.3.(5分)如图所示的老式自行车,前轮的半径是后轮半径的2倍.当前轮转10圈时,后轮转圈.4.(5分)有两组数,第一组数的平均数是15,第二组数的平均数是21.如果这两组数中所有数的平均数是20,那么,第一组数的个数与第二组数的个数的比是.5.(5分)A、B、C三个分数,它们的分子和分母都是自然数,并且分子的比是3:2:1,分母的比2:3:4,三个分数的和是,则A﹣B﹣C=.6.(5分)如图,将长方形ABCD沿线段DE翻折,得到六边形EBCFGD.若∠GDF=20°,则∠AED=°.7.(5分)如图,在平行四边形ABCD中,点E是BC的中点,DF=2FC.若阴影部分的面积是10,则平行四边形ABCD的面积是.8.(5分)如图,直角△ABC的斜边AB=10,BC=5,∠ABC=60°.以点B 为中心,将△ABC顺时针旋转120°,点A、C分别到达点E、D.则AC边扫过的面积(即图中阴影部分面积)是.(π取3)9.(5分)参加体操、武术、钢琴、书法四个兴趣小组的学生中,每人最多可以参加两个兴趣小组.为了保证所选兴趣小组的情况完全相同的学生不少于6人,则参加小组的学生至少有人.10.(5分)如图所示,在正方形ABCDEF中,若△ACE的面积为18,则三个阴影部分的面积和为.11.(5分)小红在上午将近11点时出家门,这时挂钟的时针和分针重合,当天下午将近5点时,她回到家,这时挂钟的时针与分针方向相反(在一条直线上).则小红共出去了小时.12.(5分)甲乙两人分别从相距10千米的A、B两地出发,相向而行,若同时出发,他们将在距A、B中点1千米处相遇;若甲晚出发5分钟,则他们将在A、B中点处相遇,此时,甲走了分钟.二、解答题(每题15分,共60分)13.(15分)超市购进砂糖桔500kg,每千克进价是4.80元,预计重量损耗为10%.若希望销售这批砂糖桔获利20%,则每千克砂糖桔的零售价应定为多少元?14.(15分)将边长是7的大正方形分割为边长分别是1,或2,或3的小正方形,其中至少有多少个边长是1的正方形?在图中画出你的分割方法.答:至少有个边长是1的正方形.15.(15分)如图,△ABC是边长为108cm的等边三角形,虫子甲和乙分别从A点和C点同时出发,沿△ABC的边爬行,乙逆时针爬行,速度比是4:5.相遇后,甲在相遇点休息10秒钟,然后继续以原来的速度沿原方向爬行;乙不休息,速度提高20%,仍沿原方向爬行,第二次恰好在BC的中点相遇.求开始时,虫子甲和乙的爬行速度.16.(15分)用0、1、2、3、4、5中的某两个数组成一个五位偶数,其中一个数字出现2次,另一个数字出现3次.那么共有多少个满足条件的五位数.2014年第十二届小学“希望杯”全国数学邀请赛试卷(六年级第2试)参考答案与试题解析一、填空题(每题5分,共60分)1.(5分)若0.4285+x=1.5,则x=1.【解答】解:原方程可变为:+x=1.5,x=1.5﹣所以,x=1.故答案为:1.2.(5分)同一款遥控飞机,网上售价为300元,比星星玩具店的售价低20%,则这款遥控飞机在星星玩具店的售价是375 元.【解答】解:300÷(1﹣20%)=300÷0.8=375(元)答:这款遥控飞机在星星玩具店的售价是375元.故答案为:375.3.(5分)如图所示的老式自行车,前轮的半径是后轮半径的2倍.当前轮转10圈时,后轮转20 圈.【解答】解:设小轮的半径为1,2×3.14×(1×2)×10÷(2×3.14×1)=12.56×10÷6.28=125.6÷6.28=20(圈),答:后轮转20圈.故答案为:20.4.(5分)有两组数,第一组数的平均数是15,第二组数的平均数是21.如果这两组数中所有数的平均数是20,那么,第一组数的个数与第二组数的个数的比是1:5 .【解答】解:把总个数当作“1”,可设第一组为x则:15x+21×(1﹣x)=20×115x+21﹣21x=206x=1x=则第二组为:1﹣=它们的比为::=1:5.故答案为:1:5.5.(5分)A、B、C三个分数,它们的分子和分母都是自然数,并且分子的比是3:2:1,分母的比2:3:4,三个分数的和是,则A﹣B﹣C=.【解答】解:分数值的比是(3÷2):(2÷3):(1÷4)=18:8:3,==6.(5分)如图,将长方形ABCD沿线段DE翻折,得到六边形EBCFGD.若∠GDF=20°,则∠AED=35 °.【解答】解:∠ADE=(90+20)÷2=55(度),∠AED=180﹣90﹣55=35(度)答:∠AED=35°;故答案为:35.7.(5分)如图,在平行四边形ABCD中,点E是BC的中点,DF=2FC.若阴影部分的面积是10,则平行四边形ABCD的面积是24 .【解答】解:连结AC,因E是BC的中点,根据等底等高的三角形面积相等可知S△ACE=S△ABE=S平行四边形ABCD又DF=2FCS△AFC=S△ADC=S平行四边形ABCDS平行四边形ABCD+S平行四边形ABCD=10S平行四边形ABCD=10S平行四边形ABCD=24答:平行四边形的面积是24.故答案为:24.8.(5分)如图,直角△ABC的斜边AB=10,BC=5,∠ABC=60°.以点B 为中心,将△ABC顺时针旋转120°,点A、C分别到达点E、D.则AC边扫过的面积(即图中阴影部分面积)是75 .(π取3)【解答】解:把三角形EBD旋转到三角形ABC的位置,那么阴影部分可以合并成两个扇形之间的一段圆环.如下图所示:阴影部分AMNE的面积为:S AMNE=S扇形ABE﹣S扇形MBN=﹣=25π;π取3,所以面积为:S AMNE=25×3=75故答案为:75.9.(5分)参加体操、武术、钢琴、书法四个兴趣小组的学生中,每人最多可以参加两个兴趣小组.为了保证所选兴趣小组的情况完全相同的学生不少于6人,则参加小组的学生至少有51 人.【解答】解:参加2个的情况共6种,(体操、武术)、(体操、钢琴)、(体操、书法)、(武术、钢琴)、(武术、书法)、(钢琴、书法),还可以是参加1个的4种.这里可以把这10个情况看做10个抽屉,10×5+1=51(人)答:参加小组的学生至少有51人;故答案为:51.10.(5分)如图所示,在正方形ABCDEF中,若△ACE的面积为18,则三个阴影部分的面积和为 6 .【解答】解:如图,正六边形的面积被平均分成了18个面积相等的部分,又已知若△ACE的面积被平均分成了9部分,又△ACE的面积为18,则阴影部分的面积的和为:18÷9×3=6.故答案为:6.11.(5分)小红在上午将近11点时出家门,这时挂钟的时针和分针重合,当天下午将近5点时,她回到家,这时挂钟的时针与分针方向相反(在一条直线上).则小红共出去了 6 小时.【解答】解:分针每小时走=30°小红出门时分针与时针相差360°﹣30°×2×60°=300°回家是分针与时针相差30°×4=120°分针又超过时针30°×4=120°又超过了时针180°整个过程分针比时针多走了120°+180°=300°,因此,上小红出门和回家时,分针的位置没变,只是时数相加即可,即10时﹣4时=6时.故答案为:6.12.(5分)甲乙两人分别从相距10千米的A、B两地出发,相向而行,若同时出发,他们将在距A、B中点1千米处相遇;若甲晚出发5分钟,则他们将在A、B中点处相遇,此时,甲走了10 分钟.【解答】解:若甲晚出发5分钟,则他们将在A、B中点处相遇,设此时甲走了x分钟,得::=3:2(x+5):x=3:23x=2x+10x=10答:甲走了10分钟.故答案为:10.二、解答题(每题15分,共60分)13.(15分)超市购进砂糖桔500kg,每千克进价是4.80元,预计重量损耗为10%.若希望销售这批砂糖桔获利20%,则每千克砂糖桔的零售价应定为多少元?【解答】解:500×4.8÷(500﹣500×10%)×(1+20%)=2400÷450×1.2=6.4(元)答:每千克砂糖桔的零售价应定为6.4元.14.(15分)将边长是7的大正方形分割为边长分别是1,或2,或3的小正方形,其中至少有多少个边长是1的正方形?在图中画出你的分割方法.答:至少有 3 个边长是1的正方形.【解答】解:设用3×3的正方形x个,2×2的正方形y个,1×1的正方形z个,那么有关系式:9x+4y=49﹣z,简单尝试可知x≤4,y≤9,z=0时,解9x+4y=49,x=5,y=1(舍);x=1,y=10(舍);z=1时,解9x+4y=48,x=4,y=3(舍);x=1,y=12(舍);z=2时,解9x+4y=47,x=3,y=5(舍,发现如果用3个3×3的,无法放5个2×2的);z=3时,解9x+4y=46,x=2,y=7,尝试画一下发现可以满足条件.如下图:故答案为:3.15.(15分)如图,△ABC是边长为108cm的等边三角形,虫子甲和乙分别从A点和C点同时出发,沿△ABC的边爬行,乙逆时针爬行,速度比是4:5.相遇后,甲在相遇点休息10秒钟,然后继续以原来的速度沿原方向爬行;乙不休息,速度提高20%,仍沿原方向爬行,第二次恰好在BC的中点相遇.求开始时,虫子甲和乙的爬行速度.【解答】解:甲的路程=108×2÷(4+5)×4=96(厘米),乙的路程=108×2﹣96=120(厘米).第二次在BC中点相遇,则由第一次相遇到第二次相遇甲的路程是120﹣108÷2=66(厘米),乙的路程是96+108+108÷2=258(厘米).相遇后甲乙速度比=4:(5×120%)=2:3,故甲行66厘米时,乙爬行的路程是66÷2×3=99(厘米),则甲休息的10秒钟,乙爬行的距离是258﹣99=159(厘米),乙最初的爬行速度是159÷10÷(1+20%)=13.25(cm/s),甲的速度是13.25÷5×4=10.6(cm/s)答:虫子甲的爬行速度为10.6cm/s,乙的爬行速度为13.25cm/s.16.(15分)用0、1、2、3、4、5中的某两个数组成一个五位偶数,其中一个数字出现2次,另一个数字出现3次.那么共有多少个满足条件的五位数.【解答】解:(1)当个位是0时:需要再从剩下的5个数中选一个,0的个数可以是两个也可以是3个,当有两个0时有4种排列方式,有三个0时有6种排列方式,所以共有:5×(4+6)=50(个)其中最高位是0的有:5×(1+3)=20(个)符合条件的有:50﹣20=30(个)(2)个位不是0时,可以是2或4两种,需要再从剩下的5个数中选一个,当2或4有两个时有4种排列方式,当2或4有三个时有6种排列方式,所以共有:2×5×(4+6)=100(个)其中最高位是0的有:2×(3+3)=12(个)故符合条件的有:100﹣12=88(个)所以共有:30+88=118(个)答:满足条件的五位数有118个.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/4/22 15:48:13;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
第十二届小学希望杯全国数学邀请赛
第十二届小学 希望杯 全国数学邀请赛四年级㊀㊀第1试以下每题6分,共120分㊂1.过元旦时,班委会用730元为全班同学每人买了一份价值17元的纪念品,剩余16元,那么,这个班共有学生名㊂2.买5斤黄瓜用了11元8角,比买4斤西红柿少用1元4角,那么,每斤西红柿的价格是元角㊂图13.图1是4ˑ4的方格图,有3个小正方形有阴影,若再将一个小正方形涂阴影,使方格图成为轴对称图形,则不同的涂法有种㊂4.小东和小荣同时从甲地出发到乙地㊂小东每分钟行50米,小荣每分钟行60米㊂小荣到达乙地后立即返回㊂若两人从出发到相遇用了10分钟,则甲㊁乙两地相距米㊂5.如图2,从一张长50厘米㊁宽20厘米的长方形纸片上剪去边长分别是12厘米和4厘米的两个正方形,则剩余部分图形的周长是厘米㊂图2图36.图3是长方形,将它分成7部分,至少要画条直线㊂7.甲㊁乙两个油桶中共有100千克油,将乙桶中的15千克油注入甲桶,此时甲桶中的油是乙桶中的油的4倍㊂那么,原来甲桶中的油比乙桶中的油多千克㊂8.甲㊁乙㊁丙三校合办画展,参展的画中,有41幅不是甲校的,有38幅不是乙校的,甲㊁乙两校参展的画共43幅,那么,丙校参展的画有幅㊂9.一个正方形的面积与一个长方形的面积相等,若长方形的长是1024,宽是1,则正方形的周长是㊂10.如图4,每个小正方形的边长都是1,那么,图中面积为2的阴影长方形共有个㊂图4图5㊀㊀11.如图5,将一张圆形纸片对折,再对折,又对折, ,到第六次对折后,得到的扇形的面积是5,那么,圆形纸片的面积是㊂12.自然数a是3的倍数,a-1是4的倍数,a-2是5的倍数,则a最小是㊂13.四年级的两个班共有学生72人,其中有女生35人,四(1)班有学生36人,四(2)班有男生19人,则四(1)班有女生人㊂图6 14.如图6,阴影小正方形的边长是2,最外面的大正方形的边长是6,则正方形A B C D的面积是㊂15.一辆汽车和一辆卡车分别从A㊁B两地同时相向而行,已知汽车的速度是卡车的2倍㊂汽车在8:30到达途中C地,卡车在当日15:00到达C地,两车到达C地时不停车,继续前行㊂则两车相遇的时刻是㊂16.若两位数a b比c d大24,三位数1a b比c d1大15,则a d=㊂17.体操表演者排成每一横行和每一竖列中的人数相同的方阵,每个方阵最外一圈有16人,若四个这样的方阵恰好可以合并成一个大方阵,则大方阵的最外一圈有人㊂18.2013年12月31日是星期二,那么,2014年6月1日是㊂(用数字作答:星期一用1表示,星期二用2表示,星期三用3表示,星期四用4表示,星期五用5表示,星期六用6表示,星期日用7表示㊂)19.五位数186a b,被3除余2,被5除余3,被11除余0,则a b=㊂20.黑板上写着一个九位数222222222,对它做如下操作:擦掉末位数后又乘4,再加上刚擦去的数字,然后在黑板上写下得到的数; ;如此操作下去,直到在黑板上写下的是一个一位数,那么,它是㊂。
五年级希望杯近几年试题
2010年第八届小学“希望杯”全国数学邀请赛五年级第1试试题1、计算×+×= ;2、已知÷÷=÷□,其中□表示的数是 ;3、计算:1.825-0.8= ;8、5、8的上面有循环点4、有三个自然数a,b,c,已知b除以a,得商3余3;c除以a,得商9余11;则c除以b,得到的余数是 ;5、已知300=2×2×3×5×5,则300一共有不同的约数;6、在99个连续的自然数中,最大的数是最小的数的倍,那么这99个自然数的平均数是 ;7、要往码头运28个同样大小的集装箱,每个集装箱的质量是1560千克;现安排一辆载重6吨的卡车运送这些集装箱,卡车车厢的大小最多可以容纳5个集装箱,则这辆卡车至少需往返趟;8做好这道菜至少要分钟9、一项特殊的工作必须日夜有人看守,如果安排8人轮流值班,当值人员为3人,那么,平均每人每天工作小时;10、甲、乙两商店中某商品的定价相同;甲商店按定价销售这种商品,销售额是7200元;乙商店按定价的八折销售,比甲商店多售出15件,销售额与甲商店相同;则甲商店售出件这种商品;11、夜里下了一场大雪,早上,小龙和爸爸一起步测花园里一条环形小路的长度,他们从同一点同向行走;小龙每步长54厘米,爸爸每步长72厘米,两人各走完一圈后又都回到出发点,这时雪地上只留下60个脚印;那么这条小路长米;12、一艘客轮在静水中的航行速度是26千米/时,往返于A、B两港之间,河水的流速是6千米/时;如果客轮在河中往返4趟公用13小时,那么A、B两港之间相距千米;13、如图1,将从2开始的偶数从小到大排列成一个顺时针方向的直角螺旋,4,6,10,14,20,26,34,……依次出现在螺旋的拐角处;则2010 填“会”或“不会”出现在螺旋的拐角处图114、大猴采到一些桃子,分给一群小猴吃;如果其中两只小猴各分得4个桃,其余每只小猴各分得2个桃,则最后剩4个桃;如果其中一只小猴分得6个桃,其余每只小猴各分得4个桃,那么还差12个桃;大猴共采到个桃,这群小猴共有只;的油倒入15、甲、乙、丙三个桶内各装了一些油;先将甲桶内13乙桶,再将乙桶内1的油倒入丙桶,这时三个桶内的油一样多;5如果最初丙桶内有油48千克,那么最初甲桶内有油千克,乙桶内有油千克;16、甲、乙两车从相距330千米的A、B两城相向而行,甲车先从A城出发,过一段时间后,乙车才从B城出发,并且甲车的速度是乙车的速度的56;当两车相遇时,甲车比乙车多行驶了30千米,则甲车开出千米,乙车才出发;17、□,○,△分别表示三个小木块,它们的质量各不相同,可能是1克、2克、3克、4克或5克;根据图2可判断,□的质量是克,○的质量是克,△的质量是克;图2图318、如图3,四个完全相同的正方体木块并排放在一起,木块的6个面上涂有6种不同的颜色,则与涂蓝色的面相对的那一面上是色;19、用九个如图甲所示的小长方体拼成一个如图4乙所示的大长方形,已知小长方形的体积是750立方厘米,则大长方体的表面积是平方厘米;单位:厘米甲乙图4图520、如图,边长为12厘米的正方形中有一块阴影部分,阴影部分的面积是平方厘米;2011年第九届小学希望杯全国数学邀请赛五年级第1试试题1.计算:××24=.2.把,••32,•3,•1•3按照从小到大的顺序排列:___________<<<然后按一定的规律分组:1,23,456,7891,01112,131415,……在分组后的数中,有一个十位数,这个十位数是.4.如图1,从A到B,有条不同的路线.不能重复经过同一个点5.数一数,图2中有个正方形.6.一个除法算式中,被除数、除数、商与余数都是自然数,并且商与余数相等.若被除数是47,则除数是 ,余数是.7.如果六位数□□2011能被90整除,那么它的最后两位数是.8.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”.那么,1000以内最大的“希望数”是.9.将等边三角形纸片按图3所示步骤折叠3次图3中的虚线是三边中点的连线,然后沿过两边的中点的直线剪去一角如图4.图3 图4将剩下的纸片展开,平铺,得到的图形是.10.如图5,甲乙两人按箭头方向从A点同时出发,沿着正方形ABCD的边行走,正方形ABCD 的边长是100米,甲的速度是乙的速度的倍,两人在E点第一次相遇,则三角形ADE的面积比三角形BCE的面积大平方米.图511.星期天早晨,哥哥和弟弟去练习跑步.哥哥每分钟跑110米,弟弟每分钟跑80米.弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米.那么哥哥跑了米.12.小明带了30元钱去买文具,买了3个笔记本和5支笔,剩余的钱,如果再买2支笔还差元,如果再买2个笔记本则还差2元.那么笔记本每个元,笔每支元.13.数学家维纳是控制论的创始人.在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄.维纳的回答很有趣,他说:“我的年龄的立方是以个四位数,年龄的四次方是一个六位数,这两个数刚好把0~9这10个数字全都用上了,不重也不漏.”那么,维纳这一年岁.注:数a的立方等于a×a×a,数a的四次方等于a×a×a×a14.鸡与兔共100只,鸡的脚比兔的脚多26只.那么,鸡有只.15.小松鼠储藏了一些松果过冬.小松鼠原计划每天吃6个松果,实际每天比原计划多吃2个,结果提前5天吃完了松果.小松鼠一共储藏了个松果.16.商店对某种饮料推出“第二杯半价”的促销办法.那么,若买两杯这种饮料,相当于在原价的基础上打折.、B、C、D四人进行围棋比赛,每人都要与其他三人各赛一盘.比赛在两张棋盘上同时进行,每人每天只赛一盘.第一天A与C比赛,第二天C与D比赛,第三天B与比赛.18.有白球和红球共300个,纸盒100个.每个纸盒里都放3个球,其中放1个白球的纸盒有27个,放2个或3个红球的纸盒共有42个,放3个白球和3个红球的纸盒数量相同.那么,白球共有个.19.用长5厘米、宽4厘米、高3厘米的长方体木块叠成一个最大的正方体,至少需要个这样的长方体木块.20.如图6,梯形ABCD的上底AD长12厘米,高BD长18厘米,BE=2DE,则下底BC长厘米.2012年第十届小学“希望杯”全国数学邀请赛五年级第1试1.计算:×67+×88=2.计算:+3.用1,2,3,4,5和+,-,×,÷组合成一个算式不含括号,计算结果最大是 ;4.一件商品对原价打八折和打六折的售价相差元,这件商品的原价是元;5.将252块巧克力,294盒饼干,336袋牛奶分成相同的份数,并且都没有余数,那么最多可以分成份;6.若8只羊一星期要吃168千克饲料,一头牛的食量是一只羊的食量的倍,那么,200只羊和180头牛一个月按30天计要吃千克饲料;7.图1中,阴影面积最大的图形是 ,阴影面积最小的图形是 ;填序号8.一个两位数,将它的十位数字和个位数字对调,得到的数比原来的数大18,这样的两位数有个;9.如图2,如果小数的愿望能够实现,那么它的身高平均每年要增长到上一年的倍; 图110.两个不同的三位数被13除,若得到相同的余数,那么,这两个三位数的和最大是 ,他们的差最大是 ;11.如图3,从左到右,在每列各选出一个框,组成算式如:5×2+3,则有种不同的结果; 图2、B两地间有一条公路;甲车从A驶到B,需60分钟;乙车从B驶到A,需120分钟;若甲、乙两车分别从A、B两地同时出发,则在出发后分钟相遇;13.学校购买了数量相同的课桌和椅子,用小货车装运,每车装17张课桌和13把椅子;装了若干车后,课桌剩9张,椅子剩77把;那么,此时已经装了 车;按1桌1椅为1套,那么学校购买了 套课桌和椅子;14.如图4,甲、乙、丙三个大小相同的杯子在桌面上一次排列,其中甲杯中盛满水,乙和丙是空杯;现把水全部倒入相邻左或右的空杯中,那么,经过55次倒水后,有水的是杯;15.要搭建如图5所示的立体,需要个相同的小正方体;16.用60个相同的正方体,可以堆积成形状不同的长方体 个;17.恰有两个数字相同的三位数共有 个;18.小王为一个16人的旅游团购买飞机票,座位有经济舱和商务舱可选择,其中经济舱的票价是720元/人,商务舱的票价是1500元/人;这次购票共花费13080元,则小王购买了张经济舱机票;19.如图6,在由9个相同的小正方形拼成的3×3网格中,标出9个角;则的度数是;20.在一个海岛上居住者2012人,其中一些人总是说假话,其余的人总是说真话;岛上的每一位居民都崇拜太阳神、月亮神和地球神这三个神中的一个;一位外来的采访者向岛上的每一位居民提出三个问题:1你崇拜太阳神吗2你崇拜月亮神吗3你崇拜地球神吗对第一个问题,有804人回答:“是”;对第二个问题,有1004人回答:“是”;对第三个问题,有1204人回答:“是”;那么,他们中有人说的是真话;2013第十一届小学“希望杯”全国数学邀请赛五年级 第1试试题1.计算:××39+= ;2.规定a△b=a÷a+b,那么251△= ;3.若干个数的平均数是2013,增加一个数后,平均数仍是2013,则增加的这个数是 ;4.如果三位数3□2是4的倍数,那么□里能填的最小的数是 ,最大的数是 ;5.观察下图,代表的数是 ;1 3 5 7 9 8 6 4 22 4 6 8 7 5 33 5 7 6 44 6 56.小明在计算一个整除的除法算式时,不小心将除数18看成15,得到的商是24,则正确的商是 ;7.将100块糖分成5份,使每一份的数量依次多2,那么最少的一份有 糖 块,最多的一份有糖 块;8.一件商品,对原价打九折和打七折后的售价相差,那么此商品的原价是 元;9.有26个连续的自然数,如果前13个数的和是247,那么,后13个数的和是 ;10.在三位数253,257,523,527中,质数是 ;个棱长为1的正方体在地面上堆成如图1所示的几何体,将它的表面包括与地面接触部分染成红色,那么红色部分的面积是 ;12.如图2,若梯形ABCD的上底AD长16厘米,高BD长21厘米,并且BD=3DE,则三角形ADE 的面积是平方厘米,梯形的下底BC长厘米;13.小丽将一些巧克力装入大,小两种礼盒中的一种礼盒内,如果每个小礼盒装5块巧克力,那么剩下10块;如果每个大礼盒装8块巧克力,那么少2块;已知小礼盒比大礼盒多3个,则这些巧克力共有块;14.从甲地到乙地,小张走完全程用2个小时,小李走完全程用1个小时;如果小张和小李同时从甲地出发去乙地,后来,在某一时刻,小张未走的路程恰好是小李未走的路程的2倍,那么此时他们走了分钟;15.有16盒饼干,其中15盒的重量含盒子相同,另有1盒少了几块,如果用天平称,那么至少称次就一定能找出这盒饼干;16.编号1~10的10名篮球运动员轮流进行三人传球训练,第1轮由编号1,2,3的队员训练,然后依次是编号4,5,67,8,910,1,2,…的队员训练,当再次轮到编号1,2,3的队员时,将要进行的是第轮训练;17.将一个胶质的正方体扩大成另一个正方体,使新正方体的表面积是原正方体表面积的4倍,则新正方体的棱长是原正方体棱长的倍,体积是原正方体体积的倍; 18.将55株杜鹃分成株数相同的若干份,32株月季也分成株数相同的若干份,然后将这两种花逐份间隔种植,排成一列,并且两端都种杜鹃,如图3所示,那么每份杜鹃有株,每份月季有株;19.从1分,2分,5分硬币各有5枚的一堆硬币中取出一些,合成1角钱,共有不同的取法种;20.将1到2013中的偶数排成一列,然后按每组1,2,3,4,1,2,3,4…个数规律分组如下每个括号为一组:2,4,6,8,10,12,14,16,18,20,22,24,26,…则最后一个括号内的各数之和是 ;附加题每题10分,共20分;1.将1,2,3,4,5,6随意填入图4的小圆圈内,将相邻两数相乘,再将所得的6个乘积相加,则得到的和最小是 ;2.如图5,5个等腰直角三角形叠放在一起,它们的斜边都在一条直线上,已知最小的等腰直角三角形的斜边长4厘米,其余4个等腰直角三角形的斜边长依次多4厘米,则图中阴影部分的面积是平方厘米;。
五年级希望杯近四年一二试试题及答案解析
第十三届小学“希望杯”全国数学邀请赛五年级 第1试试题以下每题6分,共120分 1、计算:(2015201.520.15)________.2.015--=2、9个13相乘,积的个位数字是________.3、如果自然数a ,b ,c 除以14都余5,则a b c ++除以14,得到的余数是_______.4、将1到25这25个数随意排成一行,然后将它们依次和1,2,3,,25L 相减,并且都是大数减小数,则在这25个差中,偶数最多有_______个.5、如图1,有3个长方形,长方形①的长为16厘米,宽为8厘米;长方形②的长、宽分别是长方形①长、宽的一半;长方形③的长、宽分别是长方形②长、宽的一半,则这个图形的周长是_______厘米.图16、字母,,,,,,a b c d e f g 分别代表1至7中的一个数字,若a b c c d e c f g ++=++=++,则c 可取的值有________个.7、用64个体积为1立方米的小正方体拼成一个大正方体,如果将大正方体的8个顶点处的小正方体都去掉,则此时的几何体的表面积是 平方米.8、有一个三位数,百位数字是最小的质数,十位数字是算式(0.3+π×13)的结果中小数点后的第一位数字,个位数字是三位数中能被17整除的最小数的个位数字,则这三位数是 .(π取3.14)9、循环小数0.0142857&&的小数部分的前2015位数字之和是 . 10、如图,用若干个相同的小正方体摆成一个几何体,从上面、前面、左面看,分别是①、②、③,则至少需要 小正方体.11、已知a 与b 的最大公约数是4,a 与c 以及b 与c 的最小公倍数都是100,而且a 小于等于b ,则满足条件的有序自然数对(a ,b ,c )共有 组.12、从写有1、2、3、4、5的5张卡片中任取3张组成一个三位数,其中不能被3整除的有_____个.13、两位数ab 和ba 都是质数,则ab 有 个.14、ab ,cde 分别表示两位数和三位数, 如果ab + cde =1079,则a +b +c +d +e =15、已知三位数abc ,并且a (b +c )=33,b (a +c )=40, 则这个三位数是 .16、若要组成一个表面积为52的长方体,则最少需要棱长为1的小正方体 个.17、某工厂生产一批零件,如果每天比原计划少生产3个,同时零件生产定额减少60个,那么需要31天完成,如果每天超额生产3个,并且零件生产定额增加60个,那么经过25天即可完成.则原计划的零件生产定额是 个.18、某次考试中,11名同学的平均分经四舍五入到小数点后的第一位等于85.3,已知每名同学的得分都是整数,则这11名同学的总分是 分.19、有编号1,2,3,4…2015的2015盏亮着的电灯,各有一个拉线开光控制,若将编号为2的倍数,3的倍数,5的倍数的灯线都各拉一下,这时,亮着的灯有 盏.20、今年是20XX 年,小明说:“我现在的年龄正好与我出生那年年份的四个数字之和相同.”则小明现在 ①②③第十三届小学“希望杯”全国数学邀请赛 五年级 第二试试题一.填空题(每小题5分,共60分)1. 用3、4、7、8这4个数字组成两个两位数(每个数字只能使用一次,且必须使用),它们的乘积最大是 .【解析】首先要想让乘积最大,应该先乘数的十位尽量大,所以十位应用7、8.然后根据数字和一定,两数差越小乘积越大,可以知道83和74的差是最小的,因此乘积最大是83746142⨯=.2. 有三个自然数,它们的和是2015,两两相加的和分别是m +1,m +2011和m +2012,则m =____. 【解析】由题意可以知道(1)m +、(2011)m +、(2012)m +三者的和是三个自然数和的2倍, 因此12011201220152m m m +++++=⨯,得出2m =.3.用1、2、3、5、6、7、8、9这8个数字最多可以组成____个质数(每个数字只能使用一次,且必须使用).【解析】方法一:由于8个数字中有2个不为2的偶数,这2个数不能在个位,因此可以组成的质数最多有826-=(个),经尝试可得2、3、5、7、61、89满足条件,因此最多可以组成6个质数;方法二:题目要求最多个质数,应该使一位数的质数尽量多,有2、3、5、7;剩下1、6、8、9,我们会发现6和8只要放在个位这个数就不是质数,尝试可以组成61和89这两个质数,因此最多可以组成6个质数.4. 一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是____分.【解析】10个人的总分是8410840⨯=(分),其他9个人的总分是84093747-=(分),因此其他9个人的平均分是747983÷=(分).5. 同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6),则朝上一面的4个数字的和有____种.【解析】朝上一面的4个数字和最大是666624+++=,最小是11114+++=,最小和最大数字和之间的情况都有可能出现,因此朝上一面的4个数字和有244121-+=(种).6. 某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是_____.【解析】三个彼此互质的自然数乘积是665,则其中必然有一个质数是5,6655133=⨯,那么133等于另外两个质数的乘积,可以看出133719=⨯,那么知道这三个彼此互质的自然数分别是5、7、19,长方体的表面积是(57719519)2526⨯+⨯+⨯⨯=.【解析】若3n 是5的倍数,那么n 也是5的倍数,由题意可以得到n 既是3的倍数,也是5的倍数,所以n 的最小值是3515⨯=.8. 从1、2、3、4、5 中任取3个组成一个三位数,其中不能被3整除的三位数有_____个. 【解析】若这个三位数的数字和不能被3整除,那么就不能被3整除.枚举可以知道(1、2、4),(1、2、5),(1、3、4),(1、4、5),(2、3、5),(2、4、5)这6组数字的数字和不能被3整除.那么不能被3整除的三位数有33636A ⨯=(个).9.观察下表中的数的规律,可知第8行中,从左向右第5个数是_____.【解析】前7行共有135********++++++=(个)数,即第7行的最后一个数是49,那么第8行前5个数分别是50、51、52、53、54,所以从左到右第5个数是54.10.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换______只鸡.【解析】根据题意有:2牛=42羊,3羊=26兔,2兔=3鸡,所以可得: 3牛=4223÷⨯羊=63羊=26363÷⨯兔=546兔=54623÷⨯鸡=819鸡.11.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有_____种不同围法(边长相同的矩形算同一种围法).【解析】设矩形的长为a ,宽为b ,且a b ≥,根据题意可得:17a b +=,由于a 、b 均为整数,因此(a ,b )的取值有以下8种:(16,1),(15,2),(14,3),(13,4),(12,5),(11,6),(10,7),(9,8).12.将五位数“12345”重复写403次组成一个2015位数:“123451234512345…”,从左往右,先删去这个数中所有位于奇数位上的数字,得到一个新数;再删去新数中所有位于奇数位上的数字;按上述规则一直删下去,直到剩下一个数字为止,则最后剩下的数字是______. 【解析】从左到右删去奇数位上的数字,第一次删除后剩余第2,4,6,8,L 12k (11007k ≤)位上的数; 第二次删除后剩余第4,8,12,16,L ,()224503k k ≤位上的数;L 第n 次删除后剩余第2,22,23n n n ⨯⨯L 位上的数,以此类推最后剩余的一定是1021024=位上的数字(11220482015=>),102452044÷=L L,所以最后剩余的数字应为4.二、解答题(每个小题15分,共60分),每题都要写出推算过程13.甲、乙两船顺流每小时行8千米,逆流每小时行4千米.若甲船顺流而下,然后返回;乙船逆流而上,然后返回.两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?【解析】设甲船顺水航行x小时,则逆水航行()3-x小时,根据题意列方程得:()843x x=-,解得:1x=,甲船出发后顺水航行1小时后逆水航行2小时;同理可求出乙船出发后逆水航行2小时后顺水航行1小时.因此出发后的第2个小时甲、乙两船均逆水,有1小时行船方向相同.14.图中有多少个三角形?图1【解析】设最小的三角形面积为1,图中面积为1的三角形有16个;面积为2的三角形有44+8=24⨯(个);面积为4的三角形有44+4=20⨯(个);面积为8的三角形4+4=8(个);面积为16的三角形有4个;所以共有16+24+20+8+4=72(个).15.如图2,在一个平行四边形纸片上剪去甲、乙两个直角三角形.甲直角三角形的两条直角边边分别为8cm和5cm. 乙直角三角形的两条直角边边分别为6cm和2cm.求图中阴影部分的面积.图2 【解析】如下图所示,延长CP与DF垂直于F,DF与AH交于E,由于ABCD为平行四边形,则直角三角形CFD与甲三角形相等,直角三角形AED与乙三角形相等,阴影部分的面积为直角三角形CFD与直角三角形AED面积之和减去长方形EFPH,可得EF=5-2=3cm,EH=8-6=2cm,则阴影部分的面积为8×5÷2+6×2÷2-3×2=20(平方厘米). 16. 有158个小朋友排成一排,从左边第一个人起(第一个人发一个苹果),每隔1人发一个苹果,又从右边第一个人起(第一个人发一个香蕉),每隔2人发一个香蕉,求没有得到水果的小朋友的人数.【答案】52人【解析】由于从左边第一个人起(第一个人发一个苹果),每隔1人发一个苹果,即每2个人1个周期,158能被2整除,相当于从右边起(第一个人不发苹果),每隔1人发一个苹果,又从右边第一个人起(第一个人发一个香蕉),每隔2人发一个香蕉,发香蕉的周期为3,则从右边起每6个人为一个周期,发的水果数如下:苹果 1 0 1 0 1 0香蕉0 0 1 0 0 1可以发现每个6个人的周期中共有2人没发水果,158÷6=26…… 2,剩余的2人均发了水果,则没发水果的一共有26×2=52(人).第十三届小学“希望杯”全国数学邀请赛五年级第二试试题一.填空题(每小题5分,共60分)1.用3、4、7、8这4个数字组成两个两位数(每个数字只能使用一次,且必须使用),它们的乘积最大是 .2.有三个自然数,它们的和是2015,两两相加的和分别是m+1,m+2011和m+2012,则m=____.3.用1、2、3、5、6、7、8、9这8个数字最多可以组成____个质数(每个数字只能使用一次,且必须使用).4.一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是____分.5.同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6),则朝上一面的4个数字的和有____种.6.某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是_____.7.大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是_____.8. 从1、2、3、4、5 中任取3个组成一个三位数,其中不能被3整除的三位数有_____个.9.观察下表中的数的规律,可知第8行中,从左向右第5个数是_____.10.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换______只鸡. 长相同的矩形算同一种围法).12.将五位数“12345”重复写403次组成一个2015位数:“123451234512345…”,从左往右,先删去这个数中所有位于奇数位上的数字,得到一个新数;再删去新数中所有位于奇数位上的数字;按上述规则一直删下去,直到剩下一个数字为止,则最后剩下的数字是______.二、解答题(每个小题15分,共60分),每题都要写出推算过程13.甲、乙两船顺流每小时行8千米,逆流每小时行4千米.若甲船顺流而下,然后返回;乙船逆流而上,然后返回.两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?14.图中有多少个三角形?图115.如图2,在一个平行四边形纸片上剪去甲、乙两个直角三角形.甲直角三角形的两条直角边边分别为8cm和5cm. 乙直角三角形的两条直角边边分别为6cm和2cm.求图中阴影部分的面积.图216. 有158个小朋友排成一排,从左边第一个人起(第一个人发一个苹果),每隔1人发一个苹果,又从右边第一个人起(第一个人发一个香蕉),每隔2人发一个香蕉,求没有得到水果的小朋友的人数.2014第十二届希望杯五年级试题1.201403165÷,余数是________。
希望杯五年级历届试题及答案
2011年第九届初赛1.计算:1.25×31.3×24=。
2.把0.123,0.2,0.1,0.12按照从小到大的顺序排列:<<<3.先将从1开场的自然数排成一列:1415......然后按一定的规律分组:1,23,456,7891,01112,131415,......在分组后的数中,有一个十位数,这个十位数是。
4.如图1,从A到B,有条不同的路线。
〔不能重复经过同一个点〕5.数数,图2中有个正方形。
6.—个除法算式中.被除数、除数、商与余数都是自然数,并且商与余数相等假设被除数是47.那么除数是,余数是。
7.如果六位数2011□□能被90整除.那么它的最后两位数是。
8.如果一个自然数的约数的个数是奇数,我们称这个自然数为"希望数〞。
那么,1000以内最大的"希望数〞是。
9.将等边三角形纸片按图3所示步骤折叠3次〔图3中的虚线是三边的中点的连线然后沿过两边的中点的直线减去一角〔如图4〕将剩下的纸片展开,平铺.得到的图形是。
10.如图5,甲、乙两人按箭头方向从A点问时出发,沿着正方形ABCD的边行走,正方形ABCD 的边长是100米,甲的速度是乙的速度的1.5倍,两人在E点第一次相遇,那么三角形ADE 的面积比EBC三角形的面积大平方米。
11.星期天早晨,哥哥和弟弟去练习跑步。
哥哥每分钟跑110米,弟弟每分钟跑80米。
弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米。
那么,哥哥跑了米。
12.小明带了30元钱去买文具,买了3个笔记本和5支笔,剩余的钱,如果再买2支笔还差0.4元,如果再买2个笔记本那么还差2元。
那么,笔记本每个元,笔每支元。
13.数学家维纳是控制论的创始人。
在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄。
维纳的问答很有趣,他说:"我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0〜9这10个数字全都用上了,不重也不漏。
2014年第十二届小学“希望杯”全国数学邀请赛试卷(四年级第2试)
2014年第十二届小学“希望杯”全国数学邀请赛试卷(四年级第2试)一、填空题(每空5分,共60分)1.(5分)计算:29+42+87+55+94+31+68+76+13=.2.(5分)21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装盒.3.(5分)190表示成10个连续偶数的和,其中最大的偶数是.4.(5分)当小红3岁时,妈妈的年龄和小红今年的年龄相同;当妈妈78岁时,小红的年龄和妈妈今年的年龄相同.妈妈今年岁.5.(5分)从1、2、3、4、…、30这30个数中任意取10个连续的数,其中恰有2个质数的情况有种.6.(5分)将面积为36的正方形按如图的方式分成4个周长相等的长方形,取图中阴影长方形的面积为.7.(5分)如图的“蝙蝠”图案由若干个等腰直角三角形和正方形组成,已知阴影部分的面积为1,则“蝙蝠”图案的面积是.8.(5分)一列快车和一列慢车相向而行,快车的车长是315米,慢车的车长是300米.坐在慢车上的人看见快车驶过的时间是21秒,那么坐在快车上的人看见慢车驶过的时间是秒.9.(5分)有4个互不相等的自然数,它们的平均数是10.其中最大的数至少是.10.(5分)如图中共有三角形个.11.(5分)两个数的和是830,其中较大的数除以较小的数,得商22余2,则这两个数中较大的一个是.12.(5分)有白棋子和黑棋子共2014个,按照如图的规律从左到右排成一行,其中黑棋子的个数是.○●○●●○●●●○●○●●○●●●○●○●●○…二、解答题(每题15分,共60分.)每题都要写出推算过程.13.(15分)如果数A增加2,则它与数B的积比A、B的积大60;如果数A不变,数B减少3,则它们的积比A、B的积小24,那么,如果数A增加2,数B减少3,则它们的积比A、B的积大多少?14.(15分)水果店用三种水果搭配果篮,每个果篮里有2个哈密瓜,4个火龙果,10个猕猴桃,店里现有的火龙果的数量比哈密瓜的3倍多10个,猕猴桃的数量是火龙果的2倍,当用完所有的哈密瓜后,还剩130个火龙果.问:(1)水果店原有多少个火龙果?(2)用完所有的哈密瓜后,还剩多少个猕猴桃?15.(15分)如图1,从边长是6厘米的正方形纸片的正中间挖去一个正方形,得到一个宽为1厘米的方框,将四个这样的方框如图6所示依次垂直交叉放在桌面上,求桌面被这些方框盖住的面积(图2中阴影部分的面积).16.(15分)如图,小红和小丽的家分别在电影院的正西和正东方向,某日她们同时从自己家出发,小红每分钟走52米,小丽每分钟走70米,两人同时到达电影院.看完电影后,小红先回家,速度不变,4分钟后小丽也开始往家走,每分钟走90米,两人同时到家.求两人的家相距多少米.2014年第十二届小学“希望杯”全国数学邀请赛试卷(四年级第2试)参考答案与试题解析一、填空题(每空5分,共60分)1.(5分)计算:29+42+87+55+94+31+68+76+13=495.【分析】根据加法交换律及结合律计算.【解答】解:29+42+87+55+94+31+68+76+13=(29+31)+(42+68)+(87+13)+(94+76)+55=60+110+100+170+55=495故答案为:495.【点评】完成本题要注意分析式中数据,运用合适的简便方法计算.2.(5分)21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装36盒.【分析】根据乘法的意义,可用21乘48计算出鸡蛋的总个数,然后再根据除法的意义,用总的鸡蛋个数除以28进行计算即可得到需要的盒子数.【解答】解:21×48÷28=1008÷28=36(盒)答:可以装36盒.故答案为:36.【点评】此题主要考查的是乘法意义和除法意义的应用.3.(5分)190表示成10个连续偶数的和,其中最大的偶数是28.【分析】根据题意,可设最小的偶数是2N,因为是连续的10个偶数,从小到大排列出来,后一个都比前一个大2,再根据题意解答即可.【解答】解:设最小的一个偶数为2N,由题意可得:2N+2(N+1)+2(N+2)+…+2(N+7)+2(N+8)+2(N+9)=19010×2N+0+2+4+…+14+16+18=19020N+(0+18)×10÷2=19020N+18×5=19020N+90=19020N=100N=5那么最大的一个偶数是:2(N+9)=2×(5+9)=2×14=28.答:其中最大的那个偶数是28.故答案为:28.【点评】根据题意可知,连续的偶数每相邻的两个相差都是2,设出最小的,一次排列出来,再根据题意列出方程进一步解答即可.4.(5分)当小红3岁时,妈妈的年龄和小红今年的年龄相同;当妈妈78岁时,小红的年龄和妈妈今年的年龄相同.妈妈今年53岁.【分析】设妈妈与小红的年龄差为x岁,则根据“当小红3岁时,妈妈的年龄和小红今年的年龄相同;”得出小红今年的年龄为:x+3岁;根据“当妈妈78岁时,小红的年龄和妈妈今年的年龄相同”得出小红现在的年龄为:78﹣x岁;根据小红的年龄+年龄差=妈妈的年龄,列出方程即可解决问题.【解答】解:设妈妈与小红的年龄差为x岁,则小红现在的年龄是x+3岁,妈妈现在的年龄是78﹣x岁,根据题意可得方程:x+3+x=78﹣x2x+3=78﹣x2x+x=78﹣33x=75x=2578﹣25=53(岁)答:妈妈今年53岁.故答案为:53.【点评】设出年龄差,抓住年龄差不变,分别得出二人现在的年龄是解决本题的关键.5.(5分)从1、2、3、4、…、30这30个数中任意取10个连续的数,其中恰有2个质数的情况有4种.【分析】一个自然数,如果只有1和它本身两个因数,这样的数叫做质数;一个自然数,如果除了1和它本身还有别的因数,这样的数叫做合数;由此解答.【解答】解:在1~30这30个数中,一共有2、3、5、7、11、13、17、19、23、29共10个质数,从1、2、3、4、…、30这30个数中任意取10个连续的数,其中恰有2个质数的情况有:18~27,19~28,20~29,或21~30,有4种;故答案为:4.【点评】此题的解答关键是明确质数与合数的意义.6.(5分)将面积为36的正方形按如图的方式分成4个周长相等的长方形,取图中阴影长方形的面积为10.【分析】如图:因为面积为36的正方形,边长是6,所以设上面长方形的宽为x,则下面的长方形的长是6﹣x,再根据小长方形的周长相等,列出方程求出x,再根据长方形的面积公式S=ab进行解答.【解答】解:因为6×6=36,所以面积为36的正方形,边长是6,小长方形的宽是6÷3=2设上面长方形的宽为x2×(6﹣x)+2+2=6+6+2x12﹣2x+4=12+2x4x=4x=1阴影部分的面积是:2×(6﹣1)=10;答:图中阴影长方形的面积为10.故答案为:10.【点评】关键是根据题意,算出上面长方形的宽为x,再根据小长方形的周长相等,列出方程解答.7.(5分)如图的“蝙蝠”图案由若干个等腰直角三角形和正方形组成,已知阴影部分的面积为1,则“蝙蝠”图案的面积是27.【分析】最大正方形有两个,每个的面积是8,则两个总面积是16;中等正方形有两个,每个的面积是4,则两个总面积是面积是8;剩余3个三角形的面积是3;据此解答即可.【解答】解:1×8×2+1×4×2+3×1=16+8+3=27答:“蝙蝠”图案的面积是27.故答案为:27.【点评】此题解答的关键在于弄清阴影部分与各部分的面积关系,分类求出各部分面积.8.(5分)一列快车和一列慢车相向而行,快车的车长是315米,慢车的车长是300米.坐在慢车上的人看见快车驶过的时间是21秒,那么坐在快车上的人看见慢车驶过的时间是20秒.【分析】坐在慢车上的人看见快车驶过的时间是21秒:既为人与快车的相遇问题,人此时具有慢车的速度,相遇路程为快车的车长315米,相遇时间为21秒,即人与慢车的速度和为快车与慢车的速度和为:315÷21=15(米/秒);那么坐在快车上的人看见慢车驶过的时间,既为人与慢车的相遇问题,人此时具有快车的速度,相遇路程为慢车的车长300米,由于两车为相向而行,所以坐在车上的人看到车通过的速度为两车的速度和.用快车车长除以快车与慢车的速度和即可.【解答】解:根据题意可得:快车与慢车的速度和:315÷21=15(米/秒);坐在快车上的人看见慢车驶过的时间是:300÷15=20(秒);答:坐在快车上的人看见慢车驶过的时间是20秒.故答案为:20.【点评】完成本题的关键是根据坐在慢车上的人见快车通过的时间求出两车的速度和,然后再根据相遇问题进一步解答即可.9.(5分)有4个互不相等的自然数,它们的平均数是10.其中最大的数至少是12.【分析】有4个互不相等的自然数,它们的平均数是10,且是4个互不相等的自然数,求最大至少是多少,那么这4个数就要最接近,则10就相当于中间两个数的平均数,那么中间两个数是9和11,那么另两个数是9﹣1=8,11+1=12,所以其中最大的数至少是12,据此解答即可.【解答】解:因为要使最大的数至少是多少,那么这4个数就要最接近,则10就相当于中间两个数的平均数,那么中间两个数是10﹣1=9和10+1=11,那么另两个数是9﹣1=8,11+1=12,所以其中最大的数至少是12,答:其中最大的数至少是12.故答案为:12.【点评】明确要求最大的数至少是多少,那么这4个数就要最接近,则10就相当于中间两个数的平均数.10.(5分)如图中共有三角形30个.【分析】此题可通过分类列举解答:①单个的三角形;②由2个三角形构成;③由3个三角形构成;④由4个三角形构成;⑤最大三角形.【解答】解:由1个三角形构成:10个,由2个三角形构成:10个,由3个三角形构成:0个,由4个三角形构成:8个,最大的三角形:2个,共有:10+10+0+8+2=30(个)故答案为:30.【点评】此题通过分类,列举出每类中有几个三角形.在列举时,注意防止遗漏.11.(5分)两个数的和是830,其中较大的数除以较小的数,得商22余2,则这两个数中较大的一个是794.【分析】根据大数除以小数,商22余数是2,所以大数减去2后是小数的22倍,则和830减去2就是小数的(22+1)倍,因此,根据除法的意义,小数可求得,然后进一步可以求出大数.【解答】解:(830﹣2)÷(22+1)=828÷23=36830﹣36=794答:两个数中较大的一个是794.故答案为:794.【点评】此题属于和倍问题的应用题,解答的关键是理解大数减去2后是小数的22倍.12.(5分)有白棋子和黑棋子共2014个,按照如图的规律从左到右排成一行,其中黑棋子的个数是1342.○●○●●○●●●○●○●●○●●●○●○●●○…【分析】根据每9个棋子是一个循环,用2014除以9,用得到的商乘以一个循环中黑棋子的个数,再根据余数的情况判断最后需加上几个黑棋子即可.【解答】解:2014÷9=223…7,循环了223次后,还剩7个,里面有4个黑棋子,223×6+4=1338+4=1342(个)答:其中黑棋子的个数是1342个.故答案为:1342.【点评】答此类问题的关键是找出每几个数或每几个图形是一个循环.二、解答题(每题15分,共60分.)每题都要写出推算过程.13.(15分)如果数A增加2,则它与数B的积比A、B的积大60;如果数A不变,数B减少3,则它们的积比A、B的积小24,那么,如果数A增加2,数B减少3,则它们的积比A、B的积大多少?【分析】这两个数是A和B,由“如果数A增加2,则它与数B的积比A、B的积大60”列出方程,解答求出A和B,然后根据“如果数A增加2,数B减少3”把A和B代入,即可求出它们的积比A、B的积大多少.【解答】解:这两个数是A和B,可得:AB+60=(A+2)×B,AB﹣24=A(B﹣3);因为AB+60=(A+2)×B则AB+60=AB+2B则B=30把B=30代入AB﹣24=A(B﹣3),可得:30A﹣24=A(30﹣3)30A﹣24=27AA=8(8+2)×(30﹣3)﹣30×8=10×27﹣240=30答:它们的积比A、B的积大30.【点评】此题属于用字母表示数,根据题意,列出等式,进而求出A、B的值,是解答此题的关键.14.(15分)水果店用三种水果搭配果篮,每个果篮里有2个哈密瓜,4个火龙果,10个猕猴桃,店里现有的火龙果的数量比哈密瓜的3倍多10个,猕猴桃的数量是火龙果的2倍,当用完所有的哈密瓜后,还剩130个火龙果.问:(1)水果店原有多少个火龙果?(2)用完所有的哈密瓜后,还剩多少个猕猴桃?【分析】(1)所有的果篮用掉2个哈密瓜,4个火龙果,8个猕猴桃.当哈密瓜全部用完时,用掉火龙果的数量是哈密瓜的2倍,依题意,可画出线段图帮助理解:剩下的130个对应着箭头部分,然后列式解答;(2)先求出水果店原有的猕猴桃,即370×2=740(个);再求用完所有的哈密瓜后,还剩下的猕猴桃数即可.【解答】解:(1)(130﹣10)÷2=120÷2=60(个)60×6+10=360+10=370(个)答:水果店原有370个火龙果.(2)370×2=740(个)740﹣60×10=740﹣600=140(个)答:还剩140个猕猴桃.【点评】此题属于比较难的题目,解答的关键在于画出线段图来理解,找出数量关系式,列式解答.15.(15分)如图1,从边长是6厘米的正方形纸片的正中间挖去一个正方形,得到一个宽为1厘米的方框,将四个这样的方框如图6所示依次垂直交叉放在桌面上,求桌面被这些方框盖住的面积(图2中阴影部分的面积).【分析】先观察每个方框,方框的面积就是外面正方形的面积,减去里面正方形的面积,外面正方形的边长是6厘米,里面正方形的边长是(6﹣1×2)厘米,由此根据正方形的面积公式求出每个方框都得面积;再观察图2,发现4个方框有6处重叠,重叠部分的是一个边长是1厘米的正方形;再用4个方框的面积和减去6个小正方形的面积就是方框盖住的面积.【解答】解:6×6﹣(6﹣1×2)×(6﹣1×2)=36﹣16=20(平方厘米)20×4﹣1×1×6=80﹣6=74(平方厘米)答:桌面被这些方框盖住的面积是74平方厘米.【点评】解决本题关键是通过图找出方框的面积,以及重叠部分的面积,正确的运用正方形的面积公式进行求解.16.(15分)如图,小红和小丽的家分别在电影院的正西和正东方向,某日她们同时从自己家出发,小红每分钟走52米,小丽每分钟走70米,两人同时到达电影院.看完电影后,小红先回家,速度不变,4分钟后小丽也开始往家走,每分钟走90米,两人同时到家.求两人的家相距多少米.【分析】根据题意知:小丽第一次用的时间×第一次的速度=(第一次用的时间﹣4)×第二次用的速度,可设第一次用的时间是x小时,据此可求出用的时间,再根据路程=速度和×时间可求出两家的距离.据此解答.【解答】解:设第一次相遇用的时间是x分钟70x=90×(x﹣4)70x=90x﹣36090x﹣70x=36020x=360x=360÷20x=18(52+70)×18=122×18=2196(米)答:两家相距2196米.【点评】本题的重点是求出两人相遇时用的时间,再根据路程=速度和×时间进行解答.。
希望杯第1-13届五年级数学1试和2试试题及答案(WORD版)
第一届小学“希望杯”全国数学邀请赛五年级第1试2003年3月30日上午8:30至10:00一、填空题1.计算=_______ 。
2.将1、2、3、4、5、6分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。
3.在纸上画5条直线,最多可有_______ 个交点。
4.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是______ ,温差最大的景区是______ 。
5.,各表示一个两位数,若+=139,则=_______ 。
6.三位数和它的反序数的差被99除,商等于_______ 与_______ 的差。
7.右图是半个正方形,它被分成一个一个小的等腰三角形,图2中,正方形有_______ 个,三角形有_______ 个。
8.一次智力测验,主持人亮出四块三角形的牌子:在第(4)块牌子中,?表示的数是_______ 。
9.正方形的一条对角线长13厘米,这个正方形的面积是平方厘米。
10.六位自然数1082□□能被12整除,末两位数有种情况。
11.右边的除法算式中,商数是。
12.比大,比小的分数有无穷多个,请写出三个:。
13.A、B、C、D、E五位同学进行乒乓球循环赛(即每2人赛一场),比赛进行了一段时间后,A赛了4场,B赛了3场,C赛了2场,D赛了1场,这时,E赛了场。
14.观察5*2=5+55=60,7*4=7+77+777+7777=8638,推知9*5的值是。
15.警察查找一辆肇事汽车的车牌号(四位数),一位目击者对数字很敏感,他提供情况说:“第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的4倍刚好比后两位数少2”。
警察由此判断该车牌号可能是。
16.一个小方木块的六个面上分别写有数字2,3,5,6,7,9。
小光,小亮二人随意往桌上扔放这个木块。
规定:当小光扔时,如果朝上的一面写的是偶数,得1分。
当小亮扔时,如果朝上的一面写的是奇数,得1分。
每人扔100次,得分高的可能性最大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二届小学“希望杯”全国数学邀请赛五年级第1试试题及答案
2014年3月16日上午8:30至10:00
1、20140316÷5,余数是。
2、用1,5,7组成各位数字不同的三位数,其中最小的质数是。
3、10个2014相乘,积的末位数是。
4、有一列数:
1,2,2,3,3,3,4,4,4,4,…
每个数n都写了n次,当写到20的时候,数字“1”出现了次。
5、一个小数,若去掉小数点,则得到的整数与原小数的和是201.3,那么这个小数是。
6、已知三位数abc与cba的差abc-cba=198,则abc最大是。
7、若将20表示为若干个互不相同的奇数的和,那么,不同的表示方法有(加数相同,相加的次序不同,算作同一种表示方法,如:1+19和19+1算作同一种表示方法)
8、A,B两家面包店销售同样的面包,售价相同,某天,A面包店的面包售价打八折,A面包店这天的营业额是B面包店营业额的 1.2倍,则A面包店售出的面包数量是B面包的倍。
9、如图1,甲桶内有水4升,乙桶内有水13升,向两个桶内加入同样多的水后,乙桶内的水是甲桶内的水的3倍(水不溢出),那么,向每个桶内加入的水是升。
10、如图
2,一只蚂蚁
从墙根竖直
向上爬到墙头用了4分钟,从墙头沿原路返回到出发点用了3分钟,若蚂蚁第二分钟比第一分钟多爬1分米,第三分钟比第二分钟多爬1分米,……,整个过程中,每分钟爬过的路程都比前一分钟多1分米,则墙高米。
11、如图3,五边形ABCDE 内有一点O ,O 点到五条边的垂线段的长都是4厘米,五边形的周长是30厘米,则五边形ABCDE 的面积是 平方厘米。
12、一天,小华去一栋居民楼做社会调查,这栋楼有15层,每层有35个
窗户,每两户人家有5个窗户,若每户人家需要一份调查表,则小华至少应带调查表 分。
13、如图4,一个四边形花园的四条边长分别是63米,73米,84
米,98米,规定:在花园的四角和边长植树,相邻两棵树的间距是相等的整数(单位:米),则至少植树 课。
14、小红和小亮玩“石头剪刀布”的游戏,规定:在每个回合中,
如果赢了就得3分,输了就扣2分,每个回合都分出胜负。
游戏开始前,两人各有20分,玩了10个回合后,小红的得分是40分,则小红赢了 个回合。
15、如图5,线段AB 和CD 垂直相等,点E,F,G 是线段AB 的四等分点,点E 、H 是线段CD 的三等分点,从A,B,C,D,E,F,G,H 这8个点中任选3个作为定点构成三角形,其中,面积与△CEF 面积相等的三角形(不包括△CFE )有 个。
16、一个长方体的长、宽、高都是两位数(其中长的值最大),
并且它们的和是偶数,若这个长方体的体积是2772,2380,3261,4125这四个数中的一个,则这个
长方体的长是 。
17、如图6,用若干个棱长为1的小正方体堆成一个大的几何体,这个几何体的表面积(含底面积)是 。
18、若115,200,268被某个大于1的自然数除,得到的余数都相同,那么,用2014除以这个自然数,得到的余数是 。
19、如图7,一辆汽车从甲地开往乙地,若每小时行45千米,则
将比原计划迟到1小时,若每小时行60千米,则将比原计划早到1小时,那么,甲、乙两地的距离是 千米。
20、若算式(1000×1001×1002×……×2013×2014)÷(11×11×…×11)的得数是整数,则m 的值最大是 。
11个m
第十二届小学“希望杯”全国数学邀请赛五年级第1试试题答案
题号 1 2 3 4 5 答案 1 157 6 157 18.3 题号 6 7 8 9 10 答案997 7 1.5 0.5 4.2 题号11 12 13 14 15 答案60 210 45 8 12 题号16 17 18 19 20 答案21 90 8 360 102。