类型荧光染料激发与发射波长

合集下载

常用染料的激发与发射

常用染料的激发与发射

常用染料的激发与发射 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT常用荧光染料的激发和发射波长荧光染料的使用吖啶橙:吖啶橙是最经典的灵敏的荧光染料,它可对细胞中的DNA和RNA同时染色而显示不同颜色的荧光,DNA呈绿色荧光,RNA呈橙红色荧光。

EB:染色DNA和RNA 荧光素双醋酸酯(FDA):FAD本身无荧光,无极性,可透过完整的原生质膜。

一旦进入原生质体后,由于受到酯酶分解而产生具有荧光的极性物质荧光素。

它不能自由出入原生质膜,因此有活力的细胞能产生荧光,无活力的原生质体不能分解FAD无荧光产生。

5mgFDA溶于1ml丙酮中,避光4℃下贮存,使用时取贮存液加入L甘露醇中.使用时,使最终浓度为%。

荧光染料Ho33342和若丹明123:活细胞双荧光染色观察细胞核和线粒体。

一般的生物染料不能穿透细胞膜,只有当细胞被固定后改变了细胞膜的通透性,染料才能进入细胞内。

但有些活体染料能进入活细胞,并对细胞不产生毒性作用。

荧光染料Ho33342和若丹明123都是活体染料。

Ho33342能与细胞中DNA进行特异的结合,若丹明123能与线粒体进行特异的结合。

采用两种荧光染料的混合染液可对一个活细胞的核和线粒体同时染色。

荧光组化实验中应注意的几个问题:1.每种荧光染料,均有自己的最适PH值,此时荧光最强。

当pH改变时,不仅荧光强度减弱,而且波长将有所改变,因此荧光检测时要在一定的PH值的缓冲液中进行。

2.一放荧光染色在20℃以下时荧光比较稳定,温度升高常出现温度猝灭。

3.在荧光观察中,常因激发光的增强而使样品荧光很快衰竭,造成观察和照相困难。

为此最好用能量小的长波长光进行观察,需照相时再适当增强激发光。

4.一般荧光染液的浓度在万分之一以下,甚至亿万分之一,也能使标本着色。

在一定的限度内,荧光强度可随荧光素的浓度增加而增强,但超过限度,荧光强度反而下降,这是由于荧光分子间的缔合而使自身荧光猝灭所致。

常用染料的激发与发射

常用染料的激发与发射

常用荧光染料的激发和发射波长
备注:发射波长的颜色及频率
荧光染料的使用
吖啶橙:吖啶橙是最经典的灵敏的荧光染料,它可对细胞中的DNA和RNA同时染色而显示不同颜色的荧光,DNA呈绿色荧光,RNA呈橙红色荧光;EB:染色DNA和RNA荧光素双醋酸酯FDA:FAD本身无荧光,无极性,可透过完整的原生质膜;一旦进入原生质体后,由于受到酯酶分解而产生具有荧光的极性物质荧光素;它不能自由出入原生质膜,因此有活力的细胞能产生荧光,无活力的原生质体不能分解FAD无荧光产生;5mgFDA溶于1ml丙酮中,避光4℃下贮存,使用时取贮存液加入L甘露醇中.使用时,使最终浓度为%;荧光染料Ho33342和若丹明123:活细胞双荧光染色观察细胞核和线粒体;一般的生物染料不能穿透细胞膜,只有当细胞被固定后改变了细胞膜的通透性,染料才能进入细胞内;但有些活体染料能进入活细胞,并对细胞不产生毒性作用;荧光染料Ho33342和若丹明123都是活体染料;Ho33342能与细胞中DNA进行特异的结合,若丹明123能与线粒体进行特异的结合;采用两种荧光染料的混合染液可对一个活细胞的核和线粒体同时染色;
荧光组化实验中应注意的几个问题:1.每种荧光染料,均有自己的最适PH值,此时荧光最强;当pH改变时,不仅荧光强度减弱,而且波长将有所改变,因此荧光检测时要在一定的PH值的缓冲液中进行;2.一放荧光染色在20℃以下时荧光比较稳定,温度升高常出现温度猝灭;3.在荧光观察中,常因激发光的增强而使样品荧光很快衰竭,造成观察和照相困难;为此最好用能量小的长波长光进行观察,需照相时再适当增强激发光;4.一般荧光染液的浓度在万分之一以下,甚至亿万分之一,也能使标本着色;在一定的限度内,荧光强度可随荧光素的浓度增加而增强,但超过限度,荧光强度反而下降,
这是由于荧光分子间的缔合而使自身荧光猝灭所致;。

常用染料的激发与发射

常用染料的激发与发射

常用荧光染料的激发和发射波长备注:发射波长的颜色及频率荧光染料的使用吖啶橙:吖啶橙是最经典的灵敏的荧光染料,它可对细胞中的DNA和RNA同时染色而显示不同颜色的荧光,DNA呈绿色荧光,RNA呈橙红色荧光。

EB:染色DNA和RNA 荧光素双醋酸酯(FDA):FAD本身无荧光,无极性,可透过完整的原生质膜。

一旦进入原生质体后,由于受到酯酶分解而产生具有荧光的极性物质荧光素。

它不能自由出入原生质膜,因此有活力的细胞能产生荧光,无活力的原生质体不能分解FAD无荧光产生。

5mgFDA溶于1ml丙酮中,避光4℃下贮存,使用时取贮存液加入L甘露醇中.使用时,使最终浓度为%。

荧光染料Ho33342和若丹明123:活细胞双荧光染色观察细胞核和线粒体。

一般的生物染料不能穿透细胞膜,只有当细胞被固定后改变了细胞膜的通透性,染料才能进入细胞内。

但有些活体染料能进入活细胞,并对细胞不产生毒性作用。

荧光染料Ho33342和若丹明123都是活体染料。

Ho33342能与细胞中DNA进行特异的结合,若丹明123能与线粒体进行特异的结合。

采用两种荧光染料的混合染液可对一个活细胞的核和线粒体同时染色。

荧光组化实验中应注意的几个问题:1.每种荧光染料,均有自己的最适PH值,此时荧光最强。

当pH改变时,不仅荧光强度减弱,而且波长将有所改变,因此荧光检测时要在一定的PH值的缓冲液中进行。

2.一放荧光染色在20℃以下时荧光比较稳定,温度升高常出现温度猝灭。

3.在荧光观察中,常因激发光的增强而使样品荧光很快衰竭,造成观察和照相困难。

为此最好用能量小的长波长光进行观察,需照相时再适当增强激发光。

4.一般荧光染液的浓度在万分之一以下,甚至亿万分之一,也能使标本着色。

在一定的限度内,荧光强度可随荧光素的浓度增加而增强,但超过限度,荧光强度反而下降,这是由于荧光分子间的缔合而使自身荧光猝灭所致。

荧光染料激发波长和发射波长

荧光染料激发波长和发射波长

荧光染料激发波长和发射波长荧光染料激发波长和发射波长荧光染料是一种广泛应用于科学研究和工业领域的物质。

通过受到特定波长光的激发,荧光染料可以发射出具有特定颜色的荧光,并被广泛用于生物医学成像、材料科学、独特效果的光学标记等领域。

在使用荧光染料之前,了解荧光染料的激发波长和发射波长非常重要。

本文将介绍荧光染料激发波长和发射波长的相关知识,并探讨其在生物医学领域的应用。

1. 什么是荧光染料的激发波长和发射波长?荧光染料的激发波长指的是激发荧光染料所需要的波长范围。

每种荧光染料都有其对应的激发波长范围,只有在这个波长范围内的光线照射到荧光染料上才能激发其发光性质。

而荧光染料的发射波长则是指荧光染料在受到激发后所发射出的荧光的波长范围。

荧光染料的激发波长和发射波长往往存在一定的关联性,但并不总是一致的。

2. 为什么了解荧光染料的激发波长和发射波长很重要?了解荧光染料的激发波长和发射波长对于正确选择和使用荧光染料至关重要。

如果不了解荧光染料的激发波长,我们可能会选择错误的激发光源,导致荧光染料无法被激发,从而无法得到准确的实验结果。

同样地,如果不了解荧光染料的发射波长,我们也无法选择合适的检测方法来观察荧光染料发射的荧光。

深入了解荧光染料的激发波长和发射波长可以帮助我们更好地设计和进行实验。

3. 荧光染料激发波长和发射波长的应用荧光染料的激发波长和发射波长在生物医学领域有着广泛的应用。

在生物荧光成像中,选择适合的激发波长可以准确地观察细胞或组织中的特定分子,从而实现对疾病发展或生物过程的研究。

荧光染料的发射波长还可以与其他分子或材料的发射波长相互配合,实现多种荧光信号的同时检测,从而提高实验的灵敏度和准确性。

4. 个人观点和总结荧光染料的激发波长和发射波长是我们在科学研究和实验中必须要考虑的重要因素。

通过了解激发波长和发射波长,我们可以选择合适的实验条件,确保荧光染料可以被有效地激发和检测,并获得准确的实验结果。

cy3.5激发波长和发射波长

cy3.5激发波长和发射波长

CY3.5标记的激发波长和发射波长是细胞荧光染料领域中的重要参数。

在细胞和分子生物学研究中,荧光染料被广泛应用于细胞成像、蛋白质检测、细胞追踪等领域。

CY3.5作为一种常用的荧光染料,其激发波长和发射波长的选择对于实验结果的准确性和可靠性具有重要意义。

1. CY3.5激发波长CY3.5的激发波长一般在550-570nm范围内。

在进行细胞成像或蛋白质检测实验时,我们需要选择适合的激发波长来激发CY3.5荧光染料。

激发波长的选择应考虑到激发效率和对样品的影响。

在实际操作中,我们可以通过激光共聚焦显微镜等设备来选择合适的激发波长,以确保CY3.5荧光的最大激发效果。

还需要注意避免激发波长对细胞和样品产生的热伤害,保证实验结果的准确性。

2. CY3.5发射波长CY3.5的发射波长一般在570-590nm范围内。

选择适当的发射波长可以有效提取荧光信号,从而获得清晰的细胞成像或蛋白质定位结果。

在实验设计中,我们需要根据实际情况选择合适的检测设备和滤光片,以确保有效捕获CY3.5的发射信号。

3. CY3.5激发波长和发射波长的选择意义CY3.5荧光染料作为一种重要的细胞标记物,其激发波长和发射波长的选择直接影响了实验结果的精准度和可靠性。

合理选择激发波长和发射波长可以最大程度地提高CY3.5荧光信号的强度和稳定性,为细胞成像和蛋白质检测提供可靠的数据支持。

个人观点和理解在进行生物荧光实验时,合理选择CY3.5的激发波长和发射波长是非常重要的。

这不仅关系到实验结果的准确性,也关系到对细胞和样品的保护。

对于CY3.5激发波长和发射波长的选择,我们需要深入了解其光学特性和实验条件,以确保实验结果的可靠性。

总结回顾通过本文的介绍,我们了解到CY3.5荧光染料的激发波长和发射波长选择对于生物荧光实验具有重要意义。

合理选择激发波长和发射波长可以有效提高荧光信号的稳定性和强度,从而获得清晰可靠的实验结果。

在进行类似实验时,我们应该注意选择合适的光学设备和滤光片,以确保CY3.5荧光信号的最佳表现。

常用染料的激发与发射

常用染料的激发与发射

常用染料的激发与发射公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-常用荧光染料的激发和发射波长荧光染料的使用吖啶橙:吖啶橙是最经典的灵敏的荧光染料,它可对细胞中的DNA和RNA同时染色而显示不同颜色的荧光,DNA呈绿色荧光,RNA呈橙红色荧光。

EB:染色DNA和RNA荧光素双醋酸酯(FDA):FAD本身无荧光,无极性,可透过完整的原生质膜。

一旦进入原生质体后,由于受到酯酶分解而产生具有荧光的极性物质荧光素。

它不能自由出入原生质膜,因此有活力的细胞能产生荧光,无活力的原生质体不能分解FAD无荧光产生。

5mgFDA溶于1ml丙酮中,避光4℃下贮存,使用时取贮存液加入L 甘露醇中.使用时,使最终浓度为%。

荧光染料Ho33342和若丹明123:活细胞双荧光染色观察细胞核和线粒体。

一般的生物染料不能穿透细胞膜,只有当细胞被固定后改变了细胞膜的通透性,染料才能进入细胞内。

但有些活体染料能进入活细胞,并对细胞不产生毒性作用。

荧光染料Ho33342和若丹明123都是活体染料。

Ho33342能与细胞中DNA进行特异的结合,若丹明123能与线粒体进行特异的结合。

采用两种荧光染料的混合染液可对一个活细胞的核和线粒体同时染色。

荧光组化实验中应注意的几个问题:1.每种荧光染料,均有自己的最适PH值,此时荧光最强。

当pH改变时,不仅荧光强度减弱,而且波长将有所改变,因此荧光检测时要在一定的PH值的缓冲液中进行。

2.一放荧光染色在20℃以下时荧光比较稳定,温度升高常出现温度猝灭。

3.在荧光观察中,常因激发光的增强而使样品荧光很快衰竭,造成观察和照相困难。

为此最好用能量小的长波长光进行观察,需照相时再适当增强激发光。

4.一般荧光染液的浓度在万分之一以下,甚至亿万分之一,也能使标本着色。

在一定的限度内,荧光强度可随荧光素的浓度增加而增强,但超过限度,荧光强度反而下降,这是由于荧光分子间的缔合而使自身荧光猝灭所致。

常用荧光染料的激发和发射波长

常用荧光染料的激发和发射波长

常用荧光染料的激发和发射波长荧光染料广泛应用于生物医学、材料科学、光电子学等领域,其特点是在受到激发后会发出可见光,具有较高的荧光量子产率和灵敏度。

在实际应用中,荧光染料的激发和发射波长显得尤为重要,因此本文将整理常用荧光染料的激发和发射波长,方便读者在实验或研究中的选择。

常用荧光染料1. FITC (荧光同型素-异硫氰酸酯)FITC是一种广泛应用于生物学实验的荧光染料,常用于标记蛋白质、抗体、药物等分子,其最大吸收波长和最大发射波长分别为495 nm和519 nm。

FITC的分子量小,荧光量子产率高,这使得它成为一种理想的荧光标记分子。

2. Rhodamine 123Rhodamine 123是一种阳离子荧光染料,可在细胞中标记线粒体,同时也可在许多生物学应用中标定其他细胞器。

Rhodamine 123的最大吸收波长和最大发射波长分别为507 nm和529 nm,其荧光量子产率高,荧光亮度高。

3. Texas RedTexas Red是一种常用的激发波长长达596 nm的荧光染料,在荧光共振能量转移等实验中被广泛应用。

Texas Red的最大发射波长在610 nm左右,其在荧光共振能量转移实验中能够提供强烈的荧光标记。

4. PE (腺苷酸酰基酯)PE是一种被广泛用于流式细胞仪实验中的荧光染料,其最大激发波长为488 nm,最大发射波长在575 nm左右。

PE作为一种非常亮的荧光染料,可用于标记和鉴定特定类型的细胞。

荧光染料的选择在实验或研究中,需要根据具体的情况选择合适的荧光染料。

对于激发波长和发射波长的选择,一些因素应该被考虑,如:•研究对象的荧光信号贡献;•其他染料的交叉激发和发射波长;•激发和发射波长的设备可用范围。

一般来说,应选择滤光片相对集中并且有较高吸收的荧光染料,以确保设备需要的能量和检测返回信号的量达到最大程度。

总结本文简要介绍了几种常用的荧光染料及其特性,这些荧光染料可以分别从不同角度用于生物学、光学、材料学等领域的研究和实验中。

sybr gold激发波长和发射波长

sybr gold激发波长和发射波长

sybr gold是一种常用的荧光染料,广泛应用于生物医学研究、生物工程领域。

sybr gold的激发波长和发射波长对于其在实验中的应用至关重要,下面我们将对sybr gold的激发波长和发射波长进行详细的解读。

一、sybr gold的激发波长1.1 sybr gold是一种DNA染料,其激发波长在约495纳米至505纳米之间。

在这一范围内的光波作用下,sybr gold分子会发生能级跃迁,从而激发出荧光信号。

1.2 由于sybr gold的激发波长较窄,在进行实验时需要选择合适的激发光源,以确保sybr gold能够充分受激发并发出荧光信号。

1.3 实验中常用的激发光源包括紫外光、蓝光等,研究人员可以根据实验需求选择合适的激发光源来激活sybr gold。

1.4 正确的激发波长对于实验结果的准确性和可重复性具有重要意义,因此在进行实验前需要对激发波长进行严格的控制和调节。

二、sybr gold的发射波长2.1 sybr gold的发射波长在约520纳米至530纳米之间,当受到激发光源激发后,sybr gold分子会发出这一范围内的荧光信号。

2.2 发射波长的测定可以通过荧光分光光度计等专业仪器进行,研究人员可以根据实验需求对sybr gold的发射波长进行精确测定。

2.3 sybr gold的发射波长是衡量其荧光强度和稳定性的重要指标,研究人员在选择sybr gold作为实验染料时需要对其发射波长进行充分的了解和考量。

2.4 合理的发射波长选择能够提高实验结果的准确性和可靠性,因此在实验设计中需要充分考虑sybr gold的发射波长及其特性。

三、sybr gold激发波长和发射波长的匹配3.1 sybr gold的激发波长和发射波长的匹配关系直接影响着其在实验中的应用效果,研究人员需要对此进行深入的研究和探讨。

3.2 当激发波长与sybr gold的激发波长匹配良好时,sybr gold分子会受到充分激发并发出较强的荧光信号,从而提高实验结果的灵敏度和准确性。

常用染料的激发与发射

常用染料的激发与发射

常用染料的激发与发射 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】常用荧光染料的激发和发射波长荧光染料的使用吖啶橙:吖啶橙是最经典的灵敏的荧光染料,它可对细胞中的DNA和RNA同时染色而显示不同颜色的荧光,DNA呈绿色荧光,RNA呈橙红色荧光。

EB:染色DNA和RNA荧光素双醋酸酯(FDA):FAD?本身无荧光,无极性,可透过完整的原生质膜。

一旦进入原生质体后,由于受到酯酶分解而产生具有荧光的极性物质荧光素。

它不能自由出入原生质膜,因此有活力的细胞能产生荧光,无活力的原生质体不能分解FAD无荧光产生。

5mgFDA溶于1ml丙酮中,避光4℃下贮存,使用时取贮存液加入L甘露醇中.使用时,使最终浓度为%。

荧光染料Ho33342和若丹明123:活细胞双荧光染色观察细胞核和线粒体。

一般的生物染料不能穿透细胞膜,只有当细胞被固定后改变了细胞膜的通透性,染料才能进入细胞内。

但有些活体染料能进入活细胞,并对细胞不产生毒性作用。

荧光染料Ho33342和若丹明123都是活体染料。

Ho33342能与细胞中DNA进行特异的结合,若丹明123能与线粒体进行特异的结合。

采用两种荧光染料的混合染液可对一个活细胞的核和线粒体同时染色。

荧光组化实验中应注意的几个问题:1.每种荧光染料,均有自己的最适PH值,此时荧光最强。

当pH改变时,不仅荧光强度减弱,而且波长将有所改变,因此荧光检测时要在一定的PH值的缓冲液中进行。

2.一放荧光染色在20℃以下时荧光比较稳定,温度升高常出现温度猝灭。

3.在荧光观察中,常因激发光的增强而使样品荧光很快衰竭,造成观察和照相困难。

为此最好用能量小的长波长光进行观察,需照相时再适当增强激发光。

4.一般荧光染液的浓度在万分之一以下,甚至亿万分之一,也能使标本着色。

在一定的限度内,荧光强度可随荧光素的浓度增加而增强,但超过限度,荧光强度反而下降,这是由于荧光分子间的缔合而使自身荧光猝灭所致。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0.0 mm
0.1 mm
0.2 mm
0.4 mm
1.4
1.6
1.8
2.1
Bone/Soft Tissue
Binning 1 x 1, Acq. Time 100 s
0.8 mm 2.5
二、活体成像实验设计
活体成像实验设计
实验设计理论方面:
成像模式的选择:结构成像与功能成像组合 不同研究水平的相互组合:活体、离体、分子水平
结构成像
X光、白光成像
对象 优点 缺点
细胞
噪音低 构建繁琐 成本昂贵
细胞、分子 应用广泛 噪音大
分子 影响小 资质许可
动物或器官 结构清晰 无功能信息
功能成像(荧光)与结构成像(X光)的组合运用
X光成像
Kodak X-Sight 761
overlay
数码X光成像的精确定位
-结构成像与功能成像相结合
化学能→光能
生物发光的应用
1. 细胞或细菌标记:肿瘤细胞、干细胞等记; 最新技术:生物发光与荧光蛋白双标
2. 基因表达:以融合蛋白的方式标记内源性蛋白,研究 基因表达情况;
3. 蛋白相互作用:将荧光素酶基因分为两个片段,分别 与要研究的两个蛋白融合表达,两种蛋白相互靠近后 产生发光。
3、X-Ray 成像
活体成像技术实验设计与应用 介绍
内容简介
一、活体成像技术简介
活体成像定义
定义: 活体状态下在细胞和分子水平上 应用影像学方法对生物过程进行空间和 时间上的定性、定量分析研究的一门科 学。
Dr. Ralph Weissleder
细菌感染模型建立
金黄色葡萄球菌
荧光标记探针靶向细菌
DPA-Cy7
X-Ray
近红外成像-荧光成像的最佳选择
不同波长激光笔对大拇指的透光实验
2、生物发光
定义: 生物发光是荧光素酶(Luciferase)以荧光素 (Luciferin)、三磷酸腺苷(ATP)和O2为底物,在Mg 2+存在 时发生酶促反应中产生光子的过程。 荧光素+ ATP+ O2→核黄素磷酸盐+醛化合物 核黄素磷酸盐+醛化合物→激发的络合物 激发的络合物→氧化核黄素磷酸盐+酸+水+光子
荧光成像在细菌研究中的应用
Pre-
Post-
6 h 12 h 18 h
21 h
i. M.; Marquez, M.; Piwnica-Worms, D.; Smith, B. D. Bioconjugate Chem.2008,19,686–692.
‘标’悍的荧光
荧光成像的关键因素—穿透率
小鼠不同部位的穿透率
650-850nm是活体成像的核心波段
波长对背景噪音的影响
420 ex / 790 em 440 ex / 790 em 460 ex /790 em 480 ex / 790 em 520ex / 790 em 540 ex / 790 em 570 ex / 790 em 590 ex / 790 em 600 ex /790 em 610 ex / 790 em 620 ex / 790 em 630 ex / 790 em 650 ex / 790 em 670 ex / 790 em 690 ex / 790 em 700 ex / 790 em 710 ex / 790 em 720 ex / 790 em 730 ex / 790 em White Light
1、荧光成像
激发光
发射光
基态
激发态
光能
光能
发射态
荧光成像应用
标记生物大分子:蛋白、抗体、多肽、核酸; 标记小分子化合物:小分子化合物; 标记细胞:肿瘤细胞、干细胞等; 标记纳米化药剂:脂质体、胶束等; 标记其他纳米材料:金属氧化物等; 标记细菌:各种感染模型; 标记脏器:ICG;
Nature Medicine
多模式活体成像应用举例
---荧光与同位素成像的组合运用
In111-DTPA-CCPM
Zhi Yang, Chun Li, Biomacromolecules 2007,8(11)
多模式活体成像应用举例
---发光、荧光与同位素成像的共定位
生物发光( fire),近红外成像( rainbow ),同位素成像(111In-LS308) Mol Imaging, 2009. 8(2): p. 101-10
数码X光成像的精确定位
-结构成像与功能成像相结合
正面成像
侧面成像
Courtesy Dr. B. Bednar , Merck Co. Inc.
多模式活体成像
多模式活体成像:成像过程中至少同时采用一种结构成 像和一种功能成像的组合成像方式。
例如: X光 + 荧光成像 + 生物发光 + 同位素成像
结构成像 CT +
功能成像 PET+SPECT
结构成像 多模式成 功能成像 像
多模式活体成像应用举例
---生物发光、荧光与X光的组合运用
生物发光、荧光成像和X光成像组合运用的成功范例,已成 为肿瘤等研究的经典方法
Backer MV, et al., 2007. Vol13(4), April 2007. p504-9.
实验设计实践方面:
染料的选择:类型、波长… 标记方法的选择:共价键、非共价键、脂质体… 荧光单一波长与多光谱分析选择: 近红外… 荧光素酶基因标记的细胞株
不同研究水平的相互组合
活体水平
离体脏器水平
细胞分子水平
5000
4570
4500
4165
4000
3692
3500
3267 2842
3000
2408
2500
1937
2000
1600
1500 1000 500
123 142 235 264 301 336 361 393 499 621 777 9901166
0
常用活体成像模式
功能成像
生物发光 荧光成像
同位素
活体成像的优点
终极方法 无损伤性 直观形象
活体成像技术的应用方向
药物材料研究
新药评价 纳米药物 核酸疫苗 骨科材料 生物材料
生命科学研究
肿瘤
微生物
干细胞 心脑血管 疾病模型
近20年全球分子影像相关论文年发表趋势
(1991-2011.11)
论文篇数
11999921 11111999999999976543 2222222211000000009900000000997654321098 2222000011001098
相关文档
最新文档