频率分布直方图题型分析

合集下载

第88题+频率分布直方图-2018精品之高中数学(理)黄金100题系列+Word版含解析

第88题+频率分布直方图-2018精品之高中数学(理)黄金100题系列+Word版含解析

第88题 频率分布直方图I .题源探究·黄金母题【例1】若某校高一年级8个班参加合唱比赛的得分茎叶图如图所示,则这组数据的中位数和平均数分别是 ( )A .91.5和91.5B .91.5和92C .91和91.5D .92和92 【答案】A【例2】如图是某城市100位居民去年的月均用水量(单位:t )的频率分布直方图,月均用水量在区间[)1.5,2.5的居民大约有 ( )A .37位B .40位C .47位D .52位 【答案】C【解析】由频率分布直方图月均用水量在区间[)1.5,2的频率为0.450.50.225⨯=,月均用水量在区间[)2,2.5的居民的频率 为0.50050.25⨯=..月均用水量在区间[)1.5,2.5的居民的频数大约为精彩解读【试题来源】例1:人教A 版必修3P 70改编;例2:人教A 版必修3P 65例题改编.【母题评析】这类题主要考查平均数、方差的计算以及茎叶图与频率分布直方图的简单应用. 【思路方法】用样本估计总体是统计的基本方法:(1)最高的矩形的中点横坐标即众数;(2)中位数左边和右边的直方图的面积是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.()0.2250.2510047+⨯=,故选C.II.考场精彩·真题回放【例1】【2017高考新课标3理3】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳【答案】A客量波动性大,D选项正确.故选A.【例2】【2017高考新课标1文2】为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数【命题意图】这类重点题考查分层抽样和系统抽样的计算.考查考生基本计算能力.【考试方向】这类试题在考查题型上,主要以选择题或填空题为主,属于中低档题.【难点中心】1.将频率分布直方图中相邻的矩形的上底边的中点顺次连结起来,就得到一条折线,我们称这条折线为本组数据的频率折线图,频率分布折线图的的首、尾两端取值区间两端点须分别向外延伸半个组距,即折线图是频率分布直方图的近似,他们比频率分布表更直观、形象地反映了样本的分布规律.2.分清几个样本特征数:众数:一组数据出现次数最多的数叫众数,众数反应一组数据的多数水平;中位数:一组数据中间的数,(起到分水岭的作用)中位数反应一组数据的中间水平;平均数:反应一组数据的平均水平;方差:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方【答案】B【解析】刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B.【例3】【2017高考山东文8】如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为A.3,5 B.5,5 C.3,7 D.5,7【答案】A得3x .故选A.【例4】【2017高考北京文17】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;差.在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.标准差是方差的算术平方根,意义在于反映一个数据集的离散程度.3.用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法.分布表在数量表示上比较准确,直方图比较直观.4.频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数学不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例. 【答案】(Ⅰ)0.4;(Ⅱ)20;(Ⅲ):32.(Ⅱ)根据题意,样本中分数不小于50的频率为(0.010.020.040.02)100.9+++⨯=,分数在区间[40,50)内的人数为1001000.955-⨯-=.所以总体中分数在区间[40,50)内的人数估计为540020100⨯=. (Ⅲ)由题意可知,样本中分数不小于70的学生人数为(0.020.04)1010060+⨯⨯=,所以样本中分数不小于70的男生人数为160302⨯=. 所以样本中的男生人数为30260⨯=,女生人数为1006040-=,男生和女生人数的比例为60:403:2=.所以根据分层抽样原理,总体中男生和女生人数的比例估计为3:2.III .理论基础·解题原理⑴一表二图:①频率分布表——数据详实 ②频率分布直方图——分布直观③频率分布折线图——便于观察总体分布趋势 注:总体分布的密度曲线与横轴围成的面积为1. ⑵茎叶图:①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数、众位数等. ②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数据重复写. 3.总体特征数的估计:⑴平均数:nx x x x x n++++=321;取值为n x x x ,,,21 的频率分别为n p p p ,,,21 ,则其平均数为n n p x p x p x +++ 2211;注意:频率分布表计算平均数要取组中值.⑵方差与标准差:一组样本数据n x x x ,,,21 方差:212)(1∑=-=ni ix xns ;标准差:21)(1∑=-=ni ix xns注:方差与标准差越小,说明样本数据越稳定.平均数反映数据总体水平;方差与标准差反映数据的稳定水平.IV .题型攻略·深度挖掘【考试方向】这类试题在考查题型上,通常以选择题或填空题的形式出现,难度中等. 【技能方法】1.解题模板:第一步,根据频率分布直方图计算出相应的频率;第二步,运用样本的频率估计总体的频率;第三步,得出结论.2.用样本估计总体是统计的基本思想.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.3.(1)众数、中位数及平均数都是描述一组数据集中趋势的量,平均数是最重要的量,与每个样本数据有关,这是中位数、众数所不具有的性质.(2)标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度就越大. 4.茎叶图、频率分布表和频率分布直方图都可直观描述样本数据的分布规律. 【易错指导】1.在使用茎叶图时,一定要注意看清楚所有的样本数据,弄清楚这个图中的数字特点,不要漏掉了数据,也不要混淆茎叶图中茎与叶的含义.2.利用频率分布直方图求众数、中位数与平均数时,应注意这三者的区分:(1)最高的矩形的中点横坐标即众数;(2)中位数左边和右边的直方图的面积是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.3.直方图与条形图不要搞混频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.V .举一反三·触类旁通考向1 茎叶图及其应用【例1】【2018黑龙江齐齐哈尔高三第一次模】某校连续12天对同学们的着装进行检查,着装不合格的人数用茎叶图表示,如图,则该组数据的中位数是A .24B .26C .27D .32 【答案】CC . 【例2】【2018江西上饶高三下学期二模】如图1是某学习小组学生在某次数学考试中成绩的茎叶图,1号到20号同学的成绩依次为1220,,,a a a ,图2是统计茎叶图中成绩在一定范围内的学生人数的程序框图,那么该框图的输出结果是( )A .8B .9C .11D .12 【答案】A【例3】某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (3)根据茎叶图分析该市的市民对甲、乙两部门的评价.【答案】(1)75,75;(2)0.1,0.16;(3)该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.(2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.规律方法 (1)茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况. (2)①作样本的茎叶图时先要根据数据特点确定茎、叶,再作茎叶图;作“叶”时,要做到不重不漏,一般由内向外,从小到大排列,便于数据的处理.②根据茎叶图中数据数字特征进行分析判断考查识图能力,判断推理能力和创新应用意识;解题的关键是抓住“叶”的分布特征,准确提炼信息. 【跟踪练习】1.【2018河南安阳高三二模】在某校连续5次考试成绩中,统计甲,乙两名同学的数学成绩得到如图所示的茎叶图.已知甲同学5次成绩的平均数为81,乙同学5次成绩的中位数为73,则x y +的值为( )A .3B .4C .5D .6 【答案】A 【解析】77728680908105x x +++++=∴=因为乙同学5次成绩的中位数为73,所以33,y x y =∴+=选A .2.【2018山西平遥中学高三3月高考适应性调研】某学校A、B两个班的数学兴趣小组在一次数学对抗赛中的成绩绘制茎叶图如下,通过茎叶图比较两班数学兴趣小组成绩的平均值及方差①A班数学兴趣小组的平均成绩高于B班的平均成绩②B班数学兴趣小组的平均成绩高于A班的平均成绩③A班数学兴趣小组成绩的标准差大于B班成绩的标准差④B班数学兴趣小组成绩的标准差大于A班成绩的标准差其中正确结论的编号为()A.①③B.①④C.②③D.②④【答案】B【解析】A班:53,63,64,76,74,78,78,76,81,85,86,88,82,92,95;B班:45,48,51,3.【2018湖北武汉武昌区高三1月调研】将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个分数的平均数为91,现场作的7个分数的茎叶图有一个数据模糊,无法辨认,在图中以x表示,则5个剩余分数的方差为________.【答案】6【解析】依题意8793909190915x+++++=,解得4x=.则方差为1641965+++=.【名师点睛】本题主要考查茎叶图的分辨,考查平均数的计算,考查方差的计算.从茎叶图可以看出最低分是87,最高分是99,去掉这两个分数后,可利用平均数的公式列方程来求出x的值.根据前面求出的值再利用方差的计算公式()211n i i x x n =-∑来计算方差.考向2 频率分布直方图【例4】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A .56B .60C .120D .140【答案】D【解析】由频率分布直方图可知每周自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,则每周自习时间不少于22.5小时的人数为0.7×200=140,故选D .【例5】某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:[40,50),[50,60),…,[90,100]后得到频率分布直方图(如下图所示),则分数在[70,80)内的人数是 .【答案】30【解析】由频率分布直方图知小长方形面积为对应区间概率,所有小长方形面积和为1,因此分数在[70,80)内的概率为3.010)005.0010.02015.0025.0(1=⨯++⨯+-,人数为301003.0=⨯【例6】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),……,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月均用水量的中位数.【答案】(1)0.30;(2)36 000;(3)2.04.(2)由(1)知,该市100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5.又前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5.所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.【名师点睛】(1)准确理解频率分布直方图的数据特点,频率分布直方图中纵轴上的数据是各组的频率除以组距的结果,不要误以为纵轴上的数据是各组的频率和条形图混淆.(2)“命题角度二”的例题中抓住频率分布直方图中各小长方形的面积之和为1,这是解题的关键.而利用频率分布直方图可以估计总体分布.【跟踪练习】1.【2018江西高三毕业班新课程教学质量监测】如图是60名学生参加数学竞赛的成绩(均为整数)的频率分布直方图,估计这次数学竞赛的及格率(60分及以上为及格)是()A .0.9B .0.75C .0.8D .0.7 【答案】B同样可得,60分及以上的频率=(0.015+0.03+0.025+0.005)×10=0.75 估计这次数学竞赛竞赛的及格率(大于或等于60分为及格)为75%, 故选:B .【名师点睛】利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数; (2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.2.【2018贵州黔东南州联考】近年呼吁高校招生改革的呼声越来越高,在赞成高校招生改革的市民中按年龄分组,得到样本频率分布直方图如图,其中年龄在[)30,40岁的有2500人,年龄在[)20,30岁的有1200人,则m 的值为( )A .0.013B .0.13C .0.012D .0.12 【答案】C3.【2018河南六市高三第一次联考(一模)】为了解学生在课外活动方面的支出情况,抽取了n 个同学进行调查,结果显示这些学生的支出金额(单位:元)都在[]10,50,其中支出金额在[]30,50的学生有117人,频率分布直方图如图所示,则n =( )A .180B .160C .150D .200 【答案】A【解析】[]30,50对应的概率为()10.010.025100.65-+⨯=,所以117=1800.65n =,选A . 4.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[)2500,3500(元)月收入段应抽出 人.【答案】40【解析】由图(2500,3500元/月)收入段的频率是0.0005×500+0.0003×500=0.4,故用分层抽样方法抽出100人作进一步调查,则在(2500,3500元/月)收入段应抽出人数为0.4×100=40. 考向3 样本的数字特征【例7】【2018内蒙古呼和浩特高三第一次质量调研】如图为某班35名学生的投篮成绩(每人投一次)的条形统计图,其中上面部分数据破损导致数据不完全.已知该班学生投篮成绩的中位数是5,则根据统计图,无法确定下列哪一选项中的数值( )A .3球以下(含3球)的人数B .4球以下(含4球)的人数C .5球以下(含5球)的人数D .6球以下(含6球)的人数 【答案】C【解析】因为共有35人,而中位数应该是第18个数,所以第18个数是5,从图中看出第四个柱状图故选C .【例8】【2018湖南衡阳高三第二次联考(二模)】已知样本12,,,n x x x 的平均数为x ;样本12,,,m y y y 的平均数为()y x y ≠,若样本12,,,n x x x ,12,,,m y y y 的平均数()z ax 1a y =+-;其中10a 2<<,则()*,,n m n m N ∈的大小关系为( ) A .n m = B .n m ≥ C .n m < D .n m > 【答案】C【解析】由题得()11,,n n n z nx my x y a n m n m n m n m ⎛⎫=+=+-∴= ⎪++++⎝⎭110,0,.22n a n m n m <<∴<<∴<+故选C .【例9】【2018长沙一中高三模拟】某企业有甲、乙两个研发小组.为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b )(a ,b ),(a ,b ),(a ,b ),(a ,b ).其中a ,a 分别表示甲组研发成功和失败;b ,b 分别表示乙组研发成功和失败.(1)若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率.(2)记E ={恰有一组研发成功}.在所抽得的15个结果中,恰有一组研发成功的结果是(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),共7个.因此事件E 发生的频率为715.用频率估计概率,即得所求概率为P (E )=715.【名师点睛】(1)平均数反映了数据的中心,是平均水平,而方差和标准差反映的是数据围绕平均数的波动大小.进行平均数与方差的计算,关键是正确运用公式;(2)平均数与方差所反映的情况有着重要的实际意义,一般可以通过比较甲、乙两组样本数据的平均数和方差的差异,对甲、乙两品种可以做出评价或选择. 【跟踪练习】1.【2018贵州黔东南州高三下学期二模】甲乙两名同学6次考试的成绩统计如下图,甲乙两组数据的平均数分别为x 甲、x 乙,标准差分别为σσ甲乙,,则A .x x σσ<<甲乙甲乙,B .x x σσ甲乙甲乙,C .x x σσ><甲乙甲乙,D .x x σσ>>甲乙甲乙,【答案】C【解析】由图可知,甲同学除第二次考试成绩略低与乙同学,其他次考试都远高于乙同学,可知x x >甲乙,图中数据显示甲同学的成绩比乙同学稳定,故σσ<甲乙.故选C .2.【2018云南昆明高三教学质量检查(二统)】“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.根据该走势图,下列结论正确的是( )A .这半年中,网民对该关键词相关的信息关注度呈周期性变化B .这半年中,网民对该关键词相关的信息关注度不断减弱C .从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差D .从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值 【答案】D【解析】根据走势图可知:这半年中,网民对该关键词相关的信息关注度不呈周期性变化,A 错;这半年中,网民对该关键词相关的信息关注度增减不确定,B 错;从网民对该关键词的搜索指数来看,去年10月份的搜索指数的稳定性小于11 月份的搜索指数的稳定性,所以去年10月份的方差大于11 月份的方差,C 错;从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值,D正确,故选D.3.【2018陕西榆林高三二模】为了反映各行业对仓储物流业务需求变化的情况,以及重要商品库存变化的动向,中国物流与采购联合会和中储发展股份有限公司通过联合调查,制定了中国仓储指数.由2016年1月至2017年7月的调查数据得出的中国仓储指数,绘制出如下的折线图.根据该折线图,下列结论正确的是()A.2016年各月的合储指数最大值是在3月份B.2017年1月至7月的仓储指数的中位数为55C.2017年1月与4月的仓储指数的平均数为52D.2016年1月至4月的合储指数相对于2017年1月至4月,波动性更大D【答案】则这5 天中,每天最高气温较为稳定(方差较小)的城市为_______.(填甲或乙). 【答案】甲【解析】甲、乙两个城市的最高气温平均值都是30,甲的方差为419914.85++++=,乙的方差为2516116369318.6,55++++==∴每天最高气温较为稳定(方差较小)的城市为甲,故答案为甲.5.【2018山东枣庄高三二模】随着高校自主招生活动的持续开展,我市高中生掀起了参与数学兴趣小组的热潮.为调查我市高中生对数学学习的喜好程度,从甲、乙两所高中各随机抽取了40名学生,记录他们在一周内平均每天学习数学的时间,并将其分成了6个区间:(]0,10、(]10,20、(]20,30、(]30,40、(]40,50、(]50,60,整理得到如下频率分布直方图:根据一周内平均每天学习数学的时间t ,将学生对于数学的喜好程度分为三个等级:(Ⅰ)试估计甲高中学生一周内平均每天学习数学的时间的中位数m 甲(精确到0.01);(Ⅱ)判断从甲、乙两所高中各自随机抽取的40名学生一周内平均每天学习数学的时间的平均值X 甲与X 乙及方差2S 甲与2S 乙的大小关系(只需写出结论),并计算其中的X 甲、2S 甲(同一组中的数据用该组区间的中点值作代表);(Ⅲ)从甲高中与乙高中随机抽取的80名同学中数学喜好程度为“痴迷”的学生中随机抽取2人,求选出的2人中甲高中与乙高中各有1人的概率.【答案】(Ⅰ) 26.67m ≈甲;(Ⅱ)答案见解析;(Ⅲ)37. 【解析】试题分析:()1根据频率分布直方图,由样本估计总体的思想可求得()0.50.10.2200.3m -+=+甲1026.67⨯≈;()2根据所给数据求出X 甲,X 乙,2S 甲,2S 乙,然后对比即可得到答案;()3求出甲高中随机选取的40名学生中“痴迷”的学生的个数,记为1A ,2A ;乙高中随机选取的40名的概率解析:(Ⅰ)由样本估计总体的思想,甲高中学生一周内平均每天学习数学的时间的中位数()0.50.10.2200.3m -+=+甲 1026.67⨯≈;(Ⅱ)X X <甲乙;22S S >甲乙;50.1150.2250.3X =⨯+⨯+⨯甲 350.2450.15550.0527.5+⨯+⨯+⨯=;()()221[527.5400.140S =⨯-⨯⨯甲 ()()21527.5400.2+-⨯⨯ ()()22527.5400.3+-⨯⨯ ()()23527.5400.2+-⨯⨯ ()()24527.5400.15+-⨯⨯ ()()25527.5400.05]+-⨯⨯178.75=.(Ⅲ)甲高中随机选取的40名学生中“痴迷”的学生有()400.005102⨯⨯=人,记为1A ,2A ;乙高中随机选取的40名学生中“痴迷”的学生有()400.015106⨯⨯=人,记为1B ,2B ,3B ,4B ,5B ,6B .随机选出2人有以下28种可能:()12,A A ,()11,A B ,()12,A B ,()13,A B ,()14,A B ,()15,A B ,()16,A B , ()21,A B ,()22,A B ,()23,A B ,()24,A B ,()25,A B ,()26,A B ,()12,B B , ()13,B B ,()14,B B ,()15,B B ,()16,B B ,()23,B B ,()24,B B ,()25,B B , ()26,B B ,()34,B B ,()35,B B ,()36,B B ,()45,B B ,()46,B B ,()56,B B ,所以,从甲、乙两所高中数学喜好程度为“痴迷”的同学中随机选出2人,选出的2人中甲、乙两所高中各有1人的概率为123287=. 6.【2018海南高三第二次联合考试】从某小区抽取50户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图如下.(1)求频率分布直方图中x 的值并估计这50户用户的平均用电量;(2)若将用电量在区间[)50,150内的用户记为A 类用户,标记为低用电家庭,用电量在区间[)250,350内的用户记为B 类用户,标记为高用电家庭,现对这两类用户进行问卷调查,让其对供电服务进行打分,打分情况见茎叶图:①从B 类用户中任意抽取1户,求其打分超过85分的概率;②若打分超过85分视为满意,没超过85分视为不满意,请填写下面列联表,并根据列联表判断是否有95%的把握认为“满意度与用电量高低有关”?附表及公式:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.【答案】(1)0.0044x =,186(2)23,没有【解析】试题分析:(1)由矩形面积和为1,求得x ,再由每一个矩形的中点横坐标乘以矩形面积求和可得平均值;试题解析: 解:(1)1(0.0060.00360.002450x =-++ 20.0012)0.0044⨯+=, 按用电量从低到高的六组用户数分别为6,9,15,11,6,3, 所以估计平均用电量为675912515175112256275332550⨯+⨯+⨯+⨯+⨯+⨯ 186=度.(2)①B 类用户共9人,打分超过85分的有6人,所以从B 类用户中任意抽取3户,恰好有2户打分超过85分的概率为2163391528C C C =. ②12因为2K的观测值()22469631212915k⨯⨯-⨯=⨯⨯⨯1.6 3.841=<,所以没有95%的把握认为“满意与否与用电量高低有关”.【名师点睛】利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.。

频数分布表与直方图

频数分布表与直方图

THANKS
感谢观看
均匀分布
数据在各个区间内的频数或频 率大致相等,表示数据分布较 为均匀。
双峰分布
数据呈现两个明显的峰值,表 示数据可能存在两个不同的集
中区域。
03
频数分布表与直方图关系
数据呈现方式比较
频数分布表
通过表格形式展示数据分布情况,横 轴为数据分组,纵轴为频数或频率。
直方图
通过图形形式展示数据分布情况,横 轴为数据分组,纵轴为频数或频率, 各矩形面积总和表示所有数据点的数 量。
可以是水平的。
数据表示Βιβλιοθήκη 02直方图用矩形的面积表示频数或频率,而条形图的条形长度直
接表示数据值。
数据间隔
03
直方图的矩形通常是连续的,没有间隔,而条形图的条形之间
通常有间隔。
常见直方图形状解读
钟型分布
数据呈现中间高、两边低的形 状,类似于钟的轮廓,表示数
据分布较为集中。
偏态分布
数据分布偏向一侧,可能是左 偏或右偏,表示数据在某个方 向上存在较多的极端值。
调整柱子形状
可以选择不同的柱子形状,如矩形、圆形等,以更好地展示数据 分布。
调整柱子颜色
可以通过调整柱子颜色来区分不同的数据组,使得直方图更加直 观易懂。
添加图例
为不同的数据组添加图例,以便读者更好地理解直方图。
添加标题、坐标轴标签等元素
添加标题
为直方图添加标题,简要说明数据的来源和含义。
添加坐标轴标签
05
直方图制作步骤及注意事 项
根据频数分布表绘制直方图
确定组数
根据数据的分布规律,选择合适的组数,通常组数选择在5-15之 间。
确定组距
根据数据的范围和组数,计算合适的组距,使得数据能够均匀地分 布在各个组中。

频率分布直方图题型归纳-邓永海

频率分布直方图题型归纳-邓永海

频率分布直方图题型归纳1.频率、频数、样本容量三个量产生的知二求一2.补全频率分布表3.做频率分布直方图4.性质“面积和为1”的应用,补全直方图5.与分层抽样、数列等知识综合6.估计总体的频率分布,区间内的频数问题【例1】14.I2[2012·山东卷] 如图1-4是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为________.图1-414.9[解析] 本题考查频率分布直方图及样本估计总体的知识,考查数据处理能力,容易题.样本容量=111×(0.10+0.12)=50,样本中平均气温不低于25.5℃的城市个数为50×1×0.18=9.【例2】18.I2[2012·安徽卷] 若某产品的直径长与标准值的差的绝对值不超过...1 mm时,则视为合格品,否则视为不合格品,在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5 000件进行检测,结果发现有50件不合格品.计算这50件不合格品的直径长与标准值的差(单位:mm),将所得数据分组,得到如下频率分布表:(1)...(2)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;(3)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品,据此估算这批产品中的合格品的件数.18.解:(1)频率分布表(2)由频率分布表知,该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率约为0.50+0.20=0.70;(3)设这批产品中的合格品数为x 件,依题意有505000=20x +20, 解得x =5000×2050-20=1 980. 所以该批产品的合格品件数估计是1 980件.【例3】18.I2[2014·全国新课标卷Ⅰ] 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)在答题卡上作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均值及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?18.解:(1)频率分布直方图如下:(2)质量指标值的样本平均数为x=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.8=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.【例4】11.I2[2013·湖北卷] 从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图1-3所示.(1)直方图中x的值为________;(2)在这些用户中,用电量落在区间[100,250)内的户数为________.图1-311.(1)0.004 4(2)70[解析] (1)(0.001 2+0.002 4×2+0.003 6+x+0.006 0)×50=1x=0.004 4.(2)[1-(0.001 2+0.002 4×2)×50]×100=70.【变式】17.I2、K2[2014·重庆卷] 20名学生某次数学考试成绩(单位:分)的频率分布直方图如图1-3所示.图1-3(1)求频率分布直方图中a的值;(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;(3)从成绩在[50,70)的学生中任选2人,求此2人的成绩都在[60,70)中的概率.17.解:(1)据直方图知组距为10,由(2a+3a+7a+6a+2a)×10=1,解得a=1200=0.005.(2)成绩落在[50,60)中的学生人数为2×0.005×10×20=2. 成绩落在[60,70)中的学生人数为3×0.005×10×20=3.(3)记成绩落在[50,60)中的2人为A 1,A 2,成绩落在[60,70)中的3人为B 1,B 2,B 3,则从成绩在[50,70)的学生中任选2人的基本事件共有10个,即(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3).其中2人的成绩都在[60,70)中的基本事件有3个,即(B 1,B 2),(B 1,B 3),(B 2,B 3).故所求概率为P =310.【例5】(12)从某小学随机抽取100名同学,将他们身高(单位:厘米)数据绘制成频率分布直方图(如图)。

高考数学易错题10.2 统计图表的应用-2019届高三数学提分精品讲义

高考数学易错题10.2 统计图表的应用-2019届高三数学提分精品讲义

专题十概率、统计问题二:统计图表的应用一、考情分析统计图表有频率分布直方图、茎叶图、折线图、条形图、饼形图、雷达图等,它们广泛应用于实际生活之中,也是历年高考的热点,求解此类的关键是由图表读出有用的数据,再根据数据进行分析.二、经验分享1.明确频率分布直方图的意义,即图中的每一个小矩形的面积是数据落在该区间上的频率,所有小矩形的面积和为1.学科-网2.对于统计图表类题目,最重要的是认真观察图表,从中提炼有用的信息和数据.由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较烦琐.3.频率分布直方图是高考考查的热点,考查频率很高,题型有选择题、填空题,也有解答题,难度为低中档.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.在计数和计算时一定要准确,在绘制小矩形时,宽窄要一致.通过频率分布表和频率分布直方图可以对总体作出估计.频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.三、知识拓展统计图是利用点、线、面、体等绘制成几何图形,以表示各种数量间的关系及其变动情况的工具。

表现统计数字大小和变动的各种图形总称。

其中有条形统计图、扇形统计图、折线统计图、象形图等。

在统计学中把利用统计图形表现统计资料的方法叫做统计图示法。

其特点是:形象具体、简明生动、通俗易懂、一目了然。

其主要用途有:表示现象间的对比关系;揭露总体结构;检查计划的执行情况;揭示现象间的依存关系,反映总体单位的分配情况;说明现象在空间上的分布情况。

一般采用直角坐标系.横坐标用来表示事物的组别或自变量x,纵坐标常用来表示事物出现的次数或因变量y;或采用角度坐标(如圆形图)、地理坐标(如地形图)等。

频率分布直方图中的基本计算问题

频率分布直方图中的基本计算问题

所以该样本的中位数为2.02
3.由频率分布直方图估计样本平均数公式:
每个小矩形底边中点的横坐标与对应矩形面积的 乘积之和
平均数
a1
2
b1

S1
a2
2
b2

S2
a3
2
b3

S3...
an
2
bn

Sn
(S为区间a, b对应矩形的面积)
0.4
0.04
0.03 0.3
0.2
0.02
0.1
0.01
各小组内频率的大小。
(2)小矩形面积之和为1
(3)频率
频数 样本容量
频数 频率 样本容量
样本容量
频数 频率
1.求某一小矩形的高:利用所有小矩形面积之和为1
2.求众数:最高矩形底边中点的横坐标
3.求平均数:每个小矩形底边中点的横坐标与对应矩形面 积的乘积之和
4.求中位数:线段之比=面积之比(或面积之和为0.5)
O
取一人,估计其上学路上所需
时间超过60分钟的概率。
时间
10 20 30 40 50 60 70 80 90 100 110
O 0.5
1
1.5 2
2.5 3 3.5 4 4.5
月平均用水量(t)
例题分析:月均用水量的众数是2.25t.如图所示:(2+2.5)/2=2.25
2、从频率分布直方图中估计中位数(中位数左边立方图的小矩形 面积为0.5)
频率/组距
0.404.50
0.40 0.30
0.16 0.20 0.08 0.10
5.求样本数据在某一区间内的频数:样本容量X该区间小 矩形的面积总和

高一数学必修第一册 第6章 第四节 课时3 用频率分布直方图估计总体分布(解析版)

高一数学必修第一册  第6章 第四节 课时3 用频率分布直方图估计总体分布(解析版)

第6章 第四节 课时3 用频率分布直方图估计总体分布一、单选题1.港珠澳大桥于2018年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米.桥面为双向六车道高速公路,大桥通行限速100km /h ,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查.画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间[85,90)的车辆数和行驶速度超过90km /h 的频率分别为( )A .300,0.25B .300,0.35C .60,0.25D .60,0.35【答案】B 【分析】由频率分布直方图求出在此路段上汽车行驶速度在区间)[8590,的频率即可得到车辆数,同时利用频率分布直方图能求行驶速度超过90/km h 的频率.【详解】由频率分布直方图得:在此路段上汽车行驶速度在区间)[8590,的频率为0.0650.3⨯=, ∴在此路段上汽车行驶速度在区间)[8590,的车辆数为:0.31000300⨯=, 行驶速度超过90/km h 的频率为:()0.050.0250.35+⨯=.故选B .【点睛】本题考查频数、频率的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.2.从容量为10000的总体中抽取一个容量为200的样本,得到其频率分布直方图如图所示.根据样本的频率分布直方图,估计总体数据落在区间[)10,12内的个数为( )A .900B .1800C .3600D .5900 【答案】B【分析】先求出所求区间的频率,再由频率乘以总数即可得解.【详解】解:由频率分布直方图,可得样本数据落在区间[)10,12内的频率为()10.190.150.050.0220.18-+++⨯=,所以可估计总体数据落在区间[)10,12内的个数为100000.181800⨯=,故选:B .3.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩(总分为100分)分成6组加以统计,6组的分数分别是[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],得到如图所示的频率分布直方图.已知不及格的人数比优秀(不低于90分)的人数多60人,则高一年级共有学生A .300人B .600人C .200人D .700人【答案】B【分析】设高一年级共有学生x 人,则不及格的学生的频率为0.2,优秀的学生的频率为0.1,进而求出高一年级的总人数,得到答案.【详解】设高一年级共有学生x 人,则不及格的学生的频率为(0.0050.015)100.2+⨯=,优秀的学生的频率为0.010100.1⨯=,由题意,(0.20.1)60x -⨯=,解得600x =,故选B .【点睛】本题主要考查了频率分布直方图的应用,其中解答中熟记频率直方图的基础知识,熟练计算频率分布直方图中的概率是解答此类问题的关键,着重考查了运算与求解能力.二、多选题4.某学校为了调查学生一周在生活方面的支出情况,抽出了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在[]50,60内的学生有60人,则下列说法正确的是( )A .样本中支出在[]50,60内的频率为0.03B .样本中支出不少于40元的人数为132C .n 的值为200D .若该校有2000名学生,则约有600人支出在[]50,60内【答案】BCD【分析】根据频率之和为1补全频率分布直方图,由此对选项进行分析,从而确定正确选项.【详解】设[]50,60对应小长方形的高为x ,()0.010.0240.036101x +++⨯=,解得0.03x =.所以样本中支出在[]50,60内的频率为0.03100.3⨯=,A 选项错误.602000.3n ==,C 选项正确. 样本中支出不少于40元的人数为()2000.0360.310132⨯+⨯=,B 选项正确. 该校有2000名学生,则约有20000.3600⨯=人支出在[]50,60内,D 选项正确. 故选:BCD5.(多选)学校为了解新课程标准中提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示.若将阅读时间不低于30 min 的学生称为阅读霸,则( )A .抽样表明,该校约有一半学生为阅读霸B .抽取的100名学生中有50名学生为阅读霸C .抽取的100名学生中有45名学生为阅读霸D .抽样表明,该校有50名学生为阅读霸【答案】AB【详解】根据频率直方图可列下表: 阅读时间/min[)0,10 [)10,20 [)20,30 [)30,40 [)40,50 []50,60 抽样人数10 18 22 25 20 5抽取的100名学生中有50名为阅读霸,据此可判断该校约有一半学生为阅读霸. 故选:AB .三、填空题6.2020年11月12日中国人民银行通过微信公众号宣布,“双十一”当日网联、银联共处理网络支付业务22.43亿笔、金额1.77万亿元.某公司对某地区10000名在2020年“双十一”当日网络购物者的消费情况进行统计,发现消费金额都在区间[]0.3,0.9(单位:万元)内,其频率分布直方图如图所示,根据频率分布直方图,估计该地区网络购物者在“双十一”当日的消费金额的中位数为______万元(结果保留两位小数).【答案】0.53【分析】从小到大,利用小矩形面积之和为0.5来估计求解中位数【详解】由频率分布直方图,可知1.50.12.50.10.1 2.00.10.80.10.20.11a ⨯+⨯+⨯+⨯+⨯+⨯=,解得3a =,设消费金额的中位数为x 万元,则()0.150.250.530.5x ++-⨯=,得0.53x ≈, 所以估计该地区网络购物者在“双十一”当日的消费金额的中位数为0.53万元. 故答案为:0.53四、解答题7.某校200名学生的数学期中考试成绩频率分布直方图如图所示,其中成绩分组区间是[70,80),[80,90),[90,100),[100,110),[110,120).(1)求图中m 的值;(2)根据频率分布直方图,估计这200名学生的平均分;(3)若这200名学生的数学成绩中,某些分数段的人数x 与英语成绩相应分数段的人数y 之比如下表所示,求英语成绩在[90,120)的人数. 分数段 [70,80) [80,90) [90,100) [100,110) [110,120):x y 1:2 2:1 6:5 1:2 1:1【答案】(1)0.005(2)93(3)140【分析】(1)由频率之和为1求解即可;(2)由平均数的计算方法求解即可;(3)求出数学成绩在[90,100),[100,110),[110,120)的人数,再根据比例得出英语成绩在[90,100),[100,110),[110,120)的人数,即可得出答案.【详解】(1)10(20.020.030.04)1m +++=,0.005m ∴=(2)这200名学生的平均分750.05850.4950.31050.21150.0593x =⨯+⨯+⨯+⨯+⨯= (3)数学成绩在[90,100),[100,110),[110,120)的人数分别为2000.360,2000.240,2000.0510⨯=⨯=⨯=设英语成绩在[90,100),[100,110),[110,120)的人数分别为123,,y y y123606401101,,521y y y === 12350,80,10y y y ∴===则英语成绩在[90,120)的人数为508010140++=【点睛】本题主要考查了补全频率分布直方图,计算平均数等,属于中档题.8.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值分组 [75,85)[85,95) [95,105) [105,115) [115,125) 频数6 26 38 22 8(I )在答题卡上作出这些数据的频率分布直方图:(II )估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?【答案】(1)见解析;(2)平均数100,方差为104;(3)不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.【详解】(1)直方图如图,(2)质量指标值的样本平均数为x=⨯+⨯+⨯+⨯+⨯=.800.06900.261000.381100.221200.08100质量指标值的样本方差为22222s=-⨯+-⨯+⨯+⨯+⨯=.(20)0.06(10)0.2600.38100.22200.08104(3)质量指标值不低于95的产品所占比例的估计值为0.380.220.080.68++=,由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.。

高考数学复习点拨:频率分布直方图典型例题析

高考数学复习点拨:频率分布直方图典型例题析

频率分布直方图典型例题析山东胡大波频率分布直方图是表达和分析数据的重要工具,还可以直观、准确地理解相应的有用的信息,所以成为新高考的重点,我们必须总结其重要题型及有关计算。

一、基本概念类例1、关于频率分布直方图的下列说法中,正确的是()(A)、直方图的高表示某数的频率;(B)、直方图的高表示该组上的个体在样本中出现的频率;(C)、直方图的高表示该组上的个体与组距的比值;(D)、直方图的高表示该组上的个体在样本中出现的频率与组距的比值;解析:在频率分布直方图中,每一个小矩形都是等宽的,即等于组距,其面积表示数据的取值落在相应区间上的频率,因此每一个小矩形的高表示该组上的个体在样本中出现的频率与组距的比值,所以选(D)。

二、识图计算类例2、为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17。

5岁-18岁的男生体重(kg),得到频率分布直方图如下:根据上图可得这100名学生中体重在[56.5,64。

5)的学生人数是()(A)20 (B)30(C )40 (D )50解:本题主要考查频率分布直方图和总体分布的估计等知识,同时考查图形的识别能力.由频率直方图可知组距为2,故学生中体重在[56。

5,64。

5)的频率为:(0。

03+0。

05+0。

05+0.07)×2=0.4,所以100名学生中体重在[56.5,64。

5)的学生人数有:0. 4×100=40人。

故选择C点评:在频率分布直方图中,每一个小矩形都是等宽的,即等于组距,高是,所以有:×组距=频率;即可把所求范围内的频率求出,进而求该范围的人数。

例3:某校高一某班共有64名学生,下图是该班某次数学考试成绩的频率分布直方图,根据该图可知,成绩在110120间的同学大约有( )A 、 10B 、11C 、13D 、16解析:通过直方图可知:成绩在110120的频率是:2.023.015.01.005.01=----,所以成绩在110120之间的同学大约有:64×0.2=12.813≈人。

概率专题:频率分布直方图

概率专题:频率分布直方图
为小区服务,这样的话小区住户满意度会高一些.
例 8.某校在一次期末数学测试中,为统计学生的考试情况,从学校的 2000 名学生中随机抽取 50 名学生的
考试成绩,被测学生成绩全部介于 65 分到 145 分之间(满分 150 分)
,将统计结果按如下方式分成八组:
第一组[65,75)
,第二组[75,85),……第八组[135,145],如图是按上述分组方法得到的频率分布直方
区住户的满意度等级为不满意的概率大?若是要选择一个物业公司来管理老旧小区的物业,从满意度角
度考虑,应该选择哪一个物业公司?说明理由.
【解析】解:(Ⅰ)作出如图所示的频率分布直方图,
B 区住户满意度评分的频率分布直方图如图所示
A 区住户满意度评分的平均值为 45×0.1+55×0.2+65×0.3+75×0.2+85×0.15+95×0.05=67.5;
)内,
设中位数为 m,则 0.20+0.24+(m﹣70)×0.036=0.5,
解得 m≈71.67,
所以中位数约为 71.67.
例 11.某高中数学建模兴趣小组的同学为了研究所在地区男高中生的身高与体重的关系,从若干个高中男
在[120,140)之间的学生人数为:100×(10×0.030+0.020)=50 人,
1
又用分层抽样的方法在[120,140)之间的学生 50 人中抽取 5 人,即抽取比例为: ,
10
1
所以成绩在[120,130)之间的学生中抽取的人数应,30× 10 =3,即 b=3,
故选:D.
例 2.从某企业生产的某种产品中随机抽取 100 件,测量这些产品的一项质量指标值,由测量表得如下频数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档