八年级数学下册直角三角形教案(新湘教版)(DOC)

合集下载

湘教版八下数学1.1第1课时直角三角形的性质和判定教学设计

湘教版八下数学1.1第1课时直角三角形的性质和判定教学设计

湘教版八下数学1.1第1课时直角三角形的性质和判定教学设计一. 教材分析湘教版八下数学1.1第1课时直角三角形的性质和判定是本册教材中的重要内容,主要让学生掌握直角三角形的性质和判定方法。

本节课的内容是学生学习几何知识的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念和性质,具备了一定的观察、操作和推理能力。

但部分学生在解决实际问题时,仍存在对概念理解不深、运用不灵活的现象。

因此,在教学过程中,需要关注学生的学习差异,引导他们深入理解直角三角形的性质和判定方法。

三. 教学目标1.知识与技能:让学生掌握直角三角形的性质和判定方法,能运用所学知识解决实际问题。

2.过程与方法:通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。

四. 教学重难点1.重点:直角三角形的性质和判定方法。

2.难点:直角三角形性质和判定方法的灵活运用。

五. 教学方法1.情境教学法:通过生活实例引入直角三角形的概念,激发学生的学习兴趣。

2.启发式教学法:引导学生观察、操作、推理,培养学生的自主学习能力。

3.小组合作学习:让学生在小组内讨论、交流,提高他们的合作能力。

六. 教学准备1.课件:制作直角三角形性质和判定方法的课件,以便于引导学生直观地观察和理解。

2.学具:为每个学生准备一份直角三角形的模型,以便于他们操作和观察。

七. 教学过程1.导入(5分钟)利用生活实例引入直角三角形的概念,如测量楼房高度、制作电视天线等。

引导学生思考:直角三角形有哪些特殊的性质?2.呈现(10分钟)展示直角三角形的性质和判定方法,引导学生观察、操作、推理,总结出直角三角形的性质和判定方法。

3.操练(10分钟)学生分组讨论,用学具进行操作,验证直角三角形的性质和判定方法。

教师巡回指导,解答学生的疑问。

湘教版数学八年级下册1.3《直角三角形全等的判定》教学设计

湘教版数学八年级下册1.3《直角三角形全等的判定》教学设计

湘教版数学八年级下册1.3《直角三角形全等的判定》教学设计一. 教材分析《直角三角形全等的判定》是湘教版数学八年级下册1.3节的内容,本节内容是在学生已经掌握了全等图形的概念和判定方法的基础上进行授课的。

本节课的主要内容是让学生掌握HL(斜边-直角边)和SAS(边-角-边)两种判定方法,并能够灵活运用这些方法判断两个直角三角形是否全等。

二. 学情分析学生在学习本节课之前,已经掌握了全等图形的概念,对全等图形有了一定的认识。

同时,学生也已经学习了勾股定理,对直角三角形的特点也有了一定的了解。

但是,学生对于全等三角形的判定方法还没有完全掌握,对于如何判断两个直角三角形是否全等还有一定的困难。

三. 教学目标1.知识与技能:让学生掌握HL和SAS两种直角三角形全等的判定方法,并能够灵活运用这些方法判断两个直角三角形是否全等。

2.过程与方法:通过观察、操作、交流等活动,培养学生的观察能力、操作能力和表达能力。

3.情感态度价值观:激发学生对数学的兴趣,培养学生的团队协作能力和创新精神。

四. 教学重难点1.重点:让学生掌握HL和SAS两种直角三角形全等的判定方法。

2.难点:如何让学生灵活运用HL和SAS方法判断两个直角三角形是否全等。

五. 教学方法1.情境教学法:通过设置具体的问题情境,激发学生的学习兴趣,引导学生主动参与学习。

2.启发式教学法:通过提问、引导等方式,启发学生思考,培养学生解决问题的能力。

3.合作学习法:学生进行小组讨论和合作,培养学生的团队协作能力和沟通能力。

六. 教学准备1.准备一些直角三角形的模型或图片,用于引导学生观察和操作。

2.准备一些相关的练习题,用于巩固学生的学习成果。

七. 教学过程1.导入(5分钟)利用情境教学法,展示一些实际生活中的直角三角形,如建筑工人测量高度、运动员投篮等,引导学生关注直角三角形的特点,激发学生的学习兴趣。

2.呈现(10分钟)通过提问和引导,让学生回顾全等图形的概念和判定方法,然后引入直角三角形全等的判定方法。

湘教版八年级数学下教案 直角三角形的性质和判定

湘教版八年级数学下教案 直角三角形的性质和判定
1.1.1直角三角形的性质
教学目标
知识与技能:1.理解并掌握直角三角形的判定定理和斜边上的中线性质定理
2.能应用直角三角形的判定与性质,解决有关问题。
过程与方法:通过对几何问题的“操作—探究—讨论—交流—讲评”的学习过程,提高分析问题和解决问题的能力。
情感、态度与价值观:感受数学活动中的多向思维、合作交流的价值,主动参与数学思维与交流活动。
证明:∵DE⊥AC于E,∴∠DEC=90°(垂直定义)
∵△ABC为等边三角形,∴AC=BC∠C=60°
∵在Rt△EDC中,∠C=60°,∴∠EDC=90°-60°=30°

∵D为BC中点,
∴ ∴
∴ .
例3:已知:如图AD∥BC,且BD⊥CD,BD=CD,AC=BC.
求证:AB=BO.
分析:证AB=BD只需证明∠BAO=∠BOA
由已知中等腰直角三角形的性质,可知 。由此,建立起AE与AC之间的关系,故可求题目中的角度,利用角度相等得证.
证明:作DF⊥BC于F,AE⊥BC于E
∵△BDC中,∠BDC=90°,BD=CD

∵BC=AC∴
∵DF=AE∴
∴∠ACB=30°
∵∠CAB=∠ABC,∴∠CAB=∠ABC=75°
∴∠OBA=30°
解:在Rt△ABC中
∵∠ACB=90∠A=30°∴
∵AB=8∴BC=4
∵D为AB中点,CD为中线

∵DE⊥AC,∴∠AED=90°
在Rt△ADE中, ,

例2:已知:△ABC中,AB=AC=BC(△ABC为等边三角形)D为BC边上的中点,
DE⊥AC于E.求证: .
分析:CE在Rt△DEC中,可知是CD的一半,又D为中点,故CD为BC上的一半,因此可证.

湘教版数学八年级下册《1.3 直角三角形全等的判定》教学设计

湘教版数学八年级下册《1.3 直角三角形全等的判定》教学设计

湘教版数学八年级下册《1.3 直角三角形全等的判定》教学设计一. 教材分析《1.3 直角三角形全等的判定》是湘教版数学八年级下册的教学内容。

本节内容主要介绍了直角三角形全等的判定方法,包括HL,ASA,AAS,SAS四种判定方法。

通过学习,学生能够熟练掌握直角三角形全等的判定方法,并能够运用到实际问题中。

二. 学情分析学生在学习本节内容前,已经学习了全等图形的概念,并掌握了全等三角形的判定方法。

但是,对于直角三角形全等的判定,学生可能还存在一定的困惑。

因此,在教学过程中,教师需要引导学生将全等的判定方法与直角三角形的特点相结合,帮助学生理解和掌握直角三角形全等的判定方法。

三. 教学目标1.了解直角三角形全等的判定方法,能够熟练运用到实际问题中。

2.培养学生的逻辑思维能力和解决问题的能力。

3.激发学生对数学的兴趣,提高学生的学习积极性。

四. 教学重难点1.教学重点:直角三角形全等的判定方法。

2.教学难点:如何将全等的判定方法与直角三角形的特点相结合。

五. 教学方法1.采用问题驱动法,引导学生主动探究直角三角形全等的判定方法。

2.利用几何画板等教学工具,直观展示直角三角形全等的判定过程。

3.学生进行小组讨论,培养学生的合作能力和沟通能力。

4.通过举例和练习,巩固学生对直角三角形全等判定方法的掌握。

六. 教学准备1.准备相关的教学PPT和教学素材。

2.准备几何画板等教学工具。

3.准备练习题和拓展题。

七. 教学过程1.导入(5分钟)利用几何画板展示一个直角三角形,引导学生观察和思考直角三角形全等的特点。

2.呈现(10分钟)介绍直角三角形全等的四种判定方法:HL,ASA,AAS,SAS。

并通过几何画板展示判定过程,让学生直观地理解直角三角形全等的判定方法。

3.操练(10分钟)学生进行小组讨论,让学生结合直角三角形的特点,运用所学的判定方法判断两个直角三角形是否全等。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一组练习题,让学生独立完成。

湘教版八下数学1.1.1《直角三角形的性质与判定(一)》教学设计

湘教版八下数学1.1.1《直角三角形的性质与判定(一)》教学设计

湘教版八下数学1.1.1《直角三角形的性质与判定(一)》教学设计一. 教材分析湘教版八下数学1.1.1《直角三角形的性质与判定(一)》是初中数学的重要内容,主要介绍了直角三角形的性质和判定方法。

本节课的内容是学生掌握直角三角形的基本性质,包括勾股定理、直角三角形的边角关系等,同时学习如何运用这些性质判定一个三角形是否为直角三角形。

教材通过丰富的例题和练习题,帮助学生巩固知识,提高解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念、性质和判定方法,对勾股定理也有了一定的了解。

但部分学生对直角三角形的性质和判定方法的掌握程度不够深入,尤其是一些学生对理论证明的过程不够熟练。

因此,在教学过程中,需要关注学生的学习情况,针对性地进行讲解和辅导。

三. 教学目标1.理解直角三角形的性质,掌握直角三角形的判定方法。

2.能够运用勾股定理和直角三角形的性质解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.直角三角形的性质和判定方法的掌握。

2.勾股定理在实际问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探索、发现问题,培养学生的独立思考能力。

2.使用多媒体课件,直观展示直角三角形的性质和判定方法,提高学生的学习兴趣。

3.小组讨论,让学生在合作中学习,提高团队协作能力。

4.通过课后练习,巩固所学知识,提高学生的实际应用能力。

六. 教学准备1.多媒体课件2.教学PPT3.直角三角形的相关教具七. 教学过程1.导入(5分钟)利用多媒体课件展示直角三角形的图片,引导学生回顾直角三角形的定义,激发学生的学习兴趣。

2.呈现(10分钟)教师讲解直角三角形的性质,包括勾股定理、直角三角形的边角关系等,并通过例题展示如何运用这些性质判定一个三角形是否为直角三角形。

3.操练(10分钟)学生分组讨论,每组选取一道练习题,运用所学知识进行解答,教师巡回指导。

4.巩固(10分钟)教师选取几道具有代表性的练习题,让学生上黑板演示解题过程,讲解解题思路,巩固所学知识。

湘教版数学八年级下册1.1《直角三角形的性质与判定》教学设计1

湘教版数学八年级下册1.1《直角三角形的性质与判定》教学设计1

湘教版数学八年级下册1.1《直角三角形的性质与判定》教学设计1一. 教材分析《直角三角形的性质与判定》是湘教版数学八年级下册1.1的内容。

本节内容是在学生已经掌握了锐角三角函数、勾股定理的基础上进行学习的,是学习几何后续内容的重要基础。

本节课主要让学生了解直角三角形的性质和判定方法,通过探索和证明,培养学生的逻辑思维能力和空间想象能力。

二. 学情分析学生在学习本节课之前,已经掌握了锐角三角函数、勾股定理等基础知识,具备了一定的观察、分析、推理的能力。

但学生对于证明过程的理解和运用还存在一定的困难,因此在教学过程中,需要引导学生积极参与,激发学生的学习兴趣,帮助学生理解和掌握直角三角形的性质与判定方法。

三. 教学目标1.了解直角三角形的性质,能运用性质进行判断。

2.学会用勾股定理的逆定理判定直角三角形。

3.通过探索和证明,培养学生的逻辑思维能力和空间想象能力。

4.提高学生合作交流的能力,激发学生学习数学的兴趣。

四. 教学重难点1.直角三角形的性质的理解和运用。

2.勾股定理的逆定理的证明和运用。

五. 教学方法采用问题驱动法、合作交流法、证明演示法进行教学。

通过设置问题,引导学生探索和发现直角三角形的性质,培养学生的问题解决能力;通过合作交流,让学生充分发表自己的观点,提高学生的沟通能力;通过证明演示,让学生理解并掌握直角三角形的判定方法。

六. 教学准备1.教学课件。

2.直角三角形的相关图片和实例。

3.证明演示所需的教具。

七. 教学过程1.导入(5分钟)利用直角三角形的实例,如旗杆高度的测量、房间的面积计算等,引发学生对直角三角形的性质和判定方法的思考,激发学生的学习兴趣。

2.呈现(10分钟)呈现直角三角形的性质和判定方法,引导学生观察、分析、推理,引导学生发现直角三角形的性质,如直角三角形的两个锐角互余,一条直角边等于另一条直角边的平方根等。

3.操练(10分钟)让学生运用直角三角形的性质进行判断,如给出一个三角形,判断它是否为直角三角形。

湘教版数学八年级下册《1.1 直角三角形的性质和判定(I)》教学设计

湘教版数学八年级下册《1.1 直角三角形的性质和判定(I)》教学设计

湘教版数学八年级下册《1.1 直角三角形的性质和判定(I)》教学设计一. 教材分析湘教版数学八年级下册第1.1节直角三角形的性质和判定(I)是初中数学的重要内容,主要介绍了直角三角形的性质和判定方法。

本节课的内容是学生学习几何学的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

教材从直角三角形的定义入手,介绍了直角三角形的性质,如直角三角形的两个锐角互余,直角三角形的斜边最长等。

接着,教材介绍了直角三角形的判定方法,如HL判定法、ASA判定法、AAS判定法等。

这些性质和判定方法在实际应用中具有广泛的应用价值。

二. 学情分析学生在学习本节课之前,已经学习了三角形的基本概念和性质,对于三角形的分类和特点有一定的了解。

但是,对于直角三角形的特殊性质和判定方法,学生可能还没有完全掌握。

因此,在教学过程中,需要注重引导学生理解和掌握直角三角形的性质和判定方法。

三. 教学目标1.知识与技能:使学生理解和掌握直角三角形的性质和判定方法,能够运用这些性质和判定方法解决实际问题。

2.过程与方法:通过观察、操作、推理等数学活动,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣和好奇心,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.重点:直角三角形的性质和判定方法。

2.难点:直角三角形的判定方法的灵活运用。

五. 教学方法1.引导发现法:通过提问、引导,让学生发现直角三角形的性质和判定方法。

2.实践操作法:让学生通过实际操作,加深对直角三角形性质和判定方法的理解。

3.合作交流法:鼓励学生分组讨论,培养学生的团队合作意识和沟通能力。

六. 教学准备1.教具准备:直角三角形模型、多媒体课件等。

2.学具准备:直角三角形模型、剪刀、胶水等。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形的基本概念和性质,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过多媒体课件展示直角三角形的性质和判定方法,让学生初步了解这些知识。

湘教版八年级数学下册112直角三角形的性质与判定二教案.docx

湘教版八年级数学下册112直角三角形的性质与判定二教案.docx

1. 1. 2直角三角形的性质与判定教学目标1、掌握直角三角形的性质“直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半”,掌握直角三角形的性质“直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30度”2、经历“直角三角形中,30°角所对的边等于斜边的一半”性质的发现过程。

掌握直角三角形的性质,会运用直角三•角形的性质进行简单的推理和计算。

3、体会从“一般到特殊”的思维方法和“逆向思维”方法,培养逆向思维能力。

重点:直角三角形性质“直角三角形中,30°角所对的边等于斜边的一半”。

难点:直角三角形性质的应用教学过程:一、知识回顾(出示ppt课件)1、直角三角形有哪些性质?结合图形,用图形语言叙述。

RtAABC 中,ZC=90° , D 是AB 的中点ZA+ ZB 二90°CD=AD=BD=-AB22、一个三角形应满足什么条件才能是直角三角形(1)有一个角是直角的三角形是直角三角形;(2)有两个角的和是90°的三角形是直角三角形;(3)一边上的中线等于这条边的一半的三角形是直角三角形。

二、探究学习(出示ppt课件)按要一求画图:1、(1)画ZM0N,使ZMON=30°;(2)在0M上任意取点P,过P作0N的垂线PK,垂足为K,量一量PO, PK.的长度,PO, PK有什么关系;(3)在0M上再取点Q, R,分别过Q, R作ON的垂线QD, RE,垂足分别为D, E, 量—量QD, 0Q, .它们有什么关系?量一量RE, OR,它们有什么关系?由此你发现了什么规律?C2、探究直角三角形屮,如果有一个锐角等于3.0° , 那么它所对的直角边为•什么等于斜边的一半。

如图,在RtQBC中,Z购二90°,如果二30° ,那么腮与斜边/矽有什么关系呢?证明:取线段肋的中点〃,连结即Q为RlWBC斜边肋上的中线.则有:CD丄AB二BD®为Z加Z河0° ,且Z/二30° ,2则Z庐60°,所以ZXG劝为等边三角形,于是得:BC=CD=BD=-AB.2在直角三角形中,如果一个锐角等于30° ,那么它所对的直角边等于斜边的一半.这个定理的得出除了上面的方法外,你还有没有别的方法呢?(让学生交流一,得出把AABC沿着AC翻折,利用等边三角形的性质证•明)BA(1)延长BC到D,使CD=BC,连接AD(2)将AABC沿AC对折,得到轴对称图形AADC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章直角三角形§1.1直角三角形的性质和判定(Ⅰ)(第1课时)教学目标:1、掌握“直角三角形的两个锐角互余”定理。

2、掌握“有两个锐角互余的三角形是直角三角形”定理。

3、掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用。

4、巩固利用添辅助线证明有关几何问题的方法。

教学重点:直角三角形斜边上的中线性质定理的应用。

难点:直角三角形斜边上的中线性质定理的证明思想方法。

教学方法:观察、比较、合作、交流、探索.教学过程:一、复习提问:(1)什么叫直角三角形?(2)直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质?二、新授(一)直角三角形性质定理1请学生看图形:1、提问:∠A与∠B有何关系?为什么?2、归纳小结:定理1:直角三角形的两个锐角互余。

3、巩固练习:练习1(1)在直角三角形中,有一个锐角为520,那么另一个锐角度数(2)在Rt△ABC中,∠C=900,∠A -∠B =300,那么∠A= ,∠B= 。

练习2 在△ABC中,∠ACB=900,CD是斜边AB上的高,那么,(1)与∠B互余的角有(2)与∠A相等的角有。

(3)与∠B相等的角有。

(二)直角三角形的判定定理11、提问:“在△ABC中,∠A +∠B =900那么△ABC是直角三角形吗?”2、利用三角形内角和定理进行推理3、归纳:有两个锐角互余的三角形是直角三角形练习3:若∠A= 600,∠B =300,那么△ABC是三角形。

(三)直角三角形性质定理21、实验操作:要学生拿出事先准备好的直角三角形的纸片(l)量一量斜边AB的长度(2)找到斜边的中点,用字母D表示(3)画出斜边上的中线(4)量一量斜边上的中线的长度让学生猜想斜边上的中线与斜边长度之间有何关系?归纳:直角三角形斜边上的中线等于斜边的一半。

三、巩固训练:练习4:在△ABC中,∠ACB=90 °,CE是AB边上的中线,那么与CE相等的线段有_________,与∠A相等的角有_________,若∠A=35°,那么∠ECB= _________。

练习5:已知:∠ABC=∠ADC=90O,E是AC中点。

求证:(1)ED=EB(2)∠EBD=∠EDB(3)图中有哪些等腰三角形?练习6 已知:在△ABC中,BD、CE分别是边AC、AB上的高, M是BC的中点。

如果连接DE,取DE的中点 O,那么MO 与DE有什么样的关系存在?四、小结:这节课主要讲了直角三角形的那两条性质定理和一条判定定理?1、2、3、五、课后反思:§1.1直角三角形的性质和判定(Ⅰ)(第2课时)一、教学目标:1、掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用。

2、巩固利用添辅助线证明有关几何问题的方法。

3、通过图形的变换,引导学生发现并提出新问题,进行类比联想,促进学生的思维向多层次多方位发散。

培养学生的创新精神和创造能力。

4、从生活的实际问题出发,引发学生学习数学的兴趣。

从而培养学生发现问题和解决问题能力。

二、教学重点与难点:直角三角形斜边上的中线性质定理的应用。

直角三角形斜边上的中线性质定理的证明思想方法。

三、教学方法:观察、比较、合作、交流、探索.四、教学过程:(一)引入:如果你是设计师:(提出问题)2008年将建造一个地铁站,设计师设想把地铁站的出口建造在离附近的三个公交站点45路、13路、23路的距离相等的位置。

而这三个公交站点的位置正好构成一个直角三角形。

如果你是设计师你会把地铁站的出口建造在哪里?(通过实际问题引出直角三角形斜边上的中点和三个顶点之间的长度关系,引发学生的学习兴趣。

)动一动想一想猜一猜(实验操作)请同学们分小组在模型上找出那个点,并说出它的位置。

请同学们测量一下这个点到这三个顶点的距离是否符合要求。

通过以上实验请猜想一下,直角三角形斜边上的中线和斜边的长度之间有什么关系?(通过动手操作找到那个点,通过测量的结果让学生猜测斜边的中线与斜边的关系。

)(二)新授:提出命题:直角三角形斜边上的中线等于斜边的一半证明命题:(教师引导,学生讨论,共同完成证明过程)EDCBA推理证明思路: ①作点D 1 ②证明所作点D 1 具有的性质 ③ 证明点D 1 与点D 重合应用定理:例1、已知:如图,在△ABC 中,∠B=∠C ,AD 是∠BAC 的平分线,E 、F 分别AB 、AC 的中点。

求证:DE=DF分析:可证两条线段分别是两直角三角形的斜边上的中线,再证两斜边相等即可证得。

(上一题我们是两个直角三角形的一条较长直角边重合,现在我们将图形变化使斜边重合,我们可以得到哪些结论?) 练习变式:1、 已知:在△ABC 中,BD 、CE 分别是边AC 、AB 上的高,F 是BC 的中点。

求证:FD=FE 练习引申:(1)若连接DE ,能得出什么结论?(2)若O 是DE 的中点,则MO 与DE 存在什么结论吗?上题两个直角三角形共用一条斜边,两个直角三角形位于斜边的同侧。

如果共用一条斜边,两个直角三角形位于斜边的两侧我们又会有哪些结论? 2、已知:∠ABC=∠ADC=90º,E 是AC 中点。

你能得到什么结论?例2、求证:一个三角形一边上的中线等于这一边的一半,那么这个三角形是直角三角形。

P4 练习P4 2 (三)、小结:通过今天的学习有哪些收获? (四)、作业:P7 习题A 组 1、2FEDCBAFCB(五)、课后反思:§1.1直角三角形的性质和判定(Ⅰ)(第3课时)教学目标1、掌握直角三角形的性质“直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半”;2、掌握直角三角形的性质“直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30度”;3、能利用直角三角形的性质解决一些实际问题。

重点、难点重点:直角三角形的性质,难点:直角三角形性质的应用教学过程一、创设情境,导入新课1 直角三角形有哪些性质?(1)两锐角互余;(2)斜边上的中线等于斜边的一半2 按要求画图:(1)画∠MON,使∠MON=30°,(2)在OM上任意取点P,过P作ON的垂线PK,垂足为K,量一量PO,PK的长度,PO,PK 有什么关系?(3) 在OM上再取点Q,R,分别过Q,R作ON的垂线QD,RE,垂足分别为D,E,量一量QD,OQ,它们有什么关系?量一量RE,OR,它们有什么关系?由此你发现了什么规律?直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。

为什么会有这个规律呢?这节课我们来研究这个问题.二、合作交流,探究新知1 探究直角三角形中,如果有一个锐角等于30°,那么它所对的直角边为什么等于斜边的一半。

如图,Rr△ABC中,∠A=30°,BC为什么会等于12ABCBAKOMB分析:要判断BC=12AB,可以考虑取AB的中点,如果如果BD=BC,那么BC=12AB,由于∠A=30°,所以∠B=60°,如果BD=BC,则△BDC一定是等边三角形,所以考虑判断△BDC是等边三角形,你会判断吗?由学生完成归纳:直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。

这个定理的得出除了上面的方法外,你还有没有别的方法呢?先让学生交流,得出把△ABC沿着AC翻折,利用等边三角形的性质证明。

2 上面定理的逆定理上面问题中,把条件“∠A=30°”与结论“BC=12AB”交换,结论还成立吗?学生交流方法(1)取AB的中点,连接CD,判断△BCD是等边三角形,得出∠B=60°,从而∠A=30°(2)沿着AC翻折,利用等边三角形性质得出。

(3)你能把上面问题用文字语言表达吗?归纳:直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30度。

三、应用迁移,巩固提高1、定理应用例1、在△ABC中,△C=90°,∠B=15°,DE垂直平分AB,垂足为点E,交BC边于点D,BD=16cm,则AC的长为______例2、如图在△ABC中,若∠BAC=120°,AB=AC,AD ⊥AC于点A,BD=3,则BC=______.ED CA BA2 实际应用例3、(P5) 在A 岛周围20海里水域有暗礁,一轮船由西向东航行到O 处时,发现A 岛在北偏东60°的方向,且与轮船相距有触礁的危险吗?四、 课堂练习 ,巩固提高 P 6练习 1、2五、 反思小结,拓展提高直角三角形有哪些性质?怎样判断一个三角形是直角三角形? 六、作业布置: P7习题A 组 3、4东§1.2直角三角形的性质和判定(Ⅱ)(第4课时)勾股定理教学目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图(3)了解有关勾股定理的历史.(4)在定理的证明中培养学生的拼图能力;(5)通过问题的解决,提高学生的运算能力(6)通过自主学习的发展体验获取数学知识的感受;(7)通过有关勾股定理的历史讲解,对学生进行德育教育.教学重点:勾股定理及其应用教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育教学方法: 观察、比较、合作、交流、探索.教学过程:1、新课背景知识复习(1)三角形的三边关系(2)问题:直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?2、定理的获得让学生用文字语言将上述问题表述出来.勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方强调说明:(1)勾――最短的边、股――较长的直角边、弦――斜边(2)学生根据上述学习,提出自己的问题(待定)3、定理的证明方法方法一:将四个全等的直角三角形拼成如图1所示的正方形.方法二:将四个全等的直角三角形拼成如图2所示的正方形,方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形以上证明方法都由学生先分组讨论获得,教师只做指导.最后总结说明4、定理的应用练习P11例题1、已知:如图,在△ABC中,∠ACB=900,AB=5cm,BC=3cm,CD⊥AB 于D,求CD的长.解:∵△ABC是直角三角形,AB=5,BC=3,由勾股定理有∴又∠2=∠C∴CD的长是2.4cm例题2、如图,△ABC中,AB=AC,∠BAC=900,D是BC上任一点,求证:BD2+CD2=2AD2证法一:过点A作AE⊥BC于E则在Rt△ADE中,DE2+AE2=AD2又∵AB=AC,∠BAC=900∵BD2+CD2=(BE-DE)2+(CE+DE)2=BE2+CE2+2DE2=2AE2+2DE2=2AD2∴即BD2+CD2=2AD2证法二:过点D作DE⊥AB于E, DF⊥AC于F则DE∥AC,DF∥AB又∵AB=AC,∠BAC=900∴EB=ED,FD=FC=AE在Rt△EBD和Rt△FDC中 BD2=BE2+DE2 ,CD2=FD2+FC2在Rt△AED中,DE2+AE2=AD2∴BD2+CD2=2AD25、课堂小结:(1)勾股定理的内容(2)勾股定理的作用已知直角三角形的两边求第三边已知直角三角形的一边,求另两边的关系6、作业布置P16 习题A组 1、2、3课后反思:§1.2直角三角形的性质和判定(Ⅱ)(第5课时)勾股定理的逆定理教学目标:(1)理解并会证明勾股定理的逆定理;(2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;(3)知道什么叫勾股数,记住一些觉见的勾股数(4)通过勾股定理与其逆定理的比较,提高学生的辨析能力;(5)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识能力. (6)通过自主学习的发展体验获取数学知识的感受;(7)通过知识的纵横迁移感受数学的辩证特征.教学重点:勾股定理的逆定理及其应用教学难点:勾股定理的逆定理及其应用教学方法: 观察、比较、合作、交流、探索.教学过程:1、新课背景知识复习:勾股定理的内容、文字叙述、符号表述、图形2、逆定理的获得(1)让学生用文字语言将上述定理的逆命题表述出来(2)学生自己证明逆定理:如果三角形的三边长a、b、c 有下面关系:a2+b2=c2 ,那么这个三角形是直角三角形强调说明:(1)勾股定理及其逆定理的区别勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理.(2)判定直角三角形的方法:①角为900②垂直③勾股定理的逆定理2、定理的应用P15 例题3 判定由线段a,b,c组成的三角形是不是直角三角形。

相关文档
最新文档