小学数学解题方法解题技巧之数阵图
三年级数阵图与幻方
数阵图与幻方知识框架一、数阵图定义及分类:定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.三、幻方起源:幻方也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.四、幻方定义:幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216。
四年级数学数阵图(三)讲解
四年级数学数阵图(三)解说数阵问题是多种多样的,解题方法也是多种多样的,这就需要我们依据题目条件灵巧解题。
例 1 把 20 之内的质数分别填入下列图的一个○中,使得图顶用箭头连结起来的四个数之和都相等。
剖析与解:由上图看出,三组数都包含左、右两头的数,因此每组数的中间两数之和必定相等。
20 之内共有2,3,5,7,11,13,17,19 八个质数,两两之和相等的有5+19= 7+ 17=11+13,于是获得下列图的填法。
例 2 在右图的每个方格中填入一个数字,使得每行、每列以及每条对角线上的方格中的四个数字都是 1,2,3,4。
剖析与解:如左下列图所示,受列及对角线的限制, a 处只好填 1,从而 b 处填 3;从而推知 c 处填 4, d 处填 3, e 处填 4,右下列图为填好后的数阵图。
例 3 将 1~8 填入左下列图的○内,要求依据自然数次序相邻的两个数不可以填入有直线连结的相邻的两个○内。
剖析与解:因为中间的两个○各自只与一个○不相邻,而 2~ 7 中的任何一个数都与两个数相邻,因此这两个○内只好填 1 和 8。
2 只好填在与 1 不相邻的○内, 7 只好填在与 8 不相邻的○内。
其他数的填法见右上图。
例 4 在右图的六个○内各填入一个质数(可取同样的质数),使它们的和等于 20,并且每个三角形(共 5 个)极点上的数字之和都相等。
剖析与解:因为大三角形的三个极点与中间倒三角形的三个极点正好是图中的六个○,又因为每个三角形极点上的数字之和相等,因此每个三角形极点上的数字之和为 20÷2= 10。
10 分为三个质数之和只好是 2+3+5,由此获得右图的填法。
例 5 在右图所示立方体的八个极点上标出 1~9 中的八个,使得每个面上四个极点所标数字之和都等于 k,并且 k 不可以被未标出的数整除。
剖析与解:设未被标出的数为a,则被标出的八个数之和为1+2++ 9-a =45-a 。
小学奥数教程-数阵图2 (含答案)
1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.复合型数阵图【例 1】 由数字1、2、3组成的不同的两位数共有9个,老师将这9个数写在一个九宫格上,让同学选数,每个同学可以从中选5个数来求和.小刚选的5个数的和是120,小明选的5个数的和是111.如果两人选的数中只有一个是相同的,那么这个数是_____________.313233212223131211【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】迎春杯,中年级,决赛,3题 【分析】 这9个数的和:111213212223313233++++++++10203031233198=++⨯+++⨯=()()由小刚和小明选的数中只有一个是相同的,可知他们正好把这9个数全部都取到了,且有一个数取了两遍.所以他们取的数的总和比这9个数的和多出来的部分就是所求的数.那么,这个数是12011119833+-=.【答案】33【例 2】 如图1,圆圈内分别填有1,2,……,7这7个数。
如果6个三角形的顶点处圆圈内的数字的和是64,那么,中间圆圈内填入的数是 。
例题精讲知识点拨教学目标5-1-3-2.数阵图【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】希望杯,五年级,复赛,第5题,5分 【解析】 2 【答案】2【例 3】 如下图(1)所示,在每个小圆圈内填上一个数,使得每一条直线上的三个数的和都等于大圆圈上三个数的和.(1)17894【考点】复合型数阵图 【难度】3星 【题型】填空 【解析】 为叙述方便,先在每个圆圈内标上字母,如图(2),(2)a cb49817则有a+4+9=a+b+c (1)b+8+9=a+b+c (2)c+17+9=a+b+c (3) (1)+(2)+(3):(a+b+c )+56=3(a+b+c ),a+b+c=28,则 a=28-(4+9)=15,b=28-(8+9)=11,c=28-(17+9)=2解:见图.1789411215【答案】1789411215【例 4】 请你将数字1、2、3、4、5、6、7填在下面图(1)所示的圆圈内,使得每个圆圈上的三个数之和与每条直线上的三个数之和相等.应怎样填?【考点】复合型数阵图 【难度】3星 【题型】填空 【解析】 为了叙述方便,将各圆圈内先填上字母,如图(2)所示.设A+B+C=A+F+G=A+D+E=B+D+F=C+E+G=k(A+B+C )+(A+F+G )+(A+D+E )+(B+D+F )+(C+E+G )=5k ,3A+2B+2C+2D+2E+2F+2G=5k ,2(A+B+C+D+E+F+G)+A=5k,2(1+2+3+4+5+6+7)+A=5k,56+A=5k.,因为56+A为5的倍数,得A=4,进而推出k=12,因为在1、2、3、5、6、7中,1+5+6=7+3+2=12,不妨设B=1,F=5,D=6,则C=12-(4+1)=7,G=12-(4+5)=3,E=12-(4+6)=2.,解:得到一个基本解为:(见图)7654321【答案】7654321【例 5】在左下图的每个圆圈中填上一个数,各数互不相等,每个圆圈有3个相邻(即有线段相连的圆圈)的圆圈。
小学三年级奥数--数阵图
数阵图(一)在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。
它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。
那么,到底什么是数阵呢?我们先观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。
右上图就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。
上面两个图就是数阵图。
准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。
要排出这样巧妙的数阵图,可不是一件容易的事情。
我们还是先从几个简单的例子开始。
例1把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。
同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。
下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。
分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。
也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。
因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3。
重叠数求出来了,其余各数就好填了(见右上图)。
试一试:练习与思考第1题。
例2把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。
分析与解:与例1不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。
所以,必须先求出这个“和”。
根据例1的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5]÷2=10。
小学奥数数阵图
第十七周数阵图把一些数字按照一定的要求,排列成各种各样的图形,叫做数阵图。
数阵是由幻方演化出来的另一种数字图。
幻方一般均为正方形。
图中纵、横、对角线数字和相等。
数阵则不仅有正方形、长方形,还有三角形、圆、多边形、星形、花瓣形、十字形,甚至多种图形的组合。
变幻多姿,奇趣迷人。
一般按数字的组合形式,将其分为三类,即辐射型数阵、封闭型数阵、复合型数阵。
【解题技巧】数阵的分类:封闭型:封闭型数阵图的解题突破口,是确定各边顶点所应填的数。
为确定这些数,采用的方法是建立有关的等式,通过以最小值到最大值的讨论,来确定每条边上的几个数之和,再将和数进行拆分以找到顶点应填入的数,其余的数再利用和与顶点的数就容易被填出。
(1—6)辐射型:辐射型数阵图,解法的关键是确定中心数。
具体方法是:通过所给条件建立有关等式,通过整除性的讨论,确定出中心数的取值,然后求出各边上数的和,最后将和自然数分拆成中心数的若干个自然数之和,确定边上其他的数。
复合型:复合型数阵图,解题的关键是要以中心数和顶点数为突破口。
数阵的特点:每一条直线段或由若干线段组成的封闭线上的数字和相等。
它的表达形式多为给出一定数量的数字,要求填入指定的图中,使其具备数阵的特点。
解数阵问题的一般思路是:1.求出条件中若干已知数字的和。
2.根据“和相等”,列出关系式,找出关键数——重复使用的数。
3.确定重复用数后,对照“和相等”的条件,用尝试的方法,求出其他各数。
有时,因数字存在不同的组合方法,答案往往不是唯一的。
【铜牌例题】将2、3、4、5、6、7、8、9、10填入下图中的9个方格中,使每行、每列及对角线之和相等,小明已经填了5个数,请将其余4个数填入。
【答案】【解析】先根据最左边一列求出幻和,然后根据这个和和给出的数字逐步推算。
3+8+7=18;第二行中间的数是:18-8-4=6;第三行中间的数是:18-7-9=2;第一行第一个数是:18-4-9=5;第一行中间的数是:18-3-5=10;【举一反三1】(第十届走美杯初赛)小华需要构造一个3×3的乘积魔方,使得每行、每列、每条对角线上三个正整数的乘积都相等;现在他已经填入了2,3,6三个数,那当小华的乘积魔方构造完毕后,x等于______。
小学数学5年级培优奥数讲义 第09讲-数阵(含解析)
第09讲数阵学会掌握数阵图形的基本分析方法;会运用数阵图的几类解法。
一、数阵图把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图。
数阵是一种由幻方演变而来的数字图。
二、数阵图的分类封闭型数阵图、辐射型数阵图和复合型数阵图。
三、数阵图的解法(1)辐射型数阵图方法一:尝试法,即去掉中间数时剩下的数应该两两一对,每队和相等,因此最中间数只能填最大数、最小数或中间数;方法二:公式法,线和×线数=数字和+重叠数×重叠次数;重叠次数=线数-1(2)封闭型数阵图公式:线和×线数=数字和+重叠数之和(3)复合型数阵图综合了辐射型和封闭型数阵图的特点,要具体情况具体分析。
考点一:辐射型数阵图例1、把1~5这五个数分别填在下图中的方格中,使得横行三数之和与竖列三数之和都等于9。
典例分析知识梳理学习目标例2、将1~7这七个自然数填入左下图的七个○内,使得每条边上的三个数之和都等于10。
考点二:封闭型数阵图例1、将1~6六个自然数分别填入下图的○内,使三角形每边上的三数之和都等于11.例2、将1~8这八个自然数分别填入下图中的八个○内,使四边形每条边上的三个数之和都等于14,且数字1出现在四边形的一个顶点上。
应如何填?例3、把1~9 这9 个数,分别填在下图的9个圆中,使得三角形每条边上的4 个圆内数之和都是23。
考点三:复合型数阵例1:将1~7这七个数分别填入下图的○里,使得每条直线上三个数之和与每个圆圈上的三个数之和都相等。
例2:将1~10这十个数填入图中的圆圈内,使每个正方形的四个数字之和都等于23,应怎样填?实战演练➢课堂狙击1、将1~9这九个数分别填入下图的小方格里,使横行和竖列上五个数之和相等。
(至少找出两种本质上不同的填法)2、将1~11这十一个数分别填入下图的○里,使每条直线上的三个数之和相等,并且尽可能大。
3、在右图的六个○内各填入一个质数(可取相同的质数),使它们的和等于20,而且每个三角形(共5个)顶点上的数字之和都相等。
四年级数学数阵图讲解一
四年级数学数阵图讲解(一)我们在三年级已经学习过辐射型和封闭型数阵.其解题的关键在于“重叠数”。
本讲和下一讲.我们学习三阶方阵.就是将九个数按照某种要求排列成三行三列的数阵图.解题的关键仍然是“重叠数”。
我们先从一道典型的例题开始。
例1把1~9这九个数字填写在右图正方形的九个方格中.使得每一横行、每一竖列和每条对角线上的三个数之和都相等。
分析与解:我们首先要弄清每行、每列以及每条对角线上三个数字之和是几。
我们可以这样去想:因为1~9这九个数字之和是45.正好是三个横行数字之和.所以每一横行的数字之和等于45÷3=15。
也就是说.每一横行、每一竖列以及每条对角线上三个数字之和都等于15。
在1~9这九个数字中.三个不同的数相加等于15的有:9+5+1.9+4+2.8+6+1.8+5+2.8+4+3.7+6+2.7+5+3.6+5+4。
因此每行、每列以及每条对角线上的三个数字可以是其中任一个算式中的三个数字。
因为中心方格中的数既在一个横行中.又在一个竖列中.还在两对角线上.所以它应同时出现在上述的四个算式中.只有5符合条件.因此应将5填在中心方格中。
同理.四个角上的数既在一个横行中.又在一个竖列中.还在一条对角线上.所以它应同时出现在上述的三个算式中.符合条件的有2.4.6.8.因此应将2.4.6.8填在四个角的方格中.同时应保证对角线两数的和相等。
经试验.有下面八种不同填法:4/ 1上面的八个图.都可以通过一个图的旋转和翻转得到。
例如.第一行的后三个图.依次由第一个图顺时针旋转90°.180°.270°得到。
又如.第二行的各图.都是由它上面的图沿竖轴翻转得到。
所以.这八个图本质上是相同的.可以看作是一种填法。
例1中的数阵图.我国古代称为“纵横图”、“九宫算”。
一般地.将九个不同的数填在3×3(三行三列)的方格中.如果满足每个横行、每个竖列和每条对角线上的三个数之和都相等.那么这样的图称为三阶幻方。
(完整版)小学三年级奥数--数阵图
数阵图(一)在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。
它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。
那么,到底什么是数阵呢?我们先观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。
右上图就更有意思了,1~9 九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。
上面两个图就是数阵图。
准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。
要排出这样巧妙的数阵图,可不是一件容易的事情。
我们还是先从几个简单的例子开始。
例1 把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。
同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。
下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。
分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。
也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。
因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3 。
重叠数求出来了,其余各数就好填了(见右上图)。
试一试:练习与思考第1 题。
例2 把1~5 这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。
分析与解:与例1 不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。
所以,必须先求出这个“和”。
根据例1 的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5] ÷2=10。
趣味数学—数阵图与幻方
三年级奥数--数阵图与幻方知识框架一、数阵图定义及分类:定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.三、幻方起源:幻方也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.四、幻方定义:幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216。
数阵图知识点五年级
数阵图知识点五年级数阵图是一种数学游戏,它通过在特定的格子中填入数字来完成游戏。
在小学五年级的数学课程中,数阵图通常被用来培养学生的逻辑思维和数学推理能力。
以下是关于数阵图的一些知识点,适合五年级学生学习。
数阵图是一种有趣的数学活动,它要求我们在给定的格子中填入数字,满足一定的条件。
这些条件可能包括数字的总和、数字的排列顺序,或者是数字之间的特定关系。
通过解决数阵图,我们不仅可以锻炼自己的数学能力,还能提高解决问题的能力。
数阵图的类型数阵图有多种类型,包括但不限于:1. 和数阵图:要求每行、每列的数字之和等于一个特定的值。
2. 乘积数阵图:要求每行或每列的数字乘积等于一个特定的值。
3. 数字限制数阵图:在某些格子中,数字有特定的限制,比如不能出现重复的数字。
4. 逻辑数阵图:需要根据给定的逻辑规则来确定数字的放置。
解决数阵图的策略1. 观察和分析:在开始解决数阵图之前,先观察给定的数字和条件,尝试找出可能的规律。
2. 逐步填充:从容易确定的数字开始,逐步填充数阵图,注意保持每行每列的和或乘积符合要求。
3. 回溯法:如果发现某个数字的放置导致后续无法满足条件,需要回溯到上一步,重新选择数字。
4. 试错法:在没有明确线索的情况下,可以尝试不同的数字组合,通过试错来找到正确的答案。
数阵图的教育意义数阵图不仅是一个数学游戏,它还能够帮助学生:- 提高逻辑思维能力:通过解决数阵图,学生需要运用逻辑推理来确定数字的放置。
- 培养耐心和细心:数阵图的解决往往需要反复尝试和调整,这有助于培养学生的耐心和细心。
- 增强数学兴趣:数阵图将数学问题以游戏的形式呈现,能够激发学生的学习兴趣。
数阵图的实践应用数阵图的概念也可以应用于实际生活中,比如在解决资源分配问题、规划问题时,数阵图可以帮助我们更直观地理解问题,并找到解决方案。
通过数阵图的学习,五年级的学生们不仅能够提升自己的数学技能,还能在乐趣中学习到解决问题的方法。
a小学数学奥赛5-1-3-3 数阵图(三).教师版
1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.数阵图与数论【例 1】 把0—9这十个数字填到右图的圆圈内,使得五条线上的数字和构成一个等差数列,而且这个等差数列的各项之和为55,那么这个等差数列的公差有种可能的取值.【考点】数阵图与数论 【难度】3星 【题型】填空 【关键词】迎春杯,三年级,初赛,第8题 【解析】 设顶点分别为A 、B 、C 、D 、E ,有45+A +B +C +D +E =55,所以A +B +C +D +E =10,所以A 、B 、C 、D 、E 分别只能是0-4中的一个数字.则除之外的另外5个数(即边上的)为45-10=35.设所形成的等差数列的首项为a 1,公差为d .利用求和公式5(a 1+a 1+4d )2=55, 得a 1+2d =11,故大于等于0+1+5=6,且为奇数,只能取7、9或11,而对应的公差d 分别为2、1和0.经试验都能填出来所以共有3中情况,公差分别为2、1、0.【答案】2种可能【例 2】 将1~9填入下图的○中,使得任意两个相邻的数之和都不是3,5,7的倍数.例题精讲知识点拨教学目标5-1-3-3.数阵图【考点】数阵图与数论【难度】4星【题型】填空【解析】根据题意可知1的两边只能是3与7;2的两边只能是6与9;3的两边只能是1、5或8;4的两边只能是7与9.可以先将3—1—7--写出来,接下来7的后面只能是4,4的后面只能是9,9的后面只能是2,2的后面只能是6,可得:3—1—7—4—9—2—6--,还剩下5和8两个数.由于6814+=是7的倍数,所以接下来应该是5,这样可得:3—1—7—4—9—2—6—5—8—3.检验可知这样的填法符合题意.【答案】3—1—7—4—9—2—6—5—8—3【例 3】在下面8个圆圈中分别填数字l,2,3,4,5,6,7,8(1已填出).从1开始顺时针走1步进入下一个圆圈,这个圆圈中若填n(n≤8)。
小学数学数阵图
解题过程
边和X3 = a+b+c+d+e+f+g+2c 14X3 = 1+2+3+4+5+6+7+2c 42 = 28+2c 14 = 2c c= 7
2020/12/9
例1 (★★)
将1~7这七 个数字, 分别填入 2 图中各个 ○内,使 每条线段 上的三个 ○内数的 和都等于 14。
1
6
7
5
4
3
先填入边和,直线上微调,满足圆圈。
【超常大挑战】(★★★★★)
a ,b ,c ,d ,e, f, g ,h ,I ,处分别填入1至9, 如果每个圆环所填的数的和都相等, 那么这个相等的和最大是多少?最少是多少?
a+e+i+c+g+2(b+d+f+h)=和×5 45+b+d+f+h=和×5 b+d+f+h最大时为6,7,8,9 此时和为15 b+d+f+h最小时为1,2,3,4 和为11 当和为15时无解,和为14有解 最大为14,最小为11
行 业 PPT模 板 : /hangye/ PPT素 材 下 载 : /sucai/ PPT图 表 下 载 : /tubiao/ PPT教 程 : /powerpoint/ Excel教 程 : /excel/ PPT课 件 下 载 : /kejian/ 试 卷 下 载 : /shiti/
圈和X2=数字和+a+b 圈和X2=36+a+b 圈和等于21 a+b=6 则a 和b有两种可能1,5和2,4
三年级奥数数阵图与幻方
数阵图与幻方知识框架一、数阵图定义及分类:定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.三、幻方起源:幻方也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.四、幻方定义:幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216。
三年级思维拓展- 数阵图
(2)要使每个五边形上的5个数和为20,那么2个五边形上的数的总和是:20×2=40.
(3)2个五边形上的数的总和比8个数的和多了:40-36=4
(4)多的6就是五边形交叉点重复计算了2次,即多算了1次。在1--8这8个数中有:1+3=4,所以中间位置填1和3.
思路点拨:观察发现中间的圆重复了3次,题目要求3条线上的和相等,那么,每条线上只要有两个数加起来和都相等,中间重复加任何一个数和也都相等。因为1+7=8,2+6=8,3+5=8,所以将4填在中间,再将分好的数填进圆内即可。
活学巧用:
1.,使每条边上的3个数之和都等于10。
活学巧用:
1.将2﹑3﹑4﹑5﹑6﹑7这6个数填在下面的圆圈里,使每条边上3个数的和等于15。
2.把数字1、2、3、4、5、6分别填入下图的圆圈内,使3条边上3个数字之和等于11。
3.将1——9这九个数填入下图中,使三角形每条边上四个数的和等于19
【例3】:将1--7这7个数填入○中,使每条线上三个数的和都相等。
2.计算出所给数的总和。
3.再计算出各个部分的总和。
4.两和之间找出“重复计算的数的和”,填出关键位置的数,再根据要求尝试,调整,填出其他位置上的数。
精选例题:
【例1】:将1、3、5、7、9这5个数分别填入□中,使每条线上的三个数的和都相等。
思路点拨:因为1、3、5、7、9中,一头一尾组合结果都为10,题目只要求每条线上三个数的和相等,那么,只要每条线上的两个数的和相等了,中间重复计算的数填任何一个,这两条线上的和也就相等了。
(5)先填被重复计算的数字,在通过计算填出其余的数字:2+6+8=16,4+5+7=16.
五年级上册数学培优奥数讲义-第23讲数阵图
第23讲数阵图知识与方法数阵图问题千变万化,需要综合运用各种数学知识来解决问题,而往往同学们喜欢毫无顺序的“瞎试”,本讲要介绍一些通用的方法。
所以,一般是先用公式法分析出重复数,再用尝试法进行试填。
方法一:尝试法:所给的是一个等差数列,并且每条线上的数是奇数个时,中间数只能填最大数、最小数或中间数,因此可以依据这个规律进行尝试。
方法二:公式法:线和×线数=数字和+重复数×重复次数初级挑战1将1~7分别填入下图的7个○内,使每条线段上三个○内数的和相等。
思维点拨:观察发现,每条线上的三个数之和相等,而这三条线相交刚好重复了一个数,我们叫做重复数。
除去重复数,三条线上其他两数之和应相等。
1~7中,找出三组和相等的六个数即可,剩下的一个数填中间。
答案:(答案不唯一)能力探索1把1~11分别填入下图的○内,使每条线段上3个○内数的和相等。
答案:中间重复数为1或6或11。
给出一种填法:(答案不唯一)初级挑战2将数字1~8填入图中,使横行方框中的数之和与竖列方框中的数之和相等且为19。
思维点拨:本题的关键在于先确定中间重复数。
横行和竖列的和为19×2=38,而实际上所有方框中的数之和为1+2+3+4+5+6+7+8=36,38-36=2,多出来的2正好是中间重复的数。
答案:(答案不唯一)能力探索2将2~8填入下图的方框中,使横行、竖列的和相等且为20。
答案:中间重复数:20×2-(2+3+4+…+8)=5。
(答案不唯一)中级挑战1将1~10这十个自然数填入下图的○中,使每个圆上六个数的和为29。
思维点拨:两个大圆圈的和为29×2=58,而圆圈上所有的数之和为:1+2+3+…+10=55,因此中间两个圆圈数(重复数)的和为58-55=3,而3=1+2,由此可先填出中间的两个圆圈数分别为1和2,再两两配对填出其它数即可。
答案:(答案不唯一)把数字1~8分别填入下图的小圆圈内,使每个五边形上5个数的和都等于20。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章小学数学解题方法解题技巧之数阵图
【方阵】
例1 将自然数1至9,分别填在图5.17的方格中,使得每行、每列以及两条对角线上的三个数之和都相等。
(长沙地区小学数学竞赛试题)
讲析:中间一格所填的数,在计算时共算了4次,所以可先填中间一格的数。
(l+2+3+……+9)÷3=15,则符合要求的每三数之和为15。
显然,中间一数填“5”。
再将其它数字顺次填入,然后作对角线交换,再通过旋转(如图5.18),便得解答如下。
例2 从1至13这十三个数中挑出十二个数,填到图5.19的小方格中,使每一横行四个数之和相等,使每一竖列三个数之和又相等。
(“新苗杯”小学数学竞赛试题)
讲析:据题意,所选的十二个数之和必须既能被 3整除,又能被 4整除,(三行四列)。
所以,能被12整除。
十三个数之和为91,91除以12,商7余7,因此,应去掉7。
每列为(91—7)÷4=21
而1至13中,除7之外,共有六个奇数,它们的分布如图5.20所示。
三个奇数和为21的有两种:21=1+9+11=3+5+13。
经检验,三个奇数为3、5、13的不合要求,故不难得出答案,如图5.21所示。
例3 十个连续自然数中,9是第三大的数,把这十个数填到图5.22的十个方格中,每格填一个,要求图中三个2×2的正方形中四数之和相等。
那么,这个和数的最小值是______。
(1992年全国小学数学奥林匹克初赛试题)
讲析:不难得出十个数为:2、3、4、5、6、7、8、9、10、11。
它们的和是65。
在三个2×2的正方形中,中间两个小正方形分别重复了两次。
设中间两个小正方形分别填上a和b,则(65+a+b)之和必须是 3的倍数。
所以,(a+b)之和至少是7。
故,和数的最小值是24。
【其他数阵】
例1 如图5.23,横、竖各12个方格,每个方格都有一个数。
已知横行上任意三个相邻数之和为20,竖列上任意三个相邻数之和为21。
图中已填入3、5、8和“×”四个数,那么“×”代表的数是______。
(1994年全国小学数学奥林匹克初赛试题)
讲析:可先看竖格。
因为每相邻三格数字和为21,所以每隔两格必出现重复数字。
从而容易推出,竖格各数从上而下是:3、10、8、3、10、8、3、10、8、3、10、8。
同理可推导出横格各数,其中“×”=5。
例2 如图5.24,有五个圆,它们相交后相互分成九个区域,现在两个区域里已经分别填上数字10、6,请在另外七个区域里分别填进2、3、4、5、6、7、9七个数字,使每个圆内的数之和都是15。
(上海市第五届小学数学竞赛试题)
讲析:可把图中要填的数,分别用a、b、c、d、e、f、g代替。
(如图5.25)
显然a=5,g=9。
则有:b+c=10,e+f=6,c+d+e=15。
经适当试验,可得b=3,c=7,d=6,e=2,f=4。
例3 如图5.26,将六个圆圈中分别填上六个质数,它们的和是20,而且每个小三角形三个顶点上的数之和相等。
那么,这六个质数的积是______。
(全国第一届“华杯赛”决赛试题)
讲析:最上面的小三角形与中间的小三角形,都有两个共同的顶点,且每个小三角形顶点上三数之和相等。
所以,最上边圆圈内数字与最下面中间圆圈内数字相等。
同样,左下角与右边中间的数相等,右下角与左边中间数相等。
20÷2=10,10=2+3+5。
所以,六个质数积为2×2×3×3×5×5=900。
例4 在图5.27的七个○中各填上一个数,要求每条直线上的三个数中,中间一个数是两边两个数的平均数。
现已填好两个数,那么X=_______。
(1992年全国小学数学奥林匹克决赛试题)
讲析:如图5.28,可将圆圈内所填各数分别用a、b、c、d代替。
则d=15。
由15+c+a=17+c+b,得:a比b多2。
所以,b=13+2=15。
进而容易算出,x=19。
例5 图5.29中8个顶点处标注的数字:
a、b、c、d、e、f、g、h,其中的每一个数都等于相邻三个顶点
(全国第三届“华杯赛”复赛试题)
讲析:将外层的四个数,分别用含其它字母的式子表示,得
即(a+b+c+d)-(e+f+g+h)=0。