初三数学综合复习专题

合集下载

完整版)初三数学总复习知识点

完整版)初三数学总复习知识点

完整版)初三数学总复习知识点Chapter 1: Quadratic Radical1.A quadratic radical is an n of the form a (a≥0).Property: a (a≥0) is a non-negative number;a^2=a (a≥0);a^2=a (a≥0).2.n and n of quadratic radicals: a•b=ab (a≥0.b≥0);a/a (a≥0.b>0)=√a/b.3.n and n of quadratic radicals: when adding or subtracting quadratic radicals。

XXX form first。

then combine the quadratic radicals with the same radicand.4.Heron's formula: S=p(p-a)(p-b)(p-c)。

where S is the area ofa triangle。

and p=(a+b+c)/2.Chapter 2: XXX1.XXX that has only one unknown variable。

and the highest degree of the variable is2.2.XXX:Completing the square method: transform one side of the ninto a perfect square。

then take the square root of both sides;Quadratic formula: x=(-b±√(b^2-4ac))/2a;Factoring method: factor the left side of the n into two factors。

and set each factor equal to zero.3.ns of XXX life problems.4.Vieta's formulas: let x1 and x2 be the roots of the nax^2+bx+c=0.then we have b=-a(x1+x2) and c=a(x1x2).Chapter 3: XXX1.n of a figure: XXX it around a fixed point by a XXX.Properties: the distance from each point of the figure to the center of n remains the same;the angle een the line segment connecting each point and the center of n is equal to the angle of n;the original figure and the XXX.2.XXX to a point if the figure coincides with itself after a180-degree XXX point.A figure is XXX its image under a 180-degree n around apoint is identical to the original figure.3.Coordinates of points XXX to the origin.Chapter 4: Circle1.ns of circle。

初三数学复习资料

初三数学复习资料

初三数学复习资料初三数学复习资料11、弧长公式n°的圆心角所对的弧长l的计算公式为L=nπr/1802、扇形面积公式,其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长.S=﹙n/360﹚πR2=1/2×lR3、圆锥的侧面积,其中l是圆锥的母线长,r是圆锥的地面半径.S=1/2×l×2πr=πrl4、弦切角定理弦切角:圆的切线与经过切点的弦所夹的角,叫做弦切角.弦切角定理:弦切角等于弦与切线夹的弧所对的圆周角.一、选择题1.(20__o珠海,第4题3分)已知圆柱体的底面半径为3cm,髙为4cm,则圆柱体的侧面积为()A.24πcm2B.36πcm2C.12cm2D.24cm2考点:圆柱的计算.分析:圆柱的侧面积=底面周长×高,把相应数值代入即可求解.解答:解:圆柱的侧面积=2π×3×4=24π.故选A.点评:本题考查了圆柱的计算,解题的关键是弄清圆柱的侧面积的计算方法.2.(20__o广西贺州,第11题3分)如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是()A.B.C.D.考点:垂径定理;勾股定理;勾股定理的逆定理;弧长的计算.分析:连接OC,先根据勾股定理判断出△ACE的形状,再由垂径定理得出CE=DE,故=,由锐角三角函数的定义求出∠A的度数,故可得出∠BOC的度数,求出OC的长,再根据弧长公式即可得出结论.解答:解:连接OC,∵△ACE中,AC=2,AE=,CE=1,∴AE2+CE2=AC2,∴△ACE是直角三角形,即AE⊥CD,∵sinA==,∴∠A=30°,∴∠COE=60°,∴=sin∠COE,即=,解得OC=,∵AE⊥CD,∴=,∴===.故选B.初三数学复习资料2因式分解的方法1.十字相乘法(1)把二次项系数和常数项分别分解因数;(2)尝试十字图,使经过十字交叉线相乘后所得的数的和为一次项系数;(3)确定合适的十字图并写出因式分解的结果;(4)检验。

初三数学圆的总复习

初三数学圆的总复习
内切
两个圆有且仅有一个公共点,且该点在两个圆的内部时,称 这两个圆内切。
圆与圆的相交
相交
两个圆有两个不同的公共点时,称这两个圆相交。此时两个公共点连成的线段叫 做两圆的公共弦。
特殊相交
当两个圆的半径相等且相交于两点时,这两点连成的线段既是两圆的公共弦也是 两圆的直径。
05 圆的综合应用
圆的面积与周长计算
01
02
03
圆的面积公式
$S = pi r^{2}$,其中 $r$ 是圆的半径。这个公 式用于计算圆的面积。
圆的周长公式
$C = 2pi r$ 或 $C = pi d$,其中 $r$ 是圆的半径, $d$ 是圆的直径。这两个 公式用于计算圆的周长。
扇形面积公式
$S_{扇形} = frac{npi r^{2}}{360}$,其中 $n$ 是扇形的圆心角,$r$ 是 圆的半径。这个公式用于 计算扇形的面积。
线的性质。
圆的拓展应用问题
圆锥曲线问题
圆锥曲线包括椭圆、双曲线和抛物线。在解决这类问题时,需要掌握圆锥曲线的定义、标 准方程和性质等知识点。
极坐标与参数方程问题
极坐标是一种用距离和角度来描述平面上点的方法,参数方程则是用参数来描述曲线上点 的坐标的方法。在解决这类问题时,需要掌握极坐标与直角坐标的互化以及参数方程与普 通方程的互化等知识点。
通过一般方程,可以计算出圆心坐标$left( frac{D}{2},-frac{E}{2} right)$和半径 $r=frac{sqrt{D^{2}+E^{2}-4F}}{2}$。
方程变形
通过配方等方法,可以将一般方程转化为标准方 程。
圆的图形与方程的关系
图形与方程对应
01

中考数学总复习知识点总结【3篇】

中考数学总复习知识点总结【3篇】

中考数学总复习知识点总结【优秀3篇】作为一名无私奉献的老师,时常需要用到教案,教案是教学活动的总的组织纲领和行动方案。

那么问题来了,教案应该怎么写?小编为您带来了3篇《中考数学总复习知识点总结》,希望能够给您提供一些帮助。

初三数学中考总复习计划篇一临近升学考试,做好九年级数学复习课教学,对大面积提高教学质量起着重要作用。

通过复习应达到以下目的:(1)使所学知识系统化、结构化、让学生将初中三年的数学知识连成一个有机整体,更利于学生理解;(2)多讲多练,巩固基本技能;(3)抓好方法教学,引导学生归纳、总结解题的方法;(4)做好综合题训练,提高学生综合运用知识分析问题的能力;(5)培养学生的良好学习习惯。

为了在较短的时间内达到此目的,本人特制定了以下复习计划:一、复习措施。

1、认真钻研教材、课标要求、吃透考试大纲,确定复习重点。

确定复习重点可从以下几方面考虑:(1)根据教材的教学要求提出四层次的基本要求:了解、理解、掌握和熟练掌握。

这是确定复习重点的依据和标准。

(2)熟识每一个知识点在初中数学教材中的地位、作用。

(3)熟悉近年来试题型类型,以及考试整改的情况。

2、正确分析学生的知识状况、和近期的思想状况。

(1)是对平时教学中掌握的情况进行定性分析;(2)每天对学生的作业及时批改,复习过程侧重评讲。

(3)是对每周所复习的知识进行测试,及时发现问题和解决问题。

(4)将学生很好的分类,牢牢的抓在手中。

(5)备课组成员每人出好两套模拟试题,优化及共享资源。

二、抓好教材中例题、习题的归类、变式的教学。

在数学复习课教学中,挖掘教材中的例题、习题等的功能,既是大面积提高教学质量的需要,又是对付考试的一种手段。

因此在复习中根据教学的目的、教学的重点和学生实际,对相关例题进行分析、归类,总结解题规律,提高复习效率。

对具有可变性的例习题,引导学生进行变式训练,使学生从多方面感知数学的方法、提高学生综合分析问题、解决问题的能力。

初三复习专题--全等三角形

初三复习专题--全等三角形


OA=OC,EA=EC,

请阐明∠ A=∠C。
AO C
DB
E
• 分析:欲证明∠A= ∠C,有三条思路,一 是证明△AOD与△COB全等,而由已知条件 不可直接得到,二是连结OE,阐明△AOE与 △COE全等,这条路显而易得, ∠A=∠C, 三是证明 △ABE与△CDE全等,这也是不能 直接证明到的,因此应采用第二条思路。
全等三角形
• 一:考纲规定与命题趋势
• 1. 理解并掌握五种识别三角形全等的办法, 会灵活的对的选择适宜的识别办法判断两 个三角形与否全等。
• 2. 对的运用全等三角形的性质计算三角形 中未知的边或角,逐步培养逻辑推理能力 和形象思维能力。
• 3. 全等三角形的应用是学习几何证明题的 基础,因此它自然是中考必考知识点,同 窗们务必学好它。
• 阐明:在解决几何问题的过程中,有时根 据条件不能较顺利的得到结论,这时添加 必要的辅助线是十分重要的捷径。
• 例3.P是线段AB上一点,△APC与△BPD都是
等边三角形,请你判断:AD与BC相等吗?
试阐明理由。
D
C
AP
B
• 分析:观察图形发现它们所在的三角形全
等,故考虑通过全等来阐明。
• 解:由△APC和△BPD都是等边三角形可知 AP=PC,BP=DP,∠APC=∠BPD=60°,
变化,结论往往仍然成立,解决大同小异,
要善于抓住规律。
A
A
B
l
3
E
12
D
C
E

D
1
l
2
B
C

• 例9.如图,等边△ABC的边长为a,在BC的 延长线上取点D,使CD=b,在BA的延长线 上取点E,使AE=a+b,证明EC=ED。

初三数学知识点总结归纳(4篇)

初三数学知识点总结归纳(4篇)

初三数学知识点总结归纳初三数学复习五大方法初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。

半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。

圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、设⊙O的半径为r,OP=d。

初三数学知识点总结归纳(二)1.数的分类及概念数系表:说明:分类的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。

(表为:x0)性质:若干个非负数的和为0,则每个非负数均为0。

3.倒数:①定义及表示法②性质:A.a1/a(a1);B.1/a中,aC.04.相反数:①定义及表示法②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(三要素)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

初三中考数学专题复习:二次函数综合题(相似三角形问题)含答案

初三中考数学专题复习:二次函数综合题(相似三角形问题)含答案

中考数学专题复习:二次函数综合题(相似三角形问题)1.如图①,二次函数y =﹣x 2+bx +c 的图象与x 轴交于点A (﹣1,0)、B (3,0),与y 轴交于点C ,连接BC ,点P 是抛物线上一动点.(1)求二次函数的表达式.(2)当点P 不与点A 、B 重合时,作直线AP ,交直线BC 于点Q ,若①ABQ 的面积是①BPQ 面积的4倍,求点P 的横坐标.(3)如图①,当点P 在第一象限时,连接AP ,交线段BC 于点M ,以AM 为斜边向①ABM 外作等腰直角三角形AMN ,连接BN ,①ABN 的面积是否变化?如果不变,请求出①ABN 的面积;如果变化,请说明理由.2.如图,二次函数2314y x bx =++的图像经过点()8,3A ,交x 轴于点B ,C (点B 在点C 的左侧),与y 轴交于点D .(1)填空:b = ______;(2)点P 是第一象限内抛物线上一点,直线PO 交直线CD 于点Q ,过点P 作x 轴的垂线交直线CD 于点T ,若PQ QT =,求点P 的坐标;(3)在x 轴的正半轴上找一点E ,过点E 作AE 的垂线EF 交y 轴于F ,若AEF 与EFO △相似,求OE 的长.3.如图,已知抛物线2y ax bx c =++与x 轴相交于点()1,0A -,()3,0B ,与y 轴的交点()0,6C .(1)求抛物线的解析式;(2)点(),P m n 在平面直角坐标系第一象限内的抛物线上运动,设PBC 的面积为S ,求S 关于m 的函数表达式(指出自变量m 的取值范围)和S 的最大值;(3)点M 在抛物线上运动,点N 在y 轴上运动,是否存在点M 、点N 使得①CMN =90°,且∆CMN 与OBC ∆相似,如果存在,请求出点M 和点N 的坐标.4.如图,抛物线L 1:y =ax 2﹣2x +c (a ≠0)与x 轴交于A 、B (3,0)两点,与y 轴交于点C (0,﹣3),抛物线的顶点为D .抛物线L 2与L 1关于x 轴对称.(1)求抛物线L 1与L 2的函数表达式;(2)已知点E 是抛物线L 2的顶点,点M 是抛物线L 2上的动点,且位于其对称轴的右侧,过M 向其对称轴作垂线交对称轴于P ,是否存在这样的点M ,使得以P 、M 、E 为顶点的三角形与△BCD 相似,若存在请求出点M 的坐标,若不存在,请说明理由.5.如图,在平面直角坐标系中,已知直线4y x =+与x 轴、y 轴分别相交于点A 和点C ,抛物线21y x kx k =++-的图象经过点A 和点C ,与x 轴的另一个交点是点B .(1)求出此抛物线的解析式; (2)求出点B 的坐标;(3)若在y 轴的负半轴上存在点D .能使得以A ,C ,D 为顶点的三角形与①ABC 相似,请求出点D 的坐标.6.如图1,已知抛物线23y ax bx =++经过点()1,5D ,且交x 轴于A ,B 两点,交y 轴于点C ,已知点()1,0A -,(),P m n 是抛物线在第一象限内的一个动点,PQ BC ⊥于点Q .(1)求抛物线的解析式;(2)当PQ =m 的值;(3)是否存在点P ,使BPQ 与BOC 相似?若存在,请求出P 点的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,直线y =12x +2与x 轴交于点A ,与y 轴交于点C .抛物线y =ax 2+bx +c的对称轴是x=-32且经过A、C两点,与x轴的另一交点为点B.(1)求二次函数y=ax2+bx+c的表达式;(2)点P为线段AB上的动点,求AP+2PC的最小值;(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A,M,N为顶点的三角形与①ABC 相似?若存在,求出点M的坐标;若不存在,请说明理由.8.如图,抛物线y=−x2+bx+c与x轴相交于A(−1,0),B(3,0)两点,与y轴交于点C,顶点为点D,抛物线的对称轴与BC相交于点E,与x轴相交于点F.(1)求抛物线的函数关系式;(2)连结DA,求sin A的值;(3)若点H线段BC上,BOC与BFH△相似,请直接写出点H的坐标.9.如图,抛物线y=1-2x2+bx+c与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P 是第一象限内抛物线上的动点,连接PB ,PC ,当S △PBC =720S △ABC 时,求点P 的坐标; (3)点N 是对称轴l 右侧抛物线上的动点,在射线ED 上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与①OBC 相似?若存在,求点M 的坐标;若不存在,请说明理由.10.如图,抛物线23y ax bx =++与x 轴交于1,0A 、()3,0B -两点,与y 轴交于点C ,设抛物线的顶点为D .(1)求该抛物线的表达式与顶点D 的坐标; (2)试判断BCD △的形状,并说明理由;(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与BCD △相似?若存在,请求出点P 的坐标;若不存在,请说明理由.11.如图,抛物线y =ax 2﹣2ax ﹣3a (a ≠0)与x 轴交于点A ,B .与y 轴交于点C .连接AC ,BC .已知ABC 的面积为2.(1)求抛物线的解析式;(2)平行于x 轴的直线与抛物线从左到右依次交于P ,Q 两点.过P ,Q 向x 轴作垂线,垂足分别为G ,H .若四边形PGHQ 为正方形,求正方形的边长;(3)抛物线上是否存在一点N ,使得①BCN =①CAB ﹣①CBA ,若存在,请求出满足条件N 点的横坐标,若不存在请说明理由.12.如图,二次函数2y x bx c =-++的图像与x 轴交于点A (-1,0),B (2,0),与y 轴相交于点C .(1)求这个二次函数的解析式;(2)若点M 在此抛物线上,且在y 轴的右侧.①M 与y 轴相切,过点M 作MD ①y 轴,垂足为点D .以C ,D ,M 为顶点的三角形与①AOC 相似,求点M 的坐标及①M 的半径长.13.如图,在平面直角坐标系中,抛物线2()0y ax bx c ac =++≠与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C .若线段OA OB OC 、、的长满足2OC OA OB =⋅,则这样的抛物线称为“黄金”抛物线.如图,抛物线22(0)y ax bx a =++≠为“黄金”抛物线,其与x 轴交点为A ,B (其中B 在A 的右侧),与y 轴交于点C .且4OA OB =(1)求抛物线的解析式;(2)若P 为AC 上方抛物线上的动点,过点P 作PD AC ⊥,垂足为D . ①求PD 的最大值;①连接PC ,当PCD 与ACO △相似时,求点P 的坐标.14.如图,在平面直角坐标系xOy 中,已知抛物线2y x bx c =++与x 轴交于点A 、B 两点,其中1,0A ,与y 轴交于点()0,3C .(1)求抛物线解析式;(2)如图1,过点B 作x 轴垂线,在该垂线上取点P ,使得①PBC 与①ABC 相似,请求出点P 坐标;(3)如图2,在线段OB 上取一点M ,连接CM ,请求出12CM BM +最小值.15.如图,抛物线y =ax 2+k (a >0,k <0)与x 轴交于A ,B 两点(点B 在点A 的右侧),其顶点为C ,点P 为线段OC 上一点,且PC =14OC .过点P 作DE ①AB ,分别交抛物线于D ,E 两点(点E 在点D 的右侧),连接OD ,DC .(1)直接写出A ,B ,C 三点的坐标;(用含a ,k 的式子表示) (2)猜想线段DE 与AB 之间的数量关系,并证明你的猜想;(3)若①ODC =90°,k =﹣4,求a 的值.16.如图,抛物线223y x bx c =++与x 轴交于A ,B 两点,与y 轴交于C 点,连接AC ,已知B (﹣1,0),且抛物线经过点D (2,﹣2).(1)求抛物线的表达式;(2)若点E 是抛物线上第四象限内的一点,且2ABES=,求点E 的坐标;(3)若点P 是y 轴上一点,以P ,A ,C 三点为顶点的三角形是等腰三角形,求P 点的坐标.17.如图,在直角坐标系xOy 中,抛物线y =ax 2+bx +2(a ≠0)与x 轴交于点A (﹣1,0)和B (4,0),与y 轴交于点C ,点P 是抛物线上的动点(不与点A ,B ,C 重合).(1)求抛物线的解析式;(2)当点P 在第一象限时,设①ACP 的面积为S 1,①ABP 的面积为S 2,当S 1=S 2时,求点P 的坐标; (3)过点O 作直线l ①BC ,点Q 是直线l 上的动点,当BQ ①PQ ,且①BPQ =①CAB 时,请直接写出点P 的坐标.18.如图,在平面直角坐标系xOy中,直线y=﹣x+3与两坐标轴交于A、B两点,抛物线y=x2+bx+c 过点A和点B,并与x轴交于另一点C,顶点为D.点E在对称轴右侧的抛物线上.(1)求抛物线的函数表达式和顶点D的坐标;(2)若点F在抛物线的对称轴上,且EF①x轴,若以点D,E,F为顶点的三角形与①ABD相似,求出此时点E的坐标;(3)若点P为坐标平面内一动点,满足tan①APB=3,请直接写出①P AB面积最大时点P的坐标及该三角形面积的最大值.19.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A、B,与y轴交于点C,且OC=2OB=6OA=6,点P是第一象限内抛物线上的动点.(1)求抛物线的解析式;(2)连接BC与OP,交于点D,当S△PCD:S△ODC的值最大时,求点P的坐标;(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N.使①CMN=90°,且①CMN与①BOC 相似,若存在,请求出点M、点N的坐标.20.如图,抛物线y=x2+bx+12(b<0)与x轴交于A,B两点(A点在B点左侧),且OB=3OA.(1)请直接写出b=,A点的坐标是,B点的坐标是;(2)如图(1),D点从原点出发,向y轴正方向运动,速度为2个单位长度/秒,直线BD交抛物线于点E,若BE=5DE,求D点运动时间;(3)如图(2),F点是抛物线顶点,过点F作x轴平行线MN,点C是对称轴右侧的抛物线上的一定点,P 点在直线MN上运动.若恰好存在3个P点使得①P AC为直角三角形,请求出C点坐标,并直接写出P点的坐标.答案1.(1)y =﹣x 2+2x +3.(2)P 352或 (3)①ABN 的面积不变,为4.2.(1)2-(2)5⎛ ⎝⎭或5⎛ ⎝⎭(3)4或493.(1)2246y x x =-++(2)S 关于m 的函数表达式为239(03)S m m m =-+<<,S 的最大值是274 (3)存在,M (1,8),N (0,172)或M (74,558),N (0,838)或M (94,398),N (0,38)或M (3,0),N (0,﹣32)4.(1)抛物线L 1:223y x x =--,抛物线L 2:2y x 2x 3=-++;(2)435(,)39M 或(4,5)M -.5.(1)254y x x =++(2)点B 的坐标为(-1,0)(3)点D 的坐标是(0,-203) 6.(1)215322y x x =-++ (2)1或5(3)存在;P (53,529)7.(1)抛物线表达式为:213222y x x =--+;(2)AP +2PC 的最小值是4;(3)存在M(0,2)或(-3,2)或(2,-3)或(5,-18),使得以点A 、M 、N 为顶点的三角形与ABC 相似.8.(1)y =-x 2+2x +3(3)点H 的坐标为(1,2)或(2,1)9.(1)21382y x x =++ (2)P 1(1,10.5),P 2(7,4.5)(3)存在,(3,8)或(3,5或(3,11)30.(1)y =﹣x 2﹣2x +3,(﹣1,4);(2)直角三角形,理由见解析;(3)存在,(0,0)或(0,﹣13)或(-9,0)11.(1)y =﹣13x 2+23x +1(2)﹣6﹣(3)存在,5或11712.(1)22y x x =-++; (2)M 的坐标为(12,94),(32, 54 ),(3,-4),①M 的半径长为12或32或313.(1)213222y x x =--+(2)①PD ①P 坐标为(3,2)-或325()28,-14.(1)243y x x =-+(2)P 点坐标为()3,9或()3,215.(1)点A 、B 、C 的坐标分别为(、、(0,k ) (2)DE =12AB(3)a =1316.(1)224233y x x =--(2)E ,-1)(3)P 点的坐标(0,2)或(02)或(0,﹣2或(0,54)17.(1)213222y x x =-++ (2)点P 的坐标为(103,139)(3)点P 的坐标为(32,﹣2)或(32,﹣2)或(173,﹣509)18.(1)y =x 2﹣4x +3,(2,﹣1)(2)(5,8)或(73,89-)(3)①P AB ,此时P )19.(1)y =﹣2x 2+4x +6 (2)点P 的坐标为(32,152) (3)存在,M 、N 的坐标分别为(3,0)、(0,﹣32)或(94,398)、(0,38)或(1,8)、(0,172)或(74,558)、(0,838)20.(1)﹣8,(2,0),(6,0)(2)3秒或212秒 (3)C 点坐标为(143,﹣329),P 点的坐标为(103,﹣4)或(﹣103,﹣4)或(11027,﹣4)。

初三中考数学总复习资料(备考大全)

初三中考数学总复习资料(备考大全)

2011年中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a (2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:3a 叫实数a 的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合专题复习试题
12. 若关于x的不等式组
365
1
x x
x a
-≥+


->

无解,且使关于x的分式方程1
33
a x
x x
+=
--
有非
负整数解,那么所有满足条件的整数a的积是( B )
A.6-B.3
-C.3D.1-
17.小明家、小华家、海洋公园大门位于同一笔直公路旁.中考在即,小明和小华相约去海洋
公园游玩,以缓解紧张情绪,小明先从家出发,匀速步行至离海洋公园较近的小华家,小华立即与小明一起以小明之前的速度走向海洋公园.2分钟后,小华发现忘了带学生证,于是立即提速回家取,小明则以先前速度继续前行,小华取到学生证后,立即以提速后的速度追赶小明,最后两人同时到达海洋公园.小明和小华之间的距离y(米)与小明出发的时间x(分钟)之间的函数关系如图所示.小华取学生证的时间忽略不计,则小华家和海洋公园的距离为1440米.
23.今年五一期间,重庆洪崖洞民俗风情街景区受热捧,在全国最热门景点中排名第二.许多游客慕名来渝到网红景点打卡,用手机拍摄夜景,记录现实中的“千与千寻”,手机充电宝因此热销.某手机配件店有A 型(5000毫安)和B 型(10000毫安)两种品牌的充电宝出售.
(1)已知A 型充电宝进价40元售价60元,B 型充电宝进价60元,要使B 型充电宝的
利润率不低于A 型充电宝的利润率,则B 型充电宝的售价至少是多少元?
(=100%⨯售价-进价利润率进价
) (2)5月1日,A 型充电宝的进价、售价,以及B 型充电宝的进价与(1)中相同, B 型
充电宝按(1)中最低售价出售,其中A 型充电宝销量占5月1日总销量的0060.5月
2号,A 型充电宝进价不变,但销量比5月1日减少0043
a ,售价提高20元,B 型充电宝进价上涨0023a ,销量增加了00125a ,售价在5月1日售价的基础上提高13,结果5月2日的销售利润刚好是5月1号销售利润的2倍.求a 的值.
23.解:(1)设B 型充电宝售价为x 元
90,40
40606060≥-≥-x x 答:B 型充电宝售价至少为90元.……4分
(2)设5月1日总销量为n
%)5121(%40%)321(60120)402060(%60%)341()%4030%6020(2a n a n a n n +⋅⎥⎦⎤⎢⎣⎡+-+-+⋅-=⋅+⋅ ……7分 令t a =% 化简为41(0,042=
==-t t t t 舍去), …… 9分 ∴25,4
1%==a a 答:a 的值是25. …… 10分
24. 如图,已知:菱形ABCD 的对角线交于点O ,︒=∠45BAD ,BC DE ⊥于E ,交AC
于F ,点G 是BC 的中点,连接FG ,CD CM ⊥交FG 的延长线于M .
(1)若菱形ABCD 的周长为24,求菱形ABCD 的面积;
(2)求证:AB BE CM =+2.
24. 解:∵四边形ABCD 是菱形,∴
DAB DCB AD CD CB AB ∠=∠===,,
又24=+++AD CD CB AB ,∴
6==CD BC ,............1分
又DEC Rt ∆中,︒=∠45DEC ,∴DEF ∆为等腰直角三角形, ∴23==EC DE ,............3分 ∴218236=⨯=⋅=DE BC S ;............4分
(2)连接BF ,∵四边形ABCD 是菱形,∴BD AC ⊥,∴︒=∠90DOC , 又BC DE ⊥,∴︒=∠=∠90DEB DEC ,即DEC DOC ∠=∠,
∴C E O D 、、、四点共圆,∴FCE BDE ∠=∠,
在BDE Rt ∆和CEF Rt ∆中,
⎪⎩
⎪⎨⎧∠=∠=∠=∠FCE BDE EC
DE DEC DEB ,∴FCE BDE ∆≅∆............6分 ∴EF BE =,∴BEF ∆是等腰三角形,∴︒=∠45FBE ,
又DC CM ⊥,∴︒=∠90DCM ,∴︒=∠-︒=∠4590BCD ECM ,
∴ECM FBE ∠=∠,............7分
在BFG ∆和CGM ∆中,
⎪⎩
⎪⎨⎧∠=∠=∠=∠CGM BGF CG BG ECM FBE ,∴CGM BFG ∆≅∆,............9分 ∴CM BF =,
又BD AC OB DO ⊥=,,
∴DF BF =,
又CM BE DF EF BE DE BE EC BE BC AB +=++=+=+==2. .........10分
25.对于任意的两位数ab m =,满足b a b a ≥≤≤≤≤,40,51,我们称这样的数为“兄弟数”.
将m 的十位数字与个位数字之和,放在m 的左侧,得到一个新的三位数1s ,放在m 的两个数字中间得到一个新的三位数2s ;将m 的十位数字与个位数字之差,放在m 的右侧得到一个新的三位数1t ,放在m 的两个数字中间得到一个新的三位数2t .用1s 与1t 的和减去2s 与2t 的和的差除以9的商记为)(m F .例如,m =41,1s =541,2s =451,1t =413,2t =431,所以89
)431451()413541()41(=+-+=F (1)计算:);53();22(F F
(2)若q p ,都是“兄弟数”,其中y x y x y q x p ,90,91(51,110,≤≤≤≤+=+=是整
数),规定:)
()(q F p F K =
当139)()(12=+q F p F 时,求K 的最大值. 25.解(1)F(22)=
229
)202242()220422(=+-+ F(53)=319)523583()532853(=+-+……4分 (2))1(5,1y q x p +==,
由题意知30,,410,51≤≤≤+≤≤≤y y x 即……5分
712)(,12)(+=-=y q F x p F ……7分
∵139)()(12=+q F P F
∴1,139712)12(12=-=++-y x y x ……8分
∴⎩
⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==43,32,21,10x y x y x y x y ……9分 ∴43
83191910711或或或=
K ∴711max =K ……10分。

相关文档
最新文档