2019-2020年高考数学一轮复习第6章不等式推理与证明第6讲数学归纳法知能训练轻松闯关理北师大版

合集下载

高考数学一轮复习 第六章 不等式、推理与证明 6.6 数学归纳法(理)

高考数学一轮复习 第六章 不等式、推理与证明 6.6 数学归纳法(理)
__________都成立,上述证明方法叫做数学归纳法. 有正整数n
【特别提醒】 1.数学归纳法证题时,误把第一个值n0认为是1,如证明 多边形内角和定理(n-2)π时,初始值n0=3.
2.数学归纳法证题的关键是第二步,证题时应注意: (1)必须利用归纳假设作基础. (2)证明中可利用综合法、分析法、反证法等方法. (3)解题时要搞清从n=k到n=k+1增加了哪些项或减少了 哪些项.
(n∈N*).
2 3 4 2n1 2n
11
1
【n解题1导n引2】根据2n数学归纳法证明等式的步骤进行证
明.
【规范解答】(1)当n=1时,左边= 1 1 1 ,
右边=
1
1
左边=右边.

22
11 2
(2)假设n=k时等式成立,
即 1111 1 1 2 3 4 2k1 2k
则k当1n1=kk+11时2,21k,
求证:f(1)+f(2)+…+f(n-1)=n[f(n)-1](n≥2,n∈N*).
【证明】(1)当n=2时,左边=f(1)=1,
右边= 左边=右2(1边,12等1式) 成1,立.
(2)假设n=k(k≥2,k∈N*)时,结论成立, 即f(1)+f(2)+…+f(k-1)=k[f(k)-1], 那么,当n=k+1时, f(1)+f(2)+…+f(k-1)+f(k) =k[f(k)-1]+f(k)=(k+1)f(k)-k
【解析】用数学归纳法证明不等式
1 1 1 1 9(n∈N*且n>1)时,
第n 一1步n : 不2等n 式3 的左边3 是n10

2020 人教版 高三数学理科一轮复习 第六章不等式、推理与证明 (6)

2020 人教版 高三数学理科一轮复习 第六章不等式、推理与证明 (6)

大一轮复习 ·高三数学 ·理科 ·经典方案
进入导航
第六章·第六节
第28页
系列丛书
反证法的原理是“正难则反”,即如果正面证明有困难时,或者直 接证明需要分多种情况而反面只有一种情况时,可以考虑用反证法.
大一轮复习 ·高三数学 ·理科 ·经典方案
进入导航
第六章·第六节
第29页
系列丛书
方向 2 证明“至多”“至少”“唯一”性命题 【例 4】 已知 a,b,c 是互不相等的非零实数,用反证法证明三 个方程 ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0 中至少有一 个方程有两个相异实根.
第六章·第六节
第13页
系列丛书
5.若 f(n)=1+12+13+…+6n1-1(n∈N*),则 f(1)为( C )
A.1
1 B.5
C.1+12+13+14+15
D.非以上答案
解析:∵f(n)=1+12+13+…+6n1-1,∴f(1)=1+12+13+…
+6×11-1=1+12+13+14+15.
第8页
系列丛书
2.要证明 3+ 7<2 5,可选择的方法有以下几种,其中最合理
的是( B )
A.综合法 B.分析法 C.反证法 D.归纳法
大一轮复习 ·高三数学 ·理科 ·经典方案
进入导航
第六章·第六节
第9页
系列丛书
3.已知点 An(n,an)为函数 y= x2+1图象上的点,Bn(n,bn)为函 数 y=x 图象上的点,其中 n∈N*,设 cn=an-bn,则 cn 与 cn+1 的大小
2.分析法证明的注意点:要注意书写格式的规范性,常常用“要 证(欲证)……”“即证……”“只需证……”.

高考数学一轮复习第6章不等式及其证明第6节数学归纳法教师用书

高考数学一轮复习第6章不等式及其证明第6节数学归纳法教师用书

第六节 数学归纳法1.数学归纳法证明一个与正整数n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时命题成立;(2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立. 2.数学归纳法的框图表示1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)用数学归纳法证明问题时,第一步是验证当n =1时结论成立.( ) (2)用数学归纳法证明问题时,归纳假设可以不用.( )(3)不论是等式还是不等式,用数学归纳法证明时,由n =k 到n =k +1时,项数都增加了一项.( )(4)用数学归纳法证明等式“1+2+22+…+2n +2=2n +3-1”,验证n =1时,左边式子应为1+2+22+23.( )[答案] (1)× (2)× (3)× (4)√2.(2017·杭州二中月考)在应用数学归纳法证明凸n 边形的对角线为12n (n -3)条时,第一步检验n 等于( )A .1B .2C .3D .0C [因为凸n 边形最小为三角形,所以第一步检验n 等于3,故选C.]3.已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1n =2⎝ ⎛⎭⎪⎫1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2,且k 为偶数)时命题为真,则还需要用归纳假设再证( )A .n =k +1时等式成立B .n =k +2时等式成立C .n =2k +2时等式成立D .n =2(k +2)时等式成立 B [k 为偶数,则k +2为偶数.]4.(教材改编)已知{a n }满足a n +1=a 2n -na n +1,n ∈N *,且a 1=2,则a 2=__________,a 3=__________,a 4=__________,猜想a n =__________.3 4 5 n +15.用数学归纳法证明:“1+12+13+…+12n -1<n (n >1)”由n =k (k >1)不等式成立,推证n =k +1时,左边应增加的项的项数是__________.【导学号:51062209】2k[当n =k 时,不等式为1+12+13+…+12k -1<k .则n =k +1时,左边应为1+12+13+…+12k -1+12k +12k +1+…+12k +1-1,则左边增加的项数为2k +1-1-2k+1=2k.]设f (n )=1+2+3+…+n(n ∈N *).求证:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).[证明] (1)当n =2时,左边=f (1)=1,右边=2⎝ ⎛⎭⎪⎫1+12-1=1,左边=右边,等式成立.4分(2)假设n =k (k ≥2,k ∈N *)时,结论成立,即f (1)+f (2)+…+f (k -1)=k [f (k )-1],8分那么,当n =k +1时,f (1)+f (2)+…+f (k -1)+f (k )=k [f (k )-1]+f (k )=(k +1)f (k )-k =(k +1)⎣⎢⎡⎦⎥⎤f k +-1k +1-k =(k +1)f (k +1)-(k +1)=(k +1)[f (k +1)-1],12分 ∴当n =k +1时结论仍然成立.由(1)(2)可知:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).15分[规律方法] 1.用数学归纳法证明等式问题,要“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值n 0是多少.2.由n =k 时命题成立,推出n =k +1时等式成立,一要找出等式两边的变化(差异),明确变形目标;二要充分利用归纳假设,进行合理变形,正确写出证明过程,不利用归纳假设的证明,就不是数学归纳法.[变式训练1] 求证:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n (n ∈N *).[证明] (1)当n =1时,左边=1-12=12,右边=11+1=12,左边=右边.4分 (2)假设n =k 时等式成立, 即1-12+13-14+…+12k -1-12k=1k +1+1k +2+ (12),8分 则当n =k +1时,⎝ ⎛⎭⎪⎫1-12+13-14+…+12k -1-12k +⎝ ⎛⎭⎪⎫12k +1-12k +2 =⎝ ⎛⎭⎪⎫1k +1+1k +2+…+12k +⎝ ⎛⎭⎪⎫12k +1-12k +2=1k +2+1k +3+…+12k +1+12k +2.13分 即当n =k +1时,等式也成立.综合(1)(2)可知,对一切n ∈N *,等式成立.15分用数学归纳法证明:对一切大于1的自然数n ,不等式⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15·…·⎝ ⎛⎭⎪⎫1+12n -1>2n +12均成立. [证明] (1)当n =2时,左边=1+13=43;右边=52.∵左边>右边,∴不等式成立.4分(2)假设n =k (k ≥2,且k ∈N *)时不等式成立, 即⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15·…·⎝ ⎛⎭⎪⎫1+12k -1>2k +12.8分则当n =k +1时,⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15·…·⎝ ⎛⎭⎪⎫1+12k -1⎣⎢⎡⎦⎥⎤1+1k +-1>2k +12·2k +22k +1=2k +222k +1=4k 2+8k +422k +1>4k 2+8k +322k +1=2k +32k +122k +1=k ++12.14分∴当n =k +1时,不等式也成立.由(1)(2)知,对于一切大于1的自然数n ,不等式都成立.15分[规律方法] 1.当遇到与正整数n 有关的不等式证明时,若用其他方法不容易证明,则可考虑应用数学归纳法.2.用数学归纳法证明不等式的关键是由n =k 时命题成立,再证n =k +1时命题也成立,在归纳假设使用后可运用比较法、综合法、分析法、放缩法等来加以证明,充分应用基本不等式、不等式的性质等放缩技巧,使问题得以简化.[变式训练2] 已知数列{a n },当n ≥2时,a n <-1,又a 1=0,a 2n +1+a n +1-1=a 2n ,求证:当n ∈N *时,a n +1<a n .[证明] (1)当n =1时,∵a 2是a 22+a 2-1=0的负根, ∴a 1>a 2.4分(2)假设当n =k (k ∈N *)时,a k +1<a k ,6分∵a 2k +1-a 2k =(a k +2-a k +1)(a k +2+a k +1+1),a k +1<a k ≤0, ∴a 2k +1-a 2k >0.10分又∵a k +2+a k +1+1<-1+(-1)+1=-1, ∴a k +2-a k +1<0,∴a k +2<a k +1,即当n =k +1时,命题成立. 由(1)(2)可知,当n ∈N *时,a n +1<a n .15分已知数列{a n }的前n 项和S n 满足:S n =n 2+a n-1,且a n >0,n ∈N *.(1)求a 1,a 2,a 3,并猜想{a n }的通项公式; (2)证明通项公式的正确性.[解] (1)当n =1时,由已知得a 1=a 12+1a 1-1,a 21+2a 1-2=0.∴a 1=3-1(a 1>0).2分当n =2时,由已知得a 1+a 2=a 22+1a 2-1,将a 1=3-1代入并整理得a 22+23a 2-2=0. ∴a 2=5-3(a 2>0).同理可得a 3=7- 5. 猜想a n =2n +1-2n -1(n ∈N *).7分(2)证明:①由(1)知,当n =1,2,3时,通项公式成立. ②假设当n =k (k ≥3,k ∈N *)时,通项公式成立, 即a k =2k +1-2k -1.10分 由于a k +1=S k +1-S k =a k +12+1a k +1-a k 2-1a k, 将a k =2k +1-2k -1代入上式,整理得a 2k +1+22k +1a k +1-2=0,∴a k +1=2k +3-2k +1, 即n =k +1时通项公式成立.14分由①②可知对所有n ∈N *,a n =2n +1-2n -1都成立.15分[规律方法] 1.猜想{a n }的通项公式时应注意两点:(1)准确计算a 1,a 2,a 3发现规律(必要时可多计算几项);(2)证明a k +1时,a k +1的求解过程与a 2,a 3的求解过程相似,注意体会特殊与一般的辩证关系.2.“归纳—猜想—证明”的模式,是不完全归纳法与数学归纳法综合应用的解题模式,这种方法在解决探索性问题、存在性问题时起着重要作用,它的模式是先由合情推理发现结论,然后经逻辑推理证明结论的正确性.[变式训练3] (2017·绍兴调研)已知数列{x n }满足x 1=12,x n +1=11+x n,n ∈N *.猜想数列{x 2n }的单调性,并证明你的结论. 【导学号:51062210】[解] 由x 1=12及x n +1=11+x n ,得x 2=23,x 4=58,x 6=1321,由x 2>x 4>x 6猜想:数列{x 2n }是递减数列.4分 下面用数学归纳法证明:(1)当n =1时,已证命题成立.6分 (2)假设当n =k (k ≥1,k ∈N *)时命题成立, 即x 2k >x 2k +2,易知x k >0,那么x 2k +2-x 2k +4=11+x 2k +1-11+x 2k +3=x2k+3-x2k+1+x2k+1+x2k+3=x2k-x2k+2+x2k+x2k+1+x2k+2+x2k+3>0,12分即x2(k+1)>x2(k+1)+2.也就是说,当n=k+1时命题也成立.结合(1)(2)知,对∀n∈N*命题成立.15分[思想与方法]1.数学归纳法是一种重要的数学思想方法,主要用于解决与正整数有关的数学命题.证明时步骤(1)和(2)缺一不可,步骤(1)是步骤(2)的基础,步骤(2)是递推的依据.2.在推证n=k+1时,可以通过凑、拆、配项等方法用上归纳假设.此时既要看准目标,又要弄清n=k与n=k+1之间的关系.在推证时,应灵活运用分析法、综合法、反证法等方法.[易错与防范]1.第一步验证当n=n0时,n0不一定为1,要根据题目要求选择合适的起始值.2.由n=k时命题成立,证明n=k+1时命题成立的过程中,一定要用归纳假设,否则就不是数学归纳法.3.解“归纳——猜想——证明”题的关键是准确计算出前若干具体项,这是归纳、猜想的基础.否则将会做大量无用功.课时分层训练(三十五) 数学归纳法A组基础达标(建议用时:30分钟)一、选择题1.用数学归纳法证明2n>2n +1,n 的第一个取值应是( ) A .1 B .2 C .3D .4C [∵n =1时,21=2,2×1+1=3,2n>2n +1不成立;n =2时,22=4,2×2+1=5,2n >2n +1不成立; n =3时,23=8,2×3+1=7,2n >2n +1成立.∴n 的第一个取值应是3.]2.一个关于自然数n 的命题,如果验证当n =1时命题成立,并在假设当n =k (k ≥1且k ∈N *)时命题成立的基础上,证明了当n =k +2时命题成立,那么综合上述,对于( ) 【导学号:51062211】A .一切正整数命题成立B .一切正奇数命题成立C .一切正偶数命题成立D .以上都不对B [本题证的是对n =1,3,5,7,…命题成立,即命题对一切正奇数成立.]3.在数列{a n }中,a 1=13,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为( )A.1n -n + B.12nn +C.1n -n +D.1n +n +C [由a 1=13,S n =n (2n -1)a n 求得a 2=115=13×5,a 3=135=15×7,a 4=163=17×9.猜想a n =1n -n +.]4.凸n 多边形有f (n )条对角线,则凸(n +1)边形的对角线的条数f (n +1)为( )A .f (n )+n +1B .f (n )+nC .f (n )+n -1D .f (n )+n -2C [边数增加1,顶点也相应增加1个,它与和它不相邻的n -2个顶点连接成对角线,原来的一条边也成为对角线,因此,对角线增加(n -1)条.]5.用数学归纳法证明3(2+7k)能被9整除,证明n =k +1时,应将3(2+ 7k +1)配凑成( ) 【导学号:51062212】A .6+21·7kB .3(2+7k)+21 C .3(2+7k)D .21(2+7k)-36D [要配凑出归纳假设,故3(2+7k +1)=3(2+7·7k)=6+21·7k=21(2+7k)-36.]二、填空题6.用数学归纳法证明“当n 为正奇数时,x n +y n能被x +y 整除”,当第二步假设n =2k -1(k ∈N *)命题为真时,进而需证n =__________时,命题亦真.2k +1 [n 为正奇数,假设n =2k -1成立后,需证明的应为n =2k +1时成立.] 7.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上的项为__________. 【导学号:51062212】(k 2+1)+(k 2+2)+…+(k +1)2[当n =k 时左端为1+2+3+…+k +(k +1)+(k +2)+…+k 2,则当n =k +1时,左端为1+2+3+…+k 2+(k 2+1)+(k 2+2)+…+(k +1)2, 故增加的项为(k 2+1)+(k 2+2)+…+(k +1)2.]8.已知f (n )=1+12+13+…+1n (n ∈N *),经计算得f (4)>2,f (8)>52,f (16)>3,f (32)>72,则其一般结论为__________________.f (2n )>n +22(n ≥2,n ∈N *) [因为f (22)>42,f (23)>52,f (24)>62,f (25)>72,所以当n ≥2时,有f (2n)>n +22.故填f (2n)>n +22(n ≥2,n ∈N *).]三、解答题9.用数学归纳法证明:1+122+132+…+1n 2<2-1n (n ∈N *,n ≥2).[证明] (1)当n =2时,1+122=54<2-12=32,命题成立.4分(2)假设n =k 时命题成立,即 1+122+132+…+1k 2<2-1k .7分 当n =k +1时,1+122+132+…+1k 2+1k +2<2-1k+1k +2<2-1k +1kk +=2-1k +1k -1k +1=2-1k +1命题成立.14分 由(1)(2)知原不等式在n ∈N *,n ≥2时均成立.15分10.在数列{a n}中,a1=2,a n+1=λa n+λn+1+(2-λ)2n(n∈N*,λ>0).(1)求a2,a3,a4;(2)猜想{a n}的通项公式,并加以证明. 【导学号:51062213】[解](1)a2=2λ+λ2+2(2-λ)=λ2+22,a3=λ(λ2+22)+λ3+(2-λ)22=2λ3+23,a4=λ(2λ3+23)+λ4+(2-λ)23=3λ4+24.6分(2)由(1)可猜想数列通项公式为:a n=(n-1)λn+2n.8分下面用数学归纳法证明:①当n=1,2,3,4时,等式显然成立,②假设当n=k(k≥4,k∈N*)时等式成立,即a k=(k-1)λk+2k,10分那么当n=k+1时,a k+1=λa k+λk+1+(2-λ)2k=λ(k-1)λk+λ2k+λk+1+2k+1-λ2k=(k-1)λk+1+λk+1+2k+1=[(k+1)-1]λk+1+2k+1,所以当n=k+1时,猜想成立,由①②知数列的通项公式为a n=(n-1)λn+2n(n∈N*,λ>0).15分B组能力提升(建议用时:15分钟)1.设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可推出f(k+1)≥(k+1)2成立.”那么,下列命题总成立的是( )A.若f(1)<1成立,则f(10)<100成立B.若f(2)<4成立,则f(1)≥1成立C.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立D.若f(4)≥16成立,则当k≥4时,均有f(k)≥k2成立D[∵f(k)≥k2成立时,f(k+1)≥(k+1)2成立,∴f(4)≥16时,有f(5)≥52,f(6)≥62,…,f(k)≥k2成立.]2.设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)=__________;当n>4时,f(n)=__________(用n表示).5 12(n+1)(n-2)(n≥3)[f(3)=2,f(4)=f(3)+3=2+3=5,f (n )=f (3)+3+4+…+(n -1)=2+3+4+…+(n -1) =12(n +1)(n -2)(n ≥3).] 3.设数列{a n }的前n 项和为S n ,满足S n =2na n +1-3n 2-4n ,n ∈N *,且S 3=15. (1)求a 1,a 2,a 3的值;(2)求数列{a n }的通项公式. 【导学号:51062214】 [解] (1)由题意知S 2=4a 3-20, ∴S 3=S 2+a 3=5a 3-20.2分又S 3=15,∴a 3=7,S 2=4a 3-20=8. 又S 2=S 1+a 2=(2a 2-7)+a 2=3a 2-7, ∴a 2=5,a 1=S 1=2a 2-7=3. 综上知,a 1=3,a 2=5,a 3=7.6分(2)由(1)猜想a n =2n +1,下面用数学归纳法证明. ①当n =1时,结论显然成立;7分 ②假设当n =k (k ≥1)时,a k =2k +1, 则S k =3+5+7+…+(2k +1)=k [3+k +2=k (k +2).又S k =2ka k +1-3k 2-4k , ∴k (k +2)=2ka k +1-3k 2-4k , 解得2a k +1=4k +6,13分∴a k +1=2(k +1)+1,即当n =k +1时,结论成立. 由①②知,∀n ∈N *,a n =2n +1.15分。

2019年高考数学一轮总复习第六章不等式、推理与证明6.

2019年高考数学一轮总复习第六章不等式、推理与证明6.
则当 n=k+1 时,2×1 4+4×1 6+6×1 8+…+2k21k+2+2k+1[21k+1+2] =4k+k 1+4k+11k+2 =4kk+k+12k++12
=4k+k+11k+2 2 =4kk++12=4k+k+11+1. 所以当 n=k+1 时,等式也成立. 由①②可知,对于一切 n∈N*等式都成立.
那么,当 n=k+1 时, f(1)+f(2)+…+f(k-1)+f(k)=k[f(k)-1]+f(k) =(k+1)f(k)-k=(k+1)fk+1-k+1 1-k =(k+1)f(k+1)-(k+1)=(k+1)[f(k+1)-1], ∴当 n=k+1 时结论仍然成立. 由(1)(2)可知:f(1)+f(2)+…+f(n-1)=n[f(n)-1](n≥2,n∈N*).
「基础小题练一练」
1.利用数学归纳法证明“1+a+a2+…+an+1=1-1-ana+2(a≠1,n∈N*)”时,在
验证 n=1 成立时,左边应该是( )
A.1
B.1+a
C.1+a+a2
D.1+a+a2+a3
解析:用数学归纳法证明“1+a+a2+…+an+1=1-1-ana+2(a≠1,n∈N*)”在验证
只要完成这两个步骤,就可以断定命题对从 n0 开始的所有正整数 n 都成立.上 述证明方法叫做数学归纳法.
「应用提示研一研」
1.辨明三个易误点 (1) 用 分 析 法 证 明 数 学 问 题 时 , 要 注 意 书 写 格 式 的 规 范 性 , 常 常 用 “ 要 证 ( 欲 证)…”“即要证…”“就要证…”等分析到一个明显成立的结论. (2)利用反证法证明数学问题时,要假设结论错误。并用假设命题进行推理,没 有用假设命题推理而推出矛盾结果,其推理过程是错误的. (3)数学归纳法证题的关键是第二步,证题时应注意:①必须利用归纳假设作基 础;②证明中可利用综合法、分析法、反证法等方法;③解题时要搞清从,n=k 到 n =k+1 增加了哪些项或减少了哪些项.

2019-2020年高考数学一轮复习第6单元不等式推理与证明作业理

2019-2020年高考数学一轮复习第6单元不等式推理与证明作业理

2019-2020年高考数学一轮复习第6单元不等式推理与证明作业理2019-2020年高考数学一轮复习第6单元不等式推理与证明作业理基础热身1.设M=2a(a-2),N=(a+1)(a-3),则有()A.M>NB.M≥NC.M<n< bdsfid="83" p=""></n<>D.M≤N2.[xx·襄阳五中模拟]设a,b∈R,则“a>b”是“|a|>|b|”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.若a,b,c∈R,a>b,则下列不等式成立的是()A.<b< bdsfid="92" p=""></b<>B.a2>b2C.>D.a|c|>b|c|4.已知-1≤a≤3,-5<b<3,则a+|b|的取值范围是.< bdsfid="97" p=""></b<3,则a+|b|的取值范围是.<>5.有外表相同,重量不同的四个小球,它们的重量分别是a,b,c,d,已知a+b=c+d,a+d>c+b,a+c<b,则a,b,c,d由大到小的排列顺序为.< bdsfid="100" p=""></b,则a,b,c,d由大到小的排列顺序为.<> 能力提升6.已知下列四个关系:①若a>b,则ac2>bc2;②若a>b,则<;③若a>b>0,c>d>0,则>;④若a>b>1,c<0,则a cA.1个B.2个C.3个D.4个7.[xx·潮州二模]已知a>b,则下列各式一定正确的是()A.a lg x>b lg xB.ax2>bx2C.a2>b2D.a·2x>b·2x8.[xx·广西玉林质检]已知a=log23,b=,c=log53,则()A.c<a<b< bdsfid="127" p=""></a<b<>B.a<b<c< bdsfid="130" p=""></b<c<>C.b<c<a< bdsfid="133" p=""></c<a<>D.b<a<c< bdsfid="136" p=""></a<c<>9.[xx·南阳一中月考]设a>b>0,x=-,y=-,则x,y的大小关系为()A.x>yB.x<y< bdsfid="143" p=""></y<>C.x=yD.x,y的大小关系不定10.若a<b,d<c,且(c-a)(c-b)0,则a,b,c,d的大小关系是()</b,d<c,且(c-a)(c-b)A.d<a<c<b< bdsfid="153" p=""></a<c<b<>B.a<c<b<d< bdsfid="156" p=""></c<b<d<>C.a<d<b<c< bdsfid="159" p=""></d<b<c<>D.a<d<c<b< bdsfid="162" p=""></d<c<b<>11.[xx·北京东城区二模]据统计,某超市两种蔬菜A,B连续n天的价格(单位:元)分别为a1,a2,a3,…,a n和b1,b2,b3,…,b n.令M={m|a mA.若A?B,B?C,则A?CB.若A?B,B?C同时不成立,则A?C不成立C.A?B,B?A可同时不成立D.A?B,B?A可同时成立12.[xx·南京一模]已知a,b为实数,且a≠b,a<0,则a 2b-(填“>”“<”或“=”).13.[xx·咸阳模拟]已知函数f=ax+b,0<f<2,-1<f<1,则2a-b的取值范围是.< bdsfid="184" p=""></f<2,-1<f<1,则2a-b的取值范围是.<>14.[xx·河南天一大联考]已知实数a∈(-3,1),b∈,,则的取值范围是.难点突破15.(5分)[xx·杭州质检]若实数a,b,c满足对任意实数x,y有3x+4y-5≤ax+by+c≤3x+4y+5,则()A.a+b-c的最小值为2B.a-b+c的最小值为-4C.a+b-c的最大值为4D.a-b+c的最大值为616.(5分)[xx·盐城一模]已知-1≤a+b≤3,2≤a-b≤4,若2a+3b的最大值为m,最小值为n,则m+n= .课时作业(三十四)第34讲一元二次不等式及其解法基础热身1.不等式-x2+3x+10>0的解集为 ()A.(-2,5)B.(-∞,-2)∪(5,+∞)C.(-5,2)D.(-∞,-5)∪(2,+∞)2.[xx·上饶四校联考]设x∈R,则“0<x<2”是“x2-x-2<="" bdsfid="233" p=""></x<2”是“x2-x-2A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.[xx·淮北一中四模]若(x-1)(x-2)<2,则(x+1)(x-3)的取值范围是()A.(0,3)B.C.D.4.若关于x的不等式x2-ax-a≤-3的解集不是空集,则实数a的取值范围是.5.若关于x的不等式ax2-6x+a2<0的解集是(1,m),则m= .能力提升6.如果关于x的不等式x2<ax+b的解集是{x|1<x<="" bdsfid="270" p=""></ax+b的解集是{x|1<xA.-81B.81C.-64D.647.若存在x∈[-2,3],使不等式2x-x2≥a成立,则实数a的取值范围是()A.(-∞,1]B.(-∞,-8]C.[1,+∞)D.[-8,+∞)8.[xx·岳阳质检]设函数f(x)=若不等式xf(x-1)≥a的解集为[3,+∞),则实数a的值为()A.-3B.3C.-1D.19.若关于x的不等式x2-4x-2-a>0在区间(1,4)内有解,则实数a 的取值范围是()A.a<-2B.a>-2C.a>-6D.a<-610.[xx·银川二中一模]已知a1>a2>a3>0,则使得(1-a i x)2<1(i=1,2,3)都成立的x的取值范围是()A.B.C.D.11.某省每年损失耕地20万亩,每亩耕地价值24 000元,为了减少耕地损失,决定按耕地价格的t%征收耕地占用税,这样每年的耕地损失可减少t万亩,为了既减少耕地的损失又保证此项税收一年不少于9000万元,则t的取值范围是()A.B.C.D.12.已知函数f(x)=x2-2ax+a2-1,若关于x的不等式f[f(x)]<0的解集为空集,则实数a的取值范围是.13.设不等式mx2-2x-m+1<0对于满足|m|≤2的一切m的值都成立,则x的取值范围是.14.[xx·惠州二调]已知函数f(x)=则不等式f[f(x)]≤3的解集为.难点突破15.(5分)[xx·苏北三市(连云港、徐州、宿迁)三模]已知对于任意的x∈(-∞,1)∪(5,+∞),都有x2-2(a-2)x+a>0,则实数a的取值范围是()A.B.C.D.16.(5分)[xx·湖州、衢州、丽水三市联考]已知函数f=ax2+bx+c(a,b,c∈R),若存在实数a ∈[1,2],对任意x∈[1,2],都有f≤1,则7b+5c的最大值是.课时作业(三十五)第35讲二元一次不等式(组)与简单的线性规划问题基础热身1.(x-2y+1)(x+y-3)<0表示的平面区域为()图K35-12.已知点(-3,-1)和(4,-6)在直线3x-2y-a=0的两侧,则实数a的取值范围为()A.(-24,7)B.(-∞,-7)∪(24,+∞)C.(-7,24)D.(-∞,-24)∪(7,+∞)3.[xx·阜阳质检]不等式|x|+|3y|-6≤0所对应的平面区域的面积为()A.12B.24C.36D.484.在平面直角坐标系中,不等式组表示的平面区域的形状是.5.[xx·桂林、崇左、百色一模]设x,y满足约束条件则x2+y2的最大值为.能力提升6.已知实数x,y满足约束条件则目标函数z=x-2y的最小值为()A.-1B.1C.3D.77.[xx·南充三诊]若实数x,y满足不等式组则z=2x+y的最大值是()A.B.C.14D.218.设x,y满足约束条件则的最大值为()A.B.2C.D.09.[xx·惠州二模]设关于x,y的不等式组表示的平面区域内存在点P(x0,y0)满足x0-2y0=2,则实数m的取值范围是()A.B.C.D.10.[xx·宁德质检]已知约束条件表示的平面区域为D,若存在点P(x,y)∈D,使x2+y2≥m成立,则实数m的最大值为()A.B.1C.D.11.[xx·大庆实验中学一模]已知O是坐标原点,点A(-1,1),若点M(x,y)为平面区域上的一个动点,则·的取值范围是.12.[xx·淮南二模]已知实数x,y满足不等式组若目标函数z=y-mx 取得最大值时有唯一的最优解(1,3),则实数m的取值范围是.13.(15分)[xx·天津河东区二模]制定投资计划时,不仅要考虑可能获得的盈利,还要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙两个项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%.投资人计划的投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问:投资人对甲、乙两个项目分别投资多少万元,才能使可能的盈利最大?最大盈利额是多少?14.(15分)某人有一套房子,室内面积共计180 m2,拟分隔成两类房间作为旅游客房,大房间每间面积为18 m2,可住游客5名,每名游客每天住宿费40元;小房间每间面积为15 m2,可住游客3名,每名游客每天住宿费50元.装修大房间每间需要1000元,装修小房间每间需要600元.如果他只能筹款8000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,每天才能获得最大的房租收益?难点突破15.(5分)[xx·衡阳二联]集合M={(x,y)|x+y≤1,y≤x,y≥-1},N={(x,y)|(x-2)2+y2=r2,r>0},若M∩N≠?,则r的取值范围为()A.B.C.D.16.(5分)[xx·九江模拟]已知实数x,y满足若z=mx+y的最大值为 3,则实数m的值是()A.-2B.3C.8D.2课时作业(三十六)第36讲基本不等式基础热身1.[xx·北京海淀区一模]若m<n<0,则下列不等式中正确的是()< bdsfid="561" p=""></n<0,则下列不等式中正确的是()<>A.>B.>C.+>2D.m+n>mn2.[xx·青岛质检]已知x>1,y>1,且lg x,2,lg y成等差数列,则x+y 有()A.最小值20B.最小值200C.最大值20D.最大值2003.[xx·赤峰模拟]若函数f=x+(x>2)在x=a处取得最小值,则a=()A.1+B.1+C.3D.44.[xx·天津河东区二模]已知a>0,b>0,且2a+b=4,则的最小值是.5.[xx·成都九校联考]设正数a,b满足a+2b=1,则+的最小值为.能力提升6.[xx·郑州三模]若实数a,b,c均大于0,且(a+c)·(a+b)=6-2,则2a+b+c的最小值为()A.-1B.+1C.2+2D.2-27.[xx·雅安三诊]对一切实数x,不等式x2+a+1≥0恒成立,则实数a的取值范围是() A.B.C.D.8.[xx·乌鲁木齐三模]已知x,y∈R,x2+y2+xy=315,则x2+y2-xy 的最小值是()A.35B.105C.140D.2109.[xx·泉州模拟]已知2a+2b=2c,则a+b-2c的最大值为()A.-2B.-1C.D.-10.[xx·深圳调研]若函数f=x+(m为大于0的常数)在(1,+∞)上的最小值为3,则实数m的值为.11.用一根长为12的钢筋焊接一个正三棱柱形状的广告牌支架,则该三棱柱的侧面积的最大值是.12.[xx·日照三模]已知向量a=(m,1),b=(4-n,2),m>0,n>0,若a∥b,则+的最小值为.13.(15分)[xx·盐城三模]已知a,b,c为正实数,且a+b+c=3,证明: ++≥3.14.(15分)[xx·黄冈中学模拟]某公司生产一批A产品需要原材料500吨,每吨原材料可创造利润12万元.该公司通过设备升级,生产这批A产品所需原材料减少了x(x>0)吨,且每吨原材料创造的利润提高了0.5x%.若将少用的x吨原材料全部用于生产公司新开发的B产品,每吨原材料创造的利润为12a-x万元,其中a>0.(1)若设备升级后生产这批A产品的利润不低于原来生产这批A产品的利润,求x的取值范围;(2)若生产这批B产品的利润始终不高于设备升级后生产这批A产品的利润,求a的最大值.难点突破15.(5分)[xx·河南豫南六市联考]已知函数f=ax2+bx+c(b>a),对任意的x∈R,f≥0恒成立,则的最小值为()A.3B.2C.1D.016.(5分)[xx·湛江二模]已知a>b,二次不等式ax2+2x+b≥0对于一切实数x恒成立,又存在x0∈R,a+2x0+b=0,则的最小值为.课时作业(三十七)第37讲合情推理与演绎推理基础热身1.[xx·鹰潭一模]用“三段论”推理:任何实数的绝对值大于0,因为a是实数,所以a的绝对值大于0.你认为这个推理()A.大前提错误B.小前提错误C.推理形式错误D.是正确的2.由“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的内切球切于四面体()A.各正三角形内的点B.各正三角形的中心C.各正三角形某高线上的点D.各正三角形各边的中点3.观察图K37-1中各正方形图案,则所有圆点总和S n与n的关系式为()图K37-1A.S n=2n2-2nB.S n=2n2C.S n=4n2-3nD.S n=2n2+2n4.[xx·兰州模拟]观察下列式子:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,….由以上式子可推测出一个一般性结论:对于n∈N*,1+2+…+n+…+2+1= .5.[xx·烟台二模]在正项等差数列中有=成立,则在正项等比数列中,类似的结论为.能力提升6.[xx·郑州一中调研]“干支纪年法”是中国历法上自古以来就一直使用的纪年方法.甲、乙、丙、丁、戊、己、庚、辛、壬、癸十个符号叫天干,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥十二个符号叫地支.把干支顺序相配正好六十为一周,周而复始,循环记录,这就是俗称的“干支表”.xx年是“干支纪年法”中的丙申年,那么xx年是“干支纪年法”中的()A.丁酉年B.戊未年C.乙未年D.丁未年7.下面说法正确的是()①数列{a n}的前三项是1,2,3,那么这个数列的通项公式为a n=n;②由平面三角形的性质推测空间四面体的性质,这是一种合情推理;③在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适;④“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.A.①②B.②③C.③④D.②④8.[xx·临汾一中、忻州一中、长治二中、康杰中学联考]已知[x]表示不大于x的最大整数,设函数f(x)=log2,得到下列结论:结论1:当2<x< bdsfid="827" p=""></x<>结论2:当4<x< bdsfid="831" p=""></x<>结论3:当6<x< bdsfid="835" p=""></x<>……照此规律,结论6为.9.如图K37-2甲所示,在直角三角形ABC中,AC⊥AB,AD⊥BC,D 是垂足,则有AB2=BD·BC,该结论称为射影定理.如图乙所示,在三棱锥A-BCD中,AD⊥平面ABC,AO⊥平面BCD,O为垂足,且O在△BCD内,类比直角三角形中的射影定理,则有.图K37-2难点突破10.(5分)[xx·郑州、平顶山、濮阳二模]设函数f(0)(x)=sin x,定义f(1)(x)=f'(0)(x),f(2)(x)=f'(1)(x),…,f(n)(x)=f'(n-1)(x),则f(1)(15°)+f(2)(15°)+f(3)(15°)+…+f(xx)(15°)的值是 ()A.B.C.0D.111.(5分)[xx·江南十校二模]某地突发地震后,有甲、乙、丙、丁4个轻型救援队分别从A,B,C,D四个不同的方向前往灾区.已知下面四种说法都是正确的.(1)甲轻型救援队所在方向不是A方向,也不是D方向;(2)乙轻型救援队所在方向不是A方向,也不是B方向;(3)丙轻型救援队所在方向不是A方向,也不是B方向;(4)丁轻型救援队所在方向不是C方向,也不是D方向.此外还可确定:如果丙所在方向不是D方向,那么丁所在方向就不是A方向.有下列判断: ①甲所在方向是B方向;②乙所在方向是D方向;③丙所在方向是D方向;④丁所在方向是C方向.其中判断正确的序号是.课时作业(三十八)第38讲直接证明与间接证明基础热身1.[xx·莱芜一中模拟]用反证法证明命题“设a,b为实数,则方程x2+ax+b=0没有实数根”时,应假设()A.方程x2+ax+b=0至多有一个实根B.方程x2+ax+b=0至少有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根2.要证明a2+b2-1-a2b2≤0,只需证明()A.2ab-1-a2b2≤0B.a2+b2-1≤C.-1-a2b2≤0D.(a2-1)(b2-1)≥03.[xx·南昌二模]已知等差数列的前n项和为S n,若S2k+1>0,则一定有()A.a k>0B.S k>0C.a k+1>0D.S k+1>04.①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;②已知a,b∈R,+<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设≥1.其中正确说法的序号是.能力提升5.[xx·大连模拟]“一支医疗救援队里的医生和护士,包括我在内,总共是13名.下面讲到的人员情况,无论是否把我计算在内,都不会有任何变化.在这些医务人员中:①护士不少于医生;②男医生多于女护士;③女护士多于男护士;④至少有一位女医生.”由此推测这位说话人的性别和职务是()A.男护士B.女护士C.男医生D.女医生6.[xx·福建师大附中一模]若O为△ABC平面内一点,且满足(-)·(+-2)=0,则△ABC为()A.钝角三角形B.等腰三角形C.直角三角形D.锐角三角形7.设A,B,C为锐角三角形ABC的三个内角,M=sin A+sin B+sinC,N=cos A+2cos B,则()A.M<n< bdsfid="997" p=""></n<>B.M=NC.M>ND.M,N大小不确定8.[xx·武汉模拟]已知f=,a≠b,则|f-f|与|a-b|的大小关系为()A.>B.<C.=D.不确定9.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,假设命题的结论不成立的正确叙述是(填序号).①假设三个角都不大于60°;②假设三个角都大于60°;③假设三个角至多有一个大于60°;④假设三个角至多有两个大于60°.难点突破10.(5分)[xx·山西运城调研]在△ABC中,AC=5,+-=0,则BC+AB=()A.6B.7C.8D.911.(5分)[xx·北京海淀区二模]已知两个半径不等的圆盘叠放在一起(有一轴穿过它们的圆心),两圆盘上分别有互相垂直的两条直径将其分为四个区域,小圆盘上所写的实数分别记为x1,x2,x3,x4,大圆盘上所写的实数分别记为y1,y2,y3,y4,如图K38-1所示.将小圆盘逆时针旋转i(i=1,2,3,4)次,每次转动90°,记T i(i=1,2,3,4)为转动i次后各区域内两数乘积之和,例如T1=x1y2+x2y3+x3y4+x4y1.若x1+x2+x3+x4<0,y1+y2+y3+y4<0,则以下结论正确的是()A.T1,T2,T3,T4中至少有一个为正数B.T1,T2,T3,T4中至少有一个为负数C.T1,T2,T3,T4中至多有一个为正数D.T1,T2,T3,T4中至多有一个为负数图K38-1课时作业(三十九)第39讲数学归纳法基础热身1.用数学归纳法证明“1+a+a2+…+a n+1=(a≠1,n∈N*)”,在验证n=1时,左端所得的项为()A.1B.1+aC.1+a+a2D.1+a+a2+a32.用数学归纳法证明“凸n边形对角线的条数f=”时,第一步应验证()A.n=1成立B.n=2成立C.n=3成立D.n=4成立3.用数学归纳法证明“1+++…+=”时,由n=k到n=k+1,等式左边需要添加的项是()A.B.C.D.4.在数列{a n}中,a1=2,a n+1=(n∈N*),可以猜想数列的通项公式为.5.用数学归纳法证明“1+++…+<2-(n≥2,n∈N*)”时第一步需要验证的不等式为.能力提升6.已知n为正偶数,用数学归纳法证明“1-+-+…+=2++…+”时,若已假设n=k(k≥2且k为偶数)时等式成立,则还需要用归纳假设再证n= 时等式成立()A.k+1B.k+2C.2k+2D.2(k+2)7.用数学归纳法证明“1+++…+< bdsfid="1143" p=""><>A.2k-1B.2k-1C.2kD.2k+18.设f(x)是定义在正整数集上的函数,且f(x)满足:当f(k)≥k+1成立时,总可推出f(k+1)≥k+2成立.那么,下列说法正确的是()A.若f(1)<2成立,则f(10)<11成立B.若f(3)≥4成立,则当k≥1时,均有f(k)≥k+1成立C.若f(2)<3成立,则f(1)≥2成立D.若f(4)≥5成立,则当k≥4时,均有f(k)≥k+1成立9.设平面内有n(n≥3)条直线,它们任何2条不平行,任何3条不共点,若k条这样的直线把平面分成f个区域,则k+1条直线把平面分成的区域数f(k+1)=f+ .10.用数学归纳法证明“2n>2n2-2n+1对于n≥n0的正整数n均成立”时,第一步证明中的起始值n0应取.11.设f(n)=1-+-+…+,则f(k+1)=f+ .(不用化简)12.用数学归纳法证明“1-+-+…+-=++…+”时,假设n=k时等式成立,则n=k+1时,等式右边为.13.(10分)[xx·山西孝义质检]数列满足a n+5a n+1=36n+18,且a1=4.(1)写出的前3项,并猜想其通项公式;(2)用数学归纳法证明你的猜想.难点突破14.(5分)如果命题P(n∈N*)对n=k(k∈N*)成立,则它对n=k+1也成立,现已知P对n=4不成立,则下列结论中正确的是 ()A.P对任意n∈N*成立B.P对n>4成立C.P对n<4成立D.P对n≤4不成立15.(5分)已知f(m)=1+++…+(m∈N*),用数学归纳法证明f>时,f-f= .课时作业(三十三)1.A[解析] 因为M-N=2a(a-2)-(a+1)(a-3)=a2-2a+3=(a-1)2+2>0,所以M>N,故选A.2.D[解析] 因为“a>b”不能推出“|a|>|b|”成立,且“|a|>|b|”也不能推出“a>b”成立,所以“a>b”是“|a|>|b|”的既不充分也不必要条件.故选D.3.C[解析] 取a=1,b=-1,排除选项A;取a=0,b=-1,排除选项B;取c=0,排除选项D;显然>0,则不等式a>b的两边同时乘,所得不等式仍成立.故选C.4.[-1,8)[解析] 因为-5<b<3,所以0≤|b|<5,又因为-1≤a≤3,所以-1≤a+|b|<8,所以< bdsfid="1228" p=""></b<3,所以0≤|b|<5,又因为-1≤a≤3,所以-1≤a+|b|<8,所以<>a+|b|的取值范围是[-1,8).5.d>b>a>c [解析] ∵a+b=c+d,a+d>c+b,∴2a>2c,即a>c,∴b<d.∵a+c<b,∴a<b.综上可得< bdsfid="1235" p=""></d.∵a+c<b,∴a<b.综上可得<>d>b>a>c.6.B[解析] c=0时,①错误;a>0>b时,②错误;根据不等式的性质知③正确;根据指数函数的性质可知④正确.故正确的有2个.7.D[解析] A中,当x=1时,不成立;B中,当x=0时,不成立;C中,当a=0,b=-1时,不成立;D 中,因为2x>0,所以a·2x>b·2x成立.故选D.8.A[解析] 由题可知a=log2<a<b.故选a.< bdsfid="1248" p=""><a<b.故选a.<>9.B[解析] ∵x>0,y>0,==<1,∴x<y,故选b.< bdsfid="1252" p=""></y,故选b.<>10.A[解析] ∵a<b,(c-a)(c-b)0,∴a<c<b,且db,结合d<c,知< bdsfid="1258" p=""></c,知<></c<b,且d</b,(c-a)(c-b) d<a<c<b.故选a.< bdsfid="1262" p=""></a<c<b.故选a.<>11.C[解析] 特例法:例如蔬菜A连续10天的价格分别为1,2,3,4,…,10,蔬菜B连续10天的价格分别为10,9,…,1时,A?B,B?A 同时不成立,故选C.12.< [解析] ∵a≠b,a<0,∴a-2b-=<0,∴a<2b-.13. [解析] 由函数的解析式可知0<a+b<2,-1<-a+b< bdsfid="1272" p=""></a+b<2,-1<-a+b<>14.(-24,8)[解析] 当-3<a<="">15.A[解析] 当x=1,y=-1 时,-6≤a-b+c≤4,所以a-b+c的最小值为-6,最大值为4,故B,D 错误;当x=-1,y=-1 时,-12≤-a-b+c≤-2,则2≤a+b-c≤12,所以a+b-c的最小值为2,最大值为12,故A正确,C错误.故选A.16.2[解析] 设2a+3b=x(a+b)+y(a-b),则解得因为-≤(a+b)≤,-2≤-(a-b)≤-1,所以-≤(a+b)-(a-b)≤,即-≤2a+3b≤,所以m+n=2.课时作业(三十四)1.A[解析] 由x2-3x-10<0,解得-2<x<5.< bdsfid="1289" p=""></x<5.<>2.A[解析] 由x2-x-2<0,得-1<x<2,故选a.< bdsfid="1293" p=""></x<2,故选a.<>3.C[解析] 由(x-1)(x-2)<2,解得0<x< bdsfid="1297" p=""></x<>4.(-∞,-6]∪[2,+∞)[解析] 由已知得方程x2-ax-a+3=0有实数根,即Δ=a2+4(a-3)≥0,故a≥2或a≤-6.5.2[解析] 由题意知,a≠0,方程ax2-6x+a2=0的根为1,m,且m>1,则所以m=2.6.B[解析] 不等式x2<ax+b可化为x2-ax-b<0,其解集是{x|1<x</ax+b可化为x2-ax-b<0,其解集是{x|1<x7.A[解析] 设f(x)=2x-x2,则当x∈[-2,3]时,f(x)=-(x-1)2+1∈[-8,1],因为存在x∈[-2,3],使不等式2x-x2≥a成立,所以a≤f(x)max,所以a≤1,故选A.8.B[解析] 由题意知3是方程xf(x-1)=a的一个根,则a=3f(3-1)=3×(2-1)=3,故选B.9.A[解析] 令g(x)=x2-4x-2,x∈(1,4),易得g(x)<-2.< bdsfid="1317" p=""><-2.<>10.B[解析] 由题意有(1-a i x)2<1?x2-2a i x<0?xx-<0,所以不等式的解集为0,.又0<<<,所以x的取值范围为0,,故选B.11.B[解析] 由题意知征收耕地占用税后每年损失耕地为20-t万亩,则税收收入为20-t×24 000×t%万元,由题意有20-t×24 000×t%≥9000,整理得t2-8t+15≤0,解得3≤t≤5,∴当耕地占用税税率为3%~5%时,既可减少耕地损失又可保证此项税收一年不少于9000万元.∴t的取值范围是3≤t≤5,故选B.12.(-∞,-2][解析] f(x)=x2-2ax+a2-1=[x-(a+1)][x-(a-1)],则f(x)<0?a-1<x<a+1,则f[f(x)]<0?a-1<f(x)< bdsfid="1327" p=""></x<a+1,则f[f(x)]<0?a-1<f(x)<>13.,[解析] 记f(m)=mx2-2x-m+1=(x2-1)m+1-2x(|m|≤2),则f(m)<0恒成立等价于解得<x<.< bdsfid="1334" p=""></x<.<>14. [解析] 由题意,f[f(x)]≤3,则f(x)≥0或∴f(x)≥-3,∴x<0或∴x≤.15.B[解析] 设f(x)=x2-2(a-2)x+a,当Δ=4(a-2)2-4a<0,即1<a0对x∈R恒成立.当Δ=0时,a=1或a=4,当a=1时,f=0,不合题意;当a=4时,f(2)=0,符合题意.当Δ>0时,</a需满足即即4<a≤5.综上,实数a的取值范围是(1,5].< bdsfid="1345" p=""></a≤5.综上,实数a的取值范围是(1,5].<>16.-6[解析] 因为x∈[1,2],所以ax2+bx+c≤1等价于a≤,由题意知存在a∈[1,2],使得不等式a≤对任意x∈[1,2]恒成立,所以≥1,即x2+bx+c-1≤0对x∈[1,2]恒成立,所以即所以7b+5c=3(b+c)+2(2b+c)≤-6,即7b+5c的最大值为-6.课时作业(三十五)1.C[解析] 原不等式等价于不等式组或分别画出两个不等式组所表示的平面区域(图略),观察可知选C.2.C[解析] ∵点(-3,-1)和(4,-6)在直线3x-2y-a=0的两侧,∴(-9+2-a)(12+12-a)<0,即(a+7)(a-24)<0,解得-7<a<24,故选 c.< bdsfid="1358" p=""></a<24,故选c.<>3.B[解析] 如图,不等式+-6≤0所对应的平面区域为一个菱形及其内部,菱形的对角线长分别为12,4,所以其面积为×12×4=24,故选B.4.正方形[解析] 不等式组表示的平面区域由四条直线x=1,x=-1,y=2,y=4围成,其形状为正方形.5.5[解析] 由约束条件作出可行域如图所示,由得得A(2,-1).由图可知x2+y2的最大值为22+(-1)2=5,故答案为5.6.B[解析] 由约束条件作出可行域如图所示,目标函数z=x-2y可化为y=x-z,其中-z表示斜率为的直线在y轴上的截距,通过平移可知,当直线经过点A(3,1)时-z取到最大值,即z 取得最小值,最小值为1.故选B.7.B[解析] 作出可行域如图所示,目标函数z=2x+y可化为y=-2x+z,其中z表示斜率为-2的直线在y轴上的截距,由图可知,当直线过点A,时z取得最大值,故选B.8.A[解析] 作出不等式组表示的平面区域如图中阴影部分所示,又表示区域内的点与原点连线的斜率,由图知,==,故选A.。

2019年高考数学一轮总复习第六章不等式、推理与证明6.

2019年高考数学一轮总复习第六章不等式、推理与证明6.

③“a,b∈R,则 a-b>0⇒a>b”类比推出“若 a,b∈C,则 a-b>0⇒ a>b”;
④“若 x∈R,则|x|<1⇒-1<x<1”类比推出“若 z∈C,则|z|<1⇒-1<z<1”.
其中类比结论正确的个数为( )
A.1
B.2
C.3
D.4
答案:B
2.若 P0(x0,y0)在椭圆ax22+by22=1(a>b>0)外,过 P0 作椭圆的两条切线的切点为 P1, P2,则切点弦 P1P2 所在的直线方程是xa02x+yb02y=1,那么对于双曲线则有如下命题: 若 P(x0,y0)在双曲线ax22-by22=1(a>0,b>0)外,过 P0 作双曲线的两条切线,切点为 P1, P2,则切点弦 P1P2 所在直线的方程是________.
合情推 情推理在数学发现中的 理与 作用.
演绎 (2)了解演绎推理的重要 推理 性,掌握演绎推理的基
5年29 考
函数、不等式、 数列等问题;演 绎推理常结合函 数、方程、不等
2
基础自主梳理
「基础知识填一填」
1.合情推理
类型
定义
特点
归纳 根据一类事物的 部分对象具有某种特征,推出这 由 部分 到 整体 、
必修部分
第六章 不等式、推理与证明
第五节 合情推理与演绎推理

考情分析 1

3 考点疑难突破

基础自主梳理 2

4 课时跟踪检测
1
考情分析
考点分 布
考纲要求
考点 频率
命题趋势
合情推理与演绎推理
(1)了解合情推理的含义, 能利用归纳和类比等进

高考数学一轮复习第6章不等式及其证明第6节数学归纳法教师用书

高考数学一轮复习第6章不等式及其证明第6节数学归纳法教师用书

第六节 数学归纳法1.数学归纳法证明一个与正整数n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时命题成立;(2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立. 2.数学归纳法的框图表示1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)用数学归纳法证明问题时,第一步是验证当n =1时结论成立.( ) (2)用数学归纳法证明问题时,归纳假设可以不用.( )(3)不论是等式还是不等式,用数学归纳法证明时,由n =k 到n =k +1时,项数都增加了一项.( )(4)用数学归纳法证明等式“1+2+22+…+2n +2=2n +3-1”,验证n =1时,左边式子应为1+2+22+23.( )[答案] (1)× (2)× (3)× (4)√2.(2017·杭州二中月考)在应用数学归纳法证明凸n 边形的对角线为12n (n -3)条时,第一步检验n 等于( )A .1B .2C .3D .0C [因为凸n 边形最小为三角形,所以第一步检验n 等于3,故选C.]3.已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1n =2⎝ ⎛⎭⎪⎫1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2,且k 为偶数)时命题为真,则还需要用归纳假设再证( )A .n =k +1时等式成立B .n =k +2时等式成立C .n =2k +2时等式成立D .n =2(k +2)时等式成立 B [k 为偶数,则k +2为偶数.]4.(教材改编)已知{a n }满足a n +1=a 2n -na n +1,n ∈N *,且a 1=2,则a 2=__________,a 3=__________,a 4=__________,猜想a n =__________.3 4 5 n +15.用数学归纳法证明:“1+12+13+…+12n -1<n (n >1)”由n =k (k >1)不等式成立,推证n =k +1时,左边应增加的项的项数是__________.【导学号:】2k[当n =k 时,不等式为1+12+13+…+12k -1<k .则n =k +1时,左边应为1+12+13+…+12k -1+12k +12k +1+…+12k +1-1,则左边增加的项数为2k +1-1-2k+1=2k.]用数学归纳法证明等式设f (n )=1+12+13+ (1)(n ∈N *).求证:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).[证明] (1)当n =2时,左边=f (1)=1,右边=2⎝ ⎛⎭⎪⎫1+12-1=1,左边=右边,等式成立.4分(2)假设n =k (k ≥2,k ∈N *)时,结论成立,即f (1)+f (2)+…+f (k -1)=k [f (k )-1],8分那么,当n =k +1时,f (1)+f (2)+…+f (k -1)+f (k )=k [f (k )-1]+f (k )=(k +1)f (k )-k =(k +1)⎣⎢⎡⎦⎥⎤f k +1-1k +1-k =(k +1)f (k +1)-(k +1)=(k +1)[f (k +1)-1],12分 ∴当n =k +1时结论仍然成立.由(1)(2)可知:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).15分[规律方法] 1.用数学归纳法证明等式问题,要“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值n 0是多少.2.由n =k 时命题成立,推出n =k +1时等式成立,一要找出等式两边的变化(差异),明确变形目标;二要充分利用归纳假设,进行合理变形,正确写出证明过程,不利用归纳假设的证明,就不是数学归纳法.[变式训练1] 求证:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n (n ∈N *).[证明] (1)当n =1时,左边=1-12=12,右边=11+1=12,左边=右边.4分 (2)假设n =k 时等式成立,即1-12+13-14+…+12k -1-12k=1k +1+1k +2+ (12),8分 则当n =k +1时,⎝ ⎛⎭⎪⎫1-12+13-14+…+12k -1-12k +⎝ ⎛⎭⎪⎫12k +1-12k +2 =⎝ ⎛⎭⎪⎫1k +1+1k +2+…+12k +⎝ ⎛⎭⎪⎫12k +1-12k +2=1k +2+1k +3+…+12k +1+12k +2.13分 即当n =k +1时,等式也成立.综合(1)(2)可知,对一切n ∈N *,等式成立.15分用数学归纳法证明不等式用数学归纳法证明:对一切大于1的自然数n ,不等式⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15·…·⎝ ⎛⎭⎪⎫1+12n -1>2n +12均成立. [证明] (1)当n =2时,左边=1+13=43;右边=52.∵左边>右边,∴不等式成立.4分(2)假设n =k (k ≥2,且k ∈N *)时不等式成立, 即⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15·…·⎝ ⎛⎭⎪⎫1+12k -1>2k +12.8分则当n =k +1时,⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15·…·⎝ ⎛⎭⎪⎫1+12k -1⎣⎢⎡⎦⎥⎤1+12k +1-1>2k +12·2k +22k +1=2k +222k +1=4k 2+8k +422k +1>4k 2+8k +322k +1=2k +32k +122k +1=2k +1+12.14分∴当n =k +1时,不等式也成立.由(1)(2)知,对于一切大于1的自然数n ,不等式都成立.15分[规律方法] 1.当遇到与正整数n 有关的不等式证明时,若用其他方法不容易证明,则可考虑应用数学归纳法.2.用数学归纳法证明不等式的关键是由n =k 时命题成立,再证n =k +1时命题也成立,在归纳假设使用后可运用比较法、综合法、分析法、放缩法等来加以证明,充分应用基本不等式、不等式的性质等放缩技巧,使问题得以简化.[变式训练2] 已知数列{a n },当n ≥2时,a n <-1,又a 1=0,a 2n +1+a n +1-1=a 2n ,求证:当n ∈N *时,a n +1<a n .[证明] (1)当n =1时,∵a 2是a 22+a 2-1=0的负根, ∴a 1>a 2.4分(2)假设当n =k (k ∈N *)时,a k +1<a k ,6分∵a 2k +1-a 2k =(a k +2-a k +1)(a k +2+a k +1+1),a k +1<a k ≤0, ∴a 2k +1-a 2k >0.10分又∵a k +2+a k +1+1<-1+(-1)+1=-1, ∴a k +2-a k +1<0,∴a k +2<a k +1,即当n =k +1时,命题成立. 由(1)(2)可知,当n ∈N *时,a n +1<a n .15分归纳——猜想——证明已知数列{a n }的前n 项和S n 满足:S n =n 2+a n-1,且a n >0,n ∈N *.(1)求a 1,a 2,a 3,并猜想{a n }的通项公式; (2)证明通项公式的正确性.[解] (1)当n =1时,由已知得a 1=a 12+1a 1-1,a 21+2a 1-2=0.∴a 1=3-1(a 1>0).2分当n =2时,由已知得a 1+a 2=a 22+1a 2-1,将a 1=3-1代入并整理得a 22+23a 2-2=0. ∴a 2=5-3(a 2>0).同理可得a 3=7- 5. 猜想a n =2n +1-2n -1(n ∈N *).7分(2)证明:①由(1)知,当n =1,2,3时,通项公式成立. ②假设当n =k (k ≥3,k ∈N *)时,通项公式成立, 即a k =2k +1-2k -1.10分 由于a k +1=S k +1-S k =a k +12+1a k +1-a k 2-1a k, 将a k =2k +1-2k -1代入上式,整理得a 2k +1+22k +1a k +1-2=0,∴a k +1=2k +3-2k +1,即n =k +1时通项公式成立.14分由①②可知对所有n ∈N *,a n =2n +1-2n -1都成立.15分[规律方法] 1.猜想{a n }的通项公式时应注意两点:(1)准确计算a 1,a 2,a 3发现规律(必要时可多计算几项);(2)证明a k +1时,a k +1的求解过程与a 2,a 3的求解过程相似,注意体会特殊与一般的辩证关系.2.“归纳—猜想—证明”的模式,是不完全归纳法与数学归纳法综合应用的解题模式,这种方法在解决探索性问题、存在性问题时起着重要作用,它的模式是先由合情推理发现结论,然后经逻辑推理证明结论的正确性.[变式训练3] (2017·绍兴调研)已知数列{x n }满足x 1=12,x n +1=11+x n,n ∈N *.猜想数列{x 2n }的单调性,并证明你的结论. 【导学号:】[解] 由x 1=12及x n +1=11+x n ,得x 2=23,x 4=58,x 6=1321,由x 2>x 4>x 6猜想:数列{x 2n }是递减数列.4分 下面用数学归纳法证明:(1)当n =1时,已证命题成立.6分 (2)假设当n =k (k ≥1,k ∈N *)时命题成立, 即x 2k >x 2k +2,易知x k >0,那么x 2k +2-x 2k +4=11+x 2k +1-11+x 2k +3=x 2k +3-x 2k +11+x 2k +11+x 2k +3=x 2k -x 2k +21+x 2k1+x 2k +11+x 2k +21+x 2k +3>0,12分即x 2(k +1)>x 2(k +1)+2.也就是说,当n =k +1时命题也成立. 结合(1)(2)知,对∀n ∈N *命题成立.15分 [思想与方法]1.数学归纳法是一种重要的数学思想方法,主要用于解决与正整数有关的数学命题.证明时步骤(1)和(2)缺一不可,步骤(1)是步骤(2)的基础,步骤(2)是递推的依据.2.在推证n =k +1时,可以通过凑、拆、配项等方法用上归纳假设.此时既要看准目标,又要弄清n =k 与n =k +1之间的关系.在推证时,应灵活运用分析法、综合法、反证法等方法.[易错与防范]1.第一步验证当n =n 0时,n 0不一定为1,要根据题目要求选择合适的起始值. 2.由n =k 时命题成立,证明n =k +1时命题成立的过程中,一定要用归纳假设,否则就不是数学归纳法.3.解“归纳——猜想——证明”题的关键是准确计算出前若干具体项,这是归纳、猜想的基础.否则将会做大量无用功.课时分层训练(三十五) 数学归纳法A 组 基础达标 (建议用时:30分钟)一、选择题1.用数学归纳法证明2n>2n +1,n 的第一个取值应是( ) A .1 B .2 C .3D .4C [∵n =1时,21=2,2×1+1=3,2n>2n +1不成立;n =2时,22=4,2×2+1=5,2n >2n +1不成立; n =3时,23=8,2×3+1=7,2n >2n +1成立.∴n 的第一个取值应是3.]2.一个关于自然数n 的命题,如果验证当n =1时命题成立,并在假设当n =k (k ≥1且k ∈N *)时命题成立的基础上,证明了当n =k +2时命题成立,那么综合上述,对于( ) 【导学号:】A .一切正整数命题成立B .一切正奇数命题成立C .一切正偶数命题成立D .以上都不对B [本题证的是对n =1,3,5,7,…命题成立,即命题对一切正奇数成立.]3.在数列{a n }中,a 1=13,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为( )A.1n -1n +1B.12n2n +1C.12n -12n +1D.12n +12n +2C [由a 1=13,S n =n (2n -1)a n 求得a 2=115=13×5,a 3=135=15×7,a 4=163=17×9.猜想a n =12n -12n +1.]4.凸n 多边形有f (n )条对角线,则凸(n +1)边形的对角线的条数f (n +1)为( )A .f (n )+n +1B .f (n )+nC .f (n )+n -1D .f (n )+n -2C [边数增加1,顶点也相应增加1个,它与和它不相邻的n -2个顶点连接成对角线,原来的一条边也成为对角线,因此,对角线增加(n -1)条.]5.用数学归纳法证明3(2+7k)能被9整除,证明n =k +1时,应将3(2+ 7k +1)配凑成( ) 【导学号:】 A .6+21·7kB .3(2+7k)+21 C .3(2+7k)D .21(2+7k)-36D [要配凑出归纳假设,故3(2+7k +1)=3(2+7·7k)=6+21·7k=21(2+7k)-36.]二、填空题6.用数学归纳法证明“当n 为正奇数时,x n+y n能被x +y 整除”,当第二步假设n =2k -1(k ∈N *)命题为真时,进而需证n =__________时,命题亦真.2k +1 [n 为正奇数,假设n =2k -1成立后,需证明的应为n =2k +1时成立.] 7.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上的项为__________. 【导学号:】(k 2+1)+(k 2+2)+…+(k +1)2[当n =k 时左端为1+2+3+…+k +(k +1)+(k +2)+…+k 2,则当n =k +1时,左端为1+2+3+…+k 2+(k 2+1)+(k 2+2)+…+(k +1)2, 故增加的项为(k 2+1)+(k 2+2)+…+(k +1)2.]8.已知f (n )=1+12+13+…+1n (n ∈N *),经计算得f (4)>2,f (8)>52,f (16)>3,f (32)>72,则其一般结论为__________________.f (2n )>n +22(n ≥2,n ∈N *) [因为f (22)>42,f (23)>52,f (24)>62,f (25)>72,所以当n ≥2时,有f (2n)>n +22.故填f (2n)>n +22(n ≥2,n ∈N *).]三、解答题9.用数学归纳法证明:1+122+132+…+1n 2<2-1n (n ∈N *,n ≥2).[证明] (1)当n =2时,1+122=54<2-12=32,命题成立.4分(2)假设n =k 时命题成立,即1+122+132+…+1k 2<2-1k .7分 当n =k +1时,1+122+132+…+1k 2+1k +12<2-1k+1k +12<2-1k +1kk +1=2-1k +1k -1k +1=2-1k +1命题成立.14分 由(1)(2)知原不等式在n ∈N *,n ≥2时均成立.15分 10.在数列{a n }中,a 1=2,a n +1=λa n +λn +1+(2-λ)2n (n ∈N *,λ>0).(1)求a 2,a 3,a 4;(2)猜想{a n }的通项公式,并加以证明. 【导学号:】 [解] (1)a 2=2λ+λ2+2(2-λ)=λ2+22,a 3=λ(λ2+22)+λ3+(2-λ)22=2λ3+23, a 4=λ(2λ3+23)+λ4+(2-λ)23=3λ4+24.6分(2)由(1)可猜想数列通项公式为:a n =(n -1)λn +2n .8分下面用数学归纳法证明:①当n =1,2,3,4时,等式显然成立, ②假设当n =k (k ≥4,k ∈N *)时等式成立, 即a k =(k -1)λk+2k,10分 那么当n =k +1时,a k +1=λa k +λk +1+(2-λ)2k=λ(k -1)λk+λ2k+λk +1+2k +1-λ2k=(k -1)λk +1+λk +1+2k +1=[(k +1)-1]λk +1+2k +1,所以当n =k +1时,猜想成立,由①②知数列的通项公式为a n =(n -1)λn +2n (n ∈N *,λ>0).15分B 组 能力提升 (建议用时:15分钟)1.设f (x )是定义在正整数集上的函数,且f (x )满足:“当f (k )≥k 2成立时,总可推出f (k +1)≥(k +1)2成立.”那么,下列命题总成立的是( )A .若f (1)<1成立,则f (10)<100成立B .若f (2)<4成立,则f (1)≥1成立C .若f (3)≥9成立,则当k ≥1时,均有f (k )≥k 2成立D .若f (4)≥16成立,则当k ≥4时,均有f (k )≥k 2成立 D [∵f (k )≥k 2成立时,f (k +1)≥(k +1)2成立,∴f (4)≥16时,有f (5)≥52,f (6)≥62,…,f (k )≥k 2成立.]2.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f (4)=__________;当n >4时,f (n )=__________(用n 表示).5 12(n +1)(n -2)(n ≥3) [f (3)=2,f (4)=f (3)+3=2+3=5, f (n )=f (3)+3+4+…+(n -1)=2+3+4+…+(n -1) =12(n +1)(n -2)(n ≥3).] 3.设数列{a n }的前n 项和为S n ,满足S n =2na n +1-3n 2-4n ,n ∈N *,且S 3=15. (1)求a 1,a 2,a 3的值;(2)求数列{a n }的通项公式. 【导学号:】 [解] (1)由题意知S 2=4a 3-20, ∴S 3=S 2+a 3=5a 3-20.2分又S 3=15,∴a 3=7,S 2=4a 3-20=8. 又S 2=S 1+a 2=(2a 2-7)+a 2=3a 2-7, ∴a 2=5,a 1=S 1=2a 2-7=3. 综上知,a 1=3,a 2=5,a 3=7.6分(2)由(1)猜想a n =2n +1,下面用数学归纳法证明. ①当n =1时,结论显然成立;7分 ②假设当n =k (k ≥1)时,a k =2k +1, 则S k =3+5+7+…+(2k +1)=k [3+2k +1]2=k (k +2).又S k =2ka k +1-3k 2-4k , ∴k (k +2)=2ka k +1-3k 2-4k , 解得2a k +1=4k +6,13分∴a k +1=2(k +1)+1,即当n =k +1时,结论成立. 由①②知,∀n ∈N *,a n =2n +1.15分。

高考数学一轮复习 第6章 不等式、推理与证明 第6讲 数学归纳法课件 理 北师大版

高考数学一轮复习 第6章 不等式、推理与证明 第6讲 数学归纳法课件 理 北师大版

1 k+
1)
3,
因为2(
1 k+
1)
2-21k2-(
1 k+
1)
3=2(kk++31)
3-21k2
=2(-k+3k- 1)13k2<0,
所以
f(k+
1)<32-2(
1 k+
1)
2=
g(k+
1),
由①、②可知,对一切 n∈N*,
都有 f(n)≤g(n)成立.
“归纳——猜想——证明”的模式 “归纳——猜想——证明”的模式是不完全归纳法与数学 归纳法综合应用的解题模式.其一般思路是:通过观察有限 个特例,猜想出一般性的结论,然后用数学归纳法证明.这 种方法在解决探索性问题、存在性问题或与正整数有关的命 题中有着广泛的应用.其关键是归纳、猜想出公式.
考点二 用数学归纳法证明不等式
用数学 归纳法证明不等式
2+1·4+1·…·2n+1> n+1.
24
2n
[证明] (1)当 n=1 时,左式=32,
右式= 2,
左式>右式,所以结论成立.
(2)假设 n=k(k≥1,k∈N*)时结论成立,
即2+1·4+1·…·2k+1> k+1,
24
2k
则当
n= k+ 1
f(1)+f(2)+…+f(k-1)+f(k) =k[f(k)-1]+f(k) =(k+1)f(k)-k
=(k+1)f(k+1)-k+1 1-k
=(k+1)f(k+1)-(k+1) =(k+1)[f(k+1)-1], 所以当 n=k+1 时结论仍然成立. 由(1)(2)可知:f(1)+f(2)+…+f(n-1)=n[f(n)-1](n≥2,n ∈ N* ).

2019-2020年高考数学一轮复习第6章不等式推理与证明课件文北师大版

2019-2020年高考数学一轮复习第6章不等式推理与证明课件文北师大版
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
遍自己写的笔记,既可以起到复习的作用,又可以检查笔记中的遗漏和错误。遗漏之处要补全,错别字要纠正,过于潦草的字要写清楚。同时,将自己 对讲课内容的理解、自己的收获和感想,用自己的话写在笔记本的空白处。这样,可以使笔记变的更加完整、充实。 • 三、课后“静思2分钟”大有学问 • 我们还要注意课后的及时思考。利用课间休息时间,在心中快速把刚才上课时刚讲过的一些关键思路理一遍,把老师讲解的题目从题意到解答整个过 程详细审视一遍,这样,不仅可以加深知识的理解和记忆,还可以轻而易举地掌握一些关键的解题技巧。所以,2分钟的课后静思等于同一学科知识的 课后复习30分钟。
2019/7/20
最新中小学教学课件
thank
you!
2019/7/20
最新中小学教学课件
第六章 不等式、推理与证明
[五年考情]
[重点关注] 1.从近五年全国卷高考试题来看,涉及本章知识的既有客观题,又有解答 题.客观题主要考查不等关系与不等式,一元二次不等式的解法,简单线性规 划,合情推理与演绎推理,解答题主要考查不等式的证明、基本不等式与直接证 明. 2.不等式具有很强的工具性,应用十分广泛,推理与证明贯穿于每一个章 节,因此,不等式往往与集合、函数、导数的应用、数列交汇考查,对于证明, 主要体现在不等式证明和不等式恒成立证明以及几何证明. 3.从能力上,突出对函数与方程、转化与化归、分类讨论等数学思想的考 查.

高考数学一轮复习 第六章 不等式、推理与证明 6-6 直接证明与间接证明课件 文

高考数学一轮复习 第六章 不等式、推理与证明 6-6 直接证明与间接证明课件 文

∴f(0)≥0.于是 f(0)=0.
(2)对于 f(x)=2x,x∈[0,1],f(1)=2 不满足新定义中的条件②, ∴f(x)=2x,(x∈[0,1])不是理想函数. 对于 f(x)=x2,x∈[0,1],显然 f(x)≥0,且 f(1)=1. 任意的 x1,x2∈[0,1],x1+x2≤1, f(x1+x2)-f(x1)-f(x2)=(x1+x2)2-x21-x22=2x1x2≥0, 即 f(x1)+f(x2)≤f(x1+x2). ∴f(x)=x2(x∈[0,1])是理想函数. 对于 f(x)= x,x∈[0,1],显然满足条件①②. 对任意的 x1,x2∈[0,1],x1+x2≤1, 有 f2(x1+x2)-[f(x1)+f(x2)]2=(x1+x2)-(x1+2 x1x2+x2)=-2 x1x2≤0, 即 f2(x1+x2)≤[f(x1)+f(x2)]2.∴f(x1+x2)≤f(x1)+f(x2),不满足条件③. ∴f(x)= x(x∈[0,1])不是理想函数.综上,f(x)=x2(x∈[0,1])是理想函数, f(x)=2x(x∈[0,1])与 f(x)= x(x∈[0,1])不是理想函数.
命题角度2 分析法的应用
典例2
已知△ABC的三个内角A,B,C成等差数列,A,B,C的对边分别为a,b,c.
求证:a+1 b+b+1 c=a+3b+c. 证明 要证a+1 b+b+1 c=a+3b+c,
即证a+a+b+b c+a+b+b+c c=3,
也就是a+c b+b+a c=1,
只需证c(b+c)+a(a+b)=(a+b)(b+c),
2.分析法 (1)定义:从___要__证__明__的__结__论___出发,逐步寻求使它成立的__充__分__条__件_,直到最后,把要证明的结论归 结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法. (2)框图表示: Q⇐P1 ―→ P1⇐P2 ―→ P2⇐P3 ―→…―→ 得到一个明显成立的条件 (其中Q表示要证明的结 论). (3)思维过程:执果索因.

19版高考数学一轮复习第六章不等式、推理与证明课时达标36合情推理与演绎推理

19版高考数学一轮复习第六章不等式、推理与证明课时达标36合情推理与演绎推理

19版高考数学一轮复习第六章不等式、推理与证明课时达标36合情推理与演绎推理Dπ是无理数;结论:无限不循环小数是无理数解析对于A项,小前提与结论互换,错误;对于B项,符合演绎推理过程且结论正确;对于C项和D项,均为大前提错误,故选B.2.请仔细观察1,1,2,3,5,( ),13,运用合情推理,可知写在括号里的数最可能是( A )A.8 B.9C.10 D.11解析观察题中所给各数可知,2=1+1,3=1+2,5=2+3,8=3+5,13=5+8,∴括号中的数为8.故选A.3.在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n +k|n∈Z} ,k=0,1,2,3,4.给出如下四个结论:①2 013∈[3];②-2∈[2];③Z=[0]∪[1]∪[2]∪[3]∪[4];④整数a,b属于同一“类”的充要条件是“a-b∈[0]”.其中正确结论的个数为( C )A.1 B.2C.3 D.4解析因为2013=402×5+3,所以2013∈[3],①正确;-2=-1×5+3,-2∈[3],所以②不正确;因为整数集中被5除的数可以且只可以分成五类,所以③正确;整数a,b属于同一“类”,因为整数a,b被5除的余数相同,从而a-b被5除的余数为0,反之也成立,故整数a,b属于同一“类”的充要条件是“a-b ∈[0]”,故④正确.所以正确的结论有3个,故选C.4.观察(x2)′=2x,(x4)′=4x3, (cos x)′=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=( D )A.f(x) B.-f(x)C.g(x) D.-g(x)解析由所给等式知,偶函数的导数是奇函数.∵f(-x)=f(x),∴f(x)是偶函数,从而g(x)是奇函数.∴g(-x)=-g(x).5.已知a n=log n+1(n+2)(n∈N*),观察下列运算:a1·a2=log23·log34=lg 3lg 2·lg 4lg 3=2;a1·a2·a3·a4·a5·a6=log23·log34·…·log78=lg 3 lg 2·lg 4lg 3·…·lg 8lg 7=3;….若a1·a2·a3·…·a k(k∈N*)为整数,则称k为“企盼数”,试确定当a1·a2·a3·…·ak =2 018时,“企盼数”k为( C )A.22 017+2 B.22 017C.22 018-2 D.22 017-4解析a1·a2·a3·…·a k=lg k+2lg 2=2018,lg(k+2)=lg 22 018,故k=22 018-2.6.(2016·北京卷)袋中装有偶数个球,其中红球、黑球各占一半.甲,乙,丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( B )A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多解析假设袋中只有一红一黑两个球,第一次取出后,若将红球放入了甲盒,则乙盒中有一个黑球,丙盒中无球,A错误;若将黑球放入了甲盒,则乙盒中无球,丙盒中有一个红球,D错误;同样,假设袋中有两个红球和两个黑球,第一次取出两个红球,则乙盒中有一个红球,第二次必然拿出两个黑球,则丙盒中有一个黑球,此时乙盒中红球多于丙盒中的红球,C错误,故选B.二、填空题7.(2018·河南开封联考)如图所示,由曲线y=x2,直线x=a,x=a+1(a>0)及x轴围成的曲边梯形的面积介于相应小矩形与大矩形的面积之间,即a2<∫a+1a x2d x<(a+1)2.运用类比推理,若对∀n∈N*,1n+1+1n+2+…+12n<A<1n+1 n+1+…+12n-1恒成立,则实数A=__ln 2__.解析令1n+1<A1<1n,1n+2<A2<1n+1,…,12n<A n <12n -1,依据类比推理可得A 1=∫n +1n1xd x =ln(n +1)-ln n ,A 2=⎠⎜⎜⎛n +1n +21xd x =ln(n +2)-ln(n +1),…,A n =⎠⎜⎜⎛2n -12n 1xd x =ln(2n )-ln(2n -1),所以A =A 1+A 2+…+A n =ln(n +1)-ln n +ln(n +2)-ln(n +1)+…+ln(2n )-ln(2n -1)=ln(2n )-ln n =ln 2.8.观察下列等式:1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10 =49…照此规律,第n 个等式为__n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2__.解析观察这些等式,第一个等式左边是1个数,从1开始;第二个等式左边是3个数相加,从2开始;第三个等式左边是5个数相加,从3开始;……;第n个等式左边是2n-1个数相加,从n开始.等式的右边为左边2n-1个数的中间数的平方,故第n个等式为n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2.9.设等差数列{a n}的前n项和为S n,则S4,S8-S4,S12-S8,S16-S12成等差数列.类比以上结论我们可以得到一个真命题为:设等比数列{b n}的前n项积为T n,则__T4,T8T4,T12T8,T16T12__成等比数列.解析利用类比推理把等差数列中的差换成商即可.三、解答题10.设f(x)=13x+3,先分别求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后归纳猜想一般性结论,并给出证明.解析f(0)+f(1)=130+3+131+3=11+3+131+3=331+3+131+3=33,同理可得f(-1)+f(2)=33,f(-2)+f(3)=33.由此猜想f(x)+f(1-x)=33.证明:f(x)+f(1-x)=13x+3+131-x+3=13x+3+3x3+3·3x=13x+3+3x33+3x=3+3x33+3x=33.11.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{a n}是等和数列,且a1=2,公和为5.求:(1)a18的值;(2)该数列的前n项和S n.解析(1)由等和数列的定义,数列{a n}是等和数列,且a1=2,公和为5,易知a2n-1=2,a2n =3(n=1,2,…),故a18=3.(2)当n为偶数时,Sn=a1+a2+…+a n=(a1+a3+…+a n-1)+(a2+a4+…+a n)当n为奇数时,S n=S n-1+a n=52(n-1)+2=52n -12. 综上所述,S n =⎩⎪⎨⎪⎧52n ,n 为偶数,52n -12,n 为奇数.12.对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何—个三次函数都有“拐点”;任何—个三次函数都有对称中心,且“拐点”就是对称中心.若f (x )=13x 3-12x 2+3x -512,请你根据这一发现, (1)求函数f (x )=13x 3-12x 2+3x -512的对称中心;(2)计算f ⎝⎛⎭⎪⎫12 017+f ⎝ ⎛⎭⎪⎫22 017+f ⎝ ⎛⎭⎪⎫32 017+…+f ⎝⎛⎭⎪⎫2 0162 017. 解析 (1)f ′(x )=x 2-x +3,f ″(x )=2x -1,由f ″(x )=0,即2x -1=0,解得x =12.f ⎝ ⎛⎭⎪⎫12=13×⎝ ⎛⎭⎪⎫123-12×⎝ ⎛⎭⎪⎫122+3×12-512=1.由题中给出的结论,可知函数f (x )=13x 3-12x 2+3x -512的对称中心为⎝ ⎛⎭⎪⎫12,1.(2)由(1)知函数f (x )=13x 3-12x 2+3x -512的对称中心为⎝ ⎛⎭⎪⎫12,1,所以f ⎝ ⎛⎭⎪⎫12+x +f ⎝ ⎛⎭⎪⎫12-x =2,即f (x )+f (1-x )=2.故f ⎝⎛⎭⎪⎫12 017+f ⎝ ⎛⎭⎪⎫2 0162 017=2,f ⎝ ⎛⎭⎪⎫22 017+f ⎝⎛⎭⎪⎫2 0152 017=2, f ⎝⎛⎭⎪⎫32 017+f ⎝ ⎛⎭⎪⎫2 0142 017=2,…,f ⎝ ⎛⎭⎪⎫2 0162 017+f ⎝⎛⎭⎪⎫12 017=2, 所以f ⎝⎛⎭⎪⎫12 017+f ⎝ ⎛⎭⎪⎫22 017+f ⎝ ⎛⎭⎪⎫32 017+…+f ⎝⎛⎭⎪⎫2 0162 017=12×2×2 016=2 016.。

高考数学总复习 第六章 不等式、推理与证明 6.6 数学归纳法课件 理

高考数学总复习 第六章 不等式、推理与证明 6.6 数学归纳法课件 理

2021/12/12
第十八页,共三十九页。
若函数 f(x)=x2-2x-3,定义数列{xn}如下:x1=2,xn+1 是过点 P(4,5),Qn(xn,f(xn))(n∈N*)的直线 PQn 与 x 轴的交点的横坐标,试运用 数学归纳法证明:2≤xn<xn+1<3.
证明:①当 n=1 时,x1=2,f(x1)=-3,Q1(2,-3). 所以直线 PQ1 的方程为 y=4x-11, 令 y=0,得 x2=141,因此 2≤x1<x2<3, 即 n=1 时结论成立.
2021/12/12
第十三页,共三十九页。
【条件探究 1】 在本典例中把题设条件中的“an≥0”改为“当 n≥2 时,an<-1”,其余条件不变,求证:当 n∈N*时,an+1<an.
证明:(1)当 n=1 时,因为 a2 是方程 a22+a2-1=0 的根, 又∵a2<-1,所以 a2=-1-2 5,即 a2<a1 成立.
2021/12/12
第二十七页,共三十九页。
下面用数学归纳法证明:
①当 n=1 时,a1=3=2×1+1,满足结论. ②假设当 n=k(k≥1,k∈N*)时,结论成立.
即 ak=2k+1,那么当 n=k+1 时,
ak
+1
=2k2-k 1
ak

6k+1 2k
=2k2-k 1(2k

1)

6k+1 2k
2021/12/12
第十五页,共三十九页。
【条件探究 2】 本典例的条件改为已知数列{an}中,a1=a>2, 对一切 n∈N*,an>0,an+1=2aan-n2 1,试证明 an>2.
证明:法一 当 n=1 时,a1=a>2,故命题 an>2 成立; 假设 n=k(k≥1 且 k∈N*)时命题成立,即 ak>2, 那么,ak+1-2=2aak-2k 1-2=2aak-k-212>0. 所以 ak+1>2,即 n=k+1 时命题也成立. 综上所述,命题 an>2 对一切正整数都成立.

高考数学 不等式、推理与证明考点及知识点总结解析(文科)

高考数学 不等式、推理与证明考点及知识点总结解析(文科)

⇔xx- -23xx+ +12> ≤00, ⇔x->22≤或x≤x<3-. 1, 借助于数轴,如图所示,
所以原不等式的解集为x|-2≤x<-1或2<x≤3.
课 前 ·双 基 落 实 课 堂 ·考 点 突 破
课 后 ·三 维 演 练
≤0;当 x>0 时,原不等式等价于-2x-x≤2,∴x>0.综上所述,
原不等式的解集为x|x≥-12.
答案:x|x≥-12
课 前 ·双 基 落 实 课 堂 ·考 点 突 破
课 后 ·三 维 演 练
不等关系与不等式 结 束
2.不等式2xx-+51≥-1的解集为________. 解析:将原不等式移项通分得3xx--54≥0,
m,n的大小关系为
()
A.m≥n
B.m>n
C.m≤n
D.m<n
答案:B
2.若a=ln22,b=ln33,则a____b(填“>”或“<”).
解析:易知a,b都是正数,
b a

2ln 3ln
3 2
=log89>1,
所以b>a.
答案:<
3.已知等比数列{an}中,a1>0,q>0,前n项和为Sn,则
S3 a3

Sa55的大小关系为________.
解析:当 q=1 时,Sa33=3,Sa55=5,所以Sa33<Sa55. 当 q>0 且 q≠1 时,Sa33-Sa55=aa11q21-1-q3q-aa11q41-1-q5q =q21-q4q31--q1-q5=-qq-4 1<0,所以Sa33<Sa55.
解得1<x≤3.
答案:C
课 前 ·双 基 落 实 课 堂 ·考 点 突 破
课 后 ·三 维 演 练

(新课标)2020年高考数学一轮总复习第六章不等式、推理与证明6_4推理与证明课件文新人教A版

(新课标)2020年高考数学一轮总复习第六章不等式、推理与证明6_4推理与证明课件文新人教A版

[基础梳理]
1.合情推理

类型
定义
特征
由某类事物的 部分 对象
归纳 具有某些特征,推出该类事 由 部分 到整体、 推理 物的 全部 对象都具有这 由 个别 到 一般
些特征的推理
由两类对象具有某些 类似特征 和其中一 类比
类对象的某些已知 特征 ,推出另一类对 由 特殊 到 特殊 推理
象也具有这些 特征 的推理 合情 归纳推理和类比推理都是根据已有的事实,经过观察、分析、 推理 比较、联想,再进行归纳、 类比 ,然后提出 猜想 的推理
”看“ 需知
”,逐步
步推向“未知”,其逐步推理,
特点
靠拢“ 已知 ”,其逐步推理,
实际上是要寻找它的 必要 条 实际上是要寻找它的 充分 条件

4.间接证明——反证法 要证明某一结论 Q 是正确的,但不直接证明,而是先去 假设Q不成立 (即 Q 的
反面非 Q 是正确的),经过正确的推理,最后得出 矛盾 ,因此说明非 Q 是错误 的, 从而断定结论 Q 是 正确 的,这种证明方法叫作反证法.
1).设一个点阵有n(n≥2,n∈N*)层,则共有的点数为1+6+6×2+…+6(n-1)
=1+6·
nn-1 2
=3n2-3n+1,由题意,得3n2-3n+1=169,即(n+7)·(n-8)=
0,解得n=8,所以共有8层.故选C.
答案:C
考点二|类比推理 (思维突破) 【例5】 (1)若{an}是等差数列,m,n,p是互不相等的正整数,则有(m-n)ap+ (n-p)am+(p-m)an=0,类比上述性质,相应地,对等比数列{bn},m,n,p是互 不相等的正整数,有________.
(2)
8

2019届高考数学一轮复习 第六章 不等式、推理与证明 第六节 数学归纳法课件 理

2019届高考数学一轮复习 第六章 不等式、推理与证明 第六节 数学归纳法课件 理

即可,即 Sk=ka1+kk2-1d. 答案:C
4.已知 f(n)=n1+n+1 1+n+1 2+…+n12,则
()
A.f(n)中共有 n 项,当 n=2 时,f(2)=12+13
B.f(n)中共有 n+1 项,当 n=2 时,f(2)=12+13+14
C.f(n)中共有 n2-n 项,当 n=2 时,f(2)=12+13
考点二 用数学归纳法证明不等式
利用数学归纳法证明不等式问题常与数列问题相结 合,题目难度较大.
[典题领悟] 已知函数 f(x)=x-32x2,设 0<a1<12,an+1=f(an),n∈N*, 证明:an<n+1 1. 证明:(1)当 n=1 时,0<a1<12,显然结论成立. 因为当 x∈0,12时,0<f(x)≤16, 所以 0<a2=f(a1)≤16<13. 故 n=2 时,原不等式也成立.
答案:C
3.用数学归纳法证明:首项是 a1,公差是 d 的等差数列的前 n
项和公式是 Sn=na1+nn2-1d 时,假设当 n=k 时,公式成立,
则 Sk=
()
A.a1+(k-1)d
B.ka1+ 2 ak
C.ka1+kk2-1d
D.(k+1)a1+kk2+1d
解析:假设当 n=k 时,公式成立,只需把公式中的 n 换成 k
D.f(n)中共有 n2-n+1 项,当 n=2 时,f(2)=12+13+14 解析:由 f(n)可知,共有 n2-n+1 项,且 n=2 时,f(2)
=12+13+14. 答案:D
5.用数学归纳法证明 1+2+3+…+n2=n4+2 n2时,当 n=k+1 时左端应在 n=k 的基础上加上__________________. 答案:(k2+1)+(k2+2)+(k2+3)+…+(k+1)2

2019年高考数学一轮复习: 第6章 不等式、推理与证明 第6节 数学归纳法学案 理 北师大版

2019年高考数学一轮复习: 第6章 不等式、推理与证明 第6节 数学归纳法学案 理 北师大版

第六节 数学归纳法[考纲传真] (教师用书独具)1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.(对应学生用书第104页)[基础知识填充]1.数学归纳法证明一个与正整数n 有关的命题,可按下列步骤进行: (1)验证:当n 取第一个值n 0(如n 0=1或2)时,命题成立.(2)在假设当n =k (k ∈N +,k ≥n 0)时命题成立的前提下,推出当n =k +1时,命题成立.根据(1)(2)可以断定命题对一切从n 0开始的正整数n 都成立.2.数学归纳法的框图表示图6­1­1 [基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)用数学归纳法证明问题时,第一步是验证当n =1时结论成立.( ) (2)所有与正整数有关的数学命题都必须用数学归纳法证明.( ) (3)用数学归纳法证明问题时,归纳假设可以不用.( )(4)不论是等式还是不等式,用数学归纳法证明时,由n =k 到n =k +1时,项数都增加了一项.( )(5)用数学归纳法证明等式“1+2+22+…+2n +2=2n +3-1”,验证n =1时,左边式子应为1+2+22+23.( )[答案] (1)× (2)× (3)× (4)× (5)√2.已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1n =2⎝ ⎛⎭⎪⎫1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2,且k 为偶数)时命题为真,则还需要用归纳假设再证( ) A .n =k +1时等式成立 B .n =k +2时等式成立 C .n =2k +2时等式成立D .n =2(k +2)时等式成立B [k 为偶数,则k +2为偶数.]3.在应用数学归纳法证明凸n 边形的对角线为12n (n -3)条时,第一步检验n 等于( )A .1B .2C .3D .0C [因为凸n 边形最小为三角形,所以第一步检验n 等于3,故选C.]4.(教材改编)已知{a n }满足a n +1=a 2n -na n +1,n ∈N +,且a 1=2,则a 2=__________,a 3=__________,a 4=__________,猜想a n =__________. [答案] 3 4 5 n +15.用数学归纳法证明:“1+12+13+…+12n -1<n (n >1)”由n =k (k >1)不等式成立,推证n=k +1时,左边应增加的项的项数是__________.2k[当n =k 时,不等式为1+12+13+…+12k -1<k .则n =k +1时,左边应为1+12+13+…+12k -1+12k +12k +1+…+12k +1-1,则左边增加的项数为2k +1-1-2k+1=2k.](对应学生用书第104页)设f (n )=1+12+13+…+1n (n ∈N +).求证:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N +).[证明] (1)当n =2时,左边=f (1)=1,右边=2⎝ ⎛⎭⎪⎫1+12-1=1,左边=右边,等式成立.(2)假设n =k (k ≥2,k ∈N +)时,结论成立,即f (1)+f (2)+…+f (k -1)=k [f (k )-1],那么,当n =k +1时,f (1)+f (2)+…+f (k -1)+f (k )=k [f (k )-1]+f (k )=(k +1)·f (k )-k=(k +1)⎣⎢⎡⎦⎥⎤f (k +1)-1k +1-k =(k +1)f (k +1)-(k +1)=(k +1)[f (k +1)-1], 所以当n =k +1时结论仍然成立.由(1)(2)可知:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N +).思路:用数学归纳法证明等式问题,要“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值注意点:差异,明确变形目标;二要充分利用归纳假设,进行合理变形,正确写出证明过程易错警示:不利用归纳假设的证明,就不是数学归纳法跟踪训练+【导学号:79140214】[证明] (1)当n =1时,等式左边=2,右边=2,故等式成立; (2)假设当n =k (k ∈N +)时等式成立,即(k +1)(k +2)·…·(k +k )=2k·1·3·5·…·(2k -1), 那么当n =k +1时,左边=(k +1+1)(k +1+2)·…·(k +1+k +1) =(k +2)(k +3)·…·(k +k )(2k +1)(2k +2) =2k·1·3·5·…·(2k -1)(2k +1)·2 =2k +1·1·3·5·…·(2k -1)(2k +1),所以当n =k +1时等式也成立.根据(1)(2)可知,对所有n ∈N +等式成立.(2017·武汉调研)等比数列{a n }的前n 项和为S n .已知对任意的n ∈N +,点(n ,S n )均在函数y =b x+r (b >0,且b ≠1,b ,r 均为常数)的图像上.(1)求r 的值;(2)当b =2时,记b n =2(log 2a n +1)(n ∈N +). 证明:对任意的n ∈N +,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立. [解] (1)由题意,S n =b n+r , 当n ≥2时,S n -1=bn -1+r , 所以a n =S n -S n -1=bn -1(b -1),由于b >0,且b ≠1,所以n ≥2时,{a n }是以b 为公比的等比数列,又a 1=b +r ,a 2=b (b -1),a 2a 1=b ,即b (b -1)b +r=b ,解得r =-1.(2)证明:由(1)知a n =2n -1,因此b n =2n (n ∈N +),所证不等式为2+12·4+14·…·2n +12n >n +1. ①当n =1时,左式=32,右式=2,左式>右式,所以结论成立. ②假设n =k 时结论成立,即2+12·4+14·…·2k +12k>k +1, 则当n =k +1时,2+12·4+14·…·2k +12k ·2k +32(k +1)>k +1·2k +32(k +1)=2k +32k +1,要证当n =k +1时结论成立, 只需证2k +32k +1≥k +2,即证2k +32≥(k +1)(k +2),由基本不等式可得2k +32=(k +1)+(k +2)2≥(k +1)(k +2)成立, 故2k +32k +1≥k +2成立,所以当n =k +1时,结论成立. 根据①②可知,n ∈N +时, 不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立. 适用范围:当遇到与正整数虑应用数学归纳法关键:成立,在归纳假设使用后可运用比较法、综合法、分析法、放缩法等来加以证明,充分应用基本不等式、特别注意:证[跟踪训练n 1n n +1x n +1)(n ∈N +).证明:当n ∈N +时,0<x n +1<x n . [证明] 用数学归纳法证明:x n >0. 当n =1时,x 1=1>0. 假设n =k 时,x k >0,那么n =k +1时,若x k +1≤0,则0<x k =x k +1+ln(1+x k +1)≤0,矛盾, 故x k +1>0.因此x n >0(n ∈N +).所以x n =x n +1+ln(1+x n +1)>x n +1. 因此0<x n +1<x n (n ∈N +).已知正项数列{a n }中,对于一切的n ∈N +均有a 2n ≤a n -a n +1成立. (1)证明:数列{a n }中的任意一项都小于1; (2)探究a n 与1n的大小关系,并证明你的结论.[解] (1)由a 2n ≤a n -a n +1得a n +1≤a n -a 2n . ∵在数列{a n }中,a n >0, ∴a n +1>0, ∴a n -a 2n >0, ∴0<a n <1,故数列{a n }中的任何一项都小于1. (2)由(1)知0<a 1<1=11,那么a 2≤a 1-a 21=-⎝ ⎛⎭⎪⎫a 1-122+14≤14<12,由此猜想a n <1n.下面用数学归纳法证明:当n ≥2,且n ∈N +时猜想正确. ①当n =2时已证;②假设当n =k (k ≥2,且k ∈N +)时,有a k <1k成立,那么1k ≤12,a k +1≤a k -a 2k =-⎝ ⎛⎭⎪⎫a k -122+14<-⎝ ⎛⎭⎪⎫1k -122+14=1k -1k 2=k -1k 2<k -1k 2-1=1k +1,∴当n =k +1时,猜想正确.综上所述,对于一切n ∈N +,都有a n <1n.的通项公式时应注意两点:准确计算发现规律必要时可多计算几项;证明的求解过程与注意体会特殊与一般的辩证关系.[跟踪训练] (2017·常德模拟)设a >0,f (x )=a +x,令a 1=1,a n +1=f (a n ),n ∈N +.(1)写出a 2,a 3,a 4的值,并猜想数列{a n }的通项公式; (2)用数学归纳法证明你的结论. [解] (1)∵a 1=1, ∴a 2=f (a 1)=f (1)=a1+a; a 3=f (a 2)=a ·a1+a a +a 1+a =a2+a ;a 4=f (a 3)=a ·a2+a a +a 2+a =a3+a .猜想a n =a(n -1)+a(n ∈N +).(2)证明:①易知,n =1时,猜想正确.②假设n =k (k ≥1且k ∈N +)时猜想正确,即a k =a(k -1)+a,则a k +1=f (a k )=a ·a ka +a k =a ·a(k -1)+a a +a(k -1)+a=a (k -1)+a +1=a[(k +1)-1]+a.这说明,n =k +1时猜想正确. 由①②知,对于任何n ∈N +,都有a n =a(n -1)+a.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高考数学一轮复习第6章不等式推理与证明第6讲数学归纳法知能训练轻松闯关理北师大版1.凸n 多边形有f (n )条对角线,则凸(n +1)边形的对角线的条数f (n +1)为( ) A .f (n )+n +1 B .f (n )+n C .f (n )+n -1 D .f (n )+n -2解析:选C.边数增加1,顶点也相应增加1个,它与和它不相邻的n -2个顶点连接成对角线,原来的一条边也成为对角线,因此,对角线增加n -1条.2.用数学归纳法证明“当n 为正奇数时,x n +y n能被x +y 整除”的第二步是( )A .假设n =2k +1时正确,再推n =2k +3时正确(其中k ∈N *)B .假设n =2k -1时正确,再推n =2k +1时正确(其中k ∈N *)C .假设n =k 时正确,再推n =k +1时正确(其中k ∈N *)D .假设n =k 时正确,再推n =k +2时正确(其中k ∈N *)解析:选B.因为n 为正奇数,所以n =2k -1(k ∈N *).3.用数学归纳法证明:“1+12+13+…+12n -1<n (n ∈N *,n >1)”时,由n =k (k >1)不等式成立,推理n =k +1时,左边应增加的项数是________.解析:当n =k 时,要证的式子为1+12+13+…+12k -1<k ;当n =k +1时,要证的式子为1+12+13+…+12k -1+12k +12k +1+…+12k +1-1<k +1.左边增加了2k项. 答案:2k4.(xx·九江模拟)已知f (n )=1+12+13+…+1n (n ∈N *),经计算得f (4)>2,f (8)>52,f (16)>3,f (32)>72,则其一般结论为________.解析:因为f (22)>42,f (23)>52,f (24)>62,f (25)>72,所以当n ≥2时,有f (2n)>n +22.答案:f (2n )>n +22(n ≥2,n ∈N *)5.求证:(n +1)(n +2)·…·(n +n )=2n ·1·3·5·…·(2n -1)(n ∈N *). 证明:(1)当n =1时,等式左边=2,右边=2,故等式成立;(2)假设当n =k (k ∈N *,k ≥1)时等式成立, 即(k +1)(k +2)·…·(k +k ) =2k·1·3·5·…·(2k -1), 那么当n =k +1时,左边=(k +1+1)(k +1+2)·…·(k +1+k +1) =(k +2)(k +3)…(k +k )(2k +1)(2k +2) =2k·1·3·5·…·(2k -1)(2k +1)·2 =2k +1·1·3·5·…·(2k -1)(2k +1). 这就是说当n =k +1时等式也成立.由(1)(2)可知,对所有n ∈N *等式成立.6.(xx·高考广东卷)设数列{a n }的前n 项和为S n ,满足S n =2na n +1-3n 2-4n ,n ∈N *,且S 3=15.(1)求a 1,a 2,a 3的值;(2)求数列{a n }的通项公式.解:(1)由题意知S 2=4a 3-20,所以S 3=S 2+a 3=5a 3-20. 又S 3=15,所以a 3=7,S 2=4a 3-20=8. 又S 2=S 1+a 2=(2a 2-7)+a 2=3a 2-7, 所以a 2=5,a 1=S 1=2a 2-7=3. 综上知,a 1=3,a 2=5,a 3=7.(2)由(1)猜想a n =2n +1,下面用数学归纳法证明. ①当n =1时,结论显然成立;②假设当n =k (k ≥1)时,a k =2k +1,则S k =3+5+7+…+(2k +1)=k [3+(2k +1)]2=k (k +2).又S k =2ka k +1-3k 2-4k ,所以k (k +2)=2ka k +1-3k 2-4k ,解得2a k +1=4k +6, 所以a k +1=2(k +1)+1,即当n =k +1时,结论成立.由①②知,对于∀n ∈N *,a n =2n +1.2019-2020年高考数学一轮复习第6章不等式第1讲不等关系与不等式增分练1.[xx·金版创新]设c >0,则下列各式成立的是( ) A .c >2cB .c >⎝ ⎛⎭⎪⎫12cC .2c <⎝ ⎛⎭⎪⎫12cD .2c >⎝ ⎛⎭⎪⎫12c答案 D解析 c >0时,2c >1,⎝ ⎛⎭⎪⎫12c <1,所以2c >⎝ ⎛⎭⎪⎫12c.2.[xx·宁波模拟]若a <b <0,则下列不等式错误的是( ) A.1a >1bB.1a -b >1aC .|a |>|b |D .a 2>b 2答案 B解析 ∵a <b <0,∴1a >1b ,故A 对.∵a <b <0,∴0<-b ,a <a -b <0,∴1a >1a -b,故B 错.∵a <b <0,∴-a >-b >0,即|-a |>|-b |,∴|a |>|b |,故C 对.∵a <b <0,∴-a >-b >0,∴(-a )2>(-b )2,即a 2>b 2,故D 对.故选B.3.若x ,y 满足-π4<x <y <π4,则x -y 的取值范围是( )A.⎝ ⎛⎭⎪⎫-π2,0B.⎝ ⎛⎭⎪⎫-π2,π2C.⎝ ⎛⎭⎪⎫-π4,0 D.⎝ ⎛⎭⎪⎫-π4,π4 答案 A解析 由x <y ,得x -y <0.又∵-π2<x -y <π2,∴-π2<x -y <0.4.设a >b >0,下列各数小于1的是( )A .2a -bB.⎝ ⎛⎭⎪⎫a b 12C.⎝ ⎛⎭⎪⎫a ba -b D.⎝ ⎛⎭⎪⎫b aa -b 答案 D解析 解法一:(特殊值法) 取a =2,b =1,代入验证. 解法二:y =a x(a >0且a ≠1).当a >1,x >0时,y >1;当0<a <1,x >0时,0<y <1. ∵a >b >0,∴a -b >0,a b >1,0<b a<1. 由指数函数性质知,D 成立.5.[xx·广西模拟]若a ,b 为实数,则1a <1b成立的一个充分而不必要的条件是( )A .b <a <0B .a <bC .b (a -b )>0D .a >b答案 A解析 由a >b ⇒1a <1b 成立的条件是ab >0,即a ,b 同号时,若a >b ,则1a <1b;a ,b 异号时,若a >b ,则1a >1b.6.设0<b <a <1,则下列不等式成立的是( ) A .ab <b 2<1 B .log 12 b <log 12 a <0C .2b <2a<2 D .a 2<ab <1答案 C解析 解法一:(特殊值法)取b =14,a =12.解法二:(单调性法) 0<b <a ⇒b 2<ab ,A 不对;y =log 12x 在(0,+∞)上为减函数,∴log 12 b >log 12a ,B 不对;a >b >0⇒a 2>ab ,D 不对.故选C.7.若a =20.6,b =log π3,c =log 2sin 2π5,则( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a答案 A解析 因为a =20.6>20=1,又log π1<log π3<log ππ,所以0<b <1.c =log 2sin 2π5<log 21=0,于是a >b >c .故选A.8.已知有三个条件:①ac 2>bc 2;②a c >b c;③a 2>b 2,其中能成为a >b 的充分条件的是________. 答案 ①解析 由ac 2>bc 2,可知c 2>0,即a >b ,故“ac 2>bc 2”是“a >b ”的充分条件;②当c <0时,a <b ;③当a <0,b <0时,a <b ,故②③不是a >b 的充分条件.9.已知a ,b ,c ∈R ,有以下命题:①若1a <1b ,则c a <c b ;②若a c 2<b c2,则a <b ;③若a >b ,则a ·2c >b ·2c .其中正确的是________(请把正确命题的序号都填上). 答案 ②③解析 ①若c ≤0,则命题不成立.②由a c 2<b c 2得a -bc 2<0,于是a <b ,所以命题正确.③中由2c>0知命题正确.10.[xx·临沂模拟]若x >y ,a >b ,则在①a -x >b -y ,②a +x >b +y ,③ax >by ,④x -b >y -a ,⑤a y >b x这五个式子中,恒成立的所有不等式的序号是________.答案 ②④解析 令x =-2,y =-3,a =3,b =2, 符合题设条件x >y ,a >b ,∵a -x =3-(-2)=5,b -y =2-(-3)=5, ∴a -x =b -y ,因此①不成立.又∵ax =-6,by =-6,∴ax =by ,因此③也不正确.又∵a y =3-3=-1,b x =2-2=-1,∴a y =b x,因此⑤不正确. 由不等式的性质可推出②④成立.[B 级 知能提升]1.已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =N D .不确定 答案 B解析 M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=(a 1-1)(a 2-1),又∵a 1∈(0,1),a 2∈(0,1),∴a 1-1<0,a 2-1<0.∴(a 1-1)(a 2-1)>0,即M -N >0,∴M >N .2.已知a ,b ∈R ,下列四个条件中,使a b>1成立的必要不充分条件是( ) A .a >b -1 B .a >b +1 C .|a |>|b |D .ln a >ln b答案 C解析 由a b >1⇔a b -1>0⇔a -bb>0⇔(a -b )b >0⇔a >b >0或a <b <0⇒|a |>|b |,但由|a |>|b |不能得到a >b >0或a <b <0,即得不到a b>1,故|a |>|b |是使a b>1成立的必要不充分条件.3.[xx·金版创新]设α∈⎝ ⎛⎭⎪⎫0,12,T 1=cos(1+α),T 2=cos(1-α),则T 1与T 2的大小关系为________.答案 T 1<T 2解析 T 1-T 2=(cos1cos α-sin1sin α)-(cos1cos α+sin1sin α)=-2sin1sin α<0.4.[xx·大连段考]若a >b >0,c <d <0,e <0.求证:e a -c2>e b -d2.证明 ∵c <d <0,∴-c >-d >0. 又∵a >b >0,∴a -c >b -d >0, ∴(a -c )2>(b -d )2>0,∴0<1a -c2<1b -d2.又∵e <0,∴e a -c2>e b -d2.5.[xx·昆明模拟]设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4,求f (-2)的取值范围.解 解法一:设f (-2)=mf (-1)+nf (1)(m ,n 为待定系数),则4a -2b =m (a -b )+n (a +b ),即4a -2b =(m +n )a +(n -m )b .于是得⎩⎪⎨⎪⎧m +n =4,n -m =-2,解得⎩⎪⎨⎪⎧m =3,n =1,∴f (-2)=3f (-1)+f (1). 又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.解法二:由⎩⎪⎨⎪⎧f -=a -b ,f=a +b ,得⎩⎪⎨⎪⎧a =12[f -+f ,b =12[f-f -,∴f (-2)=4a -2b =3f (-1)+f (1). 又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.。

相关文档
最新文档