大学流体力学课件6——第一章流体的基本概念(可压缩性)

合集下载

流体力学PPT课件

流体力学PPT课件

y1, y2...yn ——气体混合物中各组分的摩尔分率。
对于理想气体,其摩尔分率y与体积分率Φ相同。
9
第1节 流体静力学
五、比容
单位质量流体具有的体积,是密度的倒数,单位为m3/kg。
vV 1
m
10
第1节 流体静力学
1.1.2 流体的静压强
一、压强的定义
流体垂直作用在单位面积上的力(压应力)
在SI制单位中压强的单位是N/m2,称为帕斯卡, 以Pa表示。
注意:用液柱高度表示压强时,必须指明流体的 种类。
标准大气压有如下换算关系: 1atm = 1.013×105Pa =760mmHg
=10.33mH2O=1.033kg/cm2=1.013bar 1at=9.807×104Pa=735.6mmHg=10mH2O
为斜管压差计, 用以放大读数,提高测量精度。
R 与 R 的关系为 R' R
sin
式中α为倾斜角,其值越小,则读数放大倍数
越大。
19
第1节 流体静力学
(4) 双液体U管压差计(微差压差计) 内装密度接近但不互溶的两种指示液
A和C( A C),扩大室内径与U管内径 之比应大于10。
p1-p2≈(pA-pB)gR
16
第1节 流体静力学
三、流体静力学基本方程的应用
1.压强及压强差的测量 (1) U管压差计
p1p2(AB)gR
A-指示液 B-被测液体
A B
17
第1节 流体静力学
(2)倒U形压差计
p 1 p 2 R (B g A ) RB g
A-指示液 B-被测液体
A B
18
第1节 流体静力学
(3)斜管压差计 当所测量的流体压强差较小时,可将压差计倾斜放置,即

[PPT模板]第一章流体力学

[PPT模板]第一章流体力学
13
1.2 流体流动能量平衡 1.2.1 稳定流动热力学体系的概念
热力体系:指某一由周围边界所限定的空间内的所有 物质。边界外部称为外界。
无交换时
封闭体系
物质交换时
开口体系
稳定流动:流体在各个截面上的状态对外热量交换、 功交换都不随时间改变,并且同时期内流过任何截面 上的流量均相等。
14
1.2.2 稳定流动体系的能量平衡
牛顿内摩擦定律(牛顿黏性定律)
适用于空气、水、大多数油、牛奶等稀溶液液体流体。
6
τ μ du dy
牛顿流体(Newtonian fluid)切应力与 速度梯度的关系完全符合牛顿黏性定律的流体。 黏度 μ τ 是常数,是流体的性质。
du/dy 非牛顿流体(non-Newtonian fluid)
设在一定时间内进出体系的液体质量为m,若忽略电 能和化学能,则输入和输出体系的能量有:
1.位能 mgz
2.动能 mu2/2
3.内能 单位质量流体所含的内能为e 则质量为m的流体内
能E=me
1`
4.流动功 (压力能) pv,mpv
z1 1
w
Q
2`
2 z2
15
5.外功
功的输入 功的输出
外界对体 系作功
39
u2
g(z1 z2 ) 2.1
9
.
8
1( 8 2.1

3
)

4.83m/s
qv

π 4
d 2u2
0.785 0.042 4.83
6.07103m3/s
(2) 若水的流量增加30% ,则
u2 1.3 4.83m/s 6.28m/s

流体力学基本原理PPT课件

流体力学基本原理PPT课件
优点:结构简单、阻力小、使用方便,尤其适用于测量气体管道内的流速。 缺点:不能直接测出平均速度,且压差计读数小,常须放大才能读得准确。
二、孔板流量计 孔板流量计.swf p1
1、结构和原理
两种取压方式:
(1) 角接法 取压口在法兰上;
(2) 径接法
1
上游取压口在距孔板1倍 管径处,下游取压口在距 孔板1/2倍管径处。
2000<Re<4000时,可能是滞流,也可能是湍流,与外 界条件有关。——过渡区
圆管内滞流与湍流的比较
本质区别 速度分布 平均速度 剪应力
滞流 分层流动
u
umax
1
r2 R2
um
1 2
umax
du dy
湍流
质点的脉动
1
u
umax
1
r R
n
(n
7)
um 0.82umax (n 7)
2、压强的表示方法
1)绝对压强(绝压): 流体体系的真实压强称为绝对压强。 2)表压 强(表压): 压力上读取的压强值称为表压。
3)真空度: 真空表的读数
绝对压强、真空度、表压强的关系为
表压
实测压力
绝对压
真空度 绝压(余压)
大气压 实测压力
绝对零压
表压=绝对压-大气压 真空度=大气压 - 绝对压
2、静力学方程的讨论
达到允许的最大高度,容器内液面
愈低,压差计读数R越大。
'
R
远距离控制液位的方法:
B
压缩氮气自管口 经调节阀通入,调 节气体的流量使气 流速度极小,只要 在鼓泡观察室内看 出有气泡缓慢逸出 即可。
R
Ah
压差计读数R的大小,反映出贮罐内液面的高度 。

流体力学课件(全)

流体力学课件(全)
X 1 p 0 x
Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。

第一章流体力学基本概念

第一章流体力学基本概念

分别运动至A’,B’,C’,D’点,则有
A
B
A'
B'
udt
E D D D A A (u d)d u u t d dtudt
图1-2 速度梯度
由于
du ED
dt
因此得速度梯度 duED tgd d
dy dydt dt dt
可以看出dθ为矩形ABCD在dt时间后剪切变形角度,这就表明速度梯度实质上就 是流体运动时剪切变形角速度
•第一章流体力学基本概念
随着科学技术的不断进步,计算机的发展和应用,流体力学的研究领域和应用范 围将不断加深和扩大。从总的发展趋势来看,随着工业应用日益扩大,生产技术 飞速发展,不仅可以推动人们对流动现象深入了解,为科学研究提供丰富的课题 内容,而且也为验证已有的理论、假设和关系提供机会。理论和实践密切结合, 科学研究和工业应用相互促进,必将推动本学科逐步成熟并趋于完善。
第一章 流体力学基本概念
第一节 流体力学的发展、应用及其研究方法 第二节 流体的特征和连续介质假设 第三节 流体的主要物理性质及分类 第四节 作用在流体上的力
•第一章流体力学基本概念
第一节 流体力学的发展、应用及其研究方法
一、流体力学发展简史
流体力学是研究流体的平衡及运动规律,流体与固体之间的相互作 用规律,以及研究流体的机械运动与其他形式的运动(如热运动、化学 运动等)之间的相互作用规律的一门学科。 流体力学属于力学范畴,是 力学的一个重要分支。其发展和数学、普通力学的发展密不可分。流体 力学起源于阿基米德(Archimedes,公元前278~公元前212)对浮力的 研究。
流体的压缩性及相应的体积弹性模量是随流体的种类、温度和压力而变化 的。当压缩性对所研究的流动影响不大,可以忽略不计时,这种流动成为不可 压缩流动,反之称为可压缩流动。通常,液体的压缩性不大,所以工程上一般 不考虑液体的压缩性,把液体当作不可压缩流体来处理。当然,研究一个具体 流动问题时,是否考虑压缩性的影响不仅取决于流体是气体还是液体,而更主 要是由具体条件来决定。

流体力学基础 ppt课件

流体力学基础  ppt课件
➢流体介质是由连续的质点组成的;
➢质点运动过程的连续性。
流体的压缩性
不可压缩流体:流体的体积如果不随压力及温度变 化,这种流体称为不可压缩流体。
可压缩流体:流体的体积如果随压力及温度变化, 则称为可压缩流体。
实际上流体都是可压缩的,一般把液体当作不 可压缩流体;气体应当属于可压缩流体。但是,如 果压力或温度变化率很小时,通常也可以当作不可 压缩流体处理。
1.3 压强
垂直作用于流体单位面积上的力,称为流体的压强, 简称压强。习惯上称为压力。垂直作用于整个面上的 力称为总压力。
在静止流体中,从各方向作用于某一点的压强大小 均相等。
压强的单位: ❖ 帕斯卡, Pa, N/m2 (法定单位); ❖ 标准大气压, atm; ❖ 某流体液柱高度; ❖ bar(巴)或kgF/cm2等。
m v
(1-1)
式中 ρ —— 流体的密度,kg/m3;
m —— 流体的质量,kg;
v —— 流体的体积,m3。
不同的流体密度是不同的,对一定的流体,密度是压力p和 温度T的函数,可用下式表示 :
f(p,T)
(1-2)
液体的密度随压力的变化甚小(极高压力下除外),可忽略
不计,但其随温度稍有改变。气体的密度随压力和温度的变化
解: 首先将摄氏度换算成开尔文:
100℃=273+100=373K
1)求干空气的平均分子量:
Mm = M1y1 + M2y2 + … + Mnyn
=32 × 0.21+28 ×0.78+39.9 × 0.01
=28.96
气体的平均密度为:
T0p 0 Tp0

2 2..4 6 8 9 2 3 2 7 7 1 9 .8 3 3 .3 0 1 1 1 1 4 30 0 0 .9k2 /g m 3

流体力学课件

流体力学课件
流体力学
可压缩与不可压缩流体2 可压缩与不可压缩流体
液体
不可压缩
水击、 水击、水下爆炸等必须考虑可压缩性
气体
可压缩
低速流动且温差不大的气体可认为是不 可压缩的
流体力学
流体的可压缩性-例题 流体的可压缩性-例题1
例:把 20ºC 水在1大气压下压缩 1% 所需的压 20ºC 水在1 强变化。 强变化。
角变形率
udt
剪切变形的角度反应内摩擦力
流体力学
动力粘性系数µ
动力粘性系数
µ 反应流体真实粘性的大小 µ 与温度的关系
液体 气体
流体力学
Pa·s Pa·s
T T
µ µ
运动粘性系数ν
运动粘性系数
ν 不能真实反应流体粘性的大小 不能真实反应流体粘性的大小
动力粘性系数 µ 水 空气
流体力学
m2/s
运动粘性系数 ν 1.003 ×10-6 1.5 ×10-5
z
∆m/∆V ∆
∆M P(x,y,z) ∆V
y
∆V′ ∆V
x
∆V'
流体力学
特征体积
流体质点2 流体质点
流体质点 微观上充分大
分子平均自由程 << 流体质点尺度
宏观上充分小
流体质点尺度<< 流体质点尺度<< 流动问题的特征长度
具有确定的宏观物理量
微小特征体,包含大量分子, 微小特征体,包含大量分子,具有特定的 宏观统计特性
p
V
V1
dV/V1 V/V1
流体力学
体积弹性模量3- 体积弹性模量 -液体
液体的体积弹性模量很大, 液体的体积弹性模量很大,压缩性很小

流体力学基本知识 ppt课件

流体力学基本知识 ppt课件
〈1〉温度升高,液体的粘度减小(因为T上 升,液体的内聚力变小,分子间吸引力减 小;)
〈2〉温度升高,气体的粘度增大(气体的内 聚力很小,它的粘滞性主要是分子间动量 交换的结果。当T上升,作相对运动的相邻 流层间的分子的动量交换加剧,使得气体 的粘度增大。)
流体力学基本知识
6
三、流体的压缩性和热胀性
一、流体运动的基本概念
(一)压力流与无压流 1.压力流:流体在压差作用下流动时,流体 整个周围都和固体壁相接触,没有自由表 面。 2.无压流:液体在重力作用下流动时,液体 的部分周界与固体壁相接触,部分周界与 气体接触,形成自由表面。
流体力学基本知识
14
(三)流线与迹线
1.流线:流体运动时,在流速场中画出某时 刻的这样的一条空间曲线,它上面所有流 体质点在该时刻的流速矢量都与这条曲线 相切,这条曲线就称为该时刻的一条流线。
流体力学基本知识
26
四、沿程阻力系数λ和流速系数C的确定
沿程阻力系数λ 是反映边界粗糙情况和流态 对水头损失影响的一个系数。1933年尼古 拉兹表发表了其反映圆管流运情况的实验 结果,得出了一些结论:
1.层流区 2.层流转变为紊流的过渡区 3.紊流区
流体力学基本知识
27
(一)沿程阻力系数λ的经验公式 1.水力光滑区 2.水力过渡区 3.粗糙管区
2.迹线:流体运动时,流体中某一个质点在 连续时间内的运动轨迹称为迹线。流线与 迹线是两个完全不同的概念。非恒定流时 流线与迹线不相重合,在恒定流时流线与 迹线相重合。
流体力学基本知识
15
(二)恒定流与非恒定流
1.恒定流:流体运动时,流体中任一位置的 压强,流速等运动要素不随时间变化的流 动称为恒定流动。

(完整版)流体力学

(完整版)流体力学

第1章绪论一、概念在任何微小剪切力持续作用下连续变形的物质叫做流体(易流动性是命名的由来)宏观尺寸非常小,微观尺寸非常大的任意一个物理实体宏观体积极限为零,微观体积大于流体分子尺寸的数量级假设组成流体的最小物质是流体质点,流体是由无限多个流体质点连绵不断组成,质点之间不存在间隙。

分子平均自由程远远小于流动问题特征尺寸作用在一定量的流体上的压强增加时,体积减小Ev=-dp/(dV/V)压强的改变量和体积的相对改变量之比Ev=1/Kt体积弹性模量越大,流体可压缩性越小等温Ev=p等嫡Ev=kpk二Cp/Cv作用在一定量的流体上的压强增加时,体积不变Ev=dp/(dp/p)(低速流动气体不可压缩)流体抵抗剪切变形的一种属性动力粘度:|1,单位速度梯度下的切应力U=T/(dv/dy)运动粘度:V,动力粘度与密度之比,v=u/pV=|!=0的流体T=+-|idv/dy(T大于零)、T=^V/8切应力和速度梯度成正比粘性产生的机理,粘性、粘性系数同温度的关系;液体:液体分子间的距离和分子间的吸引力,温度升高粘性下降气体:气体分子热运动所产生的动量交换,温度升高粘性增大牛顿流体的定义;符合牛顿内摩擦定律的流体质量力:与流体微团质量大小有关的并且集中在微团质量中心上的力表面力:大小与表面面积有关而且分布在流体表面上的力二、计算1、牛顿内摩擦定律的应用-间隙很小的无限大平板或圆筒之间的流动.第2章流体静力学一、概念流体内任意点的压强大小都与都与其作用面的方位无关微元平衡流体的质量力和表面力无论在任何方向上都保持平衡欧拉方程=0流体平衡微分方程重力场下的简化:dp二一pdW二一pgdz不可压缩流体静压强基本公式z+p/pg二C不可压缩流体静压强分布规律p=p0+pgh平衡流体中各点的总势能是一定的静止流体中的某一面上的压强变化会瞬间传至静止流体内部各点4、绝对压强、计示压强(表压)、真空压强的定义及相互之间的关系;绝对压强:以绝对真空为起点计算压强大小记示压强:比当地大气压大多少的压强真空压强:比当地大气压小多少的压强绝对压强二当地大气压+表压表压二绝对压强一当地大气压真空压强=当地大气压-绝对压强单管式:简单准确;缺点:只能用来测量液体压强,且容器内压强必须大于大气压强,同时被测压强又要相对较小,保证玻璃管内液柱不会太高U:可测液体压强也可测气体压强;缺:复杂倾斜管:精度高;缺点:??F=pS+pgsinayS当p二大气压强,F=pgsinayS压力中心:二、计算1、U型管测压计的计算;2、绝对压强、计示压强及真空压强的换算3、平壁面上静压力大小的计算。

第1章流体力学基本知识-PPT精品

第1章流体力学基本知识-PPT精品
ρ1u1dω1dt=ρ2u2dω2dt 或 ρ1u1dω1=ρ2u2dω2
从元流推广到总流,得:
1u1d1 2u2d2
1
2
由于过流断面上密度ρ为常数,以
带入上式,得:
ρ1Q1 =ρ2 Q2 Q=ωv
ρ1ω1v 1=ρ2ω2v 2
(1-11) (1-11a)
单位时间内通过过流断面dω的液体体积为 udω =dQ
4.流量:单位时间内通过某一过流断面的流体 体积。一般流量指的是体积流量,单位是 m3/s或L/s。
5.断面平均流速:断面上各点流速的平均值。 通过过流断面的流量为
Qvud
断面平均流速为:
v

ud


Q
建筑设备工程
第一章 流体力学基本知识 第1节 流体的主要物理性质 第2节 流体静压强及其分布规律 第3节 流体运动的基本知识 第4节 流动阻力和水头损失 第5节 孔口、管嘴出流及两相流体简介
本章介绍流体静力学,流体动力学,流体运动 的基本知识,流体阻力和能量损失,通过本章 的学习可以对流体力学有一个大概的了解,但 讲到的内容是很基础的。
确定流体等压面的方法,有三个条件:
必须在静止状态;在同一种流体中; 而且为连续液体。
2.分析静止液体中压强分布:
静止液体中压强分布
分析铅直小圆柱体,作用于轴向的外力有: 上表面压力
分析铅直小圆柱体,作用于轴向的外力有: 下底面的静水压力
分析铅直小圆柱体,作用于轴向的外力有: 柱体重力
静压。 rv2/2g--工程上称动压。
p12vg12 p22vg22h12
p + rv2/2g--过流断面的静压与动 压之和,工程上称全压。

(新)第一章 流体力学(讲解教学课件)

(新)第一章  流体力学(讲解教学课件)

mgz 1 mu 2 m p
2
J
1kg流体的总机械能为: zg u 2 p
2
J/kg
1N流体的总机械能为: z u 2 p J/N
2g g
(新)第一章 流体力学(讲解教学课件)
压头:每牛顿的流体所具有的能量 静压头;
2、外加能量:1kg流体从输送机械所获得的机械能 。
符号:We;
单位:J/kg ;
和其深度有关。 (2)在静止的、连续的同一液体内,处于同一水平面
上各点的压力均相等。
(新)第一章 流体力学(讲解教学课件)
• (2) 当液体上方的压力有变化时,液体内 部各点的压力也发生同样大小的变化。
(新)第一章 流体力学(讲解教学课件)
三、静力学基本方程的应用 (1)测量流体的压力或压差
① U管压差计 对指示液的要求:指示液要与被测流体 不互溶,不起化学作用;其密度应大于 被测流体的密度。
• 如:4×103Pa(真空度)、200KPa (表压)。
(新)第一章 流体力学(讲解教学课件)
【例题1-1】 在兰州操作的苯乙烯精馏塔塔顶的真空度 为620mmHg。在天津操作时,若要求塔内维持相同 的绝对压力,真空表的读数应为多少?兰州地区的 大气压力为640mmHg,天津地区的大气压力为 760mmHg。
p1-p2=(指-)Rg
若被测流体是气体上式可简化为
p1-p2=指Rg
(新)第一章 流体力学(讲解教学课件)
• 通常采用的指示液有:着色水、油、四氯化碳、 水银等。
• U形管压差计在使用时,两端口与被测液体的 测压点相连接。
• U形管压差计所测压差,只与读数R、指示液 和被测液体的密度有关,而与U形管的粗细、 长短、形状无关,在此基础上又产生了斜管压 差计、双液柱微差计、倒U形管压差计等。

流体力学完整版课件全套ppt教程最新

流体力学完整版课件全套ppt教程最新

取一微元正交六面体。
左侧面压力: 右侧面压力:
( p 1 p dx)dydz 2 x
( p 1 p dx)dydz 2 x
y
p 1 p dx 2 x
z
p 1 p dx 2 x
x
再考虑 x 轴方向的质量力,可列出 x 轴方向的平衡方程:
(p
1 2
p x
dx)dydz ( p
1 2
p x
ν× 106/ m2/s
1.792 1.007 0.661 0.477 0.367 0.296
空气
μ × 106/ Pa·s
ν× 106/ m2/s
17.09 18.08 19.04 19.97 20.88 21.75
13.20 15.00 16.90 18.80 20.90 23.00
§1.3 流体的物理性质
➢ 牛顿流体与非牛顿流体
牛顿流体; 塑性体; 伪塑性体; 宾汉体。
du dy
(du)n dy
du dy
(du)n
dy
0
du dy
➢ 粘性流体与理想流体
实际流体都具有粘性。理想流体就是忽略流体的粘性。
§1.3 流体的物理性质
1.3.4 液体的表面张力
➢ 表面ห้องสมุดไป่ตู้力现象演示
肥皂薄膜对棉线作用一个拉力。
温度/ K
291 291 293
σ× 103/ N/m
73 490 472
§1.3 流体的物理性质
➢ 表面张力产生的压差
由表面张力引起的液体自由表面两边 的附加压力差为:
p ( 1 1 ) R1 R2
➢ 毛细现象
当液体与固体接触时,如果液体分子 间的吸引力(内聚力)大于液体分子 和固体分子间的引力(附着力),则 液体抱成团与固体不浸润;当液体分 子内聚力小于附着力时,则液体就能 浸润固体表面。

流体力学课件第一章课件

流体力学课件第一章课件

其中: h——两平板间的距离,A——平板面积。 若对上板施加力 F ,并使上板以速度 U 保持匀速直线运 动,则内摩擦力T = F。通过牛顿平板实验得出:
因流体质点粘附于固体壁上,故下板上流体质点的速度 为零,紧贴上板的液体质点速度为 U。当 h及 U不太大时, 板间沿法线方向的点流速可看成线性分布,即:
3、假塑性流体
图(3)所示它的粘度
( η )随着速度梯度 du/dy 的增长而增大 。
本课程只讨论牛顿流体,牛顿内摩擦定律 只适用于牛顿流体,不适用于非牛顿流体。非 牛顿流体是流变学的研究对象。
的又一特征,即流体的压缩性和膨胀性。
一、流体的压缩性
1.体积压缩系数βp
βp反映流体的压缩性,当温度不变时βp为:

V / V V p p V p
即单位压强变化所引起的流体体积的相对变化率,
βp的单位是m2/N, 是压力单位的倒数。
上式表明,对于同样的压力增量, βp 大的流体,
二、流体的膨胀性
流体膨胀性用单位温升所引起的体积变化率表 温度膨胀系数由下式确定:
示。称为温度膨胀系数,用βT表示。当压力不变时,

T
V / V V T VT
式中 δT 为温度的增量, δV/V 是流体的体积相 对变化率。由于温度升高,体积膨胀,故 δT 与 δV 同号。βT的单位是1/K或1/℃。
类型:
1.塑性流体,(图(2)所示)在 产生连续变形前有一屈服应力, 在屈服应力后的应力与速度梯度 du/dy间存在线性关系。 ( 即η=μ,K=τ0 )牙膏的变形就属 于这种性质。
2、胀塑性流体(图(4)所示)它
的粘度( η )随着速度梯度 du/dy 的增长而降低,粘土浆和纸浆都 属于这类流体。

第一章 流体力学基础ppt课件(共105张PPT)

第一章 流体力学基础ppt课件(共105张PPT)


力〔垂直于作用面,记为 ii〕和两个切向 应力〔又称为剪应力,平行于作用面,记为

ij,i j),例如图中与z轴垂直的面上受
到的应力为 zz〔法向)、 zx和 zy〔切
电 向),它们的矢量和为:


件 τ zzix zjy zkz
返回
前页
后页
主题
西
1.1 概述

交 • 3 作用在流体上的力
大 化
子 课 件
返回
前页
后页
主题
西
1.2.3 静力学原理在压力和压力差测量上的应用


大 思索:若U形压差计安装在倾斜管路中,此时读数 R反
化 映了什么?
工 原
理 p1p2
p2
p1 z2
电 子
(0)gR(z2z1)g z1

R

A A’
返回
前页
后页
主题
西 1.2.3 静力学原理在压力和压力差测量上的应用

交 大

2.压差计
化 • (2〕双液柱压差计
p1
p2
工•
原•

电•
子•


又称微差压差计适用于压差较小的场合。
z1
1
z1
密度接近但不互溶的两种指示
液1和2 , 1略小于 2 ;
R
扩p 大1 室p 内2 径与2 U 管1 内g 径之R 比应大于10 。 2
图 1-8 双 液 柱 压 差 计
返回

交 大

1.压力计
化 • (2〕U形压力计
pa
工 • 设U形管中指示液液面高度差为RA,1 指• 示液

《流体力学》课件

《流体力学》课件

流体力学的应用领域
总结词
流体力学的应用领域与实例
详细描述
流体力学在日常生活、工程技术和科学研究中有广学、石油和天然气工业中的流体输送等。
流体力学的发展历程
总结词
流体力学的发展历程与重要事件
详细描述
流体力学的发展经历了多个阶段,从 早期的水力学研究到近代的流体动力 学和计算流体力学的兴起。历史上, 牛顿、伯努利等科学家对流体力学的 发展做出了重要贡献。
损失计算
根据流体流动的阻力和能量损失,计算流体流动的总损失。
流体流动阻力和能量损失的减小措施
优化管道设计
采用流线型设计,减少流体与 管壁的摩擦。
合理配置局部障碍物
减少不必要的弯头、阀门等, 或优化其设计以减小局部阻力 。
选择合适的管材
选用内壁光滑、摩擦系数小的 管材。
提高流体流速
适当提高流体的流速,可以减 小沿程损失和局部损失。
流体动力学基本方程
连续性方程
表示质量守恒的方程,即单位时间内流出的质量等于单位 时间内流入的质量。
01
动量方程
表示动量守恒的方程,即单位时间内流 出的动量等于单位时间内流入的动量。
02
03
能量方程
表示能量守恒的方程,即单位时间内 流出的能量等于单位时间内流入的能 量。
流体动力学应用实例
航空航天
飞机、火箭、卫星等的设计与制造需要应用 流体动力学知识。
流动方程
描述非牛顿流体的流动规律,包括连续性方程 、动量方程等。
热力学方程
描述非牛顿流体在流动过程中的热力学状态变化。
非牛顿流体的应用实例
食品工业
01
非牛顿流体在食品工业中广泛应用于番茄酱、巧克力、奶昔等
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

体积弹性模量:体积压缩系数的倒数
P. 10 表1-2 水的弹性模量
§1-2
流体的主要物理ห้องสมุดไป่ตู้质
三、压缩性
体积膨胀系数: 即当压强 一定时,单位温度升高,而引起的体积 变化率。表示液体膨胀性的大小。
一般工程问题,可以不考虑 。 在容器设计,热工问题中要考虑 P.10 表1-3 水的体积膨胀系数
§1-2
第一章
§1-2
流体的基本概念
流体的主要物理性质
一、惯性
二、粘性
三、压缩性 四、表面张力
第一章
§1-2
流体的基本概念
流体的主要物理性质
三、压缩性 (compressibility) 一、流体的压缩性
微观分析
压缩性: 热胀性:
§1-2
流体的主要物理性质
三、压缩性
1. 液体的压缩性和热胀性
体积压缩系数:表征液体压缩性的大小 即当温度 一定时,每升高单位压强 而引起的体积变化率。
三、压缩性
3. 不可压缩流体的概念 不考虑压缩性的流体,是真实流体的一个简化 物理模型。 任何流体都是可压缩的。有些工程问题中可以 不考虑压缩性,认为流体是不可压缩的,即可减化 计算,又能满足计算精度要求。 通常,认为水不可压缩; 通风问题中气体为不可压缩的 高速、高压情况下必须考虑流体的压缩性。
§1-2
流体的主要物理性质
三、压缩性
2.气体的压缩性和热胀性 的变化,对气体体积变化影响很大。在一定 的温度和压力变化范围内,都可以用理想(完全)气体 (假设分子间无引力,分子本身不占容积)的气体状态 方程来表示各参数的变化规律。
R----气体常数 其参数变化关系由物理学或热力学内容中学习。
§1-2
流体的主要物理性质
流体的主要物理性质
三、压缩性
§1-2
流体的主要物理性质
四、表面张力 (Surface Tension)
1. 表面张力是液体分子间引力作用所显现的宏观特性。
2. 表面张力在液体与固体接触的自由表面处表现。 3. 表面张力的大小可以用表面张力系数σ表示, 是指作用在单位长度上的力 4. 毛细现象由液体分子间的凝聚力 与壁面间的附着力综合作用而致
相关文档
最新文档