一元二次方程复习课教案设计
一元二次方程复习教案
一元二次方程一、教学目标1. 理解配方法,能用配方法、公式法、因式分解法解一元二次方程.2. 会用一元二次方程根的判别式判别方程根的情况.二、知识框架【处理方法】先让学生学生回顾《一元二次方程》一章中的主要内容,学生叙述并补充之后出示知识框架图,再次强调本章重要考点,为引出下面的练习做准备.考点一:方程的解例1.(2015甘肃兰州)若一元二次方程ax 2-bx-2015=0有一根为x=-1,则a+b= .【答案】2015(提示:将x=-1代入到ax 2-bx-2015=0中得到a+b-2015=0,所以a+b=2015)【处理方法】学生先独立思考,尝试解题,然后说明解题方法,并说明考察的对应的考点,锻炼学生的分析考察知识点的能力.教师强调:(1)方程的解一定满足方程;(2)注意整体思想的运用.变式题 已知二次函数y=ax ²-bx-2015与x 轴有一个交点为(-1,0),则a+b=______.【处理方法】学生思考后回答,说明对应的考点及使用的数学思想.教师强调:转化思想在数学学习中经常用到,我们要用转化思想把未知化为已知,找出问题的实质仍是已知方程的解求代数式的值. 考点二:解方程例2解方程:(1)(x-2)²=(2x+3)²(2)(x-2)(x-3)=12(3)3x ²-8x-3=0(用配方法)【处理方法】学生自己完成解题过程,三个学生板演.做完后小组内互相检查改错,再对板演的题目集体修改并及时说明学生解法的优略,说明此题考查3的知识点是考点二--方程的解法.对用配方法接的方程,要求学生说明每一步的变形依据,为下面的变式题做铺垫.对于(2)的解法,如果有下面的变式题,你会解吗?变式题 若一个一元二次方程的两个根分别是Rt △ABC 的两条直角边,且S △ABC =3,请写出一个..符合题意的一元二次方程 . 【处理方法】学生自己先写,小组交流得到的方程及方法,一生展示.教师适时提醒,⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧应用的关系根的判别式、根与系数因式分解法公式法配方法直接开方法解法概念一元二次方程这是已知解求方程,与已知方程求解释互逆的过程,用逆向思维很容易得到答案.针对(3),如果这样变,解题的依据一样吗?变式题 把二次函数y=3x ²-8x-3配方为顶点式_________.【处理方法】学生写出答案,展示正确与错误的答案,从变形的依据上说明形如y=(x-3)²-25/9的结果错误的原因.教师提示,一元二次方程的解法在中考中一般不单独命题,但它是解决与函数交点问题的基础,必须熟练掌握.考点三、 一元二次方程根的判别式例3(2014四川内江)若关于x 的一元二次方程(k-1)x 2+2x-2=0有两个不相等的实数根,则k 的取值范围是( ) A .k >21 B .k ≥21 C .k >21且k ≠1 D .k ≥21且k ≠1 【答案】C (根据条件得22-4(k-1)(-2)>0,且k-1≠0;解得k >21且k ≠1.) 【处理方法】学生思考后,独立解题,让在全班交流解题思路.教师强调:题目条件是一元二次方程,所以二次项系数不等于0.如果这样变呢?变式1:若关于x 的方程(k-1)x ²+2x-2=0有两实根,则k 的取值范围是 __________.变式2:若关于x 的方程(k-1)x ²+2x-2=0有两实根,则k 的取值范围是 __________.变式3:若抛物线y=x ²-2x+3与直线y=2x+b 只有一个交点,则b=____.【处理方法】学生先写答案,一生展示并说明变式1、2的区别,提醒学生做题时注意审题,发现条件不同时的方法不同.对于变式3,提醒学生用到的是数形结合和转化的数学思想,把函数图像的交点问题转化为一元二次方程的解的问题.再问学生对于变式3你还可以把题目怎么变,且说明问题的实质是什么,再次强调转化思想. 训练(2015•河南)已知关于x 的一元二次方程(x-3)(x-2)=|m|.(1)求证:对于任意实数m ,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m 的值及方程的另一个根.【答案】(1)移项整理成一般形式:x 2-5x +6-|m|=0,Δ=b 2-4ac =1+4|m|,∵|m|≥0,∴1+4|m|>0,∴对于任意实数m ,方程总有两个不相等的实数根;(2)若方程的一个根是1则(1-3)(1-2)=|m|∴m=±2,∴x 2-5x +6=2,(x-4)(x-1)=0,∴x=4,x=1,∴m 的值是±2方程的另一个根是4.【解析】 (1)移项整理化成方程的一般形式1.谈本节收获.求出根的判别式即可判断方程根的情况.(2)把x=1代入原方程可得出m 的值再把m 的绝对值代回原方程解出x 的另一个值.【考点】一元二次方程根的判别式和根的意义.【处理方法】移项整理成一般形式时注意对|m|的理解, 强调一般形式中等式右边为0 . 考点四 一元二次方程的应用例4 某公司今年1月的营业额是2500万元,按计划第一季度的总营业额要达到9100万元.设该公司2,3两个月营业额的月平均增长率为x,可列方程为___________.若把第一季度营业额改为3月的营业额为3600万元,又怎样列方程呢?【处理方法】学生列出方程后要总结此类方程的一般结构及解法,让学生了解解方程的技巧.例5 李明在政府的扶持下投资销售一种进价为每件20元的护眼灯,其中每月销售量y (件)与销售单价x(元)满足y=-10x+500.(1)如果每月要获得2000元的利润,单价应定为多少元?(2)他每月能获得2500元的利润吗?为什么?【处理方法】(1)学生列出方程,小结方程整理的方法.(2)说明判断的依据:可以解方程,但方程对应的判别式小于0;也可以利用二次函数求利润的最大值,但比2500元小.提醒学生小结应用里的其他题型.四、小结1.一元二次方程的主要考点.2.解决一元二次方程根的判别式的问题,通常都是先算判别式,然后根据已知条件作出判断.考查一元二次方程根的判别式的问题主要有三种形式:(1)不解方程,判别方程根的情况;(2)根据方程根的情况求方程中待定系数的范围;(3)证明方程一定有两个不相等的实数根等方程根的情况.解决这三类问题,有一个通法,就是先算出判别式,然后根据题中的条件分别得出结论或者变形推理.。
一元二次方程复习课教案
一元二次方程复习课教案教学目标:1.知识与技能:(1)梳理全章知识,理解并掌握一元二次方程的概念及一般形式,熟练掌握方程的解法;(2)理解一元二次方程根的判别式并能运用,会用一元二次方程解决简单的实际问题。
2.过程与方法:(1)经历运用知识、技能解决问题的过程,在解题过程中培养学生的独立思考能力和创新精神;(2)经历观察、操作、想象、推理、交流等活动,发展学生发现问题、提出问题的能力。
3.情感态度与价值观:(1)鼓励学生积极参与数学活动,在活动中学会思考、讨论、交流、合作,体会数学知识的应用价值,提高学生学习兴趣;(2)在合作交流的过程中,渗透数学解题中的方程思想、转化思想、建模思想。
教学重点:一元二次方程的解法及应用及掌握知识过程中的分析问题、解决问题的能力的培养。
教学难点:从实际问题中找等量关系,列出一元二次方程。
课前准备:学生完成课前预习作业,梳理全章知识结构;教师准备教案及课件。
教学过程:第一环节:复习引入,直击问题活动内容:学生分组交流本章知识系统图,教师巡视指导,待学生充分交流后,教师展示PPT上做好的“知识系统图”,及时评价与鼓励,从而进入本课学习。
问题1:一元二次方程的最根本特征是什么?你认为识别它的关键点又是什么?此问题的提出让学生的思维从浅层的“感知”走进深层的“凝思”,思维度增高了。
问题2:前面我们系统学习了一元二次方程的几种解法?分别是哪几种?学生根据前置的讨论易于回答,在此基础上,教师进一步提出下面问题。
问题3:这几种方法中,你认为哪一种是最基础的方法?你能说出这几种解法之间的逻辑关系吗?提出此问题的目的是让学生不仅知道表层上的“是什么?”还要让学生知道深层面上的“为什么?”,从而着力发展学生的思维能力。
问题4:你最喜欢运用上述四种方法中的哪一种去解方程?教师提出这样的问题表面看来“似乎简单”,其实质通过这个问题可引发学生两个思考:其一,适合于自己的最熟练的学得最好的;其二,适合于方程本身结构特点的。
一元二次方程复习课教案
九年级一元二次方程复习课教案一、教学目标:1.通过知识结构图,完成对一元二次方程的知识点的梳理,建构知识体系;2.通过灵活运用解方程的方法,体会四种解法之间的联系与区别,进一步熟练根据方程特征找出最优解法;3.通过实际问题的解决,进一步熟练运用方程解决实际问题,体会方程思想在解决问题中的作用。
二、教学重点:理解并掌握一元二次方程的概念及解法,会运用方程解决实际问题。
三、教学难点:灵活运用解方程的方法,体会四种解法之间的联系与区别,进一步熟练根据方程特征找出最优解法。
四、教学过程:(一)导入:本章知识结构图1.一元二次方程的定义:方程两边都是整式,只含有一个未知数,未知数的最高次数是22.一元二次方程的解法:(1)直接开平方法(2 )因式分解法(3 )配方法(4 )求根公式法3.一元二次方程的应用(二)基础训练1.判断下列方程是不是一元二次方程,若不是一元二次方程,请说明理由。
x 1 1) (x -1)2=4 2)x ²-2x=8 3)x ²+ =1 4)x ²=y+1 5) x 3-2x ²=1 6)ax ² + bx + c =12.把下列方程化为一元二次方程式,指出二次项系数,一次项系数和常数项 3x ²=1 2y(y-3)= -43.填一填1)若()()02222=-+++x m x m 是关于x 的一元二次方程则m 。
2)若方程02)1()2(22=--++-x m x m m 是关于x 的一元二次方程,则m 的值为 。
3)若x=2是方程x ²+ax-8=0的解,则a= 。
4.选一选1)已知一元二次方程(x+1)(2x -1)=0的解是( )(A )-1 (B )21 (C )-1或-2 (D )-1或212)已知一元二次方程x ²=2x 的解是( )(A )0 (B )2 (C )0或-2 (D )0或25.用适当的方法解下列方程()2130x x -=()22(21)90x --=()2341x x -=()24310x x -+= 6.反败为胜选一选(略)7.一元二次方程应用(略)8.中考链接(2018、2017年广东中考试题)(三)课堂小结:通过今天的学习你有什么收获?(四)课后作业:练习册相应习题。
一元二次方程复习课集体备课教案
教者姓名
科目
数学
年级
9
复习课第1课时
课题
复习《一元二次方程》
课型
复习
备课时间
教学目标
①掌握一元二次方程的概念、一般形式和解法
板
书
设
计
ax2+bx+c=0 (a≠0)
根的判别式
②一元二次方程的求根公式和根的判别式
③转化思想、分类讨论思想
重点目标
1、2
难点目标
2、3
教具、学具
多媒体、导学案
当b2-4ac=0时,方程有实数根.
当b2-4ac<0时,方程实数根.
【思想方法】
1.常用解题方法——换元法
2.常用思想方法——转化思想,从特殊到一般的思想,分类讨论的思想
【例题精讲】
例1.选用合适的方法解下列方程:
(1)(x-15)2-225=0;(2) 3x2-4)x2+ x=0
例2.已知一元二次方程 有一个根为零,求 的值.
例3.用22cm长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽.又问:能否折成面积是32㎝2的矩形呢?为什么?
例4.已知关于x的方程x2―(2k+1)x+4(k-0.5)=0
(1)求证:不论k取什么实数值,这个方程总有实数根;
(2)若等腰三角形ABC的一边长为a=4,另两边的长b.c恰好是这个方程的两个根,求△ABC的周长.
6.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是__________.
7.如果关于的一元二次方程的两根分别为3和4,那么这个一元二次方程可以是.
二、选择题:
8.对于任意的实数x,代数式x2-5x+10的值是一个( )
一元二次方程的解法复习教案
一元二次方程的解法复习教案一、教学目标:1、掌握一元二次方程的四种解法,会根据方程的不同特点,灵活选用适当的方法求解方程。
2、方程求解过程中注重方式、方法的引导,特殊到一般、字母表示数、整体代入等数学思想方法的渗透。
3、培养学生概括、归纳总结能力。
二、重点、难点:1 重点:会根据不同的方程特点选用恰当的方法,使解题过程简单合理。
2 难点:通过揭示各种解法的本质联系,渗透降次化归的思想。
三、教学过程:(一)情景引入:三位同学在作业中对方程(2x-1)2=3(2x-1)采用的不同解法如下:第一位同学:第三位同学:解:移项:(2x-1)2-3(2x-1)=0 解:整理:(2x-1)[(2x-1)-3]=0 即2x-1=0或(2x-1)-3=0 X= 或 x=2第二位同学:=解:方程两边除以(2x-1):(2x-1)=3X=2针对三位同学的解法谈谈你自己的看法:(1)他们的解法都正确吗?(2)哪一位同学的解法较简便呢?(二)复习提问:我们学了一元二次方程的哪些解法?练习一:按括号中的要求解下列一元二次方程:(1)4(1+x)2=9(直接开平方法);(2)x2+4x+2=0(配方法);(3)3x2+2x-1=0(公式法);(4)(2x+1)2=4ac的值。
4、因式分解法:因式分解法就是利用所学过的分解因式的知识来求解。
一般步骤:①将方程右边化为零;②将方程左边分解为两个一次因式乘积;③令每个因式分别等于零,得到两个一元一次方程;④解这两个一元一次方程练习二:选用适当的方法解下列方程(1)2(1-x)2-6=0 (3)3(1-x)2=2-2x (2)(2x-1)+3(2x-1)+2=0;(4)(x+2)(x+3)=6 交流讨论:1 与同桌或邻桌同学比较,看谁的解法更简单。
2 你如何根据方程的特征选择解法?概括:1、当给定的一元二次方程通过适当变形可化为型时,可选用直接开平方法。
2、当一元二次方程的左边能分解因式时,用因式分解法比较简单。
一元二次方程(复习)教案
一元二次方程复习一.学习目标:1.理解并掌握一元二次方程的意义,正确识别一元二次方程中的各项及各项的系数;2.一元二次方程的解的定义与检验一元二次方程的解;3.明确解一元二次方程的基本思想是以降次为目的,会用配方法、开平方法、公式法、因式分解法等方法解一元二次方程;4.了解一元二次方程根的判别式概念,能用判别式判定根的情况,并会用判别式求一元二次方程中符合题意的字母系数的取值范围;5.会列一元二次方程解决生活中的实际问题,与二次函数综合考查最优问题。
本节的主要考查一元二次方程的根,解一元二次方程,根的判别式,以及一元二次方程在实际生活中的应用。
在中考中,往往会在填空题中考查一元二次方程的根,根的判别式,在解答题中考查一元二次方程的解法,尤其是在倒数第二题中考查一元二次方程在实际生活中的应用,和二次函数相结合的综合应用。
二.教学过程1、一元二次方程定义:只含有,未知数,并且,这样的就是一元二次方程。
2、一般表达式:其中2ax是二次项,叫二次项系数;是一次项,叫一次项系数,是常数项。
二次项系数、一次项系数及常数项都是方程在一般形式下定义的,所以求一元二次方程的各项系数时,必须先将方程化为一般形式。
3、使值,就是方程的解。
4、一元二次方程的解法:(1)法,适用于能化为的一元二次方程。
(2 )法,即把一元二次方程变形为(x+a)(x+b)=0的形式,则(x+a)=0或(3)法,即把一元二次方程配成形式,再用直接开方法,(4) 法,其中求根公式是(≥0)5、根的判别式、根与系数的关系:当时,方程有两个不相等的实数根。
当时,方程有两个相等的实数根。
当时,方程有没有的实数根。
如果一元二次方程有两根,则有6、列一元二次方程解实际应用题步骤三.跟踪练习:1:若x=2是关于x的一元二次方程x2-mx+8=0的一个解.则m的值是.(A) 6 (B) 5 (C) 2 (D)-62.(2011广西贵港3分)若关于x的一元二次方程x2-mx-2=0的一个根为-1,则另一个根为A.1 B.-1 C.2 D.-23.(2012年河北一模)关于x的一元二次方程(a-1) x2+x+a2-1=0的一个根是0,则a的值为()A. 1B. -1C. 1或-1D. 04. (2011广西百色3分)关于x的方程的一个根为1,则m的值为 A.1B. 12.C.1 或12.D.1 或-12 .5. (2012年浙江一模)已知关于x的方程的一个根是1,则k= .考点二、一元二次方程的解法:(1)(2012湖北荆州)用配方法解关于x的一元二次方程x2-2x-3=0,配方后的方程可以是( ) A.(x-1)2=4 B.(x+1)2=4 C.(x-1)2=16 D.(x+1)2=16(2012山东省滨州中考)方程x(x﹣2)=x 的根是.(2)(3)(2011江苏省无锡市)解方程:x²-4x+2=0举一反三1:(2012贵州铜仁,17,4分,一元二次方程的解为____________;2:(2012贵州黔西南州,4,4分)三角形的两边分别为2和6,第三边是方程x2―10x+21=0的解,则第三边的长为( ). A.7 B.3 C.7或3 D.无法确定3:解方程:(1)(2011广东清远6分)解方程:x2-x-1=0.(2)(2011湖北武汉6 分)解方程:x2+3x+1=0.考点三:根的判别式,根与系数的关系(2012 湖北襄阳)如果关于x的一元二次方程kx2 -+1 =0有两个不相等的实数根,那么k的取值范围是 A.k< 1 2 B.k< 1 2 且k≠0 C.-12≤k<12 D.-12≤k<1 2 且k≠0。
一元二次方程复习课教案
一元二次方程复习课教案一元二次方程复习与小结复习目标1.知识和技能(1)了解一元二次方程的有关概念.(2)可以使用直接找平法、匹配法、公式法吗?采用因子分解法求解一元二次方程(3)会根据根的判别式判断一元二次方程的根的情况.(4)了解二次方程的根和系数之间的关系,并能用它来解决问题(5)能运用一元二次方程解决简单的实际问题.(6)理解数学解题中的方程思维、变换思维、分类讨论思维和整体思维2.过程与方法.(1)体验运用知识和技能解决问题的过程(2)发展学生的独立思考能力和创新精神.3.情感、态度和价值观(1)初步了解数学与人类生活的密切联系.(2)培养学生对数学的好奇心和求知欲(3)养成质疑和独立思考的学习习惯.重点和难点1.重点:运用知识、技能解决问题.2.难度:提高解决问题和分析问题的能力3.关键:引导学生参与解题的讨论与交流.复习过程一、回顾和联想,回顾旧的,了解新的基础训练.1.只有?未知数,?次数不详,?像这样,方程被称为一元二次方程,它通常可以写成以下一般形式:_________()其中二次项的系数为________;,主项的系数为_______,常数项为___例如:一元二次方程7x-3=2x2化成一般形式是________?其中二次项系数是_____、一次项系数是_______、常数项是________.2.解一元二次方程的通解是(1)_________;(2)________;(?3)?_________;?(?4)?求根公式法,?求根公式是______________.3.一元二次方程AX2+BX+C=0(a)根的判别式≠ 0)是;当;什么时候,?它没有真正的根源例如:不解方程,判断下列方程根的情况:(1) x(5x+21)=20(2)x2+9=6x(3)x2-3x=-54.设一元二次方程x2+px+q=0的两个根分别为x1,x2,则x1+x2=_______,x1x2=______.例如,如果方程x2+3x-11=0的两个根分别是X1和x2,那么X1+x2=___;;x1x2=________;。
北师大版数学九年级上册第二章《一元二次方程》复习教案
一、教学内容
北师大:
1.一元二次方程的定义与一般形式;
2.一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法;
3.一元二次方程根的判别式及其应用;
4.一元二次方程的根与系数的关系;
5.实际问题中的一元二次方程及其应用。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元二次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量物体的高度,通过一元二次方程来计算。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要复习的是《一元二次方程》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决两个未知数关系的问题?”(如面积和边长关系等)这个问题与我们将要复习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同回顾一元二次方程的奥秘。
此外,小组讨论环节中,学生们能够积极参与,相互交流,分享自己的观点。但在讨论过程中,我也观察到有些学生过于依赖他人,缺乏独立思考。为了培养学生的独立思考能力,我将在今后的教学中,多设置一些开放性问题,引导学生自主探究,提高他们的问题解决能力。
在实践活动方面,学生们对实验操作表现出浓厚兴趣,能够积极参与。但在操作过程中,部分学生还显得有些手忙脚乱,对实验原理的理解不够深入。针对这一问题,我将在后续的教学中,加强对实验原理的讲解,让学生们在操作前能够充分理解实验的目的和步骤。
(二)新课讲授(用时10分钟)
《一元二次方程》总复习教案
本章复习【知识与技能】1.一元二次方程的相关概念;2.灵活运用直接开平方法、配方法、公式法、因式分解法解一元二次方程;3.能运用一元二次方程的根的判别式判定方程的根的情况;4.能简单运用一元二次方程的根与系数的关系解决相关问题;5.构造一元二次方程解决简单的实际问题;【过程与方法】通过灵活运用解方程的方法,体会几种解法之间的联系与区别,进一步熟练地根据方程特征找出最优解法.【情感态度】通过实际问题的解决,进一步熟练地运用方程解决实际问题,体会方程思想在解决问题中的作用.【教学重点】运用知识、技能解决问题.【教学难点】解题分析能力的提高.一、知识结构【教学说明】引导学生回顾本章知识点,展示本章知识结构图,使学生系统地了解本章知识以及之间的关系二、释疑解惑,加深理解1.一元二次方程的概念:等号两边都是整式,只含有一个求知数(一元),并且求知数的最高次数是2(二次)的方程,叫做一元二次方程.2.一元二次方程的一般形式是:ax2+bx+c=0(a、b、c为常数,a≠0),其中ax2是二次项,a是二次项系数,bx是一次项,b是一次项系数,c是常数项.3.一元二次方程的解法:①直接开方法;②配方法;③公式法;④因式分解法.4.一元二次方程ax2+bx+c=0(a≠0)的根的判别式是Δ=b2-4ac,当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根;当Δ≥0时,方程有实数根.5.一元二次方程的根与系数的关系:(韦达定理)当Δ=b2-4ac≥0时,一元二次方程ax2+bx+c=0(a≠0)的求根公式为x=;若一元二次方程ax2+bx+c=0(a≠0)的两根为x1、x2,则x1+x2=ba-,x1·x2=ca.若一元二次方程x2+px+q=0的两根为x1、x2,则x1+x2=-p,x1x2=q.6.一元二次方程的应用.【教学说明】学生独立完成,通过对重点知识的回顾为本节课的学习内容做好铺垫.三、典例精析,复习新知1.(1)方程(m+1)x m2-2m-1+7x-m=0是一元二次方程,则m是多少?分析:首先根据一元二次方程的定义得,m2-2m-1=2;再由一元二次方程ax2+bx+c=0(a≠0)的定义中a≠0这一条件得m+1≠0来求m的值.解:m=3.(2)若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的常数项为0,则m 等于()A.1B.2C.1或2D.0解析:首先得出m2-3m+2=0;再由一元二次方程ax2+bx+c=0(a≠0)的定义中a≠0这一条件得m-1≠0来求m的值.解答:B【教学说明】此时要注意二次项系数不为0,在讨论含字母系数的一元二次方程问题时,命题者常利用a≠0设计陷阱.2.用适当的方法解一元二次方程:(1)x2=3x;(2)(x-1)2=3;(3)x2-2x-99=0;(4)2x2+5x-3=0.分析:方程(1)选用因式分解法;方程(2)选用直接开平方法;方程(3)选用配方法;方程(4)选用公式法.3.若(x2+y2)2-4(x2+y2)-5=0,则x2+y2=______.解析:用换元法设x2+y2=m得m2-4m-5=0,解得m1=5,m2=-1.对所求结果,还要结合“x2+y2”进行取舍,从而得到最后结果.解答:5【教学说明】一元二次方程的解法要根据方程的特点,灵活选用具体方法.对于特殊的方程要通过适当的变换,使之转化为常规的一元二次方程,如用换元法.4.若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则k的取值范围是()A.k>-1B.k>-1且k≠0C.k<0D.k<0且≠0解析:b2-4ac=(-2)2-4×(-1)k=4k+4>0得k>-1,再由一元二次方程ax2+bx+c=0(a≠0)的定义中a≠0这一条件得k≠0.解答:B【教学说明】一元二次方程的判别式可以用来:(1)不解方程,判断根的情况;(2)利用方程有无实数根,确定取值范围,解题时,务必分清“有实数根”、“有两个实数根”、“有两个相等的实数根”、“有两个不相等的实数根”等关键性字眼.5.某商场将销售成本为30元的台灯以40元的价格售出,平均每月销售600个.市场调查表明:这种台灯的售价每上涨1元,每月平均销售数量将减少10个.若销售利润率不得高于100%,那么销售这种台灯每月要获利10000元,台灯的售价应定为多少元?分析:如果这种台灯售价上涨x元,那么每个月台灯获利(40+x-30)元,每月平均销售数量为(600-10x)个,销售利润为(40+x-30)和(600-10x)的积.用一元二次方程解决实际问题时,所求得的结果往往有两个,而实际问题的答案常常是一个,这就需要我们仔细审题,看清题目的要求,进而作出正确的选择.解:设这种台灯的售价上涨x元,根据题意,得(40+x-30)(600-10x)=10000即x2-50x+400=0解得x1=10,x2=40.所以每个台灯的售价应定为50元或80元.当台灯售价定为80元,售价利润率为166.7%,高于100%,不符合要求;当台灯售价定为50元时,售价利润率为66.7%,低于100%,符合要求.答:每个台灯售价应定为50元.【教学说明】列方程解应用题注重考查能力问题,表面文字比较复杂,但认真阅读,抓住实质,问题就迎刃而解了.四、复习训练,巩固提高1.一元二次方程x2-2x-1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根解析:b2-4ac=(-2)2-4×(-1)=8>0解答:B2.关于x的一元二次方程(a-1)x2+x+|a|-1=0的一个根为0,则实数a的值为()A.-1B.0C.1D.-1或1解析:把x=0代入方程得:|a|-1=0,∴a=±1,∵a-1≠0,∴a=-1.解答:A3.已知关于x的方程x2+(2k+1)x+k2-2=0的两实根的平方和等于11,则k的值为__________.解析:设方程x2+(2k+1)x+k2-2=0的两根为x1,x2,得∵Δ=(2k+1)2-4×(k2-2)=4k+9>0,∴k>9 4 -∵x1+x2=-(2k+1),x1·x2=k2-2,又∵x12+x22=11,即(x1+x2)2-2x1x2=11∴(2k+1)2-2(k2-2)=11,解得k=1或-3∵k>94-,∴k=1解答:14.若关于x的一元二次方程x2+2x+a=0有实数根,则a的取值范围是_____.解析:∵关于x的一元二次方程有实根,∴Δ=22-4a≥0,解得a≤1解答:a≤15.若关于x的一元二次方程x2-4x+k-3=0的两个实数根为x1、x2,且满足x1=3x2,试求出方程的两个实数根及k的值.分析:根据根与系数的关系列出等式,再由已知条件x1=3x2联立组成方程组,解方程组即可.解:由根与系数的关系得:x1+x2=4 ①,x1·x2=k-3 ②又∵x1=3x2 ③,联立①、③,解方程组得123 1x x = =⎧⎨⎩∴k=x1x2+3=3×1+3=6故:方程组两根为x1=3,x2=1,k=6.6.某汽车销售公司6月份销售某厂家汽车,在一定范围内,每辆汽车的进价与销售量有如下关系,若当每月仅售出1辆汽车,则该汽车的进价为27万元;每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆,月底厂家根据销售量一次性返利给销售公司,销售量在10辆以内(含10辆),每辆返利0.5万元,销售量在10辆以上,每辆返利1万.(1)若该公司当月售出3辆汽车,则每辆汽车的进价为_______万元;(2)如果汽车的售价为28万元/辆,该公司计划当月盈利12万元,那么需要售出多少辆汽车?(盈利=销售利润+返利)分析:用销售数量表示出每辆的进价、返利等,再表示出盈利,列出方程,求解.解:(1)27-(3-1)×0.1=26.8.(2)设销售汽车x辆,则汽车的进价为27-(x-1)×0.1=(27.1-0.1x)万元,若x≤10,则(28-27.1+0.1x)x+0.5x=12解得x1=6,x2=-20(不符合题意,舍去)若x>10,则(28-27.1+0.1x)x+x=12解得x3=5(与x>10不符,舍去),x4=-24(不符合题意,舍去)答:公司计划当月盈利12万元,需要售出6辆汽车.五、师生互动,课堂小结1.回顾整理今日收获.2.你还有哪些困惑和疑问?【教学说明】引导学生回顾本章知识点,可让学生相互交流.对学生存在的疑惑进行解答.1.布置作业:教材“复习题”中第2、4、8题.2.完成创优作业中本课时部分.通过画知识结构图,完成一元二次方程的知识点的梳理,构建知识体系;让学生对典型例题、自身错题进行整理,从而使学生抓住本章的重点、突破学习的难点.。
第21章 一元二次方程——一元二次方程的解法(复习课) 2022—2023学年人教版数学九年级上册
课题:《一元二次方程的解法》复习教案一、教材分析:解一元二次方程是人教版九年级上册第21章第二节的内容,本节的主要内容是一元二次方程的解法(直接开方法、因式分解法、配方法、公式法)。
解一元二次方程在课标中的要求是:理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程。
一元二次方程的解法是中学方程教学的重要环节,又是后续内容学习解决实际问题的基础和工具。
一元二次方程是对一元一次方程知识的延续和深化,同时为二次函数的学习作好准备。
学好这部分内容,对增强学生学习代数的信心具有十分重要的意义。
二、学情分析:学生已经学习了一元二次方程的解法:直接开方法、配方法、公式法、因式分解法后的一节复习课,已经掌握了学生的薄弱点:1.易错点:直接开平方法中,学生容易只取正的这一个根;2.配方法中,学生容易把一次项系数不除以2直接平方,个别学生会忘记平方,方程左边加了常数项,右边忘记加;公式法中,学生容易把公式中的-b记错成b,个别学生再代入系数的时候会忘记前面的负号;等等。
2.不能灵活选择解法,由于不会根据方程系数的特征找到最优解法,造成错误率提高,用时过长的弊端,从而影响到了少数学生对数学的自信心。
三、教学目标:(一)知识与技能:1.掌握一元二次方程的四种解法,会根据方程的不同特点,灵活选用适当的方法解方程。
2.避免易错点,提高解方程的正确率。
(二)过程与方法通过观察方程的特征选择不同解法,培养学生的观察猜想、归纳总结、分析问题、解决问题等能力,同时还培养学生化归的思想。
(三)情感态度价值观通过对一元二次方程解法的复习,使学生进一步理解“降次”的数学方法,进一步获得对事物可以转化的认识。
通过小组合作的形式,培养合作的习惯,提高分析的能力。
四、教学重点:掌握解一元二次方程的四种方法。
五、教学难点:会根据方程的特征灵活选用适当的方法解方程。
六、教学过程:(一)全班纠错,激发热情:教材P17习题21.2 6(3)3(1)2(1)x x x -=-作业完成中的不同解法展示:A :解:32x =∴ 23x = ∴原方程的解是:23x = B :解:23322x x x -=- C :解: 23322x x x -=-235+2=0x x - 235+2=0x x -252=33x x -- 252=33x x -- 22552+()=363x x -- 2225525+()=+()3636x x -- 252()=63x -- 251()=636x - ∴原方程无解 51=66x -∴=1x∴原方程的解为:=1xD :解:23322x x x -=-235+2=0x x -3,5,2a b c ==-=224(5)4321b ac ∆=-=--⨯⨯=21,2451223b b ac x a ±--±==⨯ ∴12213x x =-=-, ∴原方程的解是:12213x x =-=-,E :解:3(1)2(1)0x x x ---= (1)(32)0x x --=12213x x ==, ∴原方程的解是:12213x x ==, 提出问题,小组讨论:1.以上几位同学的解法是否正确,如果不正确请指出并改正,并小组内总结出哪些地方是易错点。
《一元二次方程》总复习教案
《一元二次方程》总复习教案《《一元二次方程》总复习教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!(一)基础知识归纳1.一元二次方程的有关概念(1)一元二次方程:只含有一个未知数,并且未知数的最高次数是二次的整式方程,叫做一元二次方程。
注:一元二次方程须同时满足三个条件:①整式方程②化简后只含有一个未知数③未知数的最高次数是2。
(2)一元二次方程的一般形式是ax2+bx+c=0(a≠0,a、b、c是常数)其中ax2叫做二次项,bx叫做一次项,c叫做常数项,a、b分别是二次项,一次项的系数。
(3)使一元二次方程左右两边的值相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。
2.一元二次方程根的判别式一元二次方程ax2+bx+c=0(a≠0)是否有实数根,关键由b2-4ac 的值的符号来确定,我们把b2-4ac叫一元二次方程根的判别式,记作“△”,即△=b2-4ac。
一元二次方程根的情况与判别式的关系:①当△=b2-4ac>0时,方程有两个不相等的实数根。
②当△=b2-4ac=0时,方程有两个相等的实数根。
③当△=b2-4ac<0时,方程没有实数根。
反之亦然3.一元二次方程的解法(1)直接开平方法:利用平方根的定义直接开平方求一元二次方程的根的方法叫做直接开平方法。
直接开平方法的理论依据是平方根的定义,这种方法适合解左边是一个完全平方式,而右边是一个非负数的方程,即形如(x+a)2=b(b≥0)的方程。
(2)配方法:通过配方,把方程的一边化为一个完全平方式,另一边化为非负数,然后利用开平方求解的方法叫做配方法。
用配方法解一元二次方程的一般步骤:①如果一元二次方程的二次项系数不是1,就定在方程的两边同时除以二次项系数,把二次项系数化为1;②把含未知数的项移到左边,常数项移到右边。
③在方程的左右两边同时加上一次项系数一半的平方,这样使方程的左边变成一个完全平方式,右边是一个非负数的形式;④用直接开平方法解这个一元二次方程。
《一元二次方程解法》复习课教案设计
《一元二次方程解法》复习教案设计复习目标:、能说出一元二次方程及其相关概念。
2、能熟练应用配方法、公式法、分解因式法解简单的一元二次方程,并在解一元二次方程的过程中体会转化等数学思想。
复习重难点:一元二次方程的解法教学过程一、情景导入前面我们复习了一元一次方程与二元一次方程组的解法,大家掌握得很不错,请同学解方程x=1,(学生略作思考后,示意不会做)忘了吧?看来好多学生都已经忘了如何解一元二次方程呢?那么这节我们就一起来复习一元二次方程的解法(板书题)二、复习指导(学生按照复习提纲解决问题,师做简单的板书准备后,巡视指导,特别要注意帮助有困难的同学,了解学生的情况,为展示归纳做准备。
)复习提纲.-元二次方程的定义:只含有_______叫做一元二次方程。
2.一元二次方程的一般形式是________(a_______0),其中ax2叫做_______项,a是_______,bx叫做_______,b是_______,叫做_______项。
3.一元二次方程的解法:用直接开平方法解方程(2x+1)2=9形如x2=p的方程的根为________。
用配方法解方程x2+2x=3用配方法解方程步骤:,,,。
用求根公式法解方程x2-3x-=0,x2-3x+=0。
一元二次方程ax2+bx+=0的根的判别式△=________,根x=。
当△>0时,方程有两个_______的实数根。
当△=0时,方程有两个_______的实数根。
当△<0时,_______。
三、展示归纳、教师抽有困难的学生逐题汇报复习结果,学生说教师板书。
2、教师发动全班学生进行评价,补充,完善。
3、教师画龙点睛的强调。
四、变式练习(1、2、4题让学生说出理由,3题让学生观察方程的特点可发现:可用直接开平方法;用配方法或公式法;可用公式法;方程都有共同的因式,故可用因式分解法。
)、判断下列哪些方程是一元二次方程?(1)4x2-16x+1=0(2)2x2-3=0(3)ax2+bx+=02、请将方程=1化为一般形式_______。
人教版九年级数学上册《一元二次方程复习课》教学设计
《一元二次方程复习课》教案教学环节教学过程师生活动设计意图一知识梳理一、引入1、类比一元一次方程说一说什么是一元二次方程?2、小组思维导图展示并讲解。
师问生答,学生类比一元一次方程来复习一元二次方程,小组间互相补充,最后得出一元二次方程所有的知识点网络图。
在学生已有认知的基础上查漏补缺。
二教材回顾知识点1:一元二次方程的概念出示习题生练小组代表解答,师补充。
把讲解的任务交给学生,学生在表达自己的想法的同时,加深了对重要知识点的印象。
同时培养学生的表达能力。
知识点2:一元二次方程的解法解下列一元二次方程:(1)(2018·柳州)092=-x(2)(2018·梧州)030422=--xx出示习题,生练习,一题一小组通过师生,生生的互动练习,以(3)01322=--xx(4)0)1(2)1(3=---xxx 展示,一题一小组批改。
师总结。
小组为单位,让每个学生都参与课堂,做到题题过关。
二教材回顾知识点3:一元二次方程的应用1.出示习题,生练习,小组代表解答,师补充。
把讲解的任务交给学生,学生在表达自己的想法的同时,加深了对重要知识点的印象。
同时培养学生的表达能力。
三真题体验(2017·北部湾24题10分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅图书,并统计每年的借阅人数和图书借阅总量(单位:本).该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.求该社区的图书借阅总量从2014年至2016年的年平均增长率.出示习题,生练习,小组代表解答,师补充.把讲解的任务交给学生,学生在表达自己的想法的同时,加深了对重要知识点的印象。
同时。
初中数学九年级《一元二次方程复习课》公开课教学设计
教师概括:本章重点学习 4114 ,其中 “四个一”是一个概念:一
元二次方程; 一种思想: 降次;一个应用 : 列一元二次方程解应用题; 一种关系: 一元二次方程根与系数的关系; “一个四” 是一元二次方
程的四种解法(略)。注意:( 1)一元二次方程与一元一次方程、
一元一次不等式、一次函数、反比例函数之间的联系。(
( 2 )结合问题 1(3 ) 解答强调配方法的 关键——系数化为 1 后给方程两边同 加上一次项系数一 般的平方。
( 3 )结合 1 ( 4 ) 解答, 追问:什么叫 一元二次方程根的 判别式?如何运用 其判别根的情况? 结合学生回答以表 格形式呈现根的判 别式判别根的情况
重难点突
破 设计
练习设计
作业布置 板书设计
(5) 若直角三角形的两条直角边长分别是方程 根,则此直角三角形的周长是 _________.
x 2 -7x+12=0 的两
(6 )尧柏水泥厂今年的一季度生产水泥 a 吨, 以后每季度比上一季 度增产 x% ,则第三季度生产水泥的吨数是 _____________.
集体备课
活动四 全课小结,提炼升华
个性备课
1 、针对前面复习提 纲,提问检查, 结用 实物展台展示评价 学生建构的知识结 构图。
2 、随机强调注意事 项: 1 )一元二次方 程概念中的必须加 以体会三个条件缺 一不可合检查情况, 板书知识结构图,; 2 )降次是解一元二
【 学生 活动 】
1 、一名学生 朗读复习要 求
2 、结合要求 反思回顾
2 、举例说明什么叫一元二次方程 ? 一元二次方程的解法思想是什 么?常用解法有哪些?各种解法的适应范围分别是怎样的?
3 、怎样利用一元二次方程根的判别式判别根的情况? 4 、一元二次方程根与系数又怎样的关系?在应用时应注意什么? (二)你认为本章知识之间有怎样的关系?请用你喜欢的方式构建本 章知识结构图,并与同伴交流。 活动二: 知识梳理,建构体系
《一元二次方程》复习课 教学设计
一元二次方程章末复习教学设计一、学生知识状况分析学生的知识技能基础:学生在七年级和八年级已经学习了一元一次方程、二元一次方程以及一次函数的相关知识及应用,在本章中,又学习了一元二次方程及其相关解法,初步体会了一元二次方程在解决实际问题中的具体应用,具备了利用数学知识解决实际问题的能力;学生活动经验基础:在相关知识的学习过程中,学生已经经历了由具体问题抽象出数学模型的过程,初步积累了一定的数学建模方法;同时在以往的数学学习中学生已经经历了很多合作学习的机会,具有一定的合作学习经验,具备了一定的合作与交流的能力.二、教学任务分析本节课是一元二次方程的复习课,对于本章的基础知识,学生已大致掌握.本节课以梳理、巩固基础知识为起点,重点解决在学生中存在的易错点与混淆点;实际应用是方程建模思想的具体体现,学生往往感到有一定的难度,本节课以此为重点,从简单的实际问题入手,逐步加深对建模思想的理解.为此,设置本节课的教学目标如下:1、知识与技能:①经历由具体问题抽象出一元二次方程的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型;②能够利用一元二次方程解决有关实际问题,帮助学生认识到运用方程解决实际问题的关键是确定题目中蕴含的等量关系;并且能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力;③了解一元二次方程及其相关概念,会用配方法、公式法、分解因式法解简单的一元二次方程,并在解一元二次方程的过程中体会转化等数学思想;2、过程与方法:①通过让学生经历将多种实际问题抽象成数学问题的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型;②通过小组合作学习,经历一题多解等过程,发展学生多角度思考问题的方法.3、情感与态度:①通过对方程的认识、一题多解的思维展示,发展学生勇于展示自己的品质;②在解决富有挑战性的问题的过程中,培养学生敢于直面困难、勇于挑战的良好品质,鼓励学生大胆尝试,体会成功的喜悦,激发学生学习数学的兴趣.三、教学过程分析本节课设计了六个教学环节:第一环节:基础知识重现;第二环节:巩固提高;第三环节:课堂小结;第四环节:布置作业.第一环节:基础知识重现活动内容:在授完本章新课知识后,让学生重新回顾本章内容,整理出本章的知识结构网,理清各板块内容间的联系.此活动内容在上课前一天布置,让每一位学生都提前做好准备.上课时,选取有代表性的知识结构网络进行全班展示,其他同学对照自己的总结查缺补漏.同时,教师展示一下本章的框架,指出本节课的重点是:利用一元二次方程解决实际问题.活动目的:学生在整理本章知识结构的同时,可以回顾本章的重点内容,细细体会解一元二次方程的“转化”思想,找寻利用方程解决实际问题的关键.活动的实际效果:基于对学生两年来的不间断训练,绝大分学生可以对本章的主要内容以及注意点详细地总结出来,只是呈现形式略微不同.但也有少数同学只是泛泛地停留在书本上的定义、黑体字上,对于更深入的内容总结不到位,这部分同学在教学中往往也是需要特别关注的同学,需要我们教师从各方面来激发他们对数学学习的兴趣.附部分学生的作业:学生A的本章知识结构㈡本章的重点:一元二次方程的解法和应用.㈢本章的难点:应用一元二次方程解决实际问题的方法.学生B 的本章知识结构:本章的知识体系包括三大部分:(一)一元二次方程的定义:只含有一个未知数x 的整式方程,并且都可以化成ax 2+bx+c=0(a ,b ,c 为常数,a≠0)的形式,这样的方程叫做一元二次方程.在这里应注意的问题是:⑴只含有一个未知数;⑵未知数的最高指数必须是2;(3)二次项系数不为0)(二)一元二次方程的解法:一元二次方程的常用解法有:⑴ 直接开平方法;⑵ 配方法;⑶ 公式法;⑷ 分解因式法.(注意:在运用配方法解一元二次方程时,一般先将二次项系数化为1;在运用公式法解一元二次方程时,必须先将方程化为ax 2+bx+c=0 (a≠0)的形式,同时判断b 2-4ac 是否≥0,如果b 2-4ac ≥0,才可用公式求解) (三)一元二次方程的应用:其关键是能找出题目中的等量关系,列出方程本章的重点和难点是:一元二次方程的解法和应用.第二环节:课堂练习内容:以投影形式展示一组基础题目,内容涉及一元二次方程的定义和解法.其中,1、2小题采取口答形式,第3、4小题对比来做,体会其中的方法,第5aac b b x 242-±-=㈠ 问题情景---- —元二次方程1、定义:只含有一个未知数x 的整式方程,并且都可以化成ax 2+bx+c=0(a,b,c 为常数,a ≠0)的形式,这样的方程叫做一元二次方程. ⑴ 直接开平方法 ⑵ 配方法 ⑶ 公式法 ax 2+bx+c=0 (a ≠0,b 2-4ac ≥0)的解为: a ac b b x 242-±-= ⑷ 分解因式法2、解法:3、应用 :其关键是能根据题意找出等量关系.目的:上述这一组题目主要目的是巩固对一元二次方程定义的理解、熟练地解一元二次方程.其中,第1、2小题对比,加深学生对一元二次方程和一元一次方程定义的理解;第3、4小题均是对一元二次方程配方法掌握程度的检验,同时,这部分内容所涉及的方法也是后续“二次函数”学习的基础,此处,也为二次函数的学习奠定一定的基础;第5小题设置三道小题,分别限定方法让学生来解一元二次方程,让学生熟练方程的解法.实际效果:对于第1题,学生普遍掌握比较好,但对于与之对比的第2题,有部分同学存在一定的问题,尤其是对于何时是一元一次方程,更是没有思路,通过这两道题的对比,使学生对方程的定义更加深了理解,也明确了判断一个方程是何类方程时,不仅要关注未知数的次数,还要注意系数;对于第5小题中的第(3)小题,部分学生直接用分解因式法来做,这也是本题设置的一个重要意图:当方程中等式右侧不为0时,不可以直接用分解因式法来做,而要先化成一般形式,再具体选用方法.通过这几道题,让学生关注了方程中的易错点,对于今后的学习也作了部分铺垫.第三环节:重难点突破内容:在本环节中,选择具有代表性的两个题目,提出问题,帮助学生分析问题、解决问题:目的:对本节知识重难点进行巩固练习.实际效果:通过对这些题目的具体分析,发展学生分析问题、解决问题的意识和能力,也为下学期二次函数的学习奠定一定的基础,体现了教材螺旋式上升的设计意图.第四环节:课堂小结内容:师生共同总结本节课的收获,内容主要设计以下几个方面:(1)整节课的感悟:如在解决概念性题目时,要注意领会概念的实质含义;在计算时要做到细心;对于学过的内容,自己要及时进行梳理等等;(2)解决问题时所用到的方法;(3)对于某个知识点的困惑;(4)通过本节课的学习,自己的最大收获.目的:关注学生对数学知识的理解、数学方法的掌握和数学情感的感悟,力争使每个层次的学生在本节课学有所获.实际效果:学生畅所欲言自己的切身感受与实际收获,每个同学的感受也揭示了各自的良好学习方法,为其他同学的学习、听讲等方面提供了有效的借鉴.第六环节:布置作业1、本节课中涉及的所有题目在课下进行分类整理,留作资料;2、针对自己对本章的理解,每名同学命制一份试卷,要求时间在60分钟左右,重点突出,难度适宜,并配有答案(此作业不要求第二天必须上交,给学生一定的收集资料时间).四、教学反思1、作为一章的复习课,本节课设置的内容较为全面细致,重点突出,课堂容量相对来说较大,学生的分组讨论从时间上来看较为紧张,因而,应该更好地规划对某些题目的处理.2、通过课前知识网络的整理、课堂展示讲解的过程,为学生提供展示自己的机会,更利于教师在此过程中发现学生的闪光点以及思维的误区,以便指导今后的教学.3、学生的学习合作小组也应该是动态的,所学知识的不同,学生的反应也不相同,在分组时,应该将思维形态类似的同学放在一组,这样,可以避免让一些思维活跃的学生代替了其他学生的思考,掩盖了其他学生的疑问.同时,教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性.此外,作为一个较大的章节复习课,希望一节课完成上面所有的任务,是比较困难的,因此,建议根据学生状况灵活选择其中部分例习题,如有可能,将例习题分解成两个课时.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程章末复习课
教师
刘明玺
教学
目标
1、通过回顾知识,完成对一元二次方程的知识点的梳理,建构知识体系;
2、通过对典型例题、自身错题的整理,抓住本章的重点、突破学习的难点;
3、通过灵熟练根据方程特征找出最优解法;
4、通过实际问题的解决,进一步熟练运用方程解决实际问题,体会方程思想在解决问题中的作用。
教学过程
备注
教师引导学生回顾知识点、
让学生自主建构本章知识点,形成知识网络
一.一元二次方程及其相关概念;并完成相关练习。
判断下列方程是不是一元二次方程
二、配方法、公式法、分解因式法。并完成相关练习
三、利用一元二次方程解决有关的实际问题,并根据具体问题的实际意义检验结果的合理性。并完成相关习题
四.作业:课本习题1~8题
教学重难点
重点:理解并掌握一元二次方程的概念及解法,会运用方程模型解决实际问题。
难点:对于背景较复杂、等量关系不太明显的实际问题的解决。
学情
分析
1.学生认知发展分析:灵活运用解方程的方法,体会各种解法之间的联系与区别,进一步熟练根据方程特征找出最优解法;
2.学生认知障碍点:学生形成本章课知识时最主要的障碍点:对于背景较复杂、等量关系不太明显的实际问题的解决。