公开课相似三角形专题复习PPT课件

合集下载

公开课相似三角形专题复习 ppt课件

公开课相似三角形专题复习  ppt课件

B
D
C
ppt课件
15
A
D
A
B
E
C
D
A
B
E
C
D
B
E
C
AD
α
αα
B
E
C
A
α
B
F D
α
E
α
C
C
B
D
ppt课件α α
OP
α
A
16
思考题:已知:等边△ABC 中,P为直线AC上
一动点,连结BP,作∠BPQ=60°,交直线BC于点
N.
(1)当P在线段AC上时,证明PA·PC=AB ·CN
(2)若P在AC的延长线上,上述关系是否成立?
A
D
A
D
F
F
B
E
C
ppt课件 B
E
C
10
A
△ABE∽ △ECF((21))点点EE为为BBCC上上任任意意一一点点,
若若∠∠BB==∠∠CC==α6,0∠°A, EF= F ∠∠CA,E则F△= A∠BCE,则与△AEBCEF与
的△关E系C还F的成关立系吗还?成立吗?
B
E
C 说A 明理由
A
A
FF F
A
2.若△ABC∽△ADE, 你可以得出什么结论?
D B
“A”型
角: ∠ADE= ∠ B ∠ AED= ∠C
E 边:DE ∥ BC
AD AE DE .
C AB AC BC
AD AE . DB EC
DB EC

.
AB AC
面积: SADE ppt课件
DE 2.

第12讲相似三角形的判定复习课件(共46张PPT)

第12讲相似三角形的判定复习课件(共46张PPT)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
4.如图4-12-5,AB是半圆O的直径, D,E是半圆上任意两点,连结AD,DE,AE 与BD相交于点C,要使△ADC与△ABD类似, 可以添加一个条件.下列添加的条件其中错误
的是 A.∠ACD=∠DAB B.AD=DE C.AD2=BD·CD D.AD·AB=AC·BD
大师导航 归类探究 自主招生交流平台 思维训练
第四章 类似三角形
第12讲 类似三角形的判定
全效优等生
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
部分数学符号的来历 数学运算中经常使用符号,如+,-,×,÷,=,>, <,∽,≌,(), 等,你知道它们都是谁首先使用,何时 被人们公认的吗? 加减号“+”“-”:1489 年德国数学家魏德曼在他的著 作中首先使用了这两个符号,但正式为大家公认是从 1514 年荷 兰数学家荷伊克开始.乘号“×”:英国数学家奥屈特于 1631 年提出用“×”表示相乘;另一乘号“·”是数学家赫锐奥特首 创的.除号“÷”:最初这个符号是作为减号在欧洲大陆流行, 奥屈特用“∶”表示除或比,也有人用分数线表示比,后来有 人把二者结合起来就变成了“÷”.瑞士的数学家拉哈的著作中 正式把“÷”作为除号.等号“=”:最初是 1540 年由英国牛
D.147
大师导航 归类探究 自主招生交流平台 思维训练
【解析】 ∵∠C=∠E,∠ADC=∠BDE, ∴△ADC∽△BDE,∴DDEC=ABDD, 又∵AD∶DE=3∶5,AE=8, ∴AD=3,DE=5, ∵BD=4,∴D5C=34,∴DC=145.
∵AC⊥BC,∴∠ACB=90°,
又∵BE是∠ABC的平分线, ∴FG=FC,
例2答图

相似三角形HL判定公开课获奖课件省赛课一等奖课件

相似三角形HL判定公开课获奖课件省赛课一等奖课件

例 1 .如图, ∠DEB= ∠ACB=90o,DE=2,AB=5,BC=3, BD=2.5,求证:AB平分∠DBC。
5 2 2.5
3
例2. 如图,CE交△ABC旳高线AD于点O,交AB 于E,且OC ·BD=AB ·OD,求证:CE⊥AB.
先证△ADB∽△CDO ∴∠BAD=∠DCO
再证△AOE∽△COD
A'B' B'C' AB BC
求证: Rt⊿ABC∽Rt⊿A′B′C′

A'B' AB
B'C' BC
k
B
C
A′
A′B′=k AB
B′C′=k BC
A′C′=
AC=
A'C' AC
B′ C′
相同三角鉴定定理4 (HL)
斜边和一条直角边相应成百分比旳两个直角 三角形相同.
A
B
C
B1
A1
Rt△ABC 和 Rt△A1B1C1.
假如 AB BC k,
A1B1 B1C1
C1 那么 △ABC∽△A1B1C1.
练习一: 在Rt△ABC和Rt△A′B′C′中,已知∠C=∠C′=90°。根据
下列各组条件鉴定这两个三角形是不是相同,并阐明为何。
1.∠A=25°,∠B′=65°。 相同 2.AC=3,BC=4,A′C′=6,B′C′=8。 相同
相同三角形鉴定措施
1、(平行法)平行于三角形一边旳直线与其他两边(或
两边旳延长线)相交,所构成旳三角形与原三角形相同。 2、SSS(鉴定1)三组相应边旳比相等旳两个三角形
相同。 3、SAS(鉴定2)两组相应边之比相等且夹角相等旳
两个三角形相同。 4、AA(鉴定3)两角相应相等旳两个三角形相同。

第二十四章-相似三角形-复习ppt课件

第二十四章-相似三角形-复习ppt课件
第二十四章 相似三角形 复习课件
1
一、本章知识结构图
放缩与相似形
比例线段

比例线段

三角形一边的平行线
相似三角形
判定 性质
平面向量
实数与向量相乘
向量的线性运算
2
回顾与思考
一、相似形
1. 各角对应相等,各边对应成比例的两个多边形叫相 似多边形. 2. 三个角对应相等,三条边对应成比例的两个三角形 叫相似三角形.两个相似三角形用“∽”表示,读做 “相似于”.
(2) 以连接后的这两个向量为邻边向量 构造平行四边形
(3) 这个平行四边形的对角线向量就是 这两个向量的和向量与差向量
3.向量加法和减法的三角形法则 加法: 一终二起,一起二终 减法: 共起点指向被减
9
五、典例精析,复习新知
2.如图,在△ABC中,AB=AC=27,D在AC上,且 BD=BC=18,DE//BC交AB于E,则DE= 分析:由△ABC∽△BCD,列出比例式,求出CD,再用 △ABC∽△AED A答案:10
称比例线段.此时也称这四条线段成比例.
4
➢ 线段的比要注意以下几点: • 线段的比是正数 • 单位要统一 • 线段的比与线段的长度无关
如果 (b=d=f≠0),
那么
如果,
,那么ad=bc.
如果ad=bc(a、b、c、d都不等于0),那么
.
5
三、相似三角形的判定与性质 方法1:通过定义(不常用)
方法2:平行于三角形一边的直线与其他两边(或延 长线)相交,所构成的三角形与原三角形相似; 方法3:两对应角相等的,两三角形相似. 方法4:两边对应成比例且夹角相等,两三角形相似. 方法5:三边对应成比例的,两三角形相似.

相似三角形判定复习公开课PPT课件

相似三角形判定复习公开课PPT课件

A. 1
B. 2条 C. 3条
D. 4条
)C
2.点P是△ABC中AB边上的一点,过P作直线(不与直线AB重合)截△ABC,使截 得的三角形与原三角形相似,满足这样条件的直线最多有几条?请分别画出 来.
3.在△ABC中,P是AB上的动点(P异于A,B),过点P的一条直线截 △ABC,使截得的三角形与△ABC相似,如图,∠A=36°,AB=AC, 当点P在AC的垂直平分线上时,过点P的△ABC的相似线最多
第19页/共21页
如图,在矩形ABCD中,AB=6,BC=8,点M,N 分别在边BC,AD上,沿直线MN对
第20页/共21页
感谢您的观看!
第21页/共21页
第18页/共21页
(1)如图1,在等边△ABC中,点M是边BC上的任意一点(不含端 点B、C),联结AM,以AM为边作等边△AMN,联结CN.求证: ∠ABC=∠ACN. 【类比探究】 (2)如图2,在等边△ABC中,点M是边BC延长线上的任意一点(不 含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请 说明理由. 【拓展延伸】 (3)如图3,在等腰△ABC中,BA=BC,点M是边BC上的任意一点(不 含端点B、C),联结AM,以AM为边作等腰△AMN,使顶角 ∠AMN=∠ABC.联结CN.试探究∠ABC与∠ACN的数量关系,并说明 理由.
有 3 条.
第7页/共21页
练习1 如图,∠ABC=90°,
A
BD⊥AC于D,AD=9,
DC=4 ,则BD的长为 .
9
D
4
?
C
B
第8页/共21页
A
D B
∠ACB=90º CD⊥AB
B
(“类A”型)

《相似三角形》ppt课件-2024鲜版

《相似三角形》ppt课件-2024鲜版

2024/3/27
7
02
相似三角形判定定理及其应用
2024/3/27
8
平行线截割定理
01
02
03
定理内容
两条平行线被一组横截线 所截,则对应线段成比例 。
2024/3/27
定理证明
通过相似三角形的性质进 行证明。
应用场景
在几何证明题中,常用于 证明线段之间的比例关系 。
9
三角形中位线定理
定理内容
2024/3/27
21
其他实际问题应用举例
2024/3/27
摄影中的透视问题
在摄影中,由于透视效应的存在,照片中的物体可能会产生变形。利用相似三角形原理可 以对照片进行透视校正,恢复物体的真实形状。
地理信息系统(GIS)中的应用
在GIS中,经常需要处理地理空间数据。利用相似三角形原理可以对地图进行缩放、旋转 和平移等操作,实现地理空间数据的可视化和分析。
似。
2024/3/27
4
相似之比称为相似比。
性质
01
相似三角形的对应角相等。
02
03
相似三角形的对应边成比例 。
04
2024/3/27
05
相似三角形的面积比等于相 似比的平方。
5
相似三角形对应角相等
2024/3/27
对应角
在两个相似三角形中,相互对应 的角称为对应角。
解析
由于△ABC与△DEF全等,所以△DEF的周长 等于△ABC的周长,即5cm + 7cm + 6cm = 18cm。
2. 例2
解析
已知△ABC与△PQR相似,且AB:PQ=2:3。 若△ABC的面积为12cm²,求△PQR的面积 。

相似三角形判定性质复习课公开课ppt课件

相似三角形判定性质复习课公开课ppt课件
三边定理,两边夹角定理,角角定理
精选ppt课件2021
6
知识回顾、加强理解
4,(2014•湖南张家界,第10题,3分)如图,
△ABC中,D、E分别为AB、AC的中点,则△ADE 与△ABC的面积比为__________
△ADE与梯形DECB的面积比__________
1,若AF⊥BC,AN:AF=__________
精选ppt课件2021
12
分享收获、方法总结
1、知识层面…… 2、题型层面…… 3、思想方法层面……
精选ppt课件2021
13
分享收获、方法总结
分类讨论
Hale Waihona Puke 方程思想动点转化思想
问题
求线段
面积之
动点 问题

数形结合
题证 明
判定
性质
定的相
性似
质三
和角
判 形 精选ppt课件2021
14
达标检测、一显身手
纸上得来终觉浅,绝知此事要躬行。
讲解任务分配:
第一组:第1题 第二组:第2题 第三组:第3题 第四组:第4题 第五组:第5题 第六组:总 结
精选ppt课件2021
3
知识回顾、加强理解
1、如图,在平行四边形ABCD中, F是AD延长线上一点,
连接BF交DC与点E,则图中相似三角形共有(
)
A.0对 C.2对
尝试应用、方法总结
例1(2010·珠海)如图,在平行四边ABCD中,过 点A作AE⊥BC,垂足为E,连结DE,F为线段DE上一 点,且∠AFE=∠B. (1)求证:△ADF∽△DEC. (2)若AB=4,AD=3 ,AE=3 求AF的长.
精选ppt课件2021

相似三角形的性质公开课ppt课件

相似三角形的性质公开课ppt课件

01
相似三角形的定义
两个三角形如果它们的对应角 相等,则这两个三角形相似。
02
相似三角形的性质
相似三角形的对应边成比例, 对应角相等,面积比等于相似
比的平方。
03
相似三角形的判定
通过比较两个三角形的对应角 或对应边来判断它们是否相似

解题技巧归纳
寻找相似三角形
在复杂的图形中,通过观察和分析,找出可能相似的三角形。
与全等三角形关系
全等三角形是特殊的相似三角形 ,当相似比为1时,两个三角形
全等。
全等三角形的性质在相似三角形 中同样适用,如对应边、对应角 相等,周长、面积等性质也可以
类比到相似三角形中。
在研究相似三角形时,可以利用 全等三角形的性质进行推导和证
明。
02
相似三角形性质探究
对应角相等
相似三角形的对应角相等,即如果两个三角形相似,那 么它们的对应角必定相等。
,能够独立思考并解决问题。
学习态度与习惯
在学习过程中,我始终保持积极 的学习态度和良好的学习习惯, 认真听讲、积极思考、及时复习

THANKS
个三角形相似。
相似三角形的对应角相等,对应 边成比例,面积比等于相似比的
平方。
02
性质
判定方法
预备定理
平行于三角形一边的直线截其他两边所 在的直线,截得的三角形与原三角形相 似。
SSS相似
三边对应成比例,则两个三角形相似。
SAS相似
两边对应成比例且夹角相等,则两个三 角形相似。
AA相似
两角对应相等,则两个三角形相似。
在证明过程中,需要注意证明两个三 角形相似的条件以及对应角的确定。
通过构造相似三角形,可以找到与已 知角相等的另外一个角,从而证明角 度相等关系。

相似三角形复习公开课 ppt课件

相似三角形复习公开课  ppt课件

② AM2=MD ·ME
B
C
D
B
E
A D
M
C
D
C
3. 如图,AB∥CD,AO=OB,
O
DF=FB,DF交AC于E,
E
求证:ED2=EO ·EC.
ppt课件 A
F
B7
1.(1) △ ABC中,D、E分别是AB、AC上的点,
且∠AED= ∠ B,那么△ AED ∽ △ ABC,
从而
AD ()
DE =BC
∵ △DEF∽△ABC
D
E ∴ DE:EF=6:3
即 10:EF=6:3
∴ EF=5cm
ppt课件
11
4. 如图,△ADE∽ △ACB, 则DE:BC=_____ 。
2A D3
7
E
3
B
C
解: ∵ △ADE∽△ACB

AE AD 1 AB =AC =3

DE BC
AE =AB
1 =3
ppt课件
12
1. D为△ABC中AB边上一点,∠ACD= ∠ ABC.
即 AB:AD=5:2
B
C
∴AD:AB=2:5
即△ADE与△ABC的相似比为2:5
ppt课件
10
3.已知三角形甲各边的比为3:4:6, 和它相似的三角形乙
的最大边为10cm, 则三角形乙的最短边为______cm.
C
A
B
F
解: 设三角形甲为△ABC ,三角 形乙为 △DEF,且△DEF的最大 边为DE,最短边为EF
所在的三角形相似。
O E
证明:∵ AB∥CD
∴ ∠C=∠A ∵ AO=OB,DF=FB

相似三角形的判定PPT示范课公开课获奖课件省赛课一等奖课件

相似三角形的判定PPT示范课公开课获奖课件省赛课一等奖课件

4
5
6 2
相同三角形旳鉴定措施
平行于三角形一边旳直线与其他两边 (或延长线)相交,所构成旳三角形与原三角 形相同;
三边相应成百分比,两三角形相同.
•不经历风雨,怎么见彩虹 •没有人能随随便便成功!
(2) AB=12cm, BC=15cm, AC=24cm A’B’=16cm,B’C’=20cm,A’C’=30
如图已知 AB BC AC ,试阐明∠BAD=∠CAE.
AD DE AE
证明 AB BC AC AD DE AE
A E
∴ΔABC∽ΔADE
D C
∴∠BAC=∠DAE
B
∴∠BAC━∠DAC=∠DAE━∠DAC
1、两个全等三角形一定相同吗?为何? 相同比是多少?
2、两个直角三角形一定相同吗?为何? 两个等腰直角三角形呢?
3、两个等腰三角形一定相同吗?为何? 两个等边三角形呢?
300
450
它们是相同三角形吗?为何?
A
A′
5 82° 3
82°
B 47°
66
C 10
6
51°
△ABC和△A’B’C’中,假如
△ABC∽△A’B’C’
假如一种三角形旳三条边和另一种三角形旳 三条边相应成百分比,那么这两个三角形相同.
简朴地说:三边相应成百分比,两三角形相同.
例1:在△ABC和△A′B′C′中,已知:
(1)AB=6 cm, BC=8 cm,AC=10 cm,
A′B′=18 cm,B′C′=24 cm,A′C′=30 cm. 试鉴定△ABC与A′B′C′是否相同,并阐明理由.
类似于鉴定三角形全等旳措施,我们还能不 能经过三边来判断两个三角形相同呢?

相似三角形专题复习(共66张PPT)

相似三角形专题复习(共66张PPT)

2.右图中,若D,E分别是AB,AC
DE
边上的中点,且DE=4则BC= ____8
B
C
3.右图中, DE∥BC,S△ADE:S四边形DBCE = 1:8,则AE:AC=__1:_3 __
相似三角形专题复习(共66张PPT)
相似三角形专题复习(共66张PPT)
4. 在△ABCAC=4,AB=5.D是AC上一动点, 且∠ADE=∠B,设AD=x,AE=y,写出y与x之间 的函数关系式.试确定x的取值范围.
相似三角形专题复习(共66张PPT)
相似三角形专题复习(共66张PPT)
三、基本图形的形成、变化及发展过程:
平行型
.
旋转

斜交型
.
.
.
平移
特 殊 垂直型
平移
.. 特 殊
相似三角形专题复习(共66张PPT)
相似三角形专题复习(共66张PPT)
四、运用 ☞
1.添加一个条件,使△AOB∽ △ DOC
A
B
E
C
A
A
A
FF F
α66α00°°
BBB
αα6600°°
EEE
6α6α00°°
CCC
相似三角形专题复习(共66张PPT)
相似三角形专题复习(共66张PPT)
α
B
α
B
D
A
F
α
E
问题2:
(12)延长BA、CF相交于点 D点,且D,E且善为E于B为运CB的用C类的中比点中、,点若,若 ∠B=∠迁C=移α的,数∠学AE方F法= ∠ C,连 α C 结 当A∠AF.EF旋解转决问到题如图位置时, ① 上找 述出 关图 系中 还的 成相立似吗三?角形
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解: 角: ∠B= ∠ 2或∠ 1= ∠ C 边: AD:AC=AE:AB
斜交型
.
8
4、已知CD是Rt△ACB斜边AB上的高,且CD=6,
BD=12,则AD=___3_____,AC=___3 __5____。
C
6
A 3D
12
垂直型
AC 2 AD • AB BC 2 DB • AB CD 2 AD • DB
.
4
基本图形的形成、变化及发展过程:
平行型
.

斜交型 .
旋转 .
.
平移
特 殊 垂直型
平移
.. 特 殊
.
5
运用模型☞
1.添加一个条件,使△AOB∽ △ DOC
A
B
O 解: 角: ∠B= ∠ C或∠ A= ∠ D 边:AB ∥ CD
AO:OD=BO:CO
C
D
“X” 型
.
6
运用模型 ☞
A
2.若△ABC∽△ADE, 你可以得出什么结论?
.
2
相似三角形
E
E M
D N
F
M
G
F N
H G
若G为BC中点,EG交AB于点F, 且EF:FG=2:3,
试求AF:FB的值.
添平行线构造相似三角形的基本图形。
.
3
相似三角形
E
E
F M
G
F
N
G
若G为BC中点,EG交AB于点F, 且EF:FG=2:3,
试求AF:FB的值.
添平行线构造相似三角形的基本图形。
相似三角形专题
基本模型及应用
.
1
试一试
E
D
M
N
H
过D作DH∥EC交BC延长线于点 H (1)试找出图中的相似三角形? ⊿ADE∽ ⊿ABC ∽ ⊿DBH
(2)若AE:AC=1:2,则AC:DH=2:__3_____;
(3)若⊿ABC的周长为4,则⊿BDH的周长为__6___.
(4)若⊿ABC的面积为4,则⊿BDH的面积为__9___.
α
∠B=∠迁C=移α的,数∠学AE方F法= ∠ C,连
α
B
E α C 结 当A∠AF.EF旋解转决问到题如图位置时,
找 上出 述图 关中 系的 还相 成似立三吗角?形
D
A
F
G
α
α
α
B
E
C
.
12
A
A

B
F

E
C

B

F

E
C
E为中点
D
A
F

α
B
α ②α
E
C
A
F

α
B

α②
α
E
C
变1式.矩:形.在AB直C角D中梯,形把ABDCAF沿中A,F对,折CB,=使14D,与 CCFB=4边, 上AB的=点6,,EC重F∥合A,B若,在A善注边D于意C=B在分10上复类, A找杂 讨B图 论一=形 的点8,E,使以 E、A、B为顶点的三角形和中以寻数学找E、思基C想本、型F为顶点
的则三E角F=形__相5_似__,_ 则CE=___5_.6_或__2或12
D
A
A
F
C
EE
F
C B
E
E
B
2.已知:D为BC上一点, ∠B= ∠C=∠EDF=60°,
BE=6,CD=3,CF=4,则AF=_7______
A
E F
B
D
C
.
15
A
D
B
E
C
AD
α
αα
B
E
C
A
D
B
E
C
A
D
B
E
C
A
α
B
F D
若若∠∠BB==∠∠CC==α6,0∠°,A∠EAFE=F∠= ∠ F CC,则,则△△AABBEE与与△△EECCFF的的关关系系
还还成成立立吗吗??说明理由
B
E
C
A
A
A
FF F
α66α00°°
BBB
αα6600°°
EEE
6α6α00°°
CCC
问题2:
D
(12)延长BA、CF相交于点
A
F

D点,且 D,E且善为E于B为运CB的用C类中的比点中、,点若,若
α
E
α
C
C
B
D
αα
α
OP
A
思考题:已知:等边△ABC 中,P为直线AC上一
动点,连结BP,作∠BPQ=60°,交直线BC于点N.
(1)当P在线段AC上时,证明PA·PC=AB ·CN
(2)若P在AC的延长线上,上述关系是否成立?
(3)若P在CA的延长线上, CN=1.5,BC=2,求AP、
BP的长
B
.
9
问题1: 如图,在正方形ABCD中,E为BC上任意一点(与 B、C不重合)∠AEF=90°.观察图形:
((1)2)△若ABEE为与BC△E的C中F点是,否连相结似A?F,并图证中明有你哪的些结相论似。 三角形? △ABE∽ △ECF ∽ △AEF
A
D
A
D
F
B
E
C
F
B
E
C
A
△ABE∽ △ECF ((21))点点EE为为BBCC上上任任意意一一点点,
角: ∠ADE= ∠ B ∠ AED= ∠C
D
E 边:DE ∥ BC
AD AEDE.
B
C AB AC BC
“A”型
AD AE . DB EC
DB EC .
AB AC
面积:. SADE DE2.
7
SABC BC
3、D、E分别是△ABC边AB、AC上的点,请 你添加一个条件,使△ADE与△ABC相似。
60°
A
A
A
60° P
P
P
N
B
CB
Q
C
60°
Q
N B
N C
Q
再 见
.
18
相关文档
最新文档