半导体泵浦激光原理实验(精)

合集下载

半导体泵浦激光原理实验

半导体泵浦激光原理实验

半导体泵浦激光原理实验理工学院光信息2班贺扬10329064 合作人:余传祥【实验目的】1、了解与掌握半导体泵浦激光原理及调节光路方法。

2、掌握腔内倍频技术,并了解倍频技术的意义。

3、掌握测量阈值、相位匹配等基本参数的方法。

【实验仪器】808nm半导体激光器、半导体激光器可调电源、晶体、KTP倍频晶体、输出镜(前腔片)、光功率指示仪【实验原理】激光的产生主要依赖受激辐射过程。

处于激发态的原子,在外的光子的影响下,从高能态向低能态跃迁,并在两个状态的能量差以辐射光子的形式发出去。

只有外来光子的能量正好为激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光子与外来光子的频率、发射方向、偏振态和相位完全相同。

激光器主要有:工作物质、谐振腔、泵浦源组成。

工作物质主要提供粒子数反转。

泵浦过程使粒子从基态抽运到激发态,上的粒子通过无辐射跃迁,迅速转移到亚稳态。

是一个寿命较长的能级,这样处于的粒子不断累积,上的粒子又由于抽运过程而减少,从而实现与能级间的粒子数反转。

激光产生必须有能提供光学正反馈的谐振腔。

处于激发态的粒子由于不稳定性而自发辐射到基态,自发辐射产生的光子各个方向都有,只有沿轴向的光子,部分通过输出镜输出,部分被反射回工作物质,在两个反射镜间往返多次被放大,形成受激辐射的光放大即产生激光。

激光倍频是将频率为的光,通过晶体中的非线性作用,产生频率为的光。

当外界光场的电场强度足够大时(如激光),物质对光场的响应与场强具有非线性关系:式中均为与物质有关的系数,且逐次减小。

当E很大时,电场的平方项不能忽略。

,直流项称为光学整流,当激光以一定角度入射到倍频晶体时,在晶体产生倍频光,产生倍频光的入射角称为匹配角。

倍频光的转换效率为倍频光与基频光的光强比,通过非线性光学理论可以得到:式中L为晶体长度,、分别为入射的基频光、输出的倍频光光强。

在正常色散情况下,倍频光的折射率总是大于基频光的折射率,所以相位失配,双折射晶体中的o光和e光折射率不同,且e光的折射率随着其传播方向与光轴间夹角的变化而改变,可以利用双折射晶体中o光、e光间的折射率差来补偿介质对不同波长光的正常色散,实现相位匹配。

实验报告_半导体泵浦激光原理

实验报告_半导体泵浦激光原理

半导体泵浦激光原理实验学号:09327085 :武班别:光信二班合作人:程昌、谭宇婷实验日期:3-14 组别:B11【实验目的】1、了解与掌握半导体泵浦激光原理及调节光路方法。

2、掌握腔倍频技术,并了解倍频技术的意义。

3、掌握测量阈值、相位匹配等基本参数的方法。

【实验仪器】808nm半导体激光器、半导体激光器可调电源、Nd:YVO4晶体、KTP倍频晶体、输出镜(前腔片)、光功率指示仪【实验原理】光与物质的相互作用可以归结为光与原子的相互作用,有三种过程:吸收、自发辐射和受激辐射。

如果一个原子,开始处于基态,在没有外来光子,将保持不变,如果有一个能量为hυ21的光子接近,则它吸收这个光子,处于激发态E2.在此过程中不是所有光子都能被原子吸收,只有当光子能量正好等于原子能级间距E1−E2时才能被吸收。

激发态寿命很短,在不受外界影响时,它们会自发地返回基态,并放出光子。

自发辐射过程与外界作用无关,由于各个原子的辐射都是自发、独立进行的,因而不同原子发出来的光子的发射方向和初相位是不同的。

处于激发态的原子,在外的光子的影响下,会从高能态向低能态跃迁,并在两个状态的能量差以辐射光子的形式发出去。

只有外来光子的能量正好为激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光子与外来光子的频率、发射方向、偏振态和相位完全相同。

激光的产生主要依赖受激辐射过程。

激光器主要有:工作物质、谐振腔、泵浦源组成。

工作物质主要提供粒子数反转。

泵浦过程使粒子从基态E1抽运到激发态E3,E3上的粒子通过无辐射跃迁(该过程粒子从高能级跃迁到低能级时能量转变为热能或晶格振动能,但不辐射光子),迅速转移到亚稳态E2。

E2是一个寿命较长的能级,这样处于E2的粒子不断累积,E1上的粒子又由于抽运过程而减少,从而实现E2与E1能级间的粒子数反转。

激光产生必须有能提供光学正反馈的谐振腔。

处于激发态的粒子由于不稳定性而自发辐射到基态,自发辐射产生的光子各个方向都有,偏离轴向的光子很快逸出腔外,只有沿轴向的光子,部分通过输出镜输出,部分被反射回工作物质,在两个反射镜间往返多次被放大,形成受激辐射的光放大即产生激光。

「固体激光原理与技术综合实验」

「固体激光原理与技术综合实验」

固体激光原理与技术综合实验半导体泵浦固体激光器(Diode-Pumped solid-stateLaser,DPL),是以激光二极管(LD)代替闪光灯泵浦固体激光介质的固体激光器,具有效率高、体积小、寿命长等一系列优点,在光通信、激光雷达、激光医学、激光加工等方面有巨大应用前景,是未来固体激光器的发展方向。

本实验的目的是了解并掌握半导体泵浦固体激光器的工作原理、构成和调试技术,以及调Q、倍频等激光技术的原理和应用。

实验一半导体泵浦光源特性测量实验【实验目的】1.掌握半导体泵浦激光器的原理2.掌握半导体泵浦激光器的使用方法【实验仪器】半导体泵浦激光器、激光功率计、机械调整部件【实验原理】上世纪80年代起,生长半导体激光器(LD)技术得到了蓬勃发展,使得LD的功率和效率有了极大的提高,也极大地促进了DPSL技术的发展。

与闪光灯泵浦的固体激光器相比,DPSL的效率大大提高,体积大大减小。

在使用中,由于泵浦源LD的光束发散角较大,为使其聚焦在增益介质上,必须对泵浦光束进行光束变换(耦合)。

泵浦耦合方式主要有端面泵浦和侧面泵浦两种,其中端面泵浦方式适用于中小功率固体激光器,具有体积小、结构简单、空间模式匹配好等优点。

侧面泵浦方式主要应用于大功率激光器。

本实验采用端面泵浦方式。

端面泵浦耦合通常有直接耦合和间接耦合两种方式,如下:(图1)直接耦合:将半导体激光器的发光面紧贴增益介质,使泵浦光束在尚未发散开之前便被增益介质吸收,泵浦源和增益介质之间无光学系统,这种耦合方式称为直接耦合方式。

直接耦合方式结构紧凑,但是在实际应用中较难实现,并且容易对LD造成损伤。

间接耦合:指先将半导体激光器输出的光束进行准直、整形,再进行端面泵浦。

本实验采用间接耦合方式,间接耦合常见的方法有三种,如下:a 组合透镜系统耦合:用球面透镜组合或者柱面透镜组合进行耦合。

b自聚焦透镜耦合:由自聚焦透镜取代组合透镜进行耦合,优点是结构简单,准直光斑的大小取决于自聚焦透镜的数值孔径。

光信息专业实验报告:半导体泵浦激光原理实验

光信息专业实验报告:半导体泵浦激光原理实验

hvE21 (a)21(b)2E1(c)图1 光与物质作用的受激吸收过程光信息专业实验报告:半导体泵浦激光原理实验【实验目的】1.了解与掌握半导体泵浦激光的原理及调节光路的方法2.掌握腔内倍频技术,并了解倍频技术的意义3.掌握测量阈值、相位匹配等基本参数的方法【实验仪器】1.808nm半导体激光器P≤500mW2.半导体激光器可调电源电流0~500mA3.Nd:YVO4晶体3×3×1mm4.KTP倍频晶体2×2×5mm5.输出镜(前腔片)φ6 R=50mm6.光功率指示仪2μW~200mW 6挡【实验原理】一、光与物质的相互作用光与物质的相互作用可以归结为光子与物质原子的相互作用,有三种过程:受激吸收、自发辐射和受激辐射。

1.受激吸收如果一个原子,开始时处于基态,在没有外来光子的情况下,它将保持不变。

如果一个能量为hv21的光子接近,则它吸收这个光子,跃迁上激发态E2。

在此过程中不是所有的光子都能被原子吸收,只有当光子的能量正好等于原子的能级间隔E1-E2时才能被吸收。

2.自发辐射处于激发态的原子寿命很短(一般为10-8~10-9秒),在不受外界影响时,它们会自发地返回到基态,并释放出光子,辐射光子能量为hv=E2-E1。

自发辐射过程与外界作用无关,是一个随机过程,各个原子的辐射都是自发的、独立进行的,因而不同原子发出来的光子的发射方向和初相位是不相同的。

由于激发能级有一个宽度,所以发射光的频率也不是单一的,而有一个范围。

3.受激辐射处于激发态的原子,在外界光场的作用下,会吸收能量为E 2-E 1的光子,从而由高能态向低能态跃迁,并向外辐射出两个光子。

只有当外来光子的能量正好等于激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光子与外来光子的频率、发射方向、偏振态和相位完全相同。

激光的产生主要依赖受激辐射过程。

二、激光器的组成激光器主要由工作物质、泵浦源、谐振腔三部分组成,如果要实现激光倍频,还需要在谐振腔内部加入倍频晶体。

4-半导体泵浦固体激光器

4-半导体泵浦固体激光器

4-半导体泵浦固体激光器
一、半导体泵浦固体激光器简介
半导体泵浦固体激光器是由半导体激光器(半导体激光)聚合物增益
介质,以及腔镜反射器(构成的激光器外壳)构成的,它是一种激光器,
具有高比功率,高可靠性,高输出功率,低功耗,简单的设计,占用空间小,可以用于大范围的应用,比如光学通信,光学测量,激光技术,等等。

二、半导体泵浦固体激光器的工作原理
半导体泵浦固体激光器工作原理,是将半导体激光投射到聚合物增益
介质上,由于这种增益介质具有高度选择性的发射特性,从而使激光光束
通过聚合物增益介质而进行增强。

然后,这束光被反射回来,经过多次反射,加之聚合物增益介质的特性,最终这束激光都会被反射回来,再经过
多次反射得到较高的激光功率。

三、半导体泵浦固体激光器的特点
1、半导体泵浦固体激光器具有高比功率,高可靠性,高输出功率,
低功耗,简单的设计,占用空间小等特点。

2、半导体泵浦固体激光器能够输出高功率的脉冲激光,能够改变激
光参数,实现定时、定量的光谱,从而更加稳定。

固体激光原理与技术综合实验

固体激光原理与技术综合实验

固体激光原理与技术综合实验半导体泵浦固体激光器(Diode-Pumped solid-state Laser,DPL),是以激光二极管(LD)代替闪光灯泵浦固体激光介质的固体激光器,具有效率高、体积小、寿命长等一系列优点,在光通信、激光雷达、激光医学、激光加工等方面有巨大应用前景,是未来固体激光器的发展方向。

本实验的目的是了解并掌握半导体泵浦固体激光器的工作原理、构成和调试技术,以及调Q、倍频等激光技术的原理和应用。

实验一半导体泵浦光源特性测量实验【实验目的】1.掌握半导体泵浦激光器的原理2.掌握半导体泵浦激光器的使用方法【实验仪器】半导体泵浦激光器、激光功率计、机械调整部件【实验原理】上世纪80年代起,生长半导体激光器(LD)技术得到了蓬勃发展,使得LD的功率和效率有了极大的提高,也极大地促进了DPSL技术的发展。

与闪光灯泵浦的固体激光器相比,DPSL的效率大大提高,体积大大减小。

在使用中,由于泵浦源LD的光束发散角较大,为使其聚焦在增益介质上,必须对泵浦光束进行光束变换(耦合)。

泵浦耦合方式主要有端面泵浦和侧面泵浦两种,其中端面泵浦方式适用于中小功率固体激光器,具有体积小、结构简单、空间模式匹配好等优点。

侧面泵浦方式主要应用于大功率激光器。

本实验采用端面泵浦方式。

端面泵浦耦合通常有直接耦合和间接耦合两种方式,如下:(图1)直接耦合:将半导体激光器的发光面紧贴增益介质,使泵浦光束在尚未发散开之前便被增益介质吸收,泵浦源和增益介质之间无光学系统,这种耦合方式称为直接耦合方式。

直接耦合方式结构紧凑,但是在实际应用中较难实现,并且容易对LD造成损伤。

间接耦合:指先将半导体激光器输出的光束进行准直、整形,再进行端面泵浦。

本实验采用间接耦合方式,间接耦合常见的方法有三种,如下:a 组合透镜系统耦合:用球面透镜组合或者柱面透镜组合进行耦合。

b 自聚焦透镜耦合:由自聚焦透镜取代组合透镜进行耦合,优点是结构简单,准直光斑的大小取决于自聚焦透镜的数值孔径。

半导体泵浦固体连续激光器实验原理

半导体泵浦固体连续激光器实验原理

半导体泵浦固体连续激光器实验原理文章标题:半导体泵浦固体连续激光器实验原理引言:半导体泵浦固体连续激光器(也称作DPSSL)是一种重要的激光器技术,它被广泛应用于科学研究、工业生产、材料加工等领域。

本文将深入探讨半导体泵浦固体连续激光器的实验原理,通过介绍其构造、工作原理和关键技术,帮助读者更全面、深刻地了解该激光器技术。

第一节:半导体泵浦固体连续激光器的构造和工作原理1.1 构造概述半导体泵浦固体连续激光器由激光工作物质、泵浦源、光学谐振腔等组成。

详细介绍每个组成部分的功能和作用。

1.2 工作原理半导体泵浦固体连续激光器的工作原理是基于半导体激光二极管对工作物质进行泵浦,从而实现能量转换。

解释能量转换的过程和原理,包括吸收、激发、跃迁等关键步骤。

第二节:半导体泵浦固体连续激光器的实验关键技术2.1 泵浦源选择介绍如何选择合适的半导体泵浦源,包括波长匹配、功率要求、热效应等因素的考虑。

2.2 激光工作物质选择探讨如何选择适用于半导体泵浦固体连续激光器的工作物质,包括钕掺杂YAG(钇铝石榴石)晶体、钇铝石榴石陶瓷等,比较它们的优缺点和应用领域。

2.3 光学谐振腔设计和优化介绍光学谐振腔的设计原理和方法,包括准稳态、长腔和短腔等不同谐振腔结构的选择和优化。

第三节:实验过程与结果分析3.1 实验步骤详细描述半导体泵浦固体连续激光器实验的步骤,包括调整泵浦源、控制温度、测量输出功率等操作。

3.2 实验结果分析对实验结果进行分析和讨论,包括激光输出功率与输入功率的关系、温度对输出功率的影响等方面。

第四节:对半导体泵浦固体连续激光器的观点和理解4.1 对半导体泵浦固体连续激光器的观点提供对半导体泵浦固体连续激光器技术的观点和评价,包括其优势、局限性以及应用前景等。

4.2 对实验原理的理解总结总结半导体泵浦固体连续激光器的实验原理,回顾文章中的关键内容,以帮助读者更全面、深入地理解该技术。

结论:通过对半导体泵浦固体连续激光器实验原理的细致讲解,读者可以加深对该激光器技术的理解,并在科学研究和工业应用中充分发挥其潜力。

半导体泵浦激光原理

半导体泵浦激光原理
c、导数法:在 — 曲线中,将输出功率对泵浦功率求二阶导数,求导数波峰所对应的功率值为 。
③、 — 曲线的斜率
该斜率为 以上的 — 曲线的斜率,表示波长为808nm的泵浦功率有多少转换成1064nm固体激光器的输出功率。
二、LD泵浦Nd:YVO4固体激光器光斑尺寸的测量
在各种不同光强分布形式中,基横模的光强分布不均匀性最小,因此需要激光器工作在基横模状态。激光基横模的光强分布是高斯分布,能够方便地测量光斑的大小。
用刀口法可以测定光斑的大小和验证光斑的光强分布是高斯分布。实验中使刀口平行于y轴,沿垂直于x轴方向移动。当刀口缓慢推入光束时,设刀口挡住了x≤a的所有点。最后,归一化的高斯分布和相对功率与刀口位置关系曲线如下图所示:
相对功率为0.25和0.75的点分别位于高斯分布曲线极大值两侧,其距离为ep=0.6745σ。由实验得到的相对功率与刀口位置的关系曲线可确定ep的值。用ep的值可计算出光斑大小:
自发辐射:在没有外界作用下,原子中的电子自发的由高能级向低能级跃迁,跃迁时将产生光辐射,此即为自发辐射。辐射光子能量为:
原子的自发辐射过程完全是一个随机过程,所辐射的光之间完全没有联系。
波尔兹曼分布规律:在通常的热平衡条件下,处于高能级 上的原子数密度 ,远比处于低能级的原子数密度低。处于能级E的原子数密度N的大小随能级E的增加而指数减小,即N∝ 。于是,在上、下两个能级上的原子数密度比为
4、缓慢旋转螺旋测微器,推进刀口,每0.04mm测一对应的激光功率P,记录下来;
5、重复4,直到光斑全部被刀片挡住,即功率计显示为零,由此建立P—x曲线;
6再将刀口拉回,重新测量一组P—x数据;
7、数据拟合及处理得出光斑尺寸及基横模的判断结果。
三、LD泵浦Nd:YVO4固体激光器远场发散角的测量

专业实验 实验二 半导体泵浦固体激光器综合实验

专业实验 实验二 半导体泵浦固体激光器综合实验

半导体泵浦固体激光器综合实验实验讲义大恒新纪元科技股份有限公司版权所有不得翻印半导体泵浦固体激光器综合实验一、前言半导体泵浦固体激光器(Diode-Pumped solid-state Laser,DPL),是以激光二极管(LD)代替闪光灯泵浦固体激光介质的固体激光器,具有效率高、体积小、寿命长等一系列优点,在光通信、激光雷达、激光医学、激光加工等方面有巨大应用前景,是未来固体激光器的发展方向。

本实验的目的是熟悉半导体泵浦固体激光器的基本原理和调试技术,以及其调Q 和倍频的原理和技术。

二、实验目的a)掌握半导体泵浦固体激光器的工作原理和调试方法;b)掌握固体激光器被动调Q的工作原理,进行调Q脉冲的测量;c)了解固体激光器倍频的基本原理。

三、实验原理与装置d)半导体激光泵浦固体激光器工作原理:上世纪80年代起,生长半导体激光器(LD)技术得到了蓬勃发展,使得LD的功率和效率有了极大的提高,也极大地促进了DPSL技术的发展。

与闪光灯泵浦的固体激光器相比,DPSL的效率大大提高,体积大大减小。

在使用中,由于泵浦源LD的光束发散角较大,为使其聚焦在增益介质上,必须对泵浦光束进行光束变换(耦合)。

泵浦耦合方式主要有端面泵浦和侧面泵浦两种,其中端面泵浦方式适用于中小功率固体激光器,具有体积小、结构简单、空间模式匹配好等优点。

侧面泵浦方式主要应用于大功率激光器。

本实验采用端面泵浦方式。

端面泵浦耦合通常有直接耦合和间接耦合两种方式。

e)直接耦合:将半导体激光器的发光面紧贴增益介质,使泵浦光束在尚未发散开之前便被增益介质吸收,泵浦源和增益介质之间无光学系统,这种耦合方式称为直接耦合方式。

直接耦合方式结构紧凑,但是在实际应用中较难实现,并且容易对LD造成损伤。

f)间接耦合:指先将LD输出的光束进行准直、整形,再进行端面泵浦。

常见的方法有:g)组合透镜系统聚光:用球面透镜组合或者柱面透镜组合进行耦合。

h)自聚焦透镜耦合:由自聚焦透镜取代组合透镜进行耦合,优点是结构简单,准直光斑的大小取决于自聚焦透镜的数值孔径。

半导体泵浦固体连续激光器实验原理

半导体泵浦固体连续激光器实验原理

半导体泵浦固体连续激光器实验原理半导体泵浦固体连续激光器(semiconductor-pumped solid-state continuous wave laser)是一种基于半导体激光器泵浦固体激光材料的连续激光器。

它结合了半导体激光器和固体激光器的优点,广泛应用于科研、医疗、材料加工等领域。

本文将深入探讨半导体泵浦固体连续激光器的实验原理。

1. 深度评估半导体泵浦固体连续激光器的优势和应用范围半导体泵浦固体连续激光器相比传统固体连续激光器具有许多优势。

由于半导体激光器的泵浦方式,它具有更高的转换效率和更小的体积。

由于半导体激光器的泵浦光束质量好,它可以实现更高的光束质量和更小的光斑尺寸。

这些优势使得半导体泵浦固体连续激光器在科研实验、高精密医疗和材料加工等领域得到广泛应用。

2. 从简到繁,由浅入深探索半导体泵浦固体连续激光器的原理半导体泵浦固体连续激光器的原理可以从三个方面来展开讨论:泵浦过程、激射过程和输出特性。

2.1 泵浦过程半导体泵浦固体连续激光器的泵浦过程是指通过半导体激光器将波长较短的激光能量传递给固体激光材料的过程。

在泵浦过程中,半导体激光器产生的激光通过波长转换器将其转换为固体激光材料吸收峰附近的波长。

这样可以实现最大程度的能量传递,并提高效率。

2.2 激射过程半导体泵浦固体连续激光器的激射过程是指在泵浦过程后,固体激光材料吸收能量并通过受激辐射释放激光的过程。

激射过程中,激光在反射镜和谐振腔内来回传播,通过受激辐射放大并形成连续激光输出。

谐振腔的设计和镜面的选择对于获得稳定和高效的连续激光输出非常重要。

2.3 输出特性半导体泵浦固体连续激光器的输出特性受到许多因素的影响,包括波长、功率、稳定性等。

通过调整输入功率和选择合适的激光谐振腔结构,可以实现连续激光输出的稳定性和高功率。

3. 总结和回顾,深入理解半导体泵浦固体连续激光器的应用前景半导体泵浦固体连续激光器作为一种新型激光器技术,具有广阔的应用前景。

半导体泵浦源工作原理

半导体泵浦源工作原理

半导体泵浦源工作原理一、介绍半导体泵浦源是一种用于产生激光的装置,它利用半导体材料的特性实现泵浦效应。

本文将详细探讨半导体泵浦源的工作原理以及其在激光技术中的应用。

二、工作原理半导体泵浦源的工作原理基于半导体材料的特性,通过将电流注入到半导体材料中,使其产生激发态,在激发态的能级跃迁过程中释放能量,从而实现激光的产生。

以下是半导体泵浦源的工作原理的详细步骤:1. 电流注入首先,通过电流注入将电子注入到半导体材料中。

这通常通过将两个电极连接到半导体材料的两端来实现。

当外部电源施加电压时,电子从一个电极流向另一个电极,进入半导体材料。

2. 电子激发注入到半导体材料中的电子会与半导体内的自由电子和空穴发生相互作用。

在这个过程中,一些电子会被激发到高能态,形成激发态的能级。

3. 能级跃迁激发态的电子在短时间内会自发地退回到基态。

在这个退激过程中,电子会跃迁到低能态的能级,并释放出能量。

4. 反射和放大通过在半导体泵浦源中添加反射镜,可以将产生的光反射回半导体材料中,并与正在退激的电子进行相互作用。

这样,退激的电子就会受到受激辐射的影响,释放出更多的光子。

这种过程被称为光放大。

5. 泵浦效应重复进行上述的激发、能级跃迁、反射和放大过程,就可以实现光的泵浦效应。

泵浦效应的结果是产生一个具有相干性和定向性的激光器光输出。

三、应用半导体泵浦源在激光技术中有广泛的应用。

以下是半导体泵浦源的几种常见应用:1. 光通信半导体泵浦源可用于光通信领域,它可以产生高功率和高效率的激光光源。

这种激光光源可用于光纤通信中的光放大器和激光驱动器,提供稳定和可靠的信号传输。

2. 医疗激光半导体泵浦源也可应用于医疗激光领域。

例如,它可以用于激光手术中的光刀,用于放射治疗中的光源,以及用于皮肤治疗中的激光设备。

半导体泵浦源在医疗激光中的应用具有高效率和紧凑性的优势。

3. 显示技术半导体泵浦源还可以用于显示技术中,如投影仪和激光显示器。

光信息专业实验报告:半导体泵浦激光原理实验 (2)

光信息专业实验报告:半导体泵浦激光原理实验 (2)

光信息专业实验报告:半导体泵浦激光原理实验九、实验数据处理与结果分析1、808nm LD半导体激光器的激光功率与电源电流间的关系将光功率计紧贴激光器放置,以避免外界光的干扰。

开启光功率计并进行调零,然后从零开始逐步增大电源电流I,观察并记录光功率计读数P。

所得数据如表1.由表1数据可作出I-P关系图,如图1、2。

观察图像可以发现除去I=0~80mA段,I与P基本呈线性关系。

对I=80~400mA段作线性拟合,得图3、4.图3 第一次实验所得808nmLD的I-P线性拟合结果图图4 第二次实验所得808nmLD的I-P线性拟合结果图可见两次拟合所得的线性相关系数分别为r1=0.99625和r2=0.99716,表明除去I=0~80mA段,I与P的线性相关程度很高。

拟合直线的表达式分别为y1=0.34x-27.49和y2=0.32x-24.79,则当y=0时,x1=80.85,x2=77.47,故808nmLD激光器的阈值电流I0为122x x+=79.16mA左右。

当电源电流小于阈值电流时,激光器输出的光主要由自发辐射产生,因而很弱;当电源电流大于阈值电流时,激光器产生受激辐射光放大,即产生了激光,因此光功率很大。

在产生激光以后,光功率P与电源电流I呈线性正相关的关系。

2、532nm 绿色激光的光功率与转换效率,及其与808nm LD激光器电源电流的关系调节出强度较大且功率稳定的绿色激光后,在光路中加入滤色片滤去红外激光,用光功率计测量不同电源电流对应的绿色激光功率,计算转换效率,并与前面测得的808nm LD激光器光功率对照得出对应关系。

所得数据和计算结果如表2.表2 不同电源电流对应532nm激光的光功率与转化效率其中转换效率100%Pη=⨯.由表2数据可得出532nm激光功率P’及转换效率η与电源电流I间的关系,如图5、6.图5 532nm激光的I-P关系图图6 532nm激光的I-η关系图由图5可以看出,532nm激光功率与电源电流基本呈正相关的关系。

半导体泵浦激光器实验报告

半导体泵浦激光器实验报告

半导体泵浦激光器实验报告一、实验目的本次实验的主要目的是深入了解半导体泵浦激光器的工作原理、结构特点以及性能参数,并通过实际操作和测量,掌握其调试和应用方法。

二、实验原理半导体泵浦激光器(Diode Pumped Solid State Laser,简称 DPSSL)是一种以半导体激光器作为泵浦源的固体激光器。

其工作原理基于光的受激辐射。

半导体激光器发出的泵浦光被聚焦到激光晶体上,使得激光晶体中的粒子数反转分布。

当处于高能级的粒子数多于低能级时,在一定的条件下,受激辐射会超过受激吸收,从而产生激光。

在半导体泵浦激光器中,常用的激光晶体有 Nd:YAG(掺钕钇铝石榴石)、Nd:YVO₄(掺钕钒酸钇)等。

这些晶体具有良好的光学性能和较高的增益系数。

三、实验设备与材料1、半导体泵浦激光器系统,包括半导体泵浦源、激光晶体、谐振腔等部件。

2、光学平台及调整架,用于安装和调整实验装置。

3、激光功率计,用于测量激光输出功率。

4、光谱仪,用于测量激光的波长和光谱特性。

5、示波器,用于观测激光的脉冲特性。

四、实验步骤1、搭建实验装置将半导体泵浦源、激光晶体和谐振腔等部件安装在光学平台上,并使用调整架进行初步调整,使光路大致准直。

2、泵浦源调试开启半导体泵浦源,调节其工作电流和温度,使其输出稳定的泵浦光。

3、谐振腔调整通过微调谐振腔的反射镜,观察激光输出功率的变化,找到最佳的谐振状态。

4、功率测量使用激光功率计测量激光的输出功率,并记录不同泵浦电流下的功率值。

5、光谱测量利用光谱仪测量激光的波长和光谱宽度。

将激光输出接入示波器,观察激光的脉冲形状和重复频率。

五、实验数据与结果1、功率特性随着泵浦电流的增加,激光输出功率逐渐增大,但并非呈线性关系。

在达到一定电流值后,功率增长趋于平缓,甚至可能出现饱和现象。

2、光谱特性测量得到的激光波长与所选激光晶体的特性相符,光谱宽度较窄,表明激光具有较好的单色性。

3、脉冲特性观察到的激光脉冲形状较为规整,重复频率稳定。

半导体泵浦激光原理实验(精)

半导体泵浦激光原理实验(精)

hvE 2 1(a)2 1(b)2 E 1(c)光与物质作用的吸收过程半导体泵浦激光原理实验【实验目的】1. 了解激光特别是半导体激光器工作原理2. 调节激光器光路,观察倍频现象,测量阈值、相位匹配等基本参数,加深对激光技术理解。

【实验仪器】808nm 半导体激光器、半导体激光器可调电源、Nd:YVO4晶体、KTP 倍频晶体、输出镜(前腔片)、光功率指示仪【实验原理】1. 激光产生原理光与物质的相互作用可以归结为光与原子的相互作用,有三种过程:吸收、自发辐射和受激辐射。

如果一个原子,开始处于基态,在没有外来光子,它将保持不变,如果一个能量为hv 21的光子接近,则它吸收这个光子,处于激发态E 2。

在此过程中不是所有的光子都能被原子吸收,只有当光子的能量正好等于原子的能级间隔E 1-E 2时才能被吸收。

激发态寿命很短,在不受外界影响时,它们会自发地返回到基态,并放出光子。

自发辐射过程与外界作用无关,由于各个原子的辐射都是自发的、独立进行的,因而不同原子发出来的光子的发射方向和初相位是不相同的。

处于激发态的原子,在外的光子的影响下,会从高能态向低能态跃迁,并两个状态间的能量差以辐射光子的形式发射出去。

只有外来光子的能量正好为激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光子与外来光子的频率、发射方向、偏振态和相位完全相同。

激光的产生主要依赖受激辐射过程。

激光器主要有:工作物质、谐振腔、泵浦源组成。

工作物质主要提供粒子数反转。

泵浦过程使粒子从基态E 1抽运到激发态E 3,E 3上的粒子通过无辐射跃迁(该过程粒子从高能级跃迁到低能级时能量转变为热能或晶格振动能,但不辐射光子),迅速转移到亚稳态E 2。

E 2是一个寿命较长的能级,这样处于E 2上的粒子不断积累,E 1上的粒子 又由于抽运过程而减少,从而实现E 2与E 1能级间的粒子数反转。

激光产生必须有能提供光学正反馈的谐振腔。

处于激发态的粒子由于不稳定性而自发辐射到基态,自发辐射产生的光子各个方向都有,偏离轴向的光子很快逸出腔外,只有沿轴向的光子,部分通过输出镜输出,部分被反射回工作物质,在两个反射镜间往返多次被放大,形成受激辐射的光放大即产生激光。

半导体泵浦激光器实验报告

半导体泵浦激光器实验报告

半导体泵浦激光器实验报告一、实验目的半导体泵浦激光器在现代光学领域有着相当重要的地位呢。

咱们做这个实验呀,就是为了深入了解半导体泵浦激光器的工作原理,还有它的一些基本特性,像输出功率呀,波长范围之类的。

通过这个实验,希望大家能够亲手操作相关设备,提高自己的实验技能,并且学会对实验数据进行分析处理。

二、实验设备1. 半导体泵浦激光器。

这可是实验的主角呢,就像舞台上的明星,它的性能直接决定了实验的结果。

这个激光器呀,有着独特的结构,内部的半导体材料是关键,它能够产生泵浦光,为激光的产生提供能量。

2. 功率计。

这就像是一个小裁判,专门用来测量激光器输出的功率。

它很灵敏,能够精确地告诉我们激光器到底有多“大力气”,能输出多少功率。

3. 波长计。

它的任务呢,是测量激光器输出光的波长。

就好比给光做个身份鉴定,确定它的波长到底是多少,是属于哪个波段的。

三、实验步骤1. 首先把半导体泵浦激光器连接好电源。

这一步可不能马虎,就像给汽车加油一样,要确保电源连接稳固,不然激光器可没法好好工作。

然后打开激光器的开关,这时候呀,激光器就开始工作了,就像一个小引擎启动了。

2. 接着,用功率计来测量激光器的输出功率。

把功率计的探头对准激光器的输出端口,就像眼睛盯着目标一样,然后读取功率计上显示的数值。

这个数值可能会因为各种因素而有波动,比如环境温度呀,激光器的工作状态呀。

3. 再用波长计测量输出光的波长。

把波长计调整到合适的测量模式,然后让激光器的光进入波长计,就像送客人进门一样。

波长计就会告诉我们光的波长是多少,这可是很重要的一个参数呢。

四、实验数据记录与分析1. 在实验过程中,要认真记录每次测量得到的数据。

比如说,不同的工作电流下,激光器的输出功率是多少,对应的波长又是多少。

这些数据就像是宝藏一样,是我们分析实验结果的依据。

2. 对数据进行分析的时候呀,可以画一些图表。

比如,以工作电流为横坐标,输出功率为纵坐标,画一个功率 - 电流曲线。

实验三 半导体泵浦激光实验

实验三   半导体泵浦激光实验

实验三 半导体泵浦激光实验半导体泵浦532nm 绿光激光器由于具有波长短,光子能量高,体积小,效率高,可靠性高,寿命长,在水中传输距离远和对人眼敏感等优点,近几年在光谱技术,激光医学,信息存储,彩色打印,水下通讯等领域展示出极为重要的作用,从而成为各国研究的热点。

半导体泵浦532nm 绿光激光器适用于大学近代物理教学中的非线性光学实验。

本实验以808nm 半导体激光泵浦Nd 3+: YVO 4激光器为研究对象,在激光腔内插入倍频晶体KTP ,产生532nm 倍频光,观察倍频现象、测量倍频效率、相位匹配角等基本参数。

一、实验目的1、 掌握光路调整基本方法,观察横模,测量输出红外光与泵浦能量的关系,斜效率和阈值;2、 测量半导体激光器注入电流和功率输出的变化关系,了解激光原理及倍频等激光技术。

二、实验原理光与物质的相互作用可以归结为光与原子的相互作用。

爱因斯坦从辐射与原子的相互作用的量子论观点出发提出:在平衡条件下,这种相互作用过程有三种,也就是受激吸收,受激辐射和自发辐射。

假定一个原子,其基态能量为E 1,第一激发态的能量为E 2,如图1所示。

如果原子开始处于基态,在没有外界光子入射时,原子的能级状态将保持不变。

如果有一个能量为2121hv E E =-的光子入射,则原子就会吸收这个光子而跃迁到第一激发态。

原子的跃迁必须符合跃迁选择定则,也就是入射光子的能量21hv 等原子的能级间隔21E E -时才能被吸收(为叙述的简单起见,这里假定自发辐射是单色的)。

激发态的寿命很短,在不受外界影响时,它们会自发地返回到基态并发射出光子。

自发辐射与外界作用无关,由于原子的辐射都是自发地,独立地进行的,所以不同原子发射的光子的发射方向和初相位都是随机的,各不相同的,如图2所示。

如果有一个能量为2121hv E E =-的光子入射,则原子就会在这个光子的激励下产生新的光子,即引起受激辐射,如图3所示,受激辐射发射的光子与外来光子的频率、发射方向、偏振态和初相位完全相同。

半导体泵浦固体激光器综合实验实验报告

半导体泵浦固体激光器综合实验实验报告

佛山科学技术学院实验报告课程名称光电信息与技术实验实验项目半导体泵浦固体激光器综合实验专业班级姓名学号指导教师成绩日期2016年4月11日电流1.7A,微调输出镜、激光晶体、耦合系统的旋钮,使输出激光功率最大;(2)安装KTP晶体(或LBO),在准直器前准直后放入谐振腔内,倍频晶体尽量靠近激光晶体。

调节调整架,使得输出绿光功率最亮;然后旋转KTP晶体(或LBO),观察旋转过程中绿光输出有何变化;五、实验数据和数据处理电流(mA)泵浦功率(mW) 激光功率(mW)0 0.03 -0.080.2 0.1 -0.080.4 0.56 -0.080.6 105 0.730.8 232 1.711.0 353 3.401.2 469 8.101.4 585 22.21.6 702 36.71.8 811 51.22.0 920 68.21.电流——泵浦功率T1=泵浦功率/电流=4602.电流——激光输出功率3.泵浦——激光功率六、实验结果实验数据及其分析见上图,在无任何透镜的情况下,泵浦的输出功率与电流成正比关系。

在电流达到0.4mA时,泵浦被激发,功率成线性增长。

在加装了透镜组成激光发射仪后,功率发生了明显的下降,而且不再呈现线性变化。

七、分析讨论1. 半导体激光器(LD)对环境有较高要求,因此本实验系统需放置于洁净实验室内。

实验完成后,应及时盖上仪器罩,以免LD沾染灰尘。

2. LD对静电非常敏感。

所以严禁随意拆装LD和用手直接触摸LD外壳。

如果确实需要拆装,请带上静电环操作,并将拆下的LD两个电极立即短接。

实验报告内容:一实验目的二实验仪器(仪器名称、型号、参数、编号)三实验原理(原理文字叙述和公式、原理图)四.实验步骤五、实验数据和数据处理六.实验结果七.分析讨论(实验结果的误差来源和减小误差的方法、实验现象的分析、问题的讨论等)八.思考题。

半导体泵浦固体连续激光器实验原理

半导体泵浦固体连续激光器实验原理

半导体泵浦固体连续激光器实验原理一、引言半导体泵浦固体连续激光器(SPCW)是一种基于固态激光器技术的新型激光器。

它由半导体激光器和固体激光介质组成,利用半导体激光器的高功率密度来泵浦固体介质,产生高品质的连续激光输出。

该技术具有高效能、小型化、可靠性高等优点,被广泛应用于医疗、工业加工、通信等领域。

二、SPCW实验原理1. 半导体泵浦原理半导体泵浦是指利用半导体材料产生的电子-空穴对来产生激发态粒子,从而实现泵浦作用的过程。

在SPCW中,采用GaAlAs或InGaAsP等材料制成的半导体激光器作为泵浦源。

这些材料具有较大的能带差和较小的自由载流子寿命,因此可以在低电流下获得高功率密度。

当外加电压超过某个阈值时,半导体中会出现反向注入现象。

即外部电压把载流子注入到半导体中,使电子和空穴在pn结区域发生复合,产生光子。

这些光子会被反射镜反射回来,并在pn结区域内不断增加,最终形成激光束。

2. 固体连续激光器原理固体连续激光器是指利用固体介质(如Nd:YAG晶体)作为放大介质的激光器。

当外界能量(如光或电)被输入到介质中时,它会被吸收并转化为激发态粒子。

这些粒子会不断发生辐射跃迁和自发跃迁,最终产生一束强度足够大的连续激光。

在SPCW中,固体连续激光器是由Nd:YAG晶体构成的。

该晶体具有较高的吸收截面和较长的寿命时间,因此可以实现高效率的泵浦和放大作用。

3. SPCW原理SPCW将半导体泵浦和固态连续激光器相结合,实现了高功率、高效率、稳定性好的连续激光输出。

具体来说,在SPCW中,半导体激光器产生的高功率密度光束被聚焦到Nd:YAG晶体中,从而实现了固态介质的泵浦。

随着泵浦功率的增加,Nd:YAG晶体中激发态粒子的数量也会不断增加。

当激发态粒子达到一定数量时,它们会在晶体中发生辐射跃迁和自发跃迁,从而产生连续激光输出。

四、实验步骤1. 准备工作(1)准备SPCW系统:包括半导体激光器、Nd:YAG晶体、反射镜等。

实验三、半导体泵浦固体激光器综合实验

实验三、半导体泵浦固体激光器综合实验

半导体泵浦固体激光器综合实验半导体泵浦固体激光器(Diode-Pumped solid-state Laser,DPL),是以激光二极管(LD)代替闪光灯泵浦固体激光介质的固体激光器,具有效率高、体积小、寿命长等一系列优点,在光通信、激光雷达、激光医学、激光加工等方面有巨大应用前景,是未来固体激光器的发展方向。

本实验的目的是熟悉半导体泵浦固体激光器的基本原理和调试技术,以及其调Q 和倍频的原理和技术。

【实验目的】1.掌握半导体泵浦固体激光器的工作原理和调试方法;2.掌握固体激光器被动调Q的工作原理,进行调Q脉冲的测量;3.了解固体激光器倍频的基本原理。

【实验原理与装置】1.半导体激光泵浦固体激光器工作原理:上世纪80年代起,生长半导体激光器(LD)技术得到了蓬勃发展,使得LD的功率和效率有了极大的提高,也极大地促进了DPSL技术的发展。

与闪光灯泵浦的固体激光器相比,DPSL的效率大大提高,体积大大减小。

在使用中,由于泵浦源LD的光束发散角较大,为使其聚焦在增益介质上,必须对泵浦光束进行光束变换(耦合)。

泵浦耦合方式主要有端面泵浦和侧面泵浦两种,其中端面泵浦方式适用于中小功率固体激光器,具有体积小、结构简单、空间模式匹配好等优点。

侧面泵浦方式主要应用于大功率激光器。

本实验采用端面泵浦方式。

端面泵浦耦合通常有直接耦合和间接耦合两种方式。

①直接耦合:将半导体激光器的发光面紧贴增益介质,使泵浦光束在尚未发散开之前便被增益介质吸收,泵浦源和增益介质之间无光学系统,这种耦合方式称为直接耦合方式。

直接耦合方式结构紧凑,但是在实际应用中较难实现,并且容易对LD造成损伤。

②间接耦合:指先将LD输出的光束进行准直、整形,再进行端面泵浦。

常见的方法有:组合透镜系统聚光:用球面透镜组合或者柱面透镜组合进行耦合。

自聚焦透镜耦合:由自聚焦透镜取代组合透镜进行耦合,优点是结构简单,准直光斑的大小取决于自聚焦透镜的数值孔径。

光纤耦合:指用带尾纤输出的LD进行泵浦耦合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

hv
E 2 E 1
(a)
2 1
(b)
E 2 E 1
(c)
光与物质作用的吸收过程
半导体泵浦激光原理实验
【实验目的】
1. 了解激光特别是半导体激光器工作原理
2. 调节激光器光路,观察倍频现象,测量阈值、相位匹配等基本参数,加深对激光技
术理解。

【实验仪器】
808nm 半导体激光器、半导体激光器可调电源、Nd:YVO4晶体、KTP 倍频晶体、输出镜(前腔片)、光功率指示仪
【实验原理】
1. 激光产生原理
光与物质的相互作用可以归结为光与原子的相互作用,有三种过程:吸收、自发辐射和受激辐射。

如果一个原子,开始处于基态,在没有外来光子,它将保持不变,如果一个能量为hv 21
的光子接近,则它吸收这个光子,处于激发态E 2。

在此过程中不是所有的光子都能被原子吸收,只有当光子的能量正好等于原子的能级间隔E 1-E 2时才能被吸收。

激发态寿命很短,在不受外界影响时,它们会自发地返回到基态,并放出光子。

自发辐
射过程与外界作用无关,由于各个原子的辐射都是自发的、独立进行的,因而不同原子发出来的光子的发射方向和初相位是不相同的。

处于激发态的原子,在外的光子的影响下,会从高能态向低能态跃迁,并两个状态间的
能量差以辐射光子的形式发射出去。

只有外来光子的能量正好为激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光子与外来光子的频率、发射方向、偏振态和相位完全相同。

激光的产生主要依赖受激辐射过程。

激光器主要有:工作物质、谐振腔、泵浦源组成。

工作物质主要提供粒子数反转。

泵浦过程使粒子从基态E 1抽运到激发态E 3,E 3上的粒子通过无辐射跃迁(该过程粒子从高能级跃迁到低能级时能量转变为热能或晶格振动能,但不辐射光子),迅速转移到亚稳态E 2。

E 2是一个寿命较长的能级,这样处于E 2上的粒子不断积累,E 1上的粒子 又由于抽运过程而减少,从而实现E 2与E 1能级间的粒子数反转。

激光产生必须有能提供光学正反馈的谐振腔。

处于激发态的粒子由于不稳定性而自发辐射到基态,自发辐射产生的光子各个方向都有,偏离轴向的光子很快逸出腔外,只有沿轴向的光子,部分通过输出镜输出,部分被反射回工作物质,在两个反射镜间往返多次被放大,形成受激辐射的光放大即产生激光。

2. 光学倍频
光的倍频是一种最常用的扩展波段的非线性光学方法。

激光倍频是将频率为ω的光,通过晶体中的非线性作用,产生频率为2ω的光。

考虑电场的平方项
t E E ωcos 0=
)2cos 1(2
cos 20
2
20
2
)
2(t E t E E P
ωβωββ+===
hv 21
2
E 1
(a)
E 2 E 1
(b)
hv 21
hv 21
光与物质作用的受激辐射过程
E 1
E 3
E 2
三能级系统示意图
出现直流项和二倍频项cos2ωt ,直流项称为光学整流,当激光以一定角度入射到倍频晶体时,在晶体产生倍频光,产生倍频光的入射角称为匹配角。

倍频光的转换效率为倍频光与基频光的光强比,通过非线性光学理论可以得到:
)
2/()2/(sin 22
2kl kl I L I I ∆∆∝=ω
ωωβη 式中L 为晶体长度,I ω、I 2ω分别为入射的基频光、输出的倍频光的光强,△k =k ω-2k 2ω
分别为基频光和倍频光的额传播矢量。

【实验装置】
【实验内容】
1. 将808nmLD 固定在二维调节架上,将632.8nm 红光通过白屏小孔聚到折射率梯度透镜
上。

让632.8nm 光和小孔及808nmLD 在同一轴线上。

2. 将Nd:YVO 4晶体安装在二维调节架上,将红光通过晶体并将返回的光点通过小孔。

3. 将输出镜(前腔片)固定在四维调节架上。

调节输出镜使返回的光点通过小孔。

对于
有一定曲率的输出镜,会有几个光斑,应区分出从球心返回的光斑。

4. 在Nd:YVO 4晶体和输出镜之间插入KTP 倍频晶体,接通电源,调节多圈电位器。

5. 产生532nm 倍频绿光。

调节输出镜,LD 调节架,使532nm 绿光功率最大。

【注意事项】
1. 实验中激光器输出的光能量高、功率密度大,应避免直射到眼睛。

特别是532nm 绿光,
切勿用眼睛直视激光器的轴向输出光束,以免视网膜受到永久性的伤害。

2. 避免用手接触激光器的输出镜,晶体的镀膜面,膜片应防潮,不用的晶体,输出腔片用
镜头纸包好,放在干燥器里。

3. 激光器应注意开关步骤,先检查多圈电位器是否处于最小处,再打开电源开关,逐步调
整电位器,使电流逐渐增大,激光器出光。

实验完成后,调整电位器,直到电流为零,再关闭电源。

相关文档
最新文档