小学奥数教程:比例应用题(二)全国通用(含答案)

合集下载

小学奥数应用题专题-比例应用题练习及答案解析

小学奥数应用题专题-比例应用题练习及答案解析

小学奥数应用题专题-比例应用题练习及答案解析一、填空题1、甲、乙两车分别从、两地同时相向开出,甲车速度是千米/小时,乙车速度是千米/小时,当甲车驶过、距离的多千米时与乙车相遇,、两地相距()千米.【答案】225【解析】在相同的时间内,两车行驶的路程比等于两车的速度之比,由于两车的速度之比等于,那么、距离的多千米即是、距离的,所以千米的距离相当于全程的,全程的距离为(千米).2、袋子里红球与白球的数量之比是.放入若干只红球后,红球与白球数量之比变为;再放入若干只白球后,红球与白球数量之比变为.已知放入的红球比白球少只.那么原来袋子里共有()只球.【答案】960【解析】根据第一次操作白球的数量不变,把改写成,改写成.第二次操作相对于第一次操作红球数量不变,把改写成,这时我们可以看出,经过两次操作后,红球共增加了份,白球增加了份.原来红球有个,白球有个.两种球共个.3、将一堆糖果全部分给甲、乙、丙三个小朋友.原计划甲、乙、丙三人所得糖果数的比为.实际上,甲、乙、丙三人所得糖果数的比为,其中有一位小朋友比原计划多得了块糖果.那么这位小朋友是()(填“甲”、“乙”或“丙”),他实际所得的糖果数为()块.【答案】丙 150【解析】方法一:原计划甲、乙、丙三人所得糖果数分别占总数的,,;实际甲、乙、丙三人所得糖果数分别占总数的,,,只有丙占总数的比例是增加的,所以这位小朋友是丙.糖果总数为(块),丙实际所得的糖果数为(块).方法二:对比分析甲15——14,乙12——12,丙9——10,发现多得糖果的是丙所以15÷(10—9)×10=150(块)4、一项机械加工作业,用4台型机床,5天可以完成;用4台型机床和2台型机床3天可以完成;用3台型机床和9台型机床,2天可以完成,若3种机床各取一台工作5天后,剩下、型机床继续工作,还需要______ 天可以完成作业.【答案】3【解析】由于用4台型机床5天可以完成;用4台型机床和2台型机床3天可以完成,所以2台型机床3天完成的量等于4台型机床2天完成的量,则、两种机床每天完成的量的比为,即型机床每天完成的量为3,型机床每天完成的量为4,该项作业总量为,那么型机床每天完成的量为,3种机床各取一台工作5天后,剩下的工作量为,、型机床还需继续工作天.5、有甲、乙两块含铜率不同的合金,甲块重千克,乙块重千克,现在从甲、乙两块合金上各切下重量相等的一部分,将甲块上切下的部分与乙块的剩余的部分一起熔炼,再将乙块上切下的部分与甲块的剩余的部分一起熔炼,得到的两块新合金的含铜率相同,求切下的重量为________.【答案】2.4【解析】设切下的部分重量为千克,则甲切下的千克与乙剩下的千克混合.由于得到的两块新合金的含铜率相同,所以若将这两块新合金混合,得到的大块合金的含铜率应与原来的两块新合金的含铜率相同,而这一大块合金是由千克甲块合金与千克乙块合金混合而成的,所以千克甲块合金与千克乙块合金混合后的含铜率与千克甲块合金与千克乙块合金混合后的含铜率相同,而甲、乙两块合金含铜率不同,所以这两种混合中甲、乙两种合金的重量比相同,即,所以:,解得.6、甲、乙两个工人上班,甲比乙多走的路程,而乙比甲的时间少,甲、乙的速度比是().【答案】12:11【解析】甲走的路程是乙走的路程的,甲用的时间是乙用的时间的,所以甲的速度是乙的速度的,即甲、乙的速度比是.二、解答题7、圆珠笔和铅笔的价格比是4:3,20支圆珠笔和21支铅笔共用71.5元.问圆珠笔的单价是每支多少元?【答案】2【解析】解:设圆珠笔的价格为4,那么铅笔的价格为3,则20支圆珠笔和21支铅笔的价格为:20×4+21×3=143,则单位“1”的价格为:71.5÷143=0.5元,所以圆珠笔的单价是O.5×4=2(元).8、加工某种零件,甲分钟加工个,乙分钟加工个,丙分钟加工个.现在三人在同样的时间内一共加工个零件.问:甲、乙、丙三人各加工多少个零件?【答案】1400 1200 1050【解析】根据题意可知,甲、乙、丙的工作效率之比为,那么在相同的时间内,三人完成的工作量之比也是,所以甲加工了个零件,乙加工了个零件,丙加工了个零件。

小学奥数教程和倍问题二全国通用含答案

小学奥数教程和倍问题二全国通用含答案

和倍问题(二)6-1-5.教学目标学会分析题意并且熟练的利用线段图法能够分析和倍问题1.掌握寻找和倍的方法解决问题.2.知识点拨知识点说明:和倍问题就是已知两个数的和以及它们之间的倍数关系,求这两个数各是多少的问题.解答此类应用题时要根据题目中所给的条件和问题,画出线段图,使数量关系一目了然,从而找出解题规律,正确迅速地列式解答。

1大数一般是把较小数看作倍数,和倍问题的特点是已知两个数的和与大数是小数的几倍,要求两个数,. 就是几倍数,这样就可知总和相当于小数的几倍了,可求出小数,再求大数小数+)=和÷(倍数和倍问题的数量关系式是:1 大数和一小数= 或小数×倍数=大数如果要求两个数的差,要先求份数: 1.)=两数差份数×(倍数-1l 解决和倍问题,关键是学会画线段图,这样可以帮助我们更好的弄清各数量之间的关系。

例题精讲妈妈的年龄是孩子的倍,三人各是多少岁?】1一家三口人,三人年龄之和是岁,妈妈和爸爸同岁,【例724 【题型】填空【难度】2星【考点】和倍问题倍,把孩子的年龄作为妈妈的年龄是孩子的倍,爸爸和妈妈同岁,那么爸爸的年龄也是孩子的【解析】144,妈妈的年龄是:岁)倍数,已知三口人年龄和是岁,那么孩子的年龄为:(=8)4?472?(1?72 ,爸爸和妈妈同岁为岁.(岁)32?8?432 岁岁,爸爸妈妈的年龄为【答案】孩子的年龄为8325条鱼,其中黑猫和花猫钓到的鱼的条数是白猫钓到的鱼的条数的】三只小猫去钓鱼,它们共钓上36【例2条鱼。

倍少9条。

黑猫钓上2倍,花猫钓到的鱼比另外两只猫钓到的鱼的条数的【题型】填空星【考点】和倍问题【难度】3 题【关键词】希望杯,四年级,二试,第82条花猫钓到的鱼比另外两只猫钓到的鱼的条数的6条,花猫和黑猫共钓30白猫钓到36÷(5+1)=【解析】=9条3条,黑猫钓到(30-3)÷3条,那么就比黑猫钓到的倍少92倍多【答案】9)岁.、乙、丙三人的年龄和为30岁,乙的年龄是甲、丙年龄和的一半.乙(【例3】甲【题型】填空星【考点】和倍问题【难度】3 【关键词】走美杯,四年级,初赛故乙的年龄为那么三人的年龄和就是乙的3倍,题意可知,【解析】由甲丙的年龄和是乙的2倍,103?30?岁。

小学六年级奥数第2课《比和比例》试题附答案

小学六年级奥数第2课《比和比例》试题附答案

小学六年级上册数学奥数知识点讲解第2课《比和比例》试题附答案第二讲比和比例在应用题的各种类型中,有一类与数量之间的(正、反)比例关系有关. 在解答这类应用题时,我们需要对题中各个量之间的关系作出正确的判断.成正比或反比的量中都有两种相关联的量.一种量(记作X)变化时另一种量(记作y)也随着变化.与这两个量联系着,有一个不变的量(记为k). 在判断变量x与谣否成正、反比例时,我们要紧紧抓住这个不变量k.如果不变量k是变量y 与x的商,即在x变化时y与x的商不变:工=k,那么y与x成正比例;如果k是y与x的积,即在x变化时,y与x的积不变:xy=k,那么y与x 成反比例.如果这两个关系式都不成立,那么y与x不成(正和反)比例.下面我们从最基本的判断两种量是否成比例的例题开始.例1下列各题中的两种量是否成比例?成什么比例?①速度一定,路程与时间.②路程一定,速度与时间.③路程一定,己走的路程与未走的路程.④总时间一定,要制造的零件总数和制造每个零件所用的时间.⑤总产量一定,亩产量和播种面积.⑥整除情况下被除数一定,除数和商.⑦同时同地,竿高和影长.⑧半径一定,圆心角的度数和扇形面积.⑨两个齿轮啮合转动时转速和齿数.⑪圆的半径和面积.(11)长方体体积一定,底面积和高.(12)正方形的边长和它的面积.习题二解答321.24+ (自一黑)=120 m ,3120X - = 72 (米),2120X - = 48 (米),72 X 48= 3456 (平方米).2.120 + 2 = 60 (米),360X-= 36 (米),60X-= 24 (米),36X24 = 864 (平方米)・5 + 3=8,96 X G = 60筐(橘子),O96X -= 36筐(苹果). 84.设剩下的任务还需x天完成.25% 1-25% = ,25%x=75%X5,x=15.5.设一件上衣与一条裤子的价钱之比是1 : x,则小强和小明用去钱数的比是:l + 2x 4 1 + x =?3(1 + 2x) = 4 (1 + x),3+ 6x= 4 + 4x,2x=l,1X= 2,7x1 = 3. 5 (元)(一条裤子). 乙3276.6+(齐亍一百X2)X百7 = 126 (页).7.设乙车行完全程用x小时.13x = 2X5-,乙2x= 3y,1+(3+』)=2:(小时).3 三545328.顺水船速:逆水船速=(21-12):(7-4)=3: 1.附:奥数技巧分享分享四个奥数小技巧。

小学六年级奥数系列讲座比例和百分数(含答案解析)

小学六年级奥数系列讲座比例和百分数(含答案解析)

比例和百分数成本、利润、价格等基本经济术语,以及它们之间的关系.各种已知数据或所求结果中包含比例与百分数的应用题,有时恰当选取较小的量作为一个单位,司以实现整数化计算.1.迎春农机厂计划生产一批插秧机,现已完成计划的56%,如果再生产5040台,总产量就超过计划产量的16%.那么,原计划生产插秧机多少台?【分析与解】 : 5040÷(1+16%56%)=8400(台).2.圆珠笔和铅笔的价格比是4:3,20支圆珠笔和21支铅笔共用71.5元.问圆珠笔的单价是每支多少元?【分析与解】:设圆珠笔的价格为4,那么铅笔的价格为3,则20支圆珠笔和21支铅笔的价格为20×4+21×3=143,则单位“1”的价格为71.5÷143:0.5元. 所以圆珠笔的单价是O.5×4=2(元).3.李大娘把养的鸡分别关在东、西两个院内.已知东院养鸡40只;现在把西院养鸡总数的14卖给商店,13卖给加工厂,再把剩下的鸡与东院全部的鸡相加,其和恰好等于原来东、西两院养鸡总数的50%.原来东、西两院一共养鸡多少只?【分析与解】:方法一:设原来东西两院一共养鸡x 只,那么西院养鸡()40x -只. 依题意:.()11140140432x x ⎛⎫-⨯--+= ⎪⎝⎭,解出280x =. 即原来东、西两院一共养鸡280只.方法二:50%即12,东、西两院剩下的鸡等于东院的12加上西院的12,即20+12西院原养鸡数.有东院剩下40只鸡,西院剩下原11514312--=的鸡.所以有西院原养鸡(40—20)÷15212⎛⎫-⎪⎝⎭=240只,即原来东、西两院一共养鸡40+240=280只.4.用一批纸装订一种练习本.如果已装订120本,剩下的纸是这批纸的40%;如果装订了185本,则还剩下1350张纸.这批纸一共有多少张?【分析与解】方法一:装订120本,剩下40%的纸,即用了60%的纸.那么装订185本,需用185×(60%÷120)=92.5%的纸,即剩下192.5%=7.5%的纸,为1350张.所以这批纸共有1350÷7.5%=18000张.方法二:120本对应(140%=)60%的总量,那么总量为120÷60%=200本.当装订了185本时,还剩下200185:15本未装订,对应为1350张,所以每本需纸张:1350÷15=90张,那么200本需200×90=18000张.即这批纸共有18000张.5.有男女同学325人,新学年男生增加25人,女生减少5%,总人数增加16人.那么现有男同学多少人?【分析与解】男生增加25人,女生减少5%,而总人数增加了16人,说明女生减少了2516=9人,那么女生原来有9÷5%=180人,则男生有325180=145人.增加25人后为145+25=170人,所以现有男同学170人.6.有一堆糖果,其中奶糖占45%,再放人16块水果糖后,奶糖就只占25%那么,这堆糖果中有奶糖多少块?【分析与解】方法一:原来奶糖占45910020=,后来占2511004=,因此后来的糖果数是奶糖的4倍,也比原来糖果多16粒,从而原来的糖果是16+(9420⨯- 1)=20块. 其中奶糖有20×920=9块.方法二:原来奶糖与其他糖(包含水果糖)之比是45%:(145%)=9:11, 设奶糖有9份,其他糖(包含水果糖)有11份.现在奶糖与其他糖之比是25%:(125%)=1:3=9:27,奶糖的份数不变,其他糖的份数增加了2711=16份,而其他糖也恰好增加了16块,所以,l 份即1块.奶糖占9份,就是9块奶糖.7.甲乙两包糖的重量比是4:l ,如果从甲包取出10克放入乙包后,甲乙两包糖的重量比变为7:5.那么两包糖重量的总和是多少克?【分析与解】两包糖数量的总数是 4713210104641756013⎛⎫÷-=÷= ⎪++⎝⎭克.8.有若干堆围棋子,每堆棋子数一样多,且每堆中自子都占28%.小明从某一堆中拿走一半棋子,而且拿走的都是黑子,现在,在所有的棋子中,白子将占32%.那么,共有棋子多少堆?【分析与解】 方法一:设有x 堆棋子,每堆有棋子“1”.根据拿走黑子白子总数不变.列方程得1282x x ⎛⎫⨯=- ⎪⎝⎭×32%,化简得28x =32(x 12),两边同除以4,得7x =8(x12),解得x =4. 即共有棋子4堆.方法二:注意到所有棋子中的白子个数前后不变,所以设白子数为“1”. 那么有: .黑子变化了1817257856-=,对应为12堆;所以2528对应l堆.而开始共有棋子l+182577=,所以共有25254728÷=堆.9.幼儿园大班和中班共有32名男生,18名女生.已知大班中男生数与女生数的比为5:3,中班中男生数与女生数的比为2:1,那么大班有女生多少名?【分析与解】设大班女生有x名,则中班女生有(18x)名.根据男生数可列出方程:x×53+(18x)×21=32,解得x=12.所以大班有女生12名.10.某校四年级原有2个班,现在要重新编为3个班,将原一班的号与原二班的丢组成新一班,将原一班的{与原二班的吉组成新二班,余下的30人组成新三班.如果新一班的人数比新二班的人数多10%,那么原一班有多少人?【分析与解】有新三班的为原一、二班总人数的1751212=,为30人.所以原来两班总人数是:30÷512=72(人).则新一班与新二班人数总和是7230=42(人).现在再把新二班人数算作1份.新一班人数=421101101+⨯++ =22(人),新二班人数=4222=20(人).(原一班人数)(原二班人数)=(2220)÷1134⎛⎫- ⎪⎝⎭=2×12=24(人). 原一班人数=(72+24)÷2=48(人).11.有两包糖,每包糖内装有奶糖、水果糖和巧克力糖.已知:①第一包糖的粒数是第二包糖的23;②在第一包糖中,奶糖占25%,在第二包糖中,水果糖占50%;③巧克力糖在第一包糖中所占的百分比是在第二包糖中所占的百分比的两倍.当两包糖合在一起时,巧克力糖占28%,那么水果糖所占百分比等于多少?【分析与解】表述1:设第一包有2a 粒糖,则第二包有3a 粒糖,设第二包有3b 粒巧克力糖,则第一包有4b 粒巧克力糖.4323b b a a +=+28%,所以57b a =×28%=20%.于是第一包中,巧克力糖占42ba=40%,水果糖占140%25%=35%.在两包糖总粒数中,水果糖占23535023a a a a⨯+⨯=+44%.表述2:设第一包糖总数为“2”,那么第二包糖总数为“3”,并设第一包糖含有巧克力糖2c ,第二包糖含有巧克力糖c .那么有2×2c+3×c=28%×(2+3),有7c=140%,所以c=20%,那么有如下所示的每种糖所占的百分数.所以水果糖占总数的(35%×2+50%×3)÷(2+3)=44%.12.某次数学竞赛设一、二、三等奖.已知:①甲、乙两校获一等奖的人数相等:⑦甲校获一等奖的人数占该校获奖总人数的百分数与乙校相应的百分数的比为5:6;③甲、乙两校获二等奖的人数总和占两校获奖人数总和的20%;④甲校获三等奖的人数占该校获奖人数的50%;⑤甲校获二等奖的人数是乙校获二等奖人数的4.5倍.那么,乙校获一等奖的人数占该校获奖总人数的百分数等于多少?【分析与解】表述1:不妨设甲校有60人获奖,由①、②,乙校有50人获奖.由③知两校获二等奖的共有(60+50)×20%=22人;由⑤知甲校获二等奖的有22÷(4.5+1)×4.5=18人;由④知甲校获一等奖的有6060×50%18=12人,从而所求百分数等于12÷50×100%=24%.表述2:(这有一个“5”)1.2÷5×100%=24%,即乙校获一等奖的人数占该校获奖总人数的24%.13.①某校毕业生共有9个班,每班人数相等.②已知一班的男生人数比二、三班两个班的女生总数多1;③四、五、六班三个班的女生总数比七、八、九班三个班的男生总数多1.那么该校毕业生中男、女生人数比是多少?【分析与解】表述1:由②知,一、二、三班的男生总数比二、三班总人数多1.③知,四至九班的男生总数比七、八、九班总人数少1.因此,一至九班的男生总数是二、三、七、八、九共五个班的人数,则女生总数等于四个班的人数.所以,男、女生之比是5:4.表述2:.有“一、二、三班男生”加上“四、五、六、七、八、九班男生”即为一至九班全体男生数,恰为“二、三班总人数”加上“四、五、六班总人数”,即为五个班总人数,则女生总数等于四个班的人数.所以,男、女生之比是5:4.14.某商品按原定价出售,每件利润为成本的25%;后来按原定价的90%出售,结果每天售出的件数比降价前增加了1.5倍.问后来每天经营这种商品的总利润比降价前增加了百分之几?【分析与解】设这种商品的成本为“1”,共卖出商品“1”,则利润为25%,总利润为0.25,定价为1.25.那么按原定价的90%出售,即以1.25× 90%=1.125的价格出售,现在销售的件数比原来增加了1.5倍,利润为0.125×(1.5+1)=O.3125,而原来的总利润为O.25,现在增加了0.3125一O.25=0.0625,0.0625÷0.25:25%.所以,后来每天经营这种商品的总利润比降价前增加了25%.15.赢利百分数=100-⨯卖出价买入价买入价某电子产品去年按定价的80%出售,能获得20%的赢利;由于今年买入价降低,按同样定价的75%出售,却能获得25%的赢利.那么今年买入价去年买入价是多少?【分析与解】 根据题中给出的公式知: 赢利百分数×买入价=卖出价一买入价 则买入价×(赢利百分数+1)=卖出价,那么买入价=卖出价赢利百分数+1今年买入价去年买入价=()()÷÷今年卖出价1+25去年卖入价1+25=7512580120⨯÷⨯÷定价定价=。

小学奥数教程:牛吃草问题(二)全国通用(含答案)

小学奥数教程:牛吃草问题(二)全国通用(含答案)

1. 理解牛吃草这类题目的解题步骤,掌握牛吃草问题的解题思路.2. 初步了解牛吃草的变式题,会将一些变式题与牛吃草问题进行区别与联系英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草”问题是小学应用题中的难点.解“牛吃草”问题的主要依据:① 草的每天生长量不变;② 每头牛每天的食草量不变;③ 草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值④ 新生的草量=每天生长量⨯天数.同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数)÷(较多天数-较少天数); ⑶原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数;⑷吃的天数=原来的草量÷(牛的头数-草的生长速度);⑸牛的头数=原来的草量÷吃的天数+草的生长速度.“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.模块一、 “牛”吃草问题的变例【例 1】 在地铁车站中,从站台到地面有一架向上的自动扶梯.小强乘坐扶梯时,如果每秒向上迈一级台阶,那么他走过20级台阶后到达地面;如果每秒向上迈两级台阶,那么走过30级台阶到达地面.从站台到地面有 级台阶.【考点】牛吃草问题 【难度】3星 【题型】填空【关键词】对比思想方法【解析】 本题非常类似于“牛吃草问题”,如将题目改为:“在地铁车站中,从站台到地面有一架向上的自动扶梯.小强乘坐扶梯时,如果每秒向上迈一级台阶,那么他走过20秒后到达地面;如果每秒向上迈两级台阶,那么走过15秒到达地面.问:从站台到地面有多少级台阶?”采用牛吃草问题的方法,电梯20155-=秒内所走的阶数等于小强多走的阶数:21512010⨯-⨯=阶,电梯的速度为1052÷=阶/秒,扶梯长度为20(12)60⨯+=(阶)。

【精品奥数】六年级下册数学思维训练讲义-第五讲 比例(二) 人教版(含答案)

【精品奥数】六年级下册数学思维训练讲义-第五讲  比例(二)  人教版(含答案)

第五讲比例(二)第一部分:趣味数学话说唐僧和三个徒弟为普渡众生去西天取经,要经历九九八十一难,困难重重,关卡层层,是常人很难办到的。

师徒四人走了一天,觉得累了,便休息一下。

八戒把钉耙一丢,倒地便睡,唐僧与沙僧打坐,悟空舞动金箍棒。

只见悟空一声“变”,金箍棒由原来的绣花针变成了高耸入云的大柱子。

悟空叫道:“八戒,你猜我的金箍棒现在有多长? ”八戒说:“能有多长,不过10米罢了。

”悟空说:“这金箍棒可神了,5秒能变10米。

”“那25秒能变15米的。

”八戒随口说道。

沙僧说:“这节定算错了,5秒比10米小,25秒比15米大。

”八戒说:"扯淡,这个理由一点也不充分。

”悟空说:“那我就说说理由,让你们心服口服。

”八戒说: “愿闻其详。

”悟空说:“用解比例的方法,设25秒能变x米,比例是5:10=25:x,5x=250,X=50,答案应该是50米啊。

”“这…这…”八戒哑口无言,还有一种方法沙僧补充道:“5秒能变10米,10÷5=2米,意思是1秒能变2米长,25秒就能变25×2=50米长。

”八戒如醍醐灌顶,连连称是。

唐僧在一旁听着,说道:你们都很聪明,用不同的方法解开这道题。

以后遇到事情要要深思熟虑。

八戒,你以后可不能瞎掰了,要用理由说明问题。

”“一定,一定,徒儿谨记师父教诲,今后要学好数学……”哈哈哈,师徒四人伴着笑声又启程了。

第二部分:习题精讲在应用题的各种类型中,有一类与数量之间的(正、反)比例关系有关.在解答这类应用题时,我们需要对题中各个量之间的关系作出正确的判断。

成正比或反比的量中都有两种相关联的量,一种量(记作 x)变化时另一种量(记作 y)也随着变化.与这两个量联系着,有一个不变的量(记为 k).在判断变量 x 与 y 是否成正、反比例时,我们要紧紧抓住这个不变量 k。

如成正比例;如果 k 是 y 与 x 的积,即在 x变化时,y 与 x 的积不变:xy=k,那么 y 与 x 成反比例.如果这两个关系式都不成立,那么 y 与 x 不成(正和反)比例。

小学奥数教程-差倍问题(二)教师版 (105) 全国通用(含答案)

小学奥数教程-差倍问题(二)教师版 (105) 全国通用(含答案)

6-1-6差倍问题(二)教学目标1.掌握差倍问题的基本解法以及相关的年龄等应用题.2.熟练应用通过图示来表示数量关系.知识精讲差倍问题就是已知大小两数的差,以及大小两数的倍数关系,求大小两数的问题.差倍问题的特点与和倍问题类似。

解答差倍问题的关键是要确定两个数量的差及相对应的倍数差,一般情况下,在题目中不直接给出,需要经过调整和计算才能得到。

解题思路:首先要在题目中找到1倍量,然后画图确定解题方法.被除数的数量和除数的倍数关系要相对应,相除后得到的结果是一倍量差倍问题的基本关系式:差÷(倍数-1)=1倍数(较小数)1倍数×几倍=几倍数(较大数)或较小数+差=较大数解决差倍问题,关键是学会画线段图,这样可以帮助我们更好的弄清各数量之间的关系.年龄问题的和差问题主要利用的年龄差不变。

例题精讲【例 1】为了过冬,小白兔和小黑兔都储藏了一些胡萝卜。

已知小白兔储藏的胡萝卜数量是小黑兔储藏数量的3倍。

它们各吃了5个胡萝卜后,小白兔剩下的胡萝卜数量是小黑兔剩下数量的4倍。

那么它们剩下的胡萝卜共有个。

【考点】差倍问题【难度】3星【题型】填空【关键词】希望杯,4年级,1试【解析】小黑兔剩下胡萝卜的数量是3×5-5=10个,它们剩下的胡萝卜共有10+10×4=50个。

【答案】50个【例 2】某养鸡场的母鸡只数是公鸡只数的6倍,后来公鸡、母鸡各增加60只,母鸡的只数变为公鸡只数的4倍,则养鸡场原来一共养了___________只鸡。

【考点】差倍问题【难度】3星【题型】填空【关键词】希望杯,4年级,1试【解析】要保持母鸡是公鸡的6倍,母鸡增加60,公鸡就要增加360,所以360-60=300就是差的2倍,现在有150只母鸡,原来有90只母鸡,一共养了630只鸡。

【答案】630【例 3】兄妹俩人去买文具,哥哥带的钱是妹妹的两倍,哥哥用去180元,妹妹用去30元,这时兄妹俩人剩下的钱正好相等,哥哥带了________元钱,妹妹带了________元钱.【考点】差倍问题【难度】3星【题型】填空【关键词】2008年,第八届,春蕾杯,初赛【解析】由题目的条件“哥哥带的钱是妹妹的两倍”知:哥哥的钱比妹妹的钱多一倍,又由“哥哥用去180元,妹妹用去30元,这时兄妹俩人剩下的钱正好相等,知:哥哥比妹妹多18030150-=(元),则知妹妹带了150元,哥哥带了300元.【答案】哥哥带300元,妹妹带150元【巩固】兄妹俩人去买文具,哥哥带的钱是妹妹的两倍,哥哥用去300元,妹妹用去40元,这时兄妹俩人剩下的钱正好相等.哥哥带了元钱,妹妹带了元钱.【考点】差倍问题【难度】3星【题型】填空【关键词】学而思杯,2年级,第11题【解析】哥哥用去300元,妹妹用去40元,这时兄妹俩人剩下的钱正好相等.可以得到妹妹带了30040260-=元)钱,那么哥哥带了260260520+=(元)钱.【答案】哥哥带了520元,妹妹带了260元【例 4】菜站运来的白菜是萝卜的3倍,卖出白菜1800千克,萝卜300千克,剩下的两种蔬菜的重量相等,菜站运来的白菜和萝卜各是多少千克?【考点】差倍问题【难度】3星【题型】解答【解析】这样想:根据“菜站运来的白莱是萝卜的3倍”应把运来的萝卜的重量看作1倍;“卖出白菜1800千克,萝卜300千克后,剩下两种蔬菜的重量正好相等”,说明运来的白菜比萝卜多-=(千克).这个重量相当于萝卜重量的312-=(倍),这样就可以先求出运来的萝卜是180********多少千克,再求运来的白菜是多少千克.所以运来萝卜:(1800300)(31)750-÷-=(千克),运来白菜:⨯=(千克).75032250【答案】白菜2250千克,萝卜750千克。

同步奥数 六年级 比 2 1-7 答案版

同步奥数 六年级 比 2  1-7 答案版

同步奥数六年级比 2 1-7 答案版同步奥数六年级比21-7答案版同步奥数六年级比(2)1-7答案版1、比的应用领域(3)课本延伸训练【例题】有甲、乙两个粮食仓库,原来甲库存粮的吨数是乙库的食到甲库,甲库与乙库存粮之比是4:5。

原来两库各米粮多少吨?1.甲工程队原有人数是乙工程队的3。

现在从乙工程队派28人到甲工程队,那么甲、乙75。

如果从乙库调6吨粮7两工程队的人数之比是5:7。

两个工程队原来各存有多少人?2.小明读一本书,已读的和未读的页数之比是1:4。

如果再读115页,已读的和未读的页数之比是7:5。

这本书共有多少页?3.某煤矿存有一堆煤,把其中的18吨。

原来这堆煤共有多少吨?18按5:3卖给甲、乙两个工厂,甲工厂比乙工厂多买了25【例题】小强、小明和小辉三人共计147元钱。

小强、小明和小辉三人分别用了自己钱数的124、、各买了一支相同的钢笔。

那么他们三人原来各存有多少元钱?2371114.水果店有三种水果共120筐。

香蕉筐数的、梨筐数的与苹果筐数的相等。

这三345种水果各存有多少筐?1225.三个小队共植树196棵。

一小队植树棵数的等于二小队的,二小队植数棵数的等3553于三小队的。

三个小队各植树多少棵?82、比与分数混合运算【例题】甲、乙两仓库化肥的比是7:5,甲仓库运往26吨化肥至乙仓库,甲、乙两仓库化肥的比是3:4。

甲、乙两仓库原来各存有化肥多少吨?1.修路队要修一条长432米的公路。

已经修好了全长的乙两食修路队。

两个修路队各必须修成多少米?2.学校合唱队与舞蹈队人数的比为3:2。

如果将合唱队员抽调10名到舞蹈队,那么这时的人数之比为7:8。

原来合唱队有多少人?3.存有三桶油共轻45千克。

如果从第一、第二桶中都抽出2.5千克油放入第三桶,这时第一、二、三桶油的重量之比是l:2:3。

三桶油原来各有多少千克?1,剩余的任务按5:4分给甲、6【例题】六(2)班男生与女生的人数之比是5:4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有:一、比和比例的性质性质1:若a : b =c :d ,则(a + c ):(b + d )= a :b =c :d ;性质2:若a : b =c :d ,则(a - c ):(b - d )= a :b =c :d ;性质3:若a : b =c :d ,则(a +x c ):(b +x d )=a :b =c :d ;(x 为常数)性质4:若a : b =c :d ,则a ×d = b ×c ;(即外项积等于内项积)正比例:如果a ÷b =k (k 为常数),则称a 、b 成正比;反比例:如果a ×b =k (k 为常数),则称a 、b 成反比.二、主要比例转化实例①x a y b = ⇒ y b x a =; x y a b =; a b x y =; ② x a y b = ⇒ mx a my b =; x ma y mb=(其中0m ≠); ③ x a y b = ⇒ x a x y a b =++; x y a b x a--=; x y a b x y a b ++=-- ;④ x a y b =,y c z d= ⇒ x ac z bd =;::::x y z ac bc bd =; ⑤ x 的c a 等于y 的d b ,则x 是y 的ad bc ,y 是x 的bc ad. 三、按比例分配与和差关系 ⑴按比例分配例如:将x 个物体按照:a b 的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x 的比分别为():a a b +和():b a b +,所以甲分配到ax a b +个,乙分配到bx a b+个. ⑵已知两组物体的数量比和数量差,求各个类别数量的问题 例如:两个类别A 、B ,元素的数量比为:a b (这里a b >),数量差为x ,那么A 的元素数量为ax a b -,B 的元素数量为bx a b-,所以解题的关键是求出()a b -与a 或b 的比值. 知识点拨 教学目标比例应用题(二)四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l ”。

题中如果有几个不同的单位“1”,必须根据具体情况,将不同的单位“1”,转化成统一的单位“1”,使数量关系简单化,达到解决问题的效果。

在解答分数应用题时,要注意以下几点:1. 题中有几种数量相比较时,要选择与各个已知条件关系密切、便于直接解答的数量为单位“1”。

2. 若题中数量发生变化的,一般要选择不变量为单位“1”。

3. 应用正、反比例性质解答应用题时要注意题中某一数量是否一定,然后再确定是成正比例,还是成反比例。

找出这些具体数量相对应的分率与其他具体数量之间的正、反比例关系,就能找到更好、更巧的解法。

4. 题中有明显的等量关系,也可以用方程的方法去解。

5. 赋值解比例问题按比例分配与和差关系(一)量倍对应 【例 1】 甲乙两车分别从 A , B 两地出发,相向而行.出发时,甲、乙的速度比是5∶4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B 地时,乙离A 地还有10千米.问:A ,B 两地相距多少千米?【考点】比例应用题 【难度】3星 【题型】解答【解析】 甲、乙原来的速度比是5∶4相遇后的速度比是:[5×(1-20%)]∶[4×(1+20%)]=4∶4.8=5∶6.相遇时,甲、乙分别走了全程的5/9和4/9设全程x 千米,剩下的部分甲行的长度和乙行的长度之比为5:6其中相遇后甲行驶了全长的4/9 所以乙行驶了全长的4856915÷⨯=,所以乙一共行了全长484491545+=,还剩44114545-=没有走。

所以A 、B 全长为450千米.【答案】450千米【例 2】 A 、B 、C 三个水桶的总容积是1440公升,如果A 、B 两桶装满水,C 桶是空的;若将A 桶水的全部和B 桶水的15,或将B 桶水的全部和A 桶水的13倒入C 桶,C 桶都恰好装满.求A 、B 、C 三个水桶容积各是多少公升?【考点】比例应用题 【难度】3星 【题型】解答【解析】 根据题意可知,A 桶水的全部加上B 桶水的15等于B 桶水的全部加上A 桶水的13,所以A 桶水的23等于B 桶水的45,那么A 桶水的全部等于B 桶水的426535÷=,C 桶水为B 桶水的617555+=.所以A 、B 、C 三个水桶的容积之比是67:1:6:5:755=.又A 、B 、C 三个水桶的总容积是1440公升,所以A 桶的容积是61440480657⨯=++公升,B 桶的容积是54804006⨯=公升,C 桶的容积是74805606⨯=公升. 【答案】560公升【巩固】 加工某种零件,甲3分钟加工1个,乙3.5分钟加工1个,丙4分钟加工1个.现在三人在同样的时间内一共加工3650个零件.问:甲、乙、丙三人各加工多少个零件?例题精讲【考点】比例应用题 【难度】3星 【题型】解答【解析】 根据题意可知,甲、乙、丙的工作效率之比为111::28:24:213 3.54=,那么在相同的时间内,三人完成的工作量之比也是28:24:21,所以甲加工了2836501400282421⨯=++个零件,乙加工了2436501200282421⨯=++个零件,丙加工了2136501050282421⨯=++个零件。

【答案】甲加工了1400个零件,乙加工了1200个零件,丙加工了1050个零件【巩固】 学而思学校四五六年级共有615名学生,已知六年级学生的12,等于五年级学生的25,等于四年级学生的37。

这三个年级各有多少名学生学生? 【考点】比例应用题 【难度】3星 【题型】解答【解析】 将六年级学生的12,等于五年级学生的25,等于四年级学生的37,看作一个单位,那么六年级学生人数等于2个单位,五年级学生等于2.5个单位,四年级学生等于73学生,所以六年级、五年级、四年级学生人数的比为57212151423=::::,所以六年级学生人数为12615121514⨯++=180人,五年级学生人数为15615225121514⨯=++人,四年级学生人数为14615210121514⨯=++人.【答案】六年级学生人数为180人,五年级学生人数为225人,四年级学生人数为210人【例 3】 一块长方形铁板,宽是长的45.从宽边截去21厘米,长边截去35%以后,得到一块正方形铁板.问原来长方形铁板的长是多少厘米?【考点】比例应用题 【难度】3星 【题型】解答【解析】 如果只将长边截去35%,宽、长之比为()4:5135%16:13⨯-=⎡⎤⎣⎦,所以宽边的长度为21(1613)16112÷-⨯=厘米,所以原来铁板的长为41121405÷=厘米. 【答案】140【巩固】 一个正方形的一边减少20%,另一边增加2米,得到一个长方形,这个长方形的面积与原正方形面积相等.原正方形的边长是多少米?【考点】比例应用题 【难度】3星 【题型】解答【解析】 要保证面积不变,一边减少20%,即是原来的45,另一边要变成原来的54,即增加51144-=,所以原正方形的边长为1284÷=(米). 【答案】8【例 4】 一项机械加工作业,用4台A 型机床,5天可以完成;用4台A 型机床和2台B 型机床3天可以完成;用3台B 型机床和9台C 型机床,2天可以完成,若3种机床各取一台工作5天后,剩下A 、C 型机床继续工作,还需要______ 天可以完成作业.【考点】比例应用题 【难度】3星 【题型】解答【关键词】2008年,西城实验【解析】 由于用4台A 型机床5天可以完成;用4台A 型机床和2台B 型机床3天可以完成,所以2台B型机床3天完成的量等于4台A 型机床2天完成的量,则A 、B 两种机床每天完成的量的比为()()23:423:4⨯⨯=,即A 型机床每天完成的量为3,B 型机床每天完成的量为4,该项作业总量为34560⨯⨯=,那么C 型机床每天完成的量为()6024392÷-⨯÷=,3种机床各取一台工作5天后,剩下的工作量为()60342515-++⨯=,A 、C 型机床还需继续工作()15323÷+=天.【答案】3【例 5】 动物园门票大人20元,小孩10元.六一儿童节那天,儿童免票,结果与前一天相比,大人增加了60%,儿童增加了90%,共增加了2100人,但门票收入与前一天相同.六一儿童节这天共有多少人入园?【考点】比例应用题 【难度】3星 【题型】解答【解析】 前一天大人与小孩的人数比为1:(60%2)5:6⨯=,六一那天增加的大人与增加的小孩人数比为()()560%:690%5:9⨯⨯=, 大人增加的人数为5210075014⨯=人,小孩增加的人数为21007501350-=人,大人的总数为75060%7502000÷+=人,小孩的总人数为135090%13502850÷+=人,总人数为200028504850+=人.【答案】4850人【例 6】 某水果批发市场存放的苹果与桃子的吨数的比是1:2,第一天售出苹果的20%,售出桃子的吨数与所剩桃子的吨数的比是1:3;第二天售出苹果18吨,桃子12吨,这样一来,所剩苹果的吨数是所剩桃子吨数的415,问原有苹果和桃子各有多少吨? 【考点】比例应用题 【难度】3星 【题型】解答【关键词】武汉市,外国语学校【解析】 法一:设原来苹果有x 吨,则原来桃子有2x 吨,得:(120%)184********x x ⨯--=⨯-+,解得37x =.所以原有苹果37吨,原有桃子37274⨯=(吨).法二:原来苹果和桃子的吨数的比是1:2,把原来的苹果的吨数看作1,则原来桃子的吨数为2,第一天后剩下的苹果是41(120%)5⨯-=,剩下的桃子是332132⨯=+,所以此时剩下的苹果和桃子的重量比是43:8:1552=.现在再售出苹果18吨,桃子12吨,所剩的苹果与桃子的重量比是4:15.这就相当于第一天后剩下的苹果和桃子的重量比是8:15,先售出桃子12吨,苹果83212155⨯=吨,此时剩下的苹果和桃子的重量比还是8:15,再售出32581855-=吨苹果,剩下的苹果和桃子的重量比变为4:15,所以这585相当于844-=份,最后剩下的桃子有581587542⨯=吨,那么第一天后剩下的桃子有871111222+=吨,原有桃子111374213÷=+吨,原有苹果74237÷=吨. 【答案】37【巩固】 月初,每克黄金的价格与每桶原油的价格比是3:5。

相关文档
最新文档