高三 复习 频率分布直方图
高中数学总结归纳 帮你理解频率分布直方图
帮你理解频率分布直方图通过频率分布表,我们可以确切地知道数据分布在各个不同区间的频率,而通过频率分布直方图我们可以直观地看出数据分布的总体态势,两者相互补充,可以使我们对数据的频率分布情况了解的更加清楚,但在画频率分布直方图时,一定要注意其纵轴的意义.例给出如下样本数据:10,8,6,10,8,13,11,10,12,7,8,9,11,9,11,12,9,10,11,12,并分组如下:(1)完成上面的频率分布表;(2)根据上表,在坐标系中作出频率分布直方图.错解:(1)频率分布表如下:12(2)频率分布直方图如下:剖析:以上第(2)问的频率分布直方图画错了.原因在于纵轴单位是,而不是频率.例如当数据在[9.5,11.5)时,频率为0.4,而频率组距0.40.22==.故图中最高的这个矩形的高度应为0.2个单位,而不是0.4个单位,其他小矩形的高度可依此求出来. 正解:(1)同上.(2)频率分布直方图如下:[)11.513.5, 4 0.2 合计201.0点悟:频率分布直方图中,各个小长方形的面积等于相应各组的频率,因为各组频率之和为1,故所有长方形面积之和等于1.根据这一点,也可以判断你画出的频率分布直方图是否正确.练习:为了了解某校高三年级男生的身高情况,随机抽取40名高三男生的身高,所得数据如下(单位:cm):171,163,163,166,166,168,168,160,168,165,171,169,167,169,151,168,170,160,168,174,165,168,174,159,167,156,157,164,169,180,176,157,162,161,158,164,163,163,167,161.(1)列出频率分布表;(2)画出频率分布直方图.提示:确定组距和组数是解决该类问题的出发点.只有科学合理的确定组距和组数,才能准确的制表及绘图.3。
高中数学频率分布直方图
频率分布直方图作频率分布直方图的方法为:(1)把横轴分成若干段,每一线段对应一个组的组距;(2)以此线段为底作矩形,它的高等于该组的组距频率,这样得出一系列的矩形;(3)每个矩形的面积恰好是该组上的频率.频率折线图:如果将频率分布直方图中各相邻的矩形的上底边的中点顺次连接起,就得到一条折线,称这条折线为本组数据的频率折线图.作茎叶图的方法是:将所有两位数的十位数字作为“茎”,个位数字作为“叶”,茎相同者共用一个茎,茎按从小到大的顺序从上向下列出,共茎的叶一般按从大到小(或从小到大)的顺序同行列出.知识点1:利用频率分布直方图分析总体分布例题1: 2000辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,时速在[50,60)的汽车大约有 A .30辆 B .60辆 C .300辆 D .600辆变式:某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是 [96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是A.90B.75C. 60D.45变式:某初一年级有500名同学,将他们的身高(单位:cm )数据绘制成频率分布直方图(如图),若要从身高在[)120,130,[)130,140,[]140,150三组内的学生中,用分层抽样的方法选取30人参加一项活动,则从身高在[)130,140内的学生中选取的人数为 .知识点2:用样本分估计总体例题2某市2010年4月1日—4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45,96 98 100 102 104 106 0.1500.125 0.1000.0750.050 克 频率/组距100 110 120130 140 150 身高频率|组距0.0050.0100.020a0.035(Ⅰ) 完成频率分布表;(Ⅱ)作出频率分布直方图;(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。
高中数学复习概率统计题型归纳与讲解03 频率分布直方图
高中数学复习概率统计题型归纳与讲解专题3频率分布直方图例1.要调查某地区高中学生身体素质,从高中生中抽取100人进行跳高测试,根据测试成绩制作频率分布直方图如图,现从成绩在[120,140)之间的学生中用分层抽样的方法抽取5人,应从[120,130)间抽取人数为b,则()A.a=0.2,b=2B.a=0.025,b=3C.a=0.3,b=4D.a=0.030,b=3【解析】解:由题得10×(0.005+0.035+a+0.020+0.010)=1,所以a=0.030.在[120,130)之间的学生人数为:100×10×0.030=30人,在[130,140)之间的学生人数为:100×10×0.020=20人,在[120,140)之间的学生人数为:100×(10×0.030+0.020)=50人,又用分层抽样的方法在[120,140)之间的学生50人中抽取5人,即抽取比例为:110,所以成绩在[120,130)之间的学生中抽取的人数应,30×110=3,即b=3,故选:D.例2.从某企业生产的某种产品中随机抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值分组[70,80) [80,90) [90,100) [100,110) 110,120)频数 14 20 36 18 12估计这种产品质量指标值的平均数为(同一组中的数据用该组区间的中点值作代表)( )A .100B .98.8C .96.6D .94.4【解析】解:平均数x →=0.14×75+0.20×85+0.36×95+0.18×105+0.12×115=94.4.故选:D .例3.“新冠肺炎”席卷全球,我国医务工作者为了打好这次疫情阻击战,充分发挥优势,很快抑制了病毒,据统计老年患者治愈率为71%,中年患者治愈率为85%,青年患者治愈率为91%.如果某医院有30名老年患者,40名中年患者,50名青年患者,则估计该医院的平均治愈率是( )A .86%B .83%C .90%D .84%【解析】解:利用求加权平均数的公式解得:30×71%+40×85%+50×91%30+40+50=0.84=84%,故选:D .例4.已知样本数据x 1,x 2,…,x n (n ∈N *)的平均数与方差分别是a 和b ,若y i =﹣2x i +3(i =1,2,…n ),且样本数据y 1,y 2,…,y n 的平均数与方差分别是b 和a ,则a ﹣b =( )A .1B .2C .3D .4【解析】解:由题意得:{−2a +3=b a =4b ,解得:{a =43b =13,故a ﹣b =1, 故选:A .例5.下面定义一个同学数学成绩优秀的标志为:“连续5次考试成绩均不低于120分”.现有甲、乙、丙三位同学连续5次数学考试成绩的记录数据(记录数据都是正整数):①甲同学:5个数据的中位数为127,众数为120;②乙同学:5个数据的中位数为125,总体均值为127;③丙同学:5个数据的中位数为135,总体均值为128,总体方差为19.8.则可以判定数学成绩优秀同学为( )A .甲、乙B .乙、丙C .甲、丙D .甲、乙、丙【解析】解:在①中,甲同学:5个数据的中位数为127,众数为120,所以前三个数为120,120,127,则后两个数肯定大于127,故甲同学数学成绩优秀,故①成立;在②中,5个数据的中位数为125,总体均值为127,可以找到很多反例,如:118,119,125,128,145,故乙同学数学成绩不优秀,故②不成立;在③中,5个数据的中位数为135,总体均值为128,总体方差为19.8设x 1<x 2<x 3<x 4,则丙的方差为15[(x 1﹣128)2+(x 2﹣128)2+(x 3﹣128)2+(x 4﹣128)2+(135﹣128)2]=19.8, ∴(x 1﹣128)2+(x 2﹣128)2+(x 3﹣128)2+(x 4﹣128)2=50,∴(x 1﹣128)2≤50,得|x 1﹣128|≤5,∴x 1≥128﹣5>120,∴丙同学数学成绩优秀,故③成立.∴数学成绩优秀有甲和丙2个同学.故选:C .例6.若数据x 1,x 2,…,x n 的平均数x =3,方差s 2=1,则数据2x 1+3,2x 2+3,…,2x n +3的平均数和方差分别为( )A.6,6B.9,2C.9,6D.9,4【解析】解:由题意若数据x1,x2,…,x n的平均数x=3,方差s2=1,可得x1+x2+…+x n=3n,则:2x1+3+x2+3+…+x n+3=2(x1+x2+…+x n)+3n=9n,所以数据2x1+3,2x2+3,…,2x n+3的平均数为9.又S2=1n[(x1﹣3)2+(x2﹣3)2+…+(x n﹣3)2]=1,所以[(x1﹣3)2+(x2﹣3)2+…+(x n﹣3)2]=n,所以1n [(2x1+3﹣9)2+(2x2+3﹣9)2+…+(2x n+3﹣9)2]=4n[(x1﹣3)2+(x2﹣3)2+…+(x n﹣3)2]=4,则数据2x1+3,2x2+3,…,2x n+3的平均数和方差分别为9,4.故选:D.例7.随着城镇化的不断发展,老旧小区的改造及管理已经引起了某市政府的高度重视,为了了解本市甲,乙两个物业公司管理的小区住户对其服务的满意程度,现从他们所服务的小区中随机选择了40个住户,根据住户对其服务的满意度评分,得到A区住户满意度评分的频率分布直方图和B 区住户满意度评分的频率分布表.B区住户满意度评分的频率分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100]频数4610128(Ⅰ)在图2中作出B区住户满意度评分的频率分布直方图,并通过频率分布直方图计算两区住户满意度评分的平均值及分散程度(其中分散程度不要求计算出具体值,给出结论即可);(Ⅱ)根据住户满意度评分,将住户和满意度分为三个等级:满意度评分低于70分,评定为不满意;满意度评分在70分到89分之间,评定为满意;满意度评分不低于90分,评定为非常满意.试估计哪个地区住户的满意度等级为不满意的概率大?若是要选择一个物业公司来管理老旧小区的物业,从满意度角度考虑,应该选择哪一个物业公司?说明理由.【解析】解:(Ⅰ)作出如图所示的频率分布直方图,B区住户满意度评分的频率分布直方图如图所示A区住户满意度评分的平均值为45×0.1+55×0.2+65×0.3+75×0.2+85×0.15+95×0.05=67.5;B区住户满意度评分的平均值为55×0.1+65×0.15+75×0.25+85×0.3+95×0.2=78.5.通过比较两区住户满意度评分的频率分布直方图可以看出,B区住户满意度评分比较集中,而A 区住户满意度评分比较分散.(Ⅱ)记D表示事件:“A区住户的满意度等级为不满意”,记E表示事件:“B区住户的满意度等级为不满意”,则P(D)=(0.010+0.020+0.030)×10=0.6,P(E)=(0.010十0.015)×10=0.25,所以A区住户的满意度等级为不满意的概率较大.若是要选择一个物业公司来管理老旧小区的物业,从满意度等级为满意来考虑,应该选择乙物业公司来为小区服务,这样的话小区住户满意度会高一些.例8.某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组[65,75),第二组[75,85),……第八组[135,145],如图是按上述分组方法得到的频率分布直方图的一部分.(1)求第七组的频率,并完成频率分布直方图;(2)用样本数据估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);(3)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.【解析】解:(1)由频率分布直方图得第七组的频率为:1﹣(0.004+0.012+0.016+0.030+0.020+0.006+0.004)×10=0.08.完成频率分布直方图如下:(2)用样本数据估计该校的2000名学生这次考试成绩的平均分为:70×0.004×10+80×0.012×10+90×0.016×10+100×0.030×10+110×0.020×10+120×0.006×10+130×0.008×10+140×0.004×10=102.(3)样本成绩属于第六组的有0.006×10×50=3人,样本成绩属于第八组的有0.004×10×50=2人,从样本成绩属于第六组和第八组的所有学生中随机抽取2名,基本事件总数n=C52=10,他们的分差的绝对值小于10分包含的基本事件个数m=C32+C22=4,∴他们的分差的绝对值小于10分的概率p=mn=410=25.例9.我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准x,用水量不超过x的部分按平价收费,超出x的部分按议价收费.下面是居民月均用水量的抽样频率分布直方图.①求直方图中a的值;②试估计该市居民月均用水量的众数、平均数;③设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;④如果希望85%的居民月均用水量不超过标准x ,那么标准x 定为多少比较合理?【解析】解:①由概率统计相关知识,各组频率之和的值为1,∵频率=(频率/组距)*组距,∴0.5×(0.08+0.16+0.4+0.52+0.12+0.08+0.04+2a )=1,解得:a =0.3,∴a 的值为0.3;②由频率分布直方图估计该市居民月均用水量的众数为2+2.52=2.25(吨),估计该市居民月均用水量的平均数为:0.5(0.25×0.08+0.75×0.16+1.25×0.3+1.75×0.4+2.25×0.52+2.75×0.3+3.25×0.12+3.75×0.08+4.25×0.04)=2.035(吨).③由图,不低于3吨人数所占百分比为0.5×(0.12+0.08+0.04)=12%,∴全市月均用水量不低于3吨的人数为:30×12%=3.6(万);④由频率分布直方图得月均用水量低于2.5吨的频率为:0.5×(0.08+0.16+0.3+0.4+0.52)=0.73<85%,月均用水量低于3吨的频率为:0.5×(0.08+0.16+0.3+0.4+0.52+0.3)=0.88>85%,∴x=2.5+0.5×0.85−0.730.3×0.5=2.9(吨).例10.如图是某校高三(1)班的一次数学知识竞赛成绩的基叶图(图中仅列出[50,60),[90,100)的数据)和频率分布直方图.(1)求全班人数以及频率分布直方图中的x,y;(2)估计学生竞赛成绩的平均数和中位数(保留两位小数).【解析】解:(1)分数在[50,60)的频率为0.020×10=0.2,由茎叶图知,分数在[50,60)之间的频数为5,所以全班人数为50.2=25(人);分数在[90,100)之间的频数为2,由225=10y,解得y=0.008;又10x=1﹣10×(0.036+0.024+0.020+0.008),解得x=0.012.(2)由频率分布直方图,计算平均数为x=55×0.2+65×0.24+75×0.36+85×0.12+95×0.08=71.4,由0.2+0.24+0.36=0.80,所以中位数在[70,80)内,设中位数为m,则0.20+0.24+(m﹣70)×0.036=0.5,解得m≈71.67,所以中位数约为71.67.例11.某高中数学建模兴趣小组的同学为了研究所在地区男高中生的身高与体重的关系,从若干个高中男学生中抽取了1000个样本,得到如下数据.数据一:身高在[170,180)(单位:cm)的体重频数统计体重(kg)[50,55)[55,60)[60,65)[65,70)[70,75)[75,80)[80,85)[85,90)人数206010010080201010数据二:身高所在的区间含样本的个数及部分数据身高x(cm)[140,150)[150,160)[160﹣170)[170﹣180)[180﹣190)平均体重y(kg)4553.66075(Ⅰ)依据数据一将下面男高中生身高在[170﹣180)(单位:cm)体重的频率分布直方图补充完整,并利用频率分布直方图估计身高在[170﹣180)(单位:cm)的中学生的平均体重;(保留小数点后一位)(Ⅱ)依据数据一、二,计算身高(取值为区间中点)和体重的相关系数约为0.99,能否用线性回归直线来刻画中学生身高与体重的相关关系,请说明理由;若能,求出该回归直线方程;(Ⅲ)说明残差平方和或相关指数R2与线性回归模型拟合效果之间关系.(只需写出结论,不需要计算)参考公式:b=∑ni=1(x i−x)(y i−y)∑n i=1(x i−x)2=∑ni=1x i y i−nx⋅y∑n i=1x i2−nx2,a=y−b x.参考数据:(1)145×45+155×53.6+165×60+185×75=38608;(2)1452+1552+1652+1752+1852﹣5×1652=1000.(3)663×175=116025,664×175=116200,665×175=116375.(4)728×165=120120.【解析】解:(1)身高在[170,180)的总人数为:20+60+100+100+80+20+10+10=400,体重在[55﹣60)的频率为:60400=0.15,体重在[70﹣75)的频率为:80400=0.2,平均体重为:52.5×0.05+57.5×0.15+62.5×0.25+67.5×0.25+72.5×0.2+77.5×0.05+82.5×0.025+87.5×0.025≈66.4,(2)因为r=0.99→1,线性相关很强,故可以用线性回归直线来刻画中学生身高与体重的相关,x=145+155+165+175+1855=165,y=45+75+60+53.6+66.45=60,b=∑8i=1x i y i−8x⋅y∑8i=1x i2−8x2=38608+175×66.4−5×165×601000=0.728,a=y−b x=60−0.728×165=−60.12,所以回归直线方程为:y=0.728x−60.12,(3)残差平方和越小或相关指数R2越接近于1,线性回归模型拟合效果越好.例12.市政府为了节约用水,调查了100位居民某年的月均用水量(单位:t),频数分布如下:分组[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)[2.5,3)[3,3.5)[3.5,4)[4,4.5]频数4815222514642(1)根据所给数据将频率分布直方图补充完整(不必说明理由);(2)根据频率分布直方图估计本市居民月均用水量的中位数;(3)根据频率分布直方图估计本市居民月均用水量的平均数(同一组数据由该组区间的中点值作为代表).【解析】解:(1)频率分布直方图如图所示:(2)∵0.04+0.08+0.15+0.22=0.49<0.5,∴中位数为2+0.5−0.490.25×0.5=2.02,(3)由频率分布直方图得平均数为:0.25×0.04+0.75×0.08+1.25×0.15+1.75×0.22+2.25×0.25+2.75×0.14+3.25×0.06+3.75×0.04+4.25×0.02=2.02.例13.某地区100居民的人均用水量(单位:t)的分组的频数如下:[0,0.5),4;[0.5,1),8;[1,1.5),15;[1.5,2),22;[2,2.5),25;[2.5,3),14;[3,3.5),6;[3.5,4),4;[4,4.5),2.(1)列出样本的频率分布表;(2)画出频率分布直方图,并根据直方图估计这组数据的众数;(坐标轴单位自定)(3)当地政府制订了人均月用水量为3t的标准,若超出标准加倍收费,当地政府解释说,85%以上的居民不超出这个标准,这个解释对吗?为什么?【解析】解:(1 )分组频数频率[0,0.5 )40.04[0.5,1 )80.08[1,1.5 )150.15[1.5,2 )220.22[2,2.5 )250.25[2.5,3 )140.14[3,3.5 )60.06[3.5,4 )40.04[4,4.5 )20.02(2):频率分布直方图如下图,由图知,这组数据的众数为2.25.(3)人均月用水量在3t以上的居民的比例为6%+4%+2%=12%,即大约是有12%的居民月均用水量在3t以上,88%的居民月均用水量在3t以下,因此,政府的解释是正确的.例14.某校从参加高一年级期末考试的学生中抽出60名学生,将其物理成绩(均为整数)分成六段[40,50),[50,60)…[90,100]后画出如下频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)估计这次考试的众数m与中位数n(结果保留一位小数);(Ⅱ)估计这次考试的及格率(60分及以上为及格)和平均分.【解析】解:(Ⅰ)众数是最高小矩形中点的横坐标,所以众数为m=75(分);(3分)前三个小矩形面积为0.01×10+0.015×10+0.015×10=0.4,∵中位数要平分直方图的面积,∴n=70+0.5−0.40.03=73.3(7分)(Ⅱ)依题意,60及以上的分数所在的第三、四、五、六组,频率和为(0.015+0.03+0.025+0.005)*10=0.75所以,抽样学生成绩的合格率是75% (11分)利用组中值估算抽样学生的平均分45•f1+55•f2+65•f3+75•f4+85•f5+95•f6=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71估计这次考试的平均分是71分.(14分)例15.为应对新冠疫情,重庆市于2020年1月24日启动重大突发公共卫生事件一级响应机制,要求市民少出门,少聚集,于是快递业务得到迅猛发展.为满足广大市民的日常生活所需,某快递公司以优厚的条件招聘派送员,现给出了两种日薪薪酬方案,甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪150元,每日前55单没有奖励,超过55单的部分每单奖励10元.(Ⅰ)请分别求出这两种薪酬方案中日薪y(单位:元)与送货单数n的函数关系式;(Ⅱ)根据该公司所有派送员10天的派送记录,发现派送员的日平均派送单数与天数满足以下表格:日均派送单数5054565860频数(天)23221回答下列问题:①根据以上数据,设每名派送员的日薪为X(单位:元),试分别求出这10天中甲、乙两种方案的日薪X的平均数及方差;②结合①中的数据,根据统计学的思想,若你去应聘派送员,选择哪种薪酬方案比较合适,并说明你的理由.(参考数据:172=289,372=1369)【解析】解:(1)甲方案,y =100+n ;乙方案,y ={150,n ≤5510n −400,n >55.(2),①甲方案中,根据已知表格可计算出日平均派送单数为2×50+3×54+2×56+2×58+6010=55,方差为0.2×(50﹣55)2+0.3×(54﹣55)2+0.2×(56﹣55)2+0.2×(58﹣55)2+0.1×(60﹣55)2=9.8,所以,由(1)中变量之间的关系,可以指,甲方案的日薪X 的平均数为155,方差为9.8. 乙方案中,日薪X 的平均数为[5×150+160×2+180×2+200]×0.1=163,日薪方差为0.5×(150﹣163)2+0.2×(160﹣163)2+0.2×(180﹣163)2+0.1×(200﹣163)2=213.4.(3)若去应聘派送员,我会选择乙方案,从平均数的角度来看,乙方案的平均薪酬更高,同时更有激励作用.例16.2019年起,全国地级及以上城市全面启动生活垃圾分类工作,垃圾分类投放逐步成为居民的新时尚.为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收垃圾、有害垃圾和其他垃圾四类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了某市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱 “可回收垃圾”箱 “有害垃圾”箱“其他垃圾”箱厨余垃圾 300 70 30 80 可回收垃圾 30 210 30 30 有害垃圾 20 20 60 20 其他垃圾10201060(1)分别估计厨余垃圾和有害垃圾投放正确的概率;(2)假设厨余垃圾在“厨余垃圾”箱、“可回收垃圾”箱、“有害垃圾”箱、“其他垃圾”箱的投放量分别为a,b,c,d,其中a>0,a+b+c+d=800.当数据a,b,c,d的方差s2最大时,写出a,b,c,d的值(结论不要求证明),并求此时s2的值.【解析】解:(1)根据题意,厨余垃圾共300+70+30+80=480吨,其中投放正确的有300吨,则厨余垃圾投放正确的概率P1=300480=58,有害垃圾共20+20+60+20=120吨,其中投放正确的有60吨,则害垃圾投放正确的概率P2=60120=12;(2)根据题意,厨余垃圾在四种垃圾箱的投放量分别为a,b,c,d,其中a>0,a+b+c+d=800,则其平均数x=8004=200,则其方差S2=14[(a﹣200)2+(b﹣200)2+(c﹣200)2+(d﹣200)2],当a=600,b=c=d=0时,s2最大,而x=a+b+c+d4=200,此时s2=14[(600﹣200)2+(0﹣200)2+(0﹣200)2+(0﹣200)2]=120000例17.某市教育局为了解全市高中学生在素质教育过程中的幸福指数变化情况,对8名学生在高一,高二不同学习阶段的幸福指数进行了一次跟踪调研.结果如表:学生编号12345678高一阶段幸福指数9593969497989695学生编号12345678高二阶段幸福指数9497959695949396(1)根据统计表中的数据情况,分别计算出两组数据的平均值及方差;(2)请根据上述结果,就平均值和方差的角度分析,说明在高一,高二不同阶段的学生幸福指数状况,并发表自己观点.【解析】解:(1)8名学生在高一阶段的幸福指数的平均数为:x=18(95+93+96+94+97+98+96+95)=95.5,方差为:S12=18∑8i=1(x i−x1)2=2.25,8名学生在高二阶段的幸福指数的平均数为:y=18(94+97+95+96+95+94+93+96)=95,方差为:S22=18∑8i=1(y i−y)2=1.5;(2)①∵x>y,∴可以认为这8名学生在高一的平均幸福指数大于在高二的平均幸福指数,②∵S12>S22,∴可以认为这8名学生在高二的幸福指数的稳定性大于在高一的幸福指数的稳定性.例18.2020年1月,教育部《关于在部分高校开展基础学科招生改革试点工作的意见》印发,自2020年起,在部分高校开展基础学科招生改革试点(也称“强基计划”).强基计划聚焦高端芯片与软件、智能科技、新材料、先进制造和国家安全等关键领域以及国家人才紧缺的人文社会科学领域,选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.新材料产业是重要的战略性新兴产业,如图是我国2011﹣2019年中国新材料产业市场规模及增长趋势图.其中柱状图表示新材料产业市场规模(单位:万亿元),折线图表示新材料产业市场规模年增长率(%).(1)求从2012年至2019年,每年新材料产业市场规模年增长量的平均数(精确到0.1);(2)从2015年至2019年中随机挑选两年,求两年中至少有一﹣年新材料产业市场规模年增长率超过20%的概率;(3)由图判断,从哪年开始连续三年的新材料产业市场规模的方差最大.(结论不要求证明)【解析】解:(1)从2012年起,每年新材料产业市场规模的年增加值依次为:0.3,0.2,0.3,0.5,0.6,0.4,0.8,0.6,(单位:万亿元),∴年增加的平均数为:0.3+0.2+0.3+0.5+0.6+0.4+0.8+0.68=0.5万亿元.(2)设A表示事件“从2015年至2019年中随机挑选两个,两年中至少有一年新材料产业市场规模增长率超过20%”,依题意P(A)=1−C22C52=910.(3)从2017年开始连续三年的新材料产业市场规模的方差最大.。
高考数学复习点拨 频率分布直方图典型例题析
频率分布直方图典型例题析频率分布直方图是表达和分析数据的重要工具,还可以直观、准确地理解相应的有用的信息,所以成为新高考的重点,我们必须总结其重要题型及有关计算。
一、基本概念类例1、关于频率 分布直方图的下列说法中,正确的是( )(A )、直方图的高表示某数的频率;(B )、直方图的高表示该组上的个体在样本中出现的频率;(C )、直方图的高表示该组上的个体与组距的比值;(D )、直方图的高表示该组上的个体在样本中出现的频率与组距的比值;解析:在频率分布直方图中,每一个小矩形都是等宽的,即等于组距,其面积表示数据的取值落在相应区间上的频率,因此每一个小矩形的高表示该组上的个体在样本中出现的频率与组距的比值,所以选(D )。
二、识图计算类例2、为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg) ,得到频率分布直方图如下:根据上图可得这100名学生中体重在[56.5,64.5)的学生人数是 ( )(A)20 (B)30(C)40 (D )50解:本题主要考查频率分布直方图和总体分布的估计等知识,同时考查图形的识别能力。
由频率直方图可知组距为2,故学生中体重在[56.5,64.5)的频率为:(0.03+0.05+0.05+0.07)×2=0.4,所以100名学生中体重在[56.5,64.5)的学生人数有: 0. 4×100=40人。
故选择C 点评:在频率分布直方图中,每一个小矩形都是等宽的,即等于组距,高是,所以有:×组距=频率;即可把所求范围内的频率求出,进而求该范围的人数。
例3:某校高一某班共有64名学生,下图是该班某次数学考试成绩的频率分布直方图,根据该图可知,成绩在110120间的同学大约有( )A 、 10B 、11C 、13D 、16解析:通过直方图可知:成绩在110120的频率是:2.023.015.01.005.01=----,所以成绩在110120之间的同学大约有:64×0.2=12.813≈人。
高中数学复习典型题专题训练118---频率直方图
高中数学复习典型题专题训练118频率直方图列出样本数据的频率分布表和频率分布直方图的步骤: ①计算极差:找出数据的最大值与最小值,计算它们的差;②决定组距与组数:取组距,用极差组距决定组数;③决定分点:决定起点,进行分组;④列频率分布直方图:对落入各小组的数据累计,算出各小数的频数,除以样本容量,得到各小组的频率.⑤绘制频率分布直方图:以数据的值为横坐标,以频率组距的值为纵坐标绘制直方图,知小长方形的面积=组距×频率组距=频率.频率分布折线图:将频率分布直方图各个长方形上边的中点用线段连接起来,就得到频率分布折线图,一般把折线图画成与横轴相连,所以横轴左右两端点没有实际意义.总体密度曲线:样本容量不断增大时,所分组数不断增加,分组的组距不断缩小,频率分布直方图可以用一条光滑曲线()y f x 来描绘,这条光滑曲线就叫做总体密度曲线.总体密度曲线精确地反映了一个总体在各个区域内取值的规律.题型一 频率分布直方图【例1】 (2010西城二模)某区高二年级的一次数学统考中,随机抽取200名同学的成绩,成绩全部在50分至100分之间,将成绩按如下方式分成5组:第一组,成绩大于等于50分且小于60分;第二组,成绩大于等于60分且小于70分;……第五组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.知识内容典例分析板块二.频率直方图则这200名同学中成绩大于等于80分且小于90分的学生有______名.【例2】 (2010东城二模)已知一个样本容量为100的样本数据的频率分布直方图如图所示,样本数据落在[6,10)内的样本频数为 ,样本数据落在[2,10)内的频率为 .【例3】 (2010北京)从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a = .若要从身高在[)120,130,[)130,140,[]140,150三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[]140,150内的学生中选取的人数应为 .【例4】 (2010江苏高考)某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[]540,中,其频率分布直方图如图所示,则其抽样的100根中,有____根在棉花纤维的长度小于20mm .(mm)频率组距【例5】 (2009湖北15)下图是样本容量为200的频率分布直方图.根据样本的频率分布直方图估计,样本数据落在[)610,内的频数为 ,数据落在[)210,内的概率约为 .【例6】 (2009福建3)A .0.13B .0.39C .0.52D .0.64【例7】 某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示,根据条形图可得这50名学生这一天平均每人的课外阅读时间为( )时间(h)A .0.6hB .0.9hC .1.0hD .1.5h【例8】 为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为[)4555,,[)5565,,[)6575,,[)7585,,[)8595,由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在[)5575,的人数是 .产品数量0.0200.0150.0100.005【例9】 (2009山东8)某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96106],,样本数据分组为[)9698,,[)98100,,[)100102,,[)102104,,[104106],.已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( )A .90B .75C .60D .45【例10】 某路段检查站监控录象显示,在某时段内,有1000辆汽车通过该站,现在随机抽取其中的200辆汽车进行车速分析,分析的结果表示为右图的频率分布直方图,则估计在这一时段内通过该站的汽车中速度不小于90km/h 的车辆数为( )A .200B .600C .500D .300【例11】 (2006年全国II )一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本频率分布直方图,为了分析居民的收入与年龄、学历、职业等方面的联系,要从这10000人中用分层抽样的方法抽出100人做进一步调查,则在[25003000],(元)月收入段应抽出_____人.0.00050.00040.00030.00020.0001频率组距月收入(元)【例12】 如图为某样本数据的频率分布直方图,则下列说法不正确的是( )频率A .[610),的频率为0.32 B .若样本容量为100,则[1014),的频数为40 C .若样本容量为100,则(10] ,的频数为40 D .由频率分布布直方图可得出结论:估计总体大约有10%分布在[1014),【例13】 (2006北京模拟)下面是某学校学生日睡眠时间的抽样频率分布表:【例14】 (2010崇文一模)为了调查某厂2000名工人生产某种产品的能力,随机抽查了m 位工人某天生产该产品的数量,产品数量的分组区间为[)10,15,[)15,20,[)20,25,[)25,30,[30,35],频率分布直方图如图所示.已知生产的产品数量在[)20,25之间的工人有6位. ⑴求m ; 10 15 20 25 30 35产品数量⑵工厂规定从各组中任选1人进行再培训,则选取5人不在同一组的概率是多少?【例15】 考查某校高三年级男生的身高,随机抽取40名高三男生,实测身高数据(单位:cm )如下:⑴ 作出频率分布表; ⑵ 画出频率分布直方图.【例16】(2010陕西卷高考)为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行出样检查,测得身高情况的统计图如下:/cm/cm⑴估计该小男生的人数;⑵估计该校学生身高在170~185cm之间的概率;⑶从样本中身高在165~180cm之间的女生..中任选2人,求至少有1人身高在170~180cm 之间的概率.【例17】从某校高一年级的1002名新生中用系统抽样的方法抽取一个容量为100的身高样本,如下(单位:cm).作出该样本的频率分布表,画出频率分布直方图及折线图,并根据作出的频率分布直方图估计身高不小于170的同学的人数.【例18】为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如下图),已知图中从左到右的前三个小组的频率分别是0.10.30.4,,.第一小组的频数是5.⑴求第四小组的频率和参加这次测试的学生人数;⑵在这次测试中,学生跳绳次数的中位数落在第几小组内?⑶参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩优秀率是多少?O频率组距次数149.5124.599.574.549.5【例19】 为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计. 请你根据尚未完成并有局部污损的频率分布表和频数分布直方图,解答下列问题:⑴ 填充频率分布表的空格(将答案直接填在表格内); ⑵ 补全频数条形图;⑶ 若成绩在75.5~85.5分的学生为二等奖,问获得二等奖的学生约为多少人?【例20】 (2010丰台一模)某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题.85987654322198653328698765叶茎1009080706050分数频率组距0.040.0280.0160.008⑴求全班人数及分数在[)80,90之间的频数;⑵估计该班的平均分数,并计算频率分布直方图中[)80,90间的矩形的高;⑶若要从分数在[]80,100之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[]90,100之间的概率.【例21】某地区为了了解70~80岁老人的日平均睡眠时间(单位:h).随机选择了50位老人的进行调查.下表是这50位老人日睡眠时间的频率分布表.在上述统计数据中,一部分计算见算法流程图(其中←可用=代替),则输出的S的值是.。
频率分布直方图课件
由于频率分布直方图是基于数据的近似离 散化,因此无法准确地反映数据的分布情 况,特别是对于具有复杂分布的数据。
无法表示数据间的相关性
无法进行参数估计和假设检验
频率分布直方图只能展示单个变量的分布 情况,无法表示两个或多个变量之间的相 关性。
频率分布直方图主要用于数据的描述性分 析,无法进行参数估计和假设检验等推断 性分析。
于反映数据的中心趋势。频率பைடு நூலகம்布直方图可以直观地展示数据在不同区
间的分布情况,从而更好地理解数据的分布特征。
03
众数
众数是数据中出现次数最多的数值。频率分布直方图可以清晰地展示众
数所在区间的数据分布情况,帮助我们更好地理解众数的含义和作用。
与箱线图、折线图等其他图形的比较
要点一
箱线图
要点二
折线图
箱线图是一种用于展示一组数据分散情况的统计图,它包 括数据的最大值、最小值、中位数和异常值等统计量。频 率分布直方图和箱线图各有优缺点,箱线图可以展示数据 的分散情况和异常值,但无法展示数据的具体分布情况; 频率分布直方图可以清晰地展示数据的分布情况,但无法 很好地展示数据的分散情况和异常值。
数据中心位置与离散程度判断
确定数据的中位数和众数
频率分布直方图可以显示数据的频数分布,从而确定数据的 中位数和众数,了解数据的中心位置。
评估数据的离散程度
通过观察频率分布直方图中数据的分散程度,可以评估数据 的离散程度,进一步了解数据的稳定性。
数据异常值检测
识别异常值
频率分布直方图可以显示数据的频数分布,通过观察直方图的形状和异常的数据点,可 以识别出异常值。
纵轴
表示频数或频率,即落在每个数 据范围内的数据点的个数。
2023年高考数学复习----《统计图表》规律方法与典型例题讲解
2023年高考数学复习----《统计图表》规律方法与典型例题讲解【规律方法】1、制作频率分布直方图的步骤.第一步:求极差,决定组数和组距,组距=极差组数第二步:分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间;第三步:登记频数,计算频率,列出频率分布表;第四步:画频率分布直方图.2、解决频率分布直方图问题时要抓住3个要点.(1)直方图中各小矩形的面积之和为1;(2)直方图中纵轴表示频率组距,故每组样本的频率为组距⨯频率组距(3)直方图中每组样本的频数为频率⨯总体个数.3、用频率分布直方图估计众数、中位数、平均数的方法.(1)众数为频率分布直方图中最高矩形底边中点的横坐标;(2)中位数为平分频率分布直方图面积且垂直于横轴的直线与横轴交点的横坐标;(3)平均数等于每个小矩形面积与小矩形底边中点横坐标之积的和.【典型例题】例1.(2022·云南昆明·昆明一中模拟预测)为了响应教育部门疫情期间“停课不停学”的号召,某校实施网络授课,为了检验学生上网课的效果,在高三年级进行了一次网络模拟考试,从中抽取了100人的数学成绩,绘制成频率分布直方图(如下图所示),其中数学成绩落在区间[110,120),[120,130),[130,140]的频率之比为4:2:1.(1)根据频率分布直方图求学生成绩在区间[110,120)的频率,并求抽取的这100名同学数学成绩的中位数(2)若将频率视为概率,从全校高三年级学生中随机抽取3个人,记抽取的3人成绩在[100,130)内的学生人数为X ,求X 的分布列与数学期望.【解析】(1)由直方图可知,数学成绩落在区间[70,110)内的频率为(0.0040.0120.0190.030)10+++⨯=0.65,所以数学成绩落在区间[110,140]内的频率为10.650.35−=,因为数学成绩落在区间[110,120),[120,130),[130,140]的频率之比为4:2:1,所以数学成绩落在区间[110,120)的频率为40.35421⨯++0.2=, 数学成绩落在区间[70,100)的频率为(0.0040.0120.019)100.35++⨯=, 所以中位数落在区间[100,110)内,设中位数为x ,则(100)0.0300.50.35x −⨯=−,解得105x =, 所以抽取的这100名同学数学成绩的中位数为105.(2)由(1)知,数学成绩落在区间[100,130)内的频率为0.0310⨯+0.2+20.35421⨯++0.6=,由题意可知,3~(3,)5X B ,X 的所有可能取值为0,1,2,3,033338(0)C ()(1)55125P X ==⋅−=,12333(1)C (1)55P X ==⋅⋅−36125=, 22333(2)C ()(1)55P X ==⋅⋅−54125=,330333(3)C ()(1)55P X ==⋅−27125=,所以X 的分布列为:所以数学期望8365427()0123125125125125E X =⨯+⨯+⨯+⨯95=.例2.(2022·贵州贵阳·贵阳六中校考一模)某校组织1000名学生进行科学探索知识竞赛,成绩分成5组:[)50,60,[)60,70,[)70,80,[)80,90,[]90,100,得到如图所示的频率分布直方图.若图中未知的数据a ,b ,c 成等差数列,成绩落在区间[)60,70内的人数为400.(1)求出直方图中a ,b ,c 的值;(2)估计中位数(精确到0.1)和平均数(同一组中的数据用该组区间的中点值代替); (3)若用频率估计概率,设从这1000人中抽取的6人,得分在区间[]90,100内的学生人数为X ,求X 的数学期望.【解析】(1)依题意可得:4001000100.04a =÷÷=,又a ,b ,c 成等差数列,所以2b a c =+且(0.0050.005)101a b c ++++⨯=,解得:0.02,0.03c b == 所以0.04,0.03,0.02a b c ===.(2)因为(0.0050.04)100.450.5+⨯=<,设中位数为x , 则[70,80)x ∈,所以()()0.0050.0410700.030.5x +⨯+−⨯=,解得:71.7x ≈,即中位数约为71.7,平均数为(550.005650.04750.03850.02950.005)1073⨯+⨯+⨯+⨯+⨯⨯=. (3)由题意可知:得分在区间[]90,100内概率为10.0051020⨯=, 根据条件可知:X 的所有可能值为0,1,2,3,4,5,6,且1(6,)20X ,所以1()60.320E X np ==⨯=.例3.(2022·全国·高三专题练习)为丰富学生课外生活,某市组织了高中生钢笔书法比赛,比赛分两个阶段进行:第一阶段由评委为所有参赛作品评分,并确定优胜者;第二阶段为附加赛,参赛人员由组委会按规则另行确定.数据统计员对第一阶段的分数进行了统计分析,这些分数X 都在[75,100)内,再以5为组距画分数的频率分布直方图(设“Y=频率组距”)时,发现Y 满足:7,15,15019,16,30011,16,1520n Y n k n n ⎧=⎪⎪⎪==⎨⎪⎪−⋅>⎪−⎩,55(1)n N n X n *∈≤<+. (1)试确定n 的所有取值,并求k ;(2)组委会确定:在第一阶段比赛中低于85分的同学无缘获奖也不能参加附加赛;分数在[95,100)内的同学评为一等奖;分数在[90,95)内的同学评为二等奖,但通过附加赛有111的概率提升为一等奖;分数在[85,90)内的同学评为三等奖,但通过附加赛有17的概率提升为二等奖(所有参加附加赛的获奖人员均不降低获奖等级,且附加赛获奖等级在第一阶段获奖等级基础上,最多升高一级).已知学生A 和B 均参加了本次比赛,且学生A 在第一阶段获得二等奖.①求学生B 最终获奖等级不低于学生A 最终获奖等级的概率;②已知学生A 和B 都获奖,记A ,B 两位同学最终获得一等奖的人数为ξ,求ξ的分布列和数学期望.【解析】(1)根据题意,X 在[75,100)内,按5为组距可分成5个小区间, 分别是[75,80),[80,85),[85,90),[90,95),[95,100),因为75100X ≤<,由55(1)n X n ≤<+,n N *∈,所以15,16,17,18,19n =.每个小区间的频率值分别是7,15,30195,1660115,17,18,19320n P Y n k n n ⎧=⎪⎪⎪===⎨⎪⎪−⋅=⎪−⎩由719111511306032k ⎛⎫++−++= ⎪⎝⎭,解得350k =. (2)①由于参赛学生很多,可以把频率视为概率.由(1)知,学生B 的分数属于区间[75,80),[80,85),[85,90),[90,95),[95,100)的概率分别是:730,1960,1460,1160,260.我们用符号ijA (或ijB )表示学生A (或B )在第一轮获奖等级为i ,通过附加赛最终获奖等级为j ,其中(,1,2,3)j i i j ≤=记“学生B 最终获奖等级不低于学生A 的最终获奖等级”为事件W , 则()12122223222()P W P B B B A B A =+++()()()()()()12122223222P B P B P B P A P B P A =+++2111111010141105160601160111160711220=+⋅+⋅⋅+⋅⋅=.②学生A 最终获得一等奖的概率是111A P =,学生B 最终获得一等奖的概率是21112116060272711272796060B P =+⋅=+=,1180(0)1111999P ξ⎛⎫⎛⎫==−−= ⎪⎪⎝⎭⎝⎭,111118(1)1111911999P ξ⎛⎫⎛⎫==⋅−+−⋅=⎪ ⎪⎝⎭⎝⎭, 111(2)11999P ξ==⋅=.所以ξ的分布列为:801812001299999999E ξ=⋅+⋅+⋅=.。
频率分布直方图-高中数学知识点讲解
频率分布直方图
1.频率分布直方图
【知识点的认识】
1.频率分布直方图:在直角坐标系中,横轴表示样本数据,纵轴表示频率与组距的比值,将频率分布表中的各组频率的大小用相应矩形面积的大小来表示,由此画成的统计图叫做频率分布直方图.
2.频率分布直方图的特征
①图中各个长方形的面积等于相应各组的频率的数值,所有小矩形面积和为 1.
②从频率分布直方图可以清楚地看出数据分布的总体趋势.
③从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息被抹掉.
3.频率分布直方图求数据
①众数:频率分布直方图中最高矩形的底边中点的横坐标.
②平均数:频率分布直方图各个小矩形的面积乘底边中点的横坐标之和.
③中位数:把频率分布直方图分成两个面积相等部分的平行于y 轴的直线横坐标.
【解题方法点拨】
绘制频率分布直方图的步骤:。
高三频率分布直方图知识点
高三频率分布直方图知识点频率分布直方图是统计学中常用的图表,用于展示数据分布的情况。
在高三数学学科中,频率分布直方图是一个重要的知识点。
本文将介绍频率分布直方图的概念、构建方法和解读技巧。
概念频率分布直方图是一种图表,用于展示数据的频率分布情况。
它通过将数据分为若干个等距的区间,并计算每个区间内数据的频数或频率,将这些统计量用矩形条表示在数轴上。
频率分布直方图的横轴表示数据的取值范围,纵轴表示频数或频率。
构建方法构建频率分布直方图的步骤如下:1. 收集数据:首先要收集一组数据,可以是一组观测结果或调查数据。
2. 分组:将数据按照一定的间隔划分为若干个区间,区间的宽度要合适,不要过大或过小。
3. 统计频数或频率:计算每个区间内数据的频数(出现的次数)或频率(占总数的比例)。
4. 根据频数或频率绘制直方图:在数轴上画出与各个区间对应的矩形条,矩形条的高度表示频数或频率。
解读技巧解读频率分布直方图可以帮助我们了解数据的分布情况和规律。
以下是几个解读技巧:1. 中心趋势:观察直方图的峰值所在的区间,可以确定数据的中心趋势。
峰值所在的区间对应的频数或频率最大,表示该区间内的数据最为集中。
2. 离散程度:观察直方图的宽度和高度,可以初步判断数据的离散程度。
如果直方图较窄且高度较高,表示数据较为集中;反之,如果直方图较宽且高度较低,表示数据相对离散。
3. 异常值:观察直方图中是否存在明显偏离其他区间的柱形,这可能是异常值的存在。
异常值可能对数据的整体分布产生较大影响,在进行统计分析时需要予以重视。
4. 相关性:若有多组数据的频率分布直方图,可以进行对比观察,判断不同组数据之间的相关性。
相似的直方图形状表明两组数据具有相似的分布特征,而不同的直方图形状则表明两组数据的分布情况存在差异。
总结频率分布直方图是一种用于展示数据分布情况的图表。
通过构建和解读频率分布直方图,我们可以更直观地了解数据的中心趋势、离散程度、异常值和相关性等信息。
高中数学知识点精讲精析 频率分布直方图与折线图
6.2.2 频率分布直方图与折线图画频率分布直方图的步骤:(1)计算最大值与最小值的差(知道这组数据的变动范围)(2)决定组距与组数(将数据分组)组数:将数据分组,当数据在100个以内时,按数据多少常分5-12组.组距:指每个小组的两个端点的距离.(4)决定分点.(5)列出频率分布表.(6)画出频率分布直方图.画频率分布直方图应注意的问题:(1)频率分布直方图的横轴和纵轴与前面学的直角坐标系中的横轴和纵轴有所不同,两轴的单位长度可以不同;两轴的交点也不一定是坐标为(0,0)的点.(2)各个小长方形的面积等于相应各组的频率;各小长方形的面积的和等于1.如果将频率分布直方图中各相临的矩形的上底边中点顺次连接起来,就得到频率分布折线图.当样本容量无限增大,组距无限缩小,这时与直方图相应的频率折线图将趋于一条光滑曲线——总体密度曲线.总体密度曲线反映了总体在各个范围内取值的概率,精确地反映了总体的分布规律.是研究总体分布的工具.100名年龄为17.5岁~18岁试根据上述数据画出样本的频率分布直方图,并对相应的总体分布作出估计.【解析】解:按照下列步骤获得样本的频率分布.(1)求最大值与最小值的差.在上述数据中,最大值是76,最小值是55,它们的差(又称为极差)是76-55=21.所得的差告诉我们,这组数据的变动范围有多大.(2)确定组距与组数.(3)决定分点.根据本例中数据的特点,第1小组的起点可取为54.5,第1小组的终点可取为56.5,为了避免一个数据既是起点,又是终点从而造成重复计算,我们规定分组的区间是“左闭右开”的.这样,所得到的分组是[54.5,56.5],[56.5,58.5],…,[74.5,76.5](4)列频率分布表.频率分布表(5)绘制频率分布直方图,频率分布直方图如图所示由于图中各小长方形的面积等于相应各组的频率,这个图形的面积的形式反映了数据落在各个小组的频率的大小.在反映样本的频率分布方面,频率分布表比较确切,频率分布直方图比较直观,它们起着相互补充的作用.在得到了样本的频率后,就可以对相应的总体情况作出估计.例如可以估计,体重在(64.5,66.5)kg的学生最多,约占学生总数的16%;体重小于58.5kg的学生较少,约占8%等等.2. 抽查某地区55名12岁男生的身高(单位:cm)的测量值如下:128.1 144.4 150.3 146.2 140.6 126.0 125.6 127.7 154.4 142.7 141.2 142.7 137.6 136.9 132.3 131.8 147.7 138.4 136.6 136.2 141.6 141.1 133.1 142.8 136.8 133.1 144.5 142.4 140.8 127.7 150.7 160.3 138.8 154.3 147.9 141.3 143.8 138.1 139.7 142.9 144.7 148.5 138.3 135.3 134.5 140.6 138.4 137.3 149.5 142.5 139.3 156.1 152.2 129.8 133.2试根据以上数据画出样本的频率分布直方图和折线图.【解析】3. 关于频率 分布直方图的下列说法中,正确的是( ) (A )、直方图的高表示某数的频率; (B )、直方图的高表示该组上的个体在样本中出现的频率; (C )、直方图的高表示该组上的个体与组距的比值; (D )、直方图的高表示该组上的个体在样本中出现的频率与组距的比值; 【解析】在频率分布直方图中,每一个小矩形都是等宽的,即等于组距,其面积表示数据的取值落在相应区间上的频率,因此每一个小矩形的高表示该组上的个体在样本中出现的频率与组距的比值,所以选(D ).4. 某校高一某班共有64名学生,下图是该班某次数学考试成绩的频率分布直方图,根据该图可知,成绩在110120间的同学大约有( )A 、 10B 、11C 、13D 、16 【解析】通过直方图可知:成绩在110120的频率是:2.023.015.01.005.01=----,所以成绩在110120之间的同学大约有:64×0.2=12.813≈人.故选择C点评:解决本题需要注意两点:所有小矩形的面积之和等于1;在分布图中若有高度相同的两个矩形,不能出现计算失误.5. 为了了解一大片经济林的生长情况,随机测量其中的100株的底部周长,得到如下数据表(长度单位:cm ):(1)编制频率分布表;(2)绘制频率分布直方图【分析】绘制频率分布直方图之前,一般地可先编制频率分布表,这样便于对数据进行分组及计算频数和频率. 分组一般以7~11组为宜.【解】(1)频率分布表(2)频率分布直方图:6. 如第5题,试画出树林底部周长的频率分布折线图.【分析】在频率分布直方图中,按照分组原则,在左边和右边各加一个区间,从所加的左边区间的中点开始,用线段依次连接各个矩形的顶端中点,直至右边所加区间的中点,这样得到的一条折线就是频率折线图.【解】取[75,80]的中点作为折线的起点,以(135,140)的中点作为折线的终点,连接各矩形上底中点所得折线即为所求(如图).。
频率分布直方图
——频率分布表、频率分布直方图 通过直方图求中位数、众数、平均数
复习
96 106 87 105 103 101 108 129 109 113 114 104 112 104 112 106 96 89 101 108 128 97 109 99 98 124 106 96 106 96
频率分布 直方图
第一步:求极差 ;129-85=44
极差=最大-最小,确定数据大致范围
第二步:确定组数,组距;44/5=8.8
样本容量≤100, 分5~12组
第三步:将数据分9组;[85,90),[90,95), …… ,[125,130]
第四步:列出频率分布表
组数
1
区间
[85,90)
频数
2
频率
f1 f 2 f 3 f4 x1 x2 x3 x4
1 f 2
fn xn
x
IQ值
练习:《导学案》第5课时:探究二,应用一
频率/组距
- - - -
在频率分布直方图中,
频率 组距 纵轴表示____________
x IQ值
频率 频 率 组距 频率 (占总数比例) 小矩形的面积=____________ 组距
1 各小矩形面积和= ____________ 样本容量n 频率 各区间频数=________________________
0.02
频率/组距
0.004
2
3
[90,95)
[95,100)
7
11
0.07
0.11
0.014
0.022
4
5 6 7
[100,105)
[105,110) [110,115) [115,120)
高三 复习 频率分布直方图
总体密度曲线
总体密度曲线反映了总体在各个范围内取值的 百分比,精确地反映了总体的分布规律。 用样本分布直方图去估计相应的总体分布时 ,一般样本容量越大,频率分布折线图就会无限 接近总体密度曲线,就越精确地反映了总体的分 布规律,即越精确地反映了总体在各个范围内取 值百分比。
茎叶图
某赛季甲、乙两名篮球运动员每场比赛得分的原 始记录如下:
引入
我国是世界上严重缺水的国家之一, 城市缺水问题较为突出。
2000年全国主要城市中缺水情况排在前10位的城市
政府为了节约生活用水,计划在本市试行居民生 活用水定额管理,即确定一个居民月用水量标准a , 用水量不超过a的部分按平价收费,超过a的部 分按议价收费。
①如果希望大部分居民的日常生活不受影响,那 么标准a定为多少比较合理呢?
组距:指每个小组的两个端点的距离,
极差 4.1 组数= = 8.2 = 组距 0.5 3.将数据分组(左闭右开) [0,0.5 ),[0.5,1 ),…,[4,4.5]
4.列频率分布表
频率分布表一般分“分 组”,“频数累计”( 可省),“频数”,“ 频率”, “ 频率/组距 ””五列,最后一行是 频数 合计
助学微博
一个对比
频率分布表:优点:能看出分布规律.缺点:不直观. 频率分布直方图:优点:很直观且能看出分布规律.缺点: 数据的轻微变化都要重新作图. 茎叶图:优点:很直观,能看出分布规律,还可以添加新 数据.缺点:数据少时方便,数据较多时不方便.
两个特性
(1)在频率分布表中,频数的和等于样本容量,每一小组的频 率等于这一组的频数除以样本容量,各小组频率的和等于 1; (2)在频率分布直方图中,小矩形的高等于每一组的频率/组 距,每个小矩形的面积等于该组的频率,所有小矩形的面积 之和为 1.
频率分布直方图如下
(1)解:如图:茎为成绩的整环数,叶为小数点后的数字
甲
乙
85 2 74
7
1
8
57
4
9
112 78
8751
10
11
(2)乙成绩大致对称,甲成绩的中位数为9.05, 乙成绩的中位数为9.15,所以乙成绩较甲好, 乙成绩较集中于峰值,甲成绩分散
所以乙发挥的稳定性好,甲波动大
练习2:课本71页练习第三题
作业:课本71页练习1,上面的练习1和2。
优化设计
小结:1.什么是频率折线图
2.什么是总体密度曲线及其意义 3.1)认识茎叶图,如何做茎叶图 2)分析茎叶图,3)茎叶图的优缺点
频率分布直方图如下:
频率
连接频率分布直方图
组距
中各小长方形上端的
中点,得到频率分布折
线图
0.50
0.40
0.30
0.20
0.10
月均用水量
/t
0.5 1 1.5 2 2.5 3 3.5 4 4.5
利用样本频率分布对总体分布进行相应估计
(1)上例的样本容量为100,如果增至1000, 其频率分布直方图的情况会有什么变化?假如增 至10000呢?
26
思考: 数据大于俩位数的整数时又如何选茎,叶?
数据为小数时又如何选茎,叶?
结论:1>当数据为整数时:通常个位数字在叶上, 其他位数在茎上(一位数时,茎为0)
2>当数据为小数时:通常小数部分在叶上, 整数部分在茎上
甲的茎叶图画法
也可以画一组数据的茎叶图,竖线左边为茎,
右边为叶。
茎
叶
08
1 364
甲的中位数为26,乙的中位数为36,所以乙较甲成绩要好, 另,乙的叶较甲的更集中于峰值附近,所以乙较甲发挥 更稳定
第9章统计专题3 频率分布直方图常考题型专题练习——【含答案】
1频率分布直方图【知识总结】 1.频率分布直方图(1)纵轴表示频率组距,即小长方形的高=频率组距;(2)小长方形的面积=组距×频率组距=频率;(3)各个小方形的面积总和等于1 . 2.频率分布表的画法第一步:求极差,决定组数和组距,组距=极差组数;第二步:分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间; 第三步:登记频数,计算频率,列出频率分布表. 3. 频率分布直方图中的常见结论(1)众数的估计值为最高矩形的中点对应的横坐标.(2)平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.(3)中位数的估计值的左边和右边的小矩形的面积和是相等的.2【巩固练习】1、随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36. 根据上述数据得到样本的频率分布表如表所示.分组 频数 频率[25,30] 3 0.12(30,35] 5 0.20(35,40] 8 0.32(40,45] n 1 f 1(45,50] n 2 f 2(1)确定样本频率分布表中n 1,n 2,f 1和f 2的值;(2)根据上述频率分布表,画出样本频率分布直方图和频率分布折线图. 【答案】(1) n 1=7,n 2=2,f 1=0.28,f 2=0.08 (2)见解析【解析】(1)由所给数据知,落在区间(40,45]内的有7个,落在(45,50]内的有2个,故1n =7,2n =2,所以f 1=125n =725=0.28,f 2=225n =225=0.08. (2)样本频率分布直方图和频率分布折线图如图所示.32. 为了了解某校高三美术生的身体状况,抽查了部分美术生的体重,将所得数据整理后,作出了如图所示的频率分布直方图.已知图中从左到右的前3个小组的频率之比为1∶3∶5,第2个小组的频数为15,则被抽查的美术生的人数是( )A .35B .48C .60D .75【答案】C【解析】设被抽查的美术生的人数为n ,因为后2个小组的频率之和为(0.0375+0.0125)×5=0.25,所以前3个小组的频率之和为0.75.又前3个小组的频率之比为1∶3∶5,第2个小组的频数为15,所以前3个小组的频数分别为5,15,25,所以n =515250.75++=60.故选:C.3、某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为若低于60分的人数是15人,则该班的学生人数是( )A .B .C .D.【答案】B【解析】根据频率分布直方可知成绩低于60分的有第一、二组数据,在频率分布直方图中,对应矩形的高分别为0.005,0.01,每组数据的组距为20,则成绩低于60分的频率P=(0.005+0.010)×20=0.3.又因为低于60分的人数是15人,所以该班的学生人数是15÷0.3=50.本题选择B选项.4、某校初三年级有400名学生,随机抽查了40名学生测试1分钟仰卧起坐的成绩(单位:次),将数据整理后绘制成如图所示的频率分布直方图.用样本估计总体,下列结论正确的是( )4A.该校初三学生1分钟仰卧起坐的次数的中位数为25B.该校初三学生1分钟仰卧起坐的次数的众数为24C.该校初三学生1分钟仰卧起坐的次数超过30的人数约有80D.该校初三学生1分钟仰卧起坐的次数少于20的人数约为8[解析] 第一组数据的频率为0.02×5=0.1,第二组数据的频率为0.06×5=0.3,第三组数据的频率为0.08×5=0.4,∴中位数在第三组内,设中位数为25+x,则x×0.08=0.5-0.1-0.3=0.1,∴x=1.25,∴中位数为26.25,故A错误;第三组数据所在的矩形最高,第三组数据的中间值为27.5,∴众数为27.5,故B错误;1分钟仰卧起坐的次数超过30的频率为0.2,∴超过30次的人数为400×0.2=80,故C正确;1分钟仰卧起坐的次数少于20的频率为0.1,∴1分钟仰卧起坐的次数少于20的人数为400×0.1=40,故D错误.故选C.[答案] C5、某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用[)0,0.1[)0.1,0.2[)0.2,0.3[)0.3,0.4[)0.4,0.5[)0.5,0.6[)0.6,0.756水量频数132 49 26 5使用了节水龙头50天的日用水量频数分布表日用水量[)0,0.1[)0.1,0.2 [)0.2,0.3 [)0.3,0.4 [)0.4,0.5 [)0.5,0.6频数151310165(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:7(2)估计该家庭使用节水龙头后,日用水量小于30.35m 的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)【答案】(1)直方图见解析;(2)0.48;(3)347.45m . 【解析】(1)频率分布直方图如下图所示:(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于30.35m 的频率为0.20.110.1 2.60.120.050.48⨯+⨯+⨯+⨯=;因此该家庭使用节水龙头后日用水量小于30.35m 的概率的估计值为0.48; (3)该家庭未使用节水龙头50天日用水量的平均数为()110.0510.1530.2520.3540.4590.55260.6550.4850x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=. 该家庭使用了节水龙头后50天日用水量的平均数为8()210.0510.1550.25130.35100.45160.5550.3550x =⨯+⨯+⨯+⨯+⨯+⨯=. 估计使用节水龙头后,一年可节省水()()30.480.3536547.45m -⨯=.6、某电视台为宣传本省,随机对本省内1565~岁的人群抽取了n 人,回答问题“本省内著名旅游景点有哪些”统计结果如图表所示(1)分别求出a b x y 、、、的值;(2)从第234、、组回答正确的人中用分层抽样的方法抽取6人,求第234、、组每组各抽取多少人?(3)指出直方图中,这组数据的中位数是多少(取整数值)?【答案】(1)5a =,27b =,0.9x =,0.2y =;(2)2人,3人,1人;(3)42【解析】(1)由已知第4组人数为9250.36=,∴251000.02510n ==⨯,9由频率分布直方图得第一组人数为:1000.011010⨯⨯=,100.55a =⨯=,第二组人数为:1000.021020⨯⨯=,180.920x ==, 第三组人数为:1000.031030⨯⨯=,300.927b =⨯=,第五组人数为:1000.0151015⨯⨯=,30.215x ==. (2)第2、3、4组回答正确人数分别18、27、9,共54人,设第234、、组分别抽取,,x y z 人,则65418279x y z===,解得2,3,1x y z ===. (3)第1、2组频率和为0.10.20.3+=,第4、5组频率和为0.250.150.4+=,第3组频率为0.3,设中位数为m ,则350.50.3100.3m --=,241423m =≈. ∴中位数为42.7、某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图.10(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数.【答案】(1)0.0075x =;(2)众数是230,中位数为224. 【解析】(1)由直方图的性质可得(0.0020.00950.0110.01250.0050.0025)201x ++++++⨯=,∴0.0075x =.(2)月平均用电量的众数是2202402302+=, ∵(0.0020.00950.011)200.450.5++⨯=<, 月平均用电量的中位数在[220,240)内,设中位数为a ,由(0.0020.00950.011)200.0125(220)0.5a ++⨯+⨯-=,可得224a =, ∴月平均用电量的中位数为2248、为参加学校的“我爱古诗词”知识竞赛,小王所在班级组织了一次古诗词知识测试,并将全班同学的分数(得分取正整数,满分为100分)进行统计,以下是根据这次测试成绩制作的不完整的频率分布表和频率分布直方图.频率分布表组别分组频数频率1 [50,60) 9 0.182 [60,70) a3 [70,80) 20 0.404 [80,90) 0.085 [90,100] 2 b合计 1请根据以上频率分布表和频率分布直方图,回答下列问题:(1)求出a,b,c,d的值;(2)老师说:“小王的测试成绩是全班同学成绩的中位数”,那么小王的测试成绩在什么范围内.1112【答案】(1) a =15,b =0.04,c =0.03,d =0.004 (2) 70≤x <80 【解析】(1)样本容量为9÷0.18=50,50×0.08=4, 所以a =50-9-20-4-2=15,b =2÷50=0.04,c =15÷50÷10=0.03,d =0.04÷10=0.004.(2)因为样本容量为50,则样本的中位数是第25,26个数据的平均数, 而第25,26个数据均位于70≤x <80范围内, 所以小王的测试成绩在70≤x <80范围内.9、某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[)50,60,[)60,70,[)70,80,[)80,90,[]90,100.分数段[)50,60[)60,70[)70,80[)80,90:x y1∶12∶13∶44∶513(1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x )与数学成绩相应分数段的人数(y )之比如下表所示,求数学成绩在[)50,90之外的人数. 【答案】(1)0.005a =;(2)73(分);(3)10.【解析】(1)由频率分布直方图知(20.020.030.04)101a +++⨯=,解得0.005a =. (2)由频率分布直方图知这100名学生语文成绩的平均分为550.00510650.0410750.0310850.0210950.0051073⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=(分).(3)由频率分布直方图知语文成绩在[)50,60,[)60,70,[)70,80,[)80,90各分数段的人数依次为:0.005101005,0.041010040,0.031010030,0.021010020⨯⨯=⨯⨯=⨯⨯=⨯⨯=由题中给出的比例关系知数学成绩在上述各分数段的人数依次为1455,4020,3040,2025234⨯=⨯=⨯=.故数学成绩在[50,90)之外的人数为100(5204025)10-+++=.10.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值分[75,85) [85,95) [95,105) [105,115) [115,125) 组频数 6 26 38 22 8(I)在答题卡上作出这些数据的频率分布直方图:(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?14【答案】(1)见解析;(2)平均数100,方差为104;(3)不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.【解析】(1)直方图如图,(2)质量指标值的样本平均数为x=⨯+⨯+⨯+⨯+⨯=.800.06900.261000.381100.221200.08100质量指标值的样本方差为22222s=-⨯+-⨯+⨯+⨯+⨯=.(20)0.06(10)0.2600.38100.22200.08104(3)质量指标值不低于95的产品所占比例的估计值为++=,0.380.220.080.68由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.11、从某企业生产的某种产品中随机抽取100件,测量这些产品的某项质量指标,由测量1516结果得到如下频数分布表:质量指标值分组[)75,85[)85,95[)95,105[)105,115[)115,125频数62638228()1在图中作出这些数据的频率分布直方图;()2估计这种产品质量指标值的平均数、中位数(保留2位小数);()3根据以上抽样调査数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?【答案】(1)直方图见解析;(2)平均数100,中位数99.74;(3)不能. 【解析】()1由已知作出频率分布表为:质量指标值分组[)75,85 [)85,95 [)95,105 [)105,115 [)115,12517频数 6 26 38 22 8频率0.06 0.26 0.38 0.22 0.08由频率分布表作出这些数据的频率分布直方图为:()2质量指标值的样本平均数为:800.06900.261000.381100.221200.08100x =⨯+⨯+⨯+⨯+⨯=,[)75,95内频率为:0.060.260.32+=,∴中位数位于[)95,105内,设中位数为x ,则0.50.260.06951099.740.38x --=+⨯≈,∴中位数为99.74.()3质量指标值不低于95 的产品所占比例的估计值为0.380.220.080.68++=.由于该估计值小于0.8,故不能认为该企业生产的这种产品“质量指标值不低于95 的产品至少要占全部产品80%的规定.18。
数学苏教版3教材梳理2.2.2频率分布直方图与折线图含解析
庖丁巧解牛知识·巧学一、关于频率分布直方图的概念由于频率分布表数字较多,阅读困难,为了将频率分布表中的结果直观形象地表示出来,我们通常画频率分布直方图。
画图时,应以横轴表示分组,纵轴表示频率与组距的比值.以每个组距为底,以各频率除以组距的商为高,分别画成矩形,这样得到的直方图就是频率分布直方图.二、关于频率分布直方图的绘制方法频率分布直方图是在频率分布表的基础上绘制而成的,它的前期工作就是准确列出频率分布表,然后在平面直角坐标系中画出频率分布直方图,具体步骤如下:(1)求极差,即计算最大值与最小值的差.(2)决定组距和组数。
组距与组数的确定没有固定标准,需要尝试、选择,力求有合适的组数,以能把数据的规律较清楚地呈现为准。
太多或太少都不好,不利对数据规律的发现.组数应与样本的容量有关,样本容量越大组数越多。
(3)决定分点,将数据分组.分组时,通常规定分组的区间是“左闭右开”的,避免数据被重复计算。
(4)列频率分布表.一般分“分组"“频数”“频率”三列,最后一行是“合计”。
注意频数的合计应是样本容量,频率合计应是1。
(5)画频率分布直方图。
建立直角坐标系,图中横轴为分组,图中的纵轴表示“频率/组距".各组数据以小长方形表示,其中,小长方形的宽为组距,小长方形的高=组距频率,频率=样本容量频率=组距×组距频率=小长方体的面积。
各小长方形的面积总和为1.由此可以看出,直方图中的各小长方形的面积表示相应的各组的频率。
这样频率分布直方图就以面积的形式反映了数据落在各个小组的频率的大小。
误区警示 直方图中小长方形的高并不表示各组数据的频率,而是频率与组距之比,小长方形的面积才是各组数据的频率.辨析比较 频率分布表在数量表示上比较确切,但不够直观、形象,分析数据的总体态势不太方便,频率分布直方图形象、直观,与频率分布表相比较,频率直方图能直观地表明数据的分布形状,但原始数据不能在图中表示,说明直方图丢失了一些信息。
高考数学一轮复习第十一章统计与统计案例2用样本估计总体课件新人教A版2
;b.决定组距与
组数;c. 将数据分组
;d.列频率分布表;e.画频率分布直方
图.
-3知识梳理
双基自测
(3)总体密度曲线
①频率分布折线图:连接频率分布直方图中各小长方形上端的中
点,就得到频率分布折线图.
②总体密度曲线:随着样本容量的增加,作图时所分的组数增加,
底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方
24
图如图所示,则在抽测的60株树木中,有
株树木的底部
周长小于100 cm.
解析 由题意知,在抽测的60株树木中,底部周长小于100 cm的株
数为(0.015+0.025)×10×60=24.
-11考点1
考点2
考点3
考点 1
组距减小,相应的频率分布折线图会越来越接近于一条光滑曲线,
统计中称这条光滑曲线为总体密度曲线.总体密度曲线反映了总体
在各个范围内取值的百分比,它能提供更加精细的信息.
(4)茎叶图:茎叶图中茎是指 中间 的一列数,叶是从茎的 旁边
生长出来的数.当样本数据较少时,用茎叶图表示数据的效果较好,
它不但可以保留所有信息,而且可以随时记录,给数据的记录和表
月平均用电量在[260,280)的用户有0.005×20×100=10(户),
月平均用电量在[280,300]的用户有0.002 5×20×100=5(户),抽
11
1
= ,
取比例为
25+15+10+5
5
所以月平均用电量在[220,240)的用户中应抽取25×
1
5 =5(户).
-14考点1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 . 10 名 工 人 某 天 生 产 同 一 零 件 生 产 的 件 数 分 别 是 15,17,14,10,15,19,17,16,14,12,则这一天 10 名工人生产的零件的中位 数是( ).A.14 B.16 C.15 D.17 2.(2012· 湖北)容量为 20 的样本数据,分组后的频数如下表: [20,30) [30,40) [40,50) [50,60) [60,70) 分组 [10,20) 2 3 4 5 4 2 频数 则样本数据落在区间[10,40)的频率为( ). A.0.35 B.0.45 C.0.55 D.0.65 3.(2013· 西北工大附中测试)如图是容量为 150 的 样本的频率分布直方图,则样本数据落在[6,10)内 的频数为( ). A.12 B.48 C.60 D.80 2 3 单击题号显示 1
总体密度曲线
总体密度曲线反映了总体在各个范围内取值的 百分比,精确地反映了总体的分布规律。 用样本分布直方图去估计相应的总体分布时 ,一般样本容量越大,频率分布折线图就会无限 接近总体密度曲线,就越精确地反映了总体的分 布规律,即越精确地反映了总体在各个范围内取 值百分比。
茎叶图
某赛季甲、乙两名篮球运动员每场比赛得分的原 始记录如下:
8 4 6 3
0 1 2 5
3 6 8
3 8 9
2
3
5 4
1 6 1 6 7 9
4
1 5
4 9
0
分析:甲得分除51分外大致对称,乙基本上也对称。
甲的中位数为26,乙的中位数为36,所以乙较甲成绩要好, 另,乙的叶较甲的更集中于峰值附近,所以乙较甲发挥 更稳定
3.茎叶图的优缺点
优点:1.即茎叶图保留了原始数据并展示 了数据的分布情况。 2.茎叶图可以在比赛时随时记录,方便记 录与表示。
分组 [0,0.5) [0.5,1) [1,1.5) [1.5,2) 频数累计 频数 频率 频率/组距
4
8 15 22 25 14
0.04
0.08 0.15 0.22 0.25 0.14 0.06 0.04 0.02 1.00
0.08
0.16 0.30 0.44
[2,2.5) [2.5,3) [3,3.5) [3.5,4)
0.10
用水量/t
O
0.5
1
1.5
2
2.5
3
3.5
4
4.5
频率分布直方图,显示了样本数据落在各个小组的比例的大小, 图中最高的小矩形说明了什么? 月均用水量在[2,2.5)内的居民最多. 大部分居民的月均用水量都集中在什么之间? [1,3)之间. 频率分布直方图的特征:
优点:从频率分布直方图可以清楚地看出数据分布的总体趋势
居民月用水量标准应定为3t.
频率分布折线图如下:
频率
组距
连接频率分布直方图 中各小长方形上端的 中点,得到频率分布折 线图
0.50 0.40 0.30 0.20 0.10 月均用水量 /t 4.5
0.5
1 1.5 2 2.5 3
3.5 4
当样本容量无限增大,分组的组距无限缩小,那么频率分 布直方图就会无限接近一条光滑曲线——总体密度曲线.
缺点:当样本数据较多时,茎叶图就显得不方便
考点梳理
1.用样本的频率分布估计总体分布 (1)频率分布表与频率分布直方图 频率分布表与频率分布直方图的绘制步骤如下 ①求极差,即一组数据中最大值与最小值的差.②定组距与组数. ③将数据分组. ④列频率分布表.⑤画频率分布直方图. (2)频率分布折线图和总体密度曲线 ①频率分布折线图: 连接频率分布直方图中各小长方形上端的______, 中点 就得 到频率分布折线图.频率分布折线图的优点是它可以表示数量的多少,直观 地反映数量的增减情况, 即变化趋势; 缺点是它不适合总体分布较多的情况. ②总体密度曲线:随着样本容量的增加,作图时所分的组数也在增加,相应 的频率折线图会越来越接近于一条光滑曲线, 统计中称这条光滑曲线为总体 密度曲线. (3)茎叶图 ①茎叶图是统计中用来表示数据的一种图,茎是指中间的一列数, 叶就是从 茎的旁边生长出来的数. ②对于样本数据较少,但较为集中的一组数据:若数据是两位整数,则将十 位数字作茎, 个位数字作叶; 若数据是三位整数, 则将百位、 十位数字作茎, 个位数字作叶,样本数据为小数时做类似处理.
组距:指每个小组的两个端点的距离,
极差 4.1 组数= = 8.2 = 组距 0.5 3.将数据分组(左闭右开) [0,0.5 ),[0.5,1 ),…,[4,4.5]
4.列频率分布表
频率分布表一般分“分 组”,“频数累计”( 可省),“频数”,“ 频率”, “ 频率/组距 ””五列,最后一行是 频数 合计
0.30 0.20 0.10 0.50
注意 纵坐标是 频率/组距
频率/组距
0.40
用水量
O 0.5
1
1.5 2
2.5 3
3.5 4 4.5
请计算每个小矩形的面积,它代表什么?为什么? 所有小矩形的面积的和是多少? 1
频率 = 频率 小矩形的面积= 组距× 组距
频率/组距
0.50 0.40 0.30 0.20
②为了较合理地确定这个标准,你认为需要做 哪些工作?
通过抽样,我们获得了100位居民某年的月平均用水量( 单位:t) ,如下表:
这些数字告诉我们什么信息?
1.求极差(即一组数据中最大值与最小值的差) 4.3 - 0.2 = 4.1 2.决定组距与组数
组数:将数据分组,当数据在100个以内时, 按数据多少常分5-12组。
[4,4.5] 合计
频率=
样本容量
0.50 0.28
0.12 0.08 0.04
注意频数的合计应 是样本容量,频率 合计应是1
6 4
2 100
5. 画频率分布直方图 : 分组 频数 频率 频率/组距
[0,0.5) [0.5,1) [1,1.5) [1.5,2) [2,2.5) [2.5,3) [3,3.5) [3.5,4) [4,4.5] 合计 4 8 15 22 25 14 6 4 2 100 0.04 0.08 0.15 0.22 0.25 0.14 0.06 0.04 0.02 0.08 0.16 0.30 0.44 0.50 0.28 0.12 0.08 0.04
(1)上例的样本容量为100,如果增至1000 ,其频率分布直方图的情况会有什么变化?假如 增至10000呢?
发现:当样本容量无限增大,组距无限缩小, 那么频率分布折线图就会无限接近于一条光滑 曲线——总体密度曲线。
频率 组距
月均用 水量/t
a
b
(图中阴影部分的面积,表示总体在 某个区间 (a, b) 内取值的百分比)。
引入
我国是世界上严重缺水的国家之一, 城市缺水问题较为突出。
2000年全国主要城市中缺水情况排在前10位的城市
政府为了节约生活用水,计划在本市试行居民生 活用水定额管理,即确定一个居民月用水量标准a , 用水量不超过a的部分按平价收费,超过a的部 分按议价收费。
①如果希望大部分居民的日常生活不受影响,那 么标准a定为多少比较合理呢?
频率 组距
总体在区间(a , b)内取值的概率
S
a b
月均用水量 (mm)
频率分布直方图如下:
频率 组距
连接频率分布直方图 中各小长方形上端的 中点,得到频率分布折 线图
0.50 0.40 0.30 0.20 0.10 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
利用样本频率分布对总体分布进行相应估计
考点自测
结果 答案显示
C
B
B
单击转4-5题
考点自测
4.如图是某电视台综艺节目举办的挑战主持人大 赛上,七位评委为某选手打出的分数的茎叶图, 去掉一个最高分和一个最低分后,所剩数据的平 均数和方差分别为( ). A.84,4.84 B.84,1.6 C.85,4 D.85,1.6 5.(2012· 湖南)如图是某学校一名篮球运动员在五 场比赛中所得分数的茎叶图, 则该运动员在这五场 比赛中得分的方差为________. 1 2 (注:方差 s =n[(x1- x )2+(x2- x )2+„+(xn- x )2],其中 x 为 x1, x2,„,xn 的平均数)
助学微博
一个对比
频率分布表:优点:能看出分布规律.缺点:不直观. 频率分布直方图:优点:很直观且能看出分布规律.缺点: 数据的轻微变化都要重新作图. 茎叶图:优点:很直观,能看出分布规律,还可以添加新 数据.缺点:数据少时方便,数据较多时不方便.
两个特性
(1)在频率分布表中,频数的和等于样本容量,每一小组的频 率等于这一组的频数除以样本容量,各小组频率的和等于 1; (2)在频率分布直方图中,小矩形的高等于每一组的频率/组 距,每个小矩形的面积等于该组的频率,所有小矩形的面积 之和为 1.
2
3
5 4
1 6 1 6 7 9
4
4 9
1 5 0 茎(中间一列数)取得分的十位数,叶(两边的数 )取得分的个位数,故称为茎叶图。
26
思考: 数据大于俩位数的整数时又如何选茎,叶?
数据为小数时又如何选茎,叶?
结论:1、当数据为整数时:通常个位数字在叶上, 其他位数在茎上(一位数时,茎为0) 2、当数据为小数时:通常小数部分在叶上, 整数部分在茎上
[3.5,4)
[4,4.5) 合计
4
2 100
0.04
0.02 1.00
0.04 0.12 0.27 0.49 0.74 0.88 0.94 0.98 1.00
频率/组距
0.50
0.40
0.30 0.20 0.10
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5