福建省龙岩市新罗区莲东中学2018-2019学年九年级(上)期中数学试卷(解析版)

合集下载

福建省龙岩九年级上学期数学期中考试试卷

福建省龙岩九年级上学期数学期中考试试卷

福建省龙岩九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分) (2019九下·黄石月考) 如图,正方形的边长为,动点从点出发,以的速度沿着边运动,到达点停止运动;另一动点同时从点出发,以的速度沿着边向点运动,到达点停止运动.设点的运动时间为单位:,的面积为单位:,则与的函数关系的大致图象为()A .B .C .D .2. (1分)(2018·凉州) 如图是二次函数(,,是常数,)图象的一部分,与轴的交点在点和之间,对称轴是 .对于下列说法:① ;② ;③ ;④ (为实数);⑤当时,,其中正确的是()A . ①②④B . ①②⑤C . ②③④D . ③④⑤3. (1分) (2018九上·萧山开学考) 二次函数y=x2﹣6x﹣4的顶点坐标为()A . (3,5)B . (3,﹣13)C . (3,﹣5)D . (3,13)4. (1分)如图,BC∥DE,∠1=105°,∠AED=65°,则∠A的大小是()A . 25°B . 35°C . 40°D . 60°5. (1分)(2018·丹棱模拟) 如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A . 点QB . 点PC . 点RD . 点M6. (1分)(2013·宿迁) 在等腰△ABC中,∠ACB=90°,且AC=1.过点C作直线l∥AB,P为直线l上一点,且AP=AB.则点P到BC所在直线的距离是()A . 1B . 1或C . 1或D . 或7. (1分)如图,抛物线y=ax2+bx+c与x轴交于点(-1,0),对称轴为x=1,则下列结论中正确的是()A . a>0B . 当x>1时,y随x的增大而增大C . c<0D . x=3是一元二次方程ax2+bx+c=0的一个根8. (1分)(2017·新野模拟) 绿苑小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为()A . x(x﹣10)=900B . x(x+10)=900C . 10(x+10)=900D . 2[x+(x+10)]=9009. (1分) (2016九上·岑溪期中) 已知函数y=﹣2x2+x﹣4,当函数y随x的增大而增大时,x的取值范围是()A . x<B . x<﹣C . x>D . x>﹣10. (1分)如图,PA是⊙O的直径,PC是⊙O的弦,过AC弧的中点H作PC的垂线交PC的延长线于点B.若HB=6cm,BC=4cm,则⊙O的直径为()A . 2cmB . 3cmC . 13cmD . 6cm二、填空题 (共6题;共6分)11. (1分) (2017九上·深圳月考) 如图,抛物线关于点B的中心对称得________。

福建省龙岩九年级上学期数学期中考试试卷

福建省龙岩九年级上学期数学期中考试试卷

福建省龙岩九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、精心选一 (共12题;共12分)1. (1分) (2019九上·赣榆期末) 若,则的值为A .B .C .D .2. (1分)(2019·上海模拟) 下列事件中,属于必然事件的是()A . 随时打开电视机,正在播天气预报B . 抛掷一枚质地均匀的骰子,出现4点朝上C . 从分别写有3,6两个数字的两张卡片中随机抽出一张,卡片上的数字能被3整除D . 长度分别是3cm,3cm,6cm的三根木条首尾相接,组成一个三角形3. (1分) (2019九上·绍兴月考) 抛物线y=2(x+3)2+4的顶点坐标是()A . (3,4)B . (-3,4)C . (3,-4)D . (-3,-4)4. (1分)如果两个相似三角形对应边之比是1:4,那么它们的对应中线之比是()A . 1:2B . 1:4C . 1:8D . 1:165. (1分) (2019九上·秀洲期末) 如图,已知△ABC中,AB=2,BC=3,∠B=90°,以点B为圆心作半径为r 的⊙B,要使点A,C在⊙B外,则r的取值范围是()A . 0<r<2B . 0<r<3C . 2<r<3D . r>36. (1分) (2017九上·萝北期中) 将二次函数y=(x﹣1)2﹣2的图象先向右平移1个单位,再向上平移1个单位后顶点为()A . (1,3)B . (2,﹣1)C . (0,﹣1)D . (0,1)7. (1分)(2016·余姚模拟) 一个扇形的半径是3,圆心角是240°,这个扇形的弧长是()A . 2πB . 4πC . 8πD . 12π8. (1分)在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作弧BAC,如图所示.若AB=4,AC=2,S1-S2=,则S3-S4的值是()A .B .C .D .9. (1分) (2017九上·镇雄期末) 下列命题中正确的是()①三边对应成比例的两个三角形相似②二边对应成比例且一个角对应相等的两个三角形相似③一个锐角对应相等的两个直角三角形相似④一个角对应相等的两个等腰三角形相似.A . ①③B . ①④C . ①②④D . ①③④10. (1分)(2016·安徽模拟) 如图,△ABC内接于⊙O,若∠BAC=80°,∠C=50°,取AC中点P,连接PO 并延长交BC于点M,连接AM,则∠BAM=()A . 45°B . 30°C . 50°D . 55°11. (1分) (2019九上·绍兴期中) 如图,已知抛物线y=x2+bx+c与直线y=x交于(1,1)和(3,3)两点,现有以下结论:①b2﹣4c>0;②3b+c+6=0;③当x2+bx+c>时,x>2;④当1<x<3时,x2+(b﹣1)x+c <0,其中正确的序号是()A . ①②④B . ②③④C . ②④D . ③④12. (1分)(2018·遵义) 如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC,BD,以BD 为直径的圆交AC于点E.若DE=3,则AD的长为()A . 5B . 4C . 3D . 2二、细心填一填 (共6题;共6分)13. (1分)(2017·黄冈模拟) 从﹣3,﹣2,﹣1,0,1,3,4这七个数中随机抽取一个数记为a,a的值既是不等式组的解,又在函数y= 的自变量取值范围内的概率是________.14. (1分)(2018·泸县模拟) 二次函数y=2x2﹣4x向有平移2个单位长度,再向上平移1个单位长度后的解析式为________.15. (1分)如图,作一个角等于已知角,其尺规作图的原理是________ (填SAS,ASA,AAS,SSS).16. (1分)已知的半径为,,是的两条弦,,,,则弦和之间的距离是________ .17. (1分)如图,是斜靠在墙壁上的长梯,梯脚距离墙脚,梯上点距墙,长,则梯子的长为________ .18. (1分) (2018九上·东台期末) 若二次函数y=ax2+bx+c的图象如图所示,则不等式a(x﹣2)2+b(x ﹣2)+c<0的解集为________.三、用心做一做 (共8题;共18分)19. (2分) (2019九上·新蔡期末) 如图,在边长均为的小正方形网格纸中,的顶点、、均在格点上,为直角坐标系的原点,点在轴上.(1)以为位似中心,将放大,使得放大后的与的相似比为,要求所画与在原点两侧;(2)分别写出、的坐标.20. (2分)(2018·宜昌) 某校创建“环保示范学校”,为了解全校学生参加环保类杜团的意愿,在全校随机抽取了50名学生进行问卷调查,问卷给出了五个社团供学生选择(学生可根据自己的爱好选择一个社团,也可以不选),对选择了社团的学生的问卷情况进行了统计,如表:社团名称A.酵素制作社团B.回收材料小制作社团C.垃圾分类社团D.环保义工社团E.绿植养护社团人数10155105(1)填空:在统计表中,这5个数的中位数是________;(2)根据以上信息,补全扇形图(图1)和条形图(图2);(3)该校有1400名学生,根据调查统计情况,请估计全校有多少学生愿意参加环保义工社团;(4)若小诗和小雨两名同学在酵素制作社团或绿植养护社团中任意选择一个参加,请用树状图或列表法求出这两名同学同时选择绿植养护社团的概率.21. (1分)要测量旗杆高CD ,在B处立标杆AB=2.5cm,人在F处.眼睛E、标杆顶A、旗杆顶C在一条直线上.已知BD=3.6m,FB=2.2m,EF=1.5m.求旗杆的高度.22. (3分)(2019·名山模拟) 如图1,平面直角坐标系xOy中,已知抛物线y=ax2+4x与x轴交于O、A两点.直线y=kx+m经过抛物线的顶点B及另一点D(D与A不重合),交y轴于点C.(1)当OA=4,OC=3时.①分别求该抛物线与直线BC相应的函数表达式;②连结AC,分别求出tan∠CAO、tan∠BAC的值,并说明∠CAO与∠BAC的大小关系;(2)如图2,过点D作DE⊥x轴于点E,连接CE.当a为任意负数时,试探究AB与CE的位置关系?23. (2分)(2017·深圳模拟) 四边形ABCD的对角线交于点E,有AE=EC,BE=ED,以AB为直径的⊙O过点E.(1)求证:四边形ABCD的是菱形;(2)若CD的延长线与圆相切于点F,已知直径AB=4,求阴影部分的面积.24. (2分)(2016·丹东) 某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?25. (3分) (2019九上·莲湖期中) 【定义学习】定义:如果四边形有一组对角为直角,那么我们称这样的四边形为“对直四边形”.(1)【判断尝试】在A、矩形;B、菱形;C、正方形中;一定是“对直四边形”的是________.(填字母序号)(2)【操作探究】在菱形ABCD中,AB=2,∠B=60°,AE⊥BC于点E,请用尺规作图法在边AD和CD上各找一点F,使得由点A、E、C、F组成的四边形为“对直四边形”,连接EF,并直接写出EF的长.(保留作图痕迹,不写作法)①当点F在边AD上时.②当点F在边CD上时.(3)【实践应用】某加工厂有一批四边形板材,形状如图所示,已知AB=3米,AD=1米,∠C=45°,∠A=∠B=90°.现根据客户要求,需将每张四边形板材进一步分割成两个等腰三角形板材和一个“对直四边形”板材,且这两个等腰三角形的腰长相等,要求充分利用材料且无剩余,求分割后得到的等腰三角形的腰长.26. (3分)(2017·承德模拟) 在图1﹣﹣图4中,菱形ABCD的边长为3,∠A=60°,点M是AD边上一点,且DM= AD,点N是折线AB﹣BC上的一个动点.(1)如图1,当N在BC边上,且MN过对角线AC与BD的交点时,则线段AN的长度为________.(2)当点N在AB边上时,将△AMN沿MN翻折得到△A′MN,如图2,①若点A′落在AB边上,则线段AN的长度为;②当点A′落在对角线AC上时,如图3,求证:四边形AM A′N是菱形;③当点A′落在对角线BD上时,如图4,求的值.参考答案一、精心选一 (共12题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、细心填一填 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、用心做一做 (共8题;共18分)19-1、19-2、20-1、20-2、20-3、20-4、21-1、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-3、26-1、26-2、。

龙岩九年级上学期数学期中考试试卷

龙岩九年级上学期数学期中考试试卷

龙岩九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019九上·宜兴月考) 下列方程为一元二次方程的是()A . x-2=0B . x2-2x-3C . xy+1=0D . x2-4x-1=02. (2分) (2017八下·桥东期中) 下列图案中是轴对称图形,但不是中心对称图形的是()A .B .C .D .3. (2分)关于二次函数的图象与性质,下列结论错误的是()A . 抛物线开口方向向下B . 当x=5时,函数有最大值C . 抛物线可由经过平移得到D . 当x>5时,y随x的增大而减小4. (2分) (2019九上·海陵期末) 抛物线y=2(x-1)2+2的顶点坐标是()A .B .C .D .5. (2分)将二次函数y=x2+1的图象向右平移1个单位,则平移后的二次函数的解析式为()A . y=x2B . y=(x﹣1)2C . y=(x﹣1)2+1D . y=(x+1)2+16. (2分) (2020九上·兰陵期末) 共享单车为市民出行带来了方便,某单车公司第一季度投放1万辆单车,计划第三季度投放单车的数量比第一季度多4400辆,设该公司第二、三季度投放单车数量的平均增长率均为,则所列方程正确是()A .B .C .D .7. (2分)根据下列表格对应值,判断关于x的方程ax2+bx+c=0(a≠0)的一个解x的取值范围为()x 1.1 1.2 1.3 1.4 ax2+bx+c﹣0.590.84 2.29 3.76A . ﹣0.59<x<0.84B . 1.1<x<1.2C . 1.2<x<1.3D . 1.3<x<1.48. (2分)(2017·曹县模拟) 如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路径为,则图中阴影部分的面积为()A . πB . πC . πD . π9. (2分) (2017九上·滦县期末) 如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A . 88°B . 92°C . 106°D . 136°10. (2分) (2019九上·十堰期末) 如图,二次函数y=ax2+bx+c(a≠0)图象与x轴交于A,B两点,与y 轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a﹣2b+c<0;③b2﹣4ac>0;④当y<0时,x<﹣1或x>2.其中正确的有()A . 4个B . 3个C . 2个D . 1个二、填空题 (共5题;共5分)11. (1分)(2019·枣庄模拟) 已知关于x的一元二次方程mx2+5x+m2-2m=0有一个根为0,则m=________。

福建省龙岩九年级上学期数学期中考试试卷

福建省龙岩九年级上学期数学期中考试试卷

福建省龙岩九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018八上·武邑月考) 下列四个图形中,轴对称图形的个数是()A . 1B . 2C . 3D . 42. (2分)(2019·河池模拟) 抛物线y=﹣(x﹣8)2+2的顶点坐标是()A . (2,8)B . (8,2)C . (﹣8,2)D . (﹣8,﹣2)3. (2分) (2020九上·江城月考) 若x=2是关于x的一元二次方程x2-mx+8=0的一个解、则m的值是()A . 6B . 5C . 2D . -64. (2分) (2018九下·尚志开学考) 将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A . y=﹣2(x+1)2﹣1B . y﹣2(x+1)2+3C . y=﹣2(x﹣1)2+1D . y=﹣2(x﹣1)2+35. (2分)把方程化为的形式,则m、n的值是()A .B .C .6. (2分) (2018九上·孝感月考) 二次函数的图象如图,给出下列四个结论:①;② ;③ ;④ ,其中正确结论的个数是()A . 4B . 3C . 2D . 17. (2分)若方程有两个不相等的实数根,则m的取值范围在数轴上表示正确的是A .B .C .D .8. (2分) (2019九上·西城月考) 如图,点A的坐标为(1,3),O为坐标原点,将OA绕点A按逆时针方向旋转90°得到AO′,则点O′的坐标是()A . (4,﹣1)B . (﹣1,4)C . (4,2)D . (2,﹣4)9. (2分) (2015九上·宜昌期中) 在下列函数中,当x>0时,y随x的增大而增大的是()B . y=x2﹣1C . y=﹣5xD . y=﹣x2+110. (2分)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0)下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点,则y1>y2 .其中说法正确的是()A . ①②B . ②③C . ②③④D . ①②④二、填空题 (共8题;共8分)11. (1分) (2019九上·防城期中) 把方程2x2=3x﹣1化为一般形式得:________12. (1分) (2018九上·前郭期末) 一元二次方程x(x﹣2)=2﹣x的根是________.13. (1分) (2019九上·贵州期中) 抛物线y=﹣x2+4x+7的顶点坐标为________.14. (1分) (2018九上·桐乡期中) 二次函数y=2(x-3)2-1的顶点坐标为________.15. (1分)如果点P(x , y)关于原点的对称点为(-2,3),则x+y=________.16. (1分) (2017八下·闵行期末) 某件商品连续两次降价后,零售价为原来的64%,那么此商品平均每次降价的百分率为________.17. (1分) (2019九上·融安期中) 二次函数y=x2+mx+m-2的图象与坐标轴有________个交点。

龙岩九年级上学期期中数学试卷

龙岩九年级上学期期中数学试卷

龙岩九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018九上·仁寿期中) 一元二次方程的一根为2,则另一根为()A . -3B . 3C . 1D . -12. (2分) (2017八上·官渡期末) 下列图形中,不是轴对称图形的是()A .B .C .D .3. (2分)将抛物线y=﹣2x2+1向下平移3个单位后所得图象对应的函数解析式为()A . y=﹣2(x﹣3)2+1B . y=﹣2x2+4C . y=﹣2x2﹣2D . y=﹣2(x﹣3)2﹣24. (2分)观察下列图案,其中旋转角最大的是()A .B .C .D .5. (2分)(2017·陕西) 已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A . (1,﹣5)B . (3,﹣13)C . (2,﹣8)D . (4,﹣20)6. (2分) (2018九上·宝应月考) 下列问题中,错误的个数是()( 1 )三点确定一个圆;(2)平分弦的直径垂直于弦;(3)相等的圆心角所对的弧相等;(4)正五边形是轴对称图形.A . 1个B . 2个C . 3个D . 4个7. (2分)若关于x的一元二次方程(x﹣2)(x﹣3)=m有实数根x1、x2 ,且x1<x2 ,则下列结论中错误的是()A . 当m=0时,x1=2,x2=3B . m>﹣C . 当m>0时,2<x1<x2<3D . 二次函数y=(x﹣x1)(x﹣x2)+m的图象与x轴交点的坐标为(2,0)和(3,0)8. (2分) (2019九上·宁波期末) 如图,是正六边形的外接圆,是弧上一点,则的度数是()A .B .C .D .9. (2分)(2017·景泰模拟) 下列命题是真命题的是()A . 若x1、x2是3x2+4x﹣5=0的两根,则x1+x2=﹣.B . 单项式﹣的系数是﹣4C . 若|x﹣1|+(y﹣3)2=0,则x=1,y=3D . 若分式方程﹣2= 产生增根则m=3.10. (2分)在同一直角坐标系中,二次函数y=x2+2与一次函数y=2x的图象大致是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分) (2015八下·嵊州期中) 已知直角三角形的两直角边的长恰好是方程x2﹣7x+12=0的两根,则此直角三角形斜边上中线的长为________.12. (1分)如图,二次函数y=ax2+bx+3的图象经过点A(﹣1,0),B(3,0),那么一元二次方程ax2+bx=0的根是________.13. (1分) (2020九上·温州期末) 如图,△ABC绕点A逆时针旋转得到△AB’C’点C在AB上,点C的对应点C在BC的延长线上,若∠BAC’=80°,则∠B=________度。

福建省龙岩市九年级上学期数学期中试卷 (1)附答案解析

福建省龙岩市九年级上学期数学期中试卷 (1)附答案解析
B、不是轴对称图形,是中心对称图形,故 B 错误; C、是轴对称图形,不是中心对称图形,故 C 错误; D、是轴对称图形,不是中心对称图形,故 D 错误.应选:A. 根据轴对称图形与中心对称图形的概念求解. 此题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的 关键是寻找对称轴,图形两局部折叠后可重合,中心对称图形是要寻找对称中心,旋转 180 度后两局部重 合. 【分析】根据轴对称图形与中心对称图形的概念求解. 7.【答案】 B 【解析】【解答】把 A〔1,2〕,B〔3,2〕,C〔5,7〕代入 y=ax2+bx+c 得
的面积;
〔3〕假设线段
与抛物线有且只有一个公共点,求 m 的取值范围.
一、单项选择题
1.【答案】 A 【解析】【解答】把 x=3 代入方程 故答案为:A.
答案解析局部
,即
,解得 m=2,
【分析】将 x=3 代入计算即可。 2.【答案】 B 【解析】【解答】解:解方程 x2-6x+8=0 得, x=2 或 4, 那么第三边长为 2 或 4. 边长为 2,3,6 不能构成三角形; 而 3,4,6 能构成三角形, 故答案为:B
24.
〔1〕如图 1, 是正方形
边 上的一点,连接
,将
绕着点 逆时针旋转
90°,旋转后角的两边分别与射线 交于点 和点 .
①线段 和 的数量关系是 ▲ ;
②写出线段
和 之间的数量关系.
〔2〕当四边形
为菱形,
,点 是菱形
边 所在直线上的一点,连接
,将
绕着点 逆时针旋转 120°,旋转后角的两边分别与射线 交于点 和点 .
即正方形 ABCD 外接圆的半径为

福建省龙岩市初三数学上册期中测试卷(含答案解析)

福建省龙岩市初三数学上册期中测试卷(含答案解析)

福建省龙岩市初三数学上册期中测试卷(含答案解析)3.5cm,那么直线L与⊙O的位置关系是__________.13.如果扇形的圆心角为120°,半径为3cm,那么扇形的面积是__________cm2,弧长__________cm.14.一个口袋里放有三枚除颜色外都相同的棋子,其中有两枚是白色的,一枚是红色的.从中随机摸出一枚记下颜色,放回口袋搅匀,再从中随机摸出一枚记下颜色,两次摸出棋子颜色不同的概率是__________.15.如图所示,圆O的半径为5,AB为弦,OC⊥AB,垂足为E,如果CE=2,那么AB的长是__________.16.如图,在平面直角坐标系中,抛物线y= 经过平移得到抛物线y= ,其对称轴与两段抛物线所围成的阴影部分的面积为__________.17.若a、b(a<b)是方程2x2﹣7x+3=0的两根,则点(a,b)关于x轴的对称点的坐标是__________.18.如图所示,点A是半圆上的一个三等分点,B是劣弧的中点,点P是直径MN上的一个动点,⊙O的半径为1,则AP+PB 的最小值__________.三、解答题(本大题共8题,共89分)19.已知二次函数y=x2+2x﹣1.(1)写出它的顶点坐标;(2)当x取何值时,y随x的增大而增大;(3)求出图象与x轴的交点坐标.20.设点A的坐标为(x,y),其中横坐标x可取﹣1、2,纵坐标y可取﹣1、1、2.(1)求出点A的坐标的所有等可能结果(用树状图或列表法求解);(2)试求点A与点B(1,﹣1)关于原点对称的概率.21.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?22.如图,已知二次函数y=x2﹣4x+3的图象交x轴于A,B 两点(点A在点B的左侧),交y轴于点C.(1)求直线BC的解析式;(2)点D是在直线BC下方的抛物线上的一个动点,当△BCD 的面积最大时,求D点坐标.23.如图所示,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0).(1)请直接写出点A关于原点O对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,求A点经过的路径长;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.24.如图,OC平分∠MON,点A在射线OC上,以点A为圆心,半径为2的⊙A与OM相切于点B,连接BA并延长交⊙A于点D,交ON于点E.(1)求证:ON是⊙A的切线;(2)若∠MON=60°,求图中阴影部分的面积.(结果保留π)25.(13分)已知关于x的一元二次方程kx2+(3k+1)x+3=0(k≠0).(1)求证:无论k取何值,方程总有两个实数根;(2)若二次函数y=kx2+(3k+1)x+3的图象与x轴两个交点的横坐标均为整数,且k为整数,求k的值.解:26.(14分)如图所示,在平面直角坐标系xOy中,AB在x 轴上,以AB为直径的半⊙Oˊ与y轴正半轴交于点C,连接BC,AC.CD是半⊙Oˊ的切线,AD⊥CD于点D.(1)求证:∠CAD=∠CAB;(2)已知抛物线y=ax2+bx+c过A、B、C三点,AB=10,AC=2BC.①求抛物线的解析式;②判断抛物线的顶点E是否在直线CD上,并说明理由.福建省龙岩市2019初三数学上册期中测试卷(含答案解析)参考答案及试题解析:一、选择题(本大题共11小题,每小题4分,共40分)1.抛物线y=(x﹣1)2+2的顶点是( )A.(1,﹣2) B.(1,2) C.(﹣1,2) D.(﹣1,﹣2)【考点】二次函数的性质.【分析】已知抛物线解析式为顶点式,根据顶点式的坐标特点,直接写成顶点坐标.【解答】解:因为抛物线y=2(x﹣1)2+2是顶点式,根据顶点式的坐标特点,顶点坐标为(1,2).故选B.【点评】抛物线的顶点式的应用.2.如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC 的度数为( )A.20° B.40° C.60° D.80°【考点】圆周角定理.【分析】由⊙O是△ABC的外接圆,若∠ABC=40°,根据圆周角定理,即可求得答案.【解答】解:∵⊙O是△ABC的外接圆,∠ABC=40°,∴∠AOC=2∠ABC=80°.故选:D.【点评】此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.3.某厂一月份的总产量为500吨,三月份的总产量达到为720吨.若平均每月增长率是x,则可以列方程( ) A.500(1+2x)=720 B.500(1+x)2=720 C.500(1+x2)=720 D.720(1+x)2=500【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设平均每月增率是x,那么根据三月份的产量可以列出方程.【解答】解:设平均每月增率是x,二月份的产量为:500×(1+x);三月份的产量为:500(1+x)2=720;故本题选B.【点评】找到关键描述语,找到等量关系是解决问题的关键;本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“﹣”).4.如果关于x的一元二次方程ax2+x﹣1=0有实数根,则a 的取值范围是( )A.a>﹣ B.a≥﹣ C.a≥﹣且a≠0 D.a>且a≠0【考点】根的判别式;一元二次方程的定义.【分析】在判断一元二次方程根的情况的问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根的情况下必须满足△=b2﹣4ac≥0.【解答】解:依题意列方程组解得a≥﹣且a≠0.故选C.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.5.如图,下列图形中,是中心对称图形的是( )A. B. C. D.【考点】中心对称图形.【分析】根据中心对称图形的概念,即可求解.【解答】解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,只有A符合;B,C,D不是中心对称图形.故选;A.【点评】本题考查了中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.6.下列事件是随机事件的为( )A.度量三角形的内角和,结果是180°B.经过城市中有交通信号灯的路口,遇到红灯C.爸爸的年龄比爷爷大D.通常加热到100℃时,水沸腾【考点】随机事件.【分析】随机事件就是可能发生,也可能不发生的事件,依据定义即可作出判断.【解答】A、是必然事件,选项错误;B、正确;C、是不可能事件,选项错误;D、是必然事件,选项错误.故选B.【点评】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为( )A.y=(x+1)2+4 B.y=(x﹣1)2+4 C.y=(x+1)2+2 D.y=(x﹣1)2+2【考点】二次函数的三种形式.【分析】本题是将一般式化为顶点式,由于二次项系数是1,只需加上一次项系数的一半的平方来凑成完全平方式即可.【解答】解:y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2.故选:D.【点评】二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x﹣h)2+k;(3)交点式(与x轴):y=a(x﹣x1)(x﹣x2).8.已知一个圆锥的侧面积是150π,母线为15,则这个圆锥的底面半径是( )A.5 B.10 C.15 D.20【考点】圆锥的计算.【分析】根据圆锥的侧面积=底面半径×母线长×π,进而求出即可.【解答】解:∵母线为15,设圆锥的底面半径为x,∴圆锥的侧面积=π×15×x=150π.解得:x=10.故选:B.【点评】本题考查了圆锥的计算,熟练利用圆锥公式求出是解题关键.9.将抛物线y=x2向左平移2个单位,所得抛物线的解析式为( )A.y=x2﹣2 B.y=x2+2 C.y=(x+2)2 D.y=(x﹣2)2 【考点】二次函数图象与几何变换.【专题】存在型.【分析】直接根据“左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,将抛物线y=x2向左平移2个单位,所得抛物线的解析式为:y=(x+2)2.故选C.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.10.如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD 于点E,则下列结论正确的是( )A.AE>BE B. = C.∠AEC=2∠D D.∠B=∠C.【考点】垂径定理;圆周角定理.【分析】根据垂径定理和圆周角定理判断即可.【解答】解:∵AB⊥CD,CD过O,∴AE=BE,弧AD=弧BD,连接OA,则∠AOC=2∠ADE,∵∠AEC>∠AOC,∴∠AEC=2∠D错误;∵AB不是直径,∴根据已知不能推出弧AC=弧BD,∴∠B和∠C不相等,即只有选项B正确;选项A、C、D都错误;故选A.【点评】本题考查了垂径定理和圆周角定理的应用,主要考查学生的推理能力和辨析能力.11.如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,且PE=PB.设AP=x,△PBE的面积为y.则下列图象中,能表示y与x的函数关系的图象大致是( )A.. B.. C.. D..【考点】动点问题的函数图象.【分析】过点P作PF⊥BC于F,若要求△PBE的面积,则需要求出BE,PF的值,利用已知条件和正方形的性质以及勾股定理可求出BE,PF的值.再利用三角形的面积公式得到y 与x的关系式,此时还要考虑到自变量x的取值范围和y的取值范围.【解答】解:过点P作PF⊥BC于F,∵PE=PB,∴BF=EF,∵正方形ABCD的边长是1,∴AC= = ,∵AP=x,∴PC=﹣x,∴PF=F C= (﹣x)=1﹣ x,∴BF=FE=1﹣FC= x,∴S△PBE= BE?PF= x(1﹣ x)=﹣ x2+ x,即y=﹣ x2+ x(0<x<),∴y是x的二次函数(0<x<),故选D.【点评】本题考查了动点问题的函数图象,和正方形的性质;等于直角三角形的性质;三角形的面积公式.对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.二、填空题(本大题共7小题,每小题3分,共21分)12.已知⊙O的半径为4cm,如果圆心O到直线L的距离为3.5cm,那么直线L与⊙O的位置关系是相交.【考点】直线与圆的位置关系.【分析】运用直线与圆的三种位置关系,结合3.5<4,即可解决问题.【解答】解:∵⊙O的半径为4,圆心O到直线L的距离为3.5,而3.5<4,∴直线L与⊙O相交.故答案为:相交.【点评】该题主要考查了直线与圆的位置关系及其应用问题;若圆的半径为λ,圆心到直线的距离为μ,当λ>μ时,直线与圆相交;当λ=μ时,直线与圆相切;当λ<μ时,直线与圆相离.13.如果扇形的圆心角为120°,半径为3cm,那么扇形的面积是3πcm2,弧长2πcm.【考点】扇形面积的计算;弧长的计算.【分析】先根据扇形的面积公式计算出扇形的面积,再根据弧长公式计算出其弧长即可.【解答】解:∵扇形的圆心角为120°,半径为3cm,∴S扇形= =3π(cm2);l= =2π(cm).故答案为:3π,2π.【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.14.一个口袋里放有三枚除颜色外都相同的棋子,其中有两枚是白色的,一枚是红色的.从中随机摸出一枚记下颜色,放回口袋搅匀,再从中随机摸出一枚记下颜色,两次摸出棋子颜色不同的概率是.【考点】列表法与树状图法.【专题】计算题.【分析】根据题意列出表格得出所有等可能的情况数,找出颜色不同的情况数,即可求出所求的概率.【解答】解:列表如下:白白红白(白,白)(白,白)(红,白)白(白,白)(白,白)(红,白)红(白,红)(白,红)(红,红)所有等可能的情况有9种,其中两次摸出棋子颜色不同的情况有5种,则P(颜色不同)= .故答案为:.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.15.如图所示,圆O的半径为5,AB为弦,OC⊥AB,垂足为E,如果CE=2,那么AB的长是8.【考点】垂径定理;勾股定理.【分析】如图,连接OA;首先求出OE的长度;借助勾股定理求出AE的长度,即可解决问题.【解答】解:如图,连接OA;OE=OC﹣CE=5﹣2=3;∵OC⊥AB,∴AE=BE;由勾股定理得:AE2=OA2﹣OE2,∵OA=5,OE=3,∴AE=4,AB=2AE=8.故答案为8.【点评】该题主要考查了勾股定理、垂径定理等的应用问题;作辅助线,构造直角三角形,灵活运用勾股定理、垂径定理来分析、判断、解答是解题的关键.16.如图,在平面直角坐标系中,抛物线y= 经过平移得到抛物线y= ,其对称轴与两段抛物线所围成的阴影部分的面积为4.【考点】二次函数图象与几何变换.【分析】确定出抛物线y= x2﹣2x的顶点坐标,然后求出抛物线的对称轴与原抛物线的交点坐标,从而判断出阴影部分的面积等于三角形的面积,再根据三角形的面积公式列式计算即可得解.【解答】解:如图,∵y= x2﹣2x= (x﹣2)2﹣2,∴平移后抛物线的顶点坐标为(2,﹣2),对称轴为直线x=2,当x=2时,y= ×22=2,∴平移后阴影部分的面积等于如图三角形的面积,×(2+2)×2=4.故答案为:4.【点评】本题考查了二次函数图象与几何变换,确定出与阴影部分面积相等的三角形是解题的关键.17.若a、b(a<b)是方程2x2﹣7x+3=0的两根,则点(a,b)关于x轴的对称点的坐标是(,﹣3).【考点】解一元二次方程-因式分解法;关于x轴、y轴对称的点的坐标.【专题】计算题.【分析】利用因式分解法求出已知方程的解确定出a与b的值,即可得出(a,b)关于x轴的对称点坐标.【解答】解:方程2x2﹣7x+3=0,分解因式得:(2x﹣1)(x﹣3)=0,解得:x1= ,x2=3,∴a= ,b=3,则(,3)关于x轴的对称点坐标为(,﹣3),故答案为:(,﹣3)【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.18.如图所示,点A是半圆上的一个三等分点,B是劣弧的中点,点P是直径MN上的一个动点,⊙O的半径为1,则AP+PB 的最小值.【考点】垂径定理;轴对称-最短路线问题.【专题】动点型.【分析】本题是要在MN上找一点P,使PA+PB的值最小,设A′是A关于MN的对称点,连接A′B,与MN的交点即为点P.此时PA+PB=A′B是最小值,可证△OA′B是等腰直角三角形,从而得出结果.【解答】解:作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,OA,OB,PA,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴A′B= .∴PA+PB=PA′+PB=A′B= .故答案为:.【点评】本题结合图形的性质,考查轴对称﹣﹣最短路线问题.其中求出∠BOA′的度数是解题的关键.三、解答题(本大题共8题,共89分)19.已知二次函数y=x2+2x﹣1.(1)写出它的顶点坐标;(2)当x取何值时,y随x的增大而增大;(3)求出图象与x轴的交点坐标.【考点】二次函数的性质;抛物线与x轴的交点.【分析】(1)配方后直接写出顶点坐标即可;(2)确定对称轴后根据其开口方向确定其增减性即可;(3)令y=0后求得x的值后即可确定与x轴的交点坐标;【解答】解:(1)y=x2+2x﹣1=(x+1)2﹣2,∴顶点坐标为:(﹣1,﹣2);(2)∵y=x2+2x﹣1=(x+1)2﹣2的对称轴为:x=﹣1,开口向上,∴当x>﹣1时,y随x的增大而增大;(3)令y=x2+2x﹣1=0,解得:x=﹣1﹣或x=﹣1+ ,∴图象与x轴的交点坐标为(﹣1﹣,0),(﹣1+ ,0).【点评】本题考查了二次函数的性质,解题的关键是了解抛物线的有关性质.20.设点A的坐标为(x,y),其中横坐标x可取﹣1、2,纵坐标y可取﹣1、1、2.(1)求出点A的坐标的所有等可能结果(用树状图或列表法求解);(2)试求点A与点B(1,﹣1)关于原点对称的概率.【考点】列表法与树状图法;关于原点对称的点的坐标.【分析】列举出所有情况,让所求的情况数除以总情况数即为所求的概率.【解答】解:(解法一)(1)列举所有等可能结果,画出树状图如下由上图可知,点A的坐标的所有等可能结果为:(﹣1,﹣1)、(﹣1,1)、(﹣1,2)、(2,﹣1)、(2,1)、(2,2),共有6种,(2)由(1)知,能与点B(1,﹣1)关于原点对称的结果有1种.∴P(点A与点B关于原点对称)=(解法二)(1)列表如下﹣1 1 2﹣1 (﹣1,﹣1)(﹣1,1)(﹣1,2)2 (2,﹣1)(2,1)(21,2)由一表可知,点A的坐标的所有等可能结果为:(﹣1,﹣1)、(﹣1,1)、(﹣1,2)、(2,﹣1)、(2,1)、(2,2),共有6种,(2)由(1)知,能与点B(1,﹣1)关于原点对称的结果有1种.∴P(点A与点B关于原点对称)= .【点评】用到的知识点为:概率=所求情况数与总情况数之比.两点关于原点对称,横纵坐标均互为相反数.21.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?【考点】二次函数的应用.【专题】压轴题.【分析】(1)根据销售额=销售量×销售单价,列出函数关系式;(2)用配方法将(1)的函数关系式变形,利用二次函数的性质求最大值;(3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值.【解答】解:(1)由题意得出:w=(x﹣20)?y=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,故w与x的函数关系式为:w=﹣2x2+120x﹣1600;(2)w=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∵﹣2<0,∴当x=30时,w有最大值.w最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.(3)当w=150时,可得方程﹣2(x﹣30)2+200=150.解得 x1=25,x2=35.∵35>28,∴x2=35不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.【点评】本题考查了二次函数的运用.关键是根据题意列出函数关系式,运用二次函数的性质解决问题.22.如图,已知二次函数y=x2﹣4x+3的图象交x轴于A,B 两点(点A在点B的左侧),交y轴于点C.(1)求直线BC的解析式;(2)点D是在直线BC下方的抛物线上的一个动点,当△BCD 的面积最大时,求D点坐标.【考点】抛物线与x轴的交点;待定系数法求一次函数解析式;二次函数图象上点的坐标特征.【专题】计算题.【分析】(1)利用y=x2﹣4x+3的图象交x轴于A、B两点(点A在点B的左侧),抛物线y=x2﹣4x+3交y轴于点C,即可得出A,B,C点的坐标,将B,C点的坐标分别代入y=kx+b (k≠0),即可得出解析式;(2)设过D点的直线与直线BC平行,且抛物线只有一个交点时,△BCD的面积最大.【解答】解:(1)设直线BC的解析式为:y=kx+b(k≠0).令x2﹣4x+3=0,解得:x1=1,x2=3,则A(1,0),B(3,0),C(0,3),将B(3,0),C(0,3),代入y=kx+b(k≠0),得解得:k=﹣1,b=3,BC所在直线为:y=﹣x+3;(2)设过D点的直线与直线BC平行,且抛物线只有一个交点时,△BCD的面积最大.∵直线BC为y=﹣x+3,∴设过D点的直线为y=﹣x+b,∴ ,∴x2﹣3x+3﹣b=0,∴△=9﹣4(3﹣b)=0,解得b= ,解得,,则点D的坐标为:(,﹣).【点评】本题考查了二次函数综合题型,主要考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,利用平行线确定点到直线的最大距离问题.23.如图所示,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0).(1)请直接写出点A关于原点O对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,求A点经过的路径长;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.【考点】作图-旋转变换;平行四边形的性质.【分析】(1)直接写出点A关于原点O对称的点的坐标即可.(2)根据网格结构找出点A、B、C绕坐标原点O逆时针旋转90°对应点A′、B′、C′的位置,然后顺次连接即可,再根据平面直角坐标系写出点B′的坐标,根据弧长公式列式计算即可得解;(3)根据平行四边形的对边平行且相等,分AB、BC、AC是对角线三种情况分别写出即可.【解答】解:(1)点A关于原点O对称的点的坐标为(2,﹣3);(2)△ABC旋转后的△A′B′C′如图所示,点A′的对应点的坐标为(﹣3,﹣2);OA′= = ,即点A所经过的路径长为 = ;(3)若AB是对角线,则点D(﹣7,3),若BC是对角线,则点D(﹣5,﹣3),若AC是对角线,则点D(3,3).【点评】本题考查了利用旋转变换作图,平行四边形的对边平行且相等的性质,弧长公式,熟练掌握网格结构准确找出对应点的位置是解题的关键,难点在于(3)分情况讨论.24.如图,OC平分∠MON,点A在射线OC上,以点A为圆心,半径为2的⊙A与OM相切于点B,连接BA并延长交⊙A于点D,交ON于点E.(1)求证:ON是⊙A的切线;(2)若∠MON=60°,求图中阴影部分的面积.(结果保留π)【考点】切线的判定;扇形面积的计算.【分析】(1)首先过点A作AF⊥ON于点F,易证得AF=AB,即可得ON是⊙A的切线;(2)由∠MON=60°,AB⊥OM,可求得AF的长,又由S阴影=S△AEF﹣S扇形ADF,即可求得答案.【解答】(1)证明:过点A作AF⊥ON于点F,∵⊙A与OM相切于点B,∴AB⊥OM,∵OC平分∠MON,∴AF=A B=2,∴ON是⊙A的切线;(2)解:∵∠MON=60°,AB⊥OM,∴∠OEB=30°,∴AF⊥ON,∴∠FAE=60°,在Rt△AEF中,tan∠FAE= ,∴EF=AF?tan60°=2 ,∴S阴影=S△AEF﹣S扇形ADF= AF?EF﹣×π×AF2=2 ﹣π.【点评】此题考查了切线的判定与性质、扇形的面积以及三角函数的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.25.(13分)已知关于x的一元二次方程kx2+(3k+1)x+3=0(k≠0).(1)求证:无论k取何值,方程总有两个实数根;(2)若二次函数y=kx2+(3k+1)x+3的图象与x轴两个交点的横坐标均为整数,且k为整数,求k的值.解:【考点】根的判别式;抛物线与x轴的交点.【专题】证明题.【分析】(1)先计算判别式得值得到△=(3k+1)2﹣4k×3=(3k﹣1)2,然后根据非负数的性质得到△≥0,则根据判别式的意义即可得到结论;(2)先理由求根公式得到kx2+(3k+1)x+3=0(k≠0)的解为x1=﹣,x2=﹣3,则二次函数y=kx2+(3k+1)x+3的图象与x轴两个交点的横坐标分别为﹣和﹣3,然后根据整数的整除性可确定整数k的值.【解答】(1)证明:△=(3k+1)2﹣4k×3=(3k﹣1)2,∵(3k﹣1)2,≥0,∴△≥0,∴无论k取何值,方程总有两个实数根;(2)解:kx2+(3k+1)x+3=0(k≠0)x= ,x1=﹣,x2=﹣3,所以二次函数y=kx2+(3k+1)x+3的图象与x轴两个交点的横坐标分别为﹣和﹣3,根据题意得﹣为整数,所以整数k为±1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了抛物线与x轴的交点.26.(14分)如图所示,在平面直角坐标系xOy中,AB在x 轴上,以AB为直径的半⊙Oˊ与y轴正半轴交于点C,连接BC,AC.CD是半⊙Oˊ的切线,AD⊥CD于点D.(1)求证:∠CAD=∠CAB;(2)已知抛物线y=ax2+bx+c过A、B、C三点,AB=10,AC=2BC.①求抛物线的解析式;②判断抛物线的顶点E是否在直线CD上,并说明理由.【考点】二次函数综合题.【分析】(1)连接O′C,由CD是⊙O的切线,可得O′C⊥CD,则可证得O′C∥AD,又由O′A=O′C,则可证得∠CAD=∠CAB;(2)①首先证得△CAO∽△BCO,根据相似三角形的对应边成比例,可得OC2=OA?OB,又由AC=2BC则可求得CO,AO,BO的长,然后利用待定系数法即可求得二次函数的解析式;②首先证得△FO′C∽△FAD,由相似三角形的对应边成比例,即可得到F的坐标,求得直线DC的解析式,然后将抛物线的顶点坐标代入检验即可求得答案.【解答】(1)证明:连接O′C,∵CD是⊙O′的切线,∴O′C⊥CD,∵AD⊥CD,∴O′C∥AD,∴∠O′CA=∠CAD,∵O′A=O′C,∴∠CAB=∠O′CA,∴∠CAD=∠CAB;(2)解:①∵AB是⊙O′的直径,∴∠ACB=90°,∵OC⊥AB,∴∠CAB=∠OCB,∴△CAO∽△BCO,即OC2=OA?OB,∵AC=2BC,∴tan∠CAO=tan∠CAB= ,∴AO=2CO,又∵AB=10,∴OC2=2CO(10﹣2CO),解得CO1=4,CO2=0(舍去),∴CO=4,AO=8,BO=2∵CO>0,∴CO=4,AO=8,BO=2,∴A(﹣8,0),B(2,0),C(0,4),∵抛物线y=ax2+bx+c过点A,B,C三点,∴c=4,由题意得:,解得:,∴抛物线的解析式为:y=﹣ x2﹣ x+4;②设直线DC交x轴于点F,∴△AOC≌△ADC,∴AD=AO=8,∵O′C∥AD,∴△FO′C∽△FAD,∴O′F?AD=O′C?AF,∴8(BF+5)=5(BF+10),∴BF= ,F(,0);设直线DC的解析式为y=kx+m,则,解得:,∴直线DC的解析式为y=﹣ x+4,由y=﹣ x2﹣ x+4=﹣(x+3)2+ 得顶点E的坐标为(﹣3,),将E(﹣3,)代入直线DC的解析式y=﹣ x+4中,右边=﹣×(﹣3)+4= =左边,∴抛物线顶点E在直线CD上.【点评】此题考查了待定系数法求函数的解析式,相似三角形的判定与性质,点与函数的关系,直角梯形等知识.此题综合性很强,难度较大,解题的关键是注意数形结合与方程思想的应用.。

龙岩九年级上学期数学期中考试试卷

龙岩九年级上学期数学期中考试试卷

龙岩九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共11题;共22分)1. (2分) -4+2-(-5)=().A . 4B . 3C . -12或3D . -62. (2分)一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为()A . 6B . 8C . 12D . 243. (2分) (2018八上·河南期中) 在函数中,自变量 x 的取值范围是()A . x>1B . x≤1C . x≠0D . x≤1 且x≠04. (2分) (2017九上·鸡西期末) 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:① b2-4ac>0 ② a>0 ③ b>0 ④ c>0 ⑤9a+3b+c<0,则其中结论正确的个数是()A . 2个B . 3个C . 4个D . 5个5. (2分) (2019七下·余姚月考) 如图所示,已知直线a∥b,c与a,b均相交,∠1=60°则∠2为()A . 60°B . 70°C . 120°D . 150°6. (2分)(2020·哈尔滨模拟) 在Rt△ABC中,∠C=90°,AC=3,BC=4,那么cosA的值是()A .B .C .D .7. (2分)已知为-9、-6、-5、-3、-2、2、3、5、6、9中随机取的一个数,则的概率为()A .B .C .D .8. (2分) (2019八下·绍兴期中) 本月绍兴市区一周每天的最高气温统计如下表所示,则最高气温的众数与中位数(单位:℃)分别是()最高气温(℃)18192021天数(天)1132A . 19,19B . 19,20C . 20,19.5D . 20,209. (2分)小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为()A . + =B . ﹣=C . +10=D . ﹣10=10. (2分) a、b两数的平方和可表示为()A . (a+b)2B . a+b2C . a2+bD . a2+b211. (2分)如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(1,2),B(﹣1,﹣2)两点,若y1<y2 ,则x的取值范围是()A . x<﹣1或x>1B . x<﹣1或0<x<1C . ﹣1<x<0或0<x<1D . ﹣1<x<0或x>1二、填空题 (共6题;共7分)12. (1分)(2020·娄底模拟) 如图,AB是⊙O的直径,C、D是⊙O上的两点,∠AOC=120°,则∠CDB=________°.13. (2分) (2017九上·夏津开学考) 夏津农科所对甲、乙两种棉花试验田各5块进行试验后,得到甲、乙两个品种每母的平均产量相同,而甲、乙两个品种产量的方差分别为,,则产量较为稳定的品种是________(填“甲”或“乙”)。

2018-2019学年福建省九年级(上)期中数学试卷

2018-2019学年福建省九年级(上)期中数学试卷

2018-2019学年福建省九年级(上)期中数学试卷一、选择题(本大题共10小题,共40.0分)1.下列手机手势解锁图案中,是中心对称图形的是()A. B. C. D.【答案】B【解析】解:A、不是中心对称图形;B、是中心对称图形;C、不是中心对称图形;D、不是中心对称图形.故选:B.根据中心对称图形的概念判断.本题考查的是中心对称图的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下列关于x的方程是一元二次方程的是()A. x2−2x+1=x2+5B. ax2+bx+c=0C. x2+1=−8D. 2x2−y−1=0【答案】C【解析】解:A、是一元一次方程,故A不符合题意;B、a=0时是一元一次方程,故B不符合题意;C、是一元二次方程,故C符合题意;D、是二元二次方程,故D不符合题意;故选:C.只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.此题主要考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.3.用配方法解方程:x2−4x+2=0,下列配方正确的是()A. (x−2)2=2B. (x+2)2=2C. (x−2)2=−2D. (x−2)2=6【答案】A【解析】解:把方程x2−4x+2=0的常数项移到等号的右边,得到x2−4x=−2,方程两边同时加上一次项系数一半的平方,得到x2−4x+4=−2+4,配方得(x−2)2=2.故选:A.在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数−4的一半的平方.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.方程x2=3x的解是()A. x=3B. x1=0,x2=3C. x1=0,x2=−3D. x1=1,x2=3【答案】B【解析】解:x2=3x,x2−3x=0,x(x−3)=0,x=0,x−3=0,x1=0,x2=3,故选:B.移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元二次方程的应用,关键是能把一元二次方程转化成一元一次方程.5.抛物线y=(x+2)2−3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A. 先向左平移2个单位,再向上平移3个单位B. 先向左平移2个单位,再向下平移3个单位C. 先向右平移2个单位,再向下平移3个单位D. 先向右平移2个单位,再向上平移3个单位【答案】B【解析】解:抛物线y=x2向左平移2个单位可得到抛物线y=(x+2)2,抛物线y=(x+2)2,再向下平移3个单位即可得到抛物线y=(x+2)2−3.故平移过程为:先向左平移2个单位,再向下平移3个单位.故选:B.根据“左加右减,上加下减”的原则进行解答即可.本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.6.如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若AB=1,∠B=60∘,则CD的长为()A. 0.5B. 1.5C. √2D. 1【答案】D【解析】解:∵∠BAC=90∘,∠B=60∘,∴BC=2AB=2,∵Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上,∴AD=AB,而∠B=60∘,∴△ABD为等边三角形,∴BD=AB=1,∴CD=BC−BD=2−1=1.故选:D.利用含30度的直角三角形三边的关系得到BC=2AB=2,再根据旋转的性质得AD=AB,则可判断△ABD为等边三角形,所以BD=AB=1,然后计算BC−BD即可.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.7.我县九州村某梨园2016年产量为1000吨,2018年产量为1440吨,求该梨园梨产量的年平均增长率,设该梨园梨产量的年平均增长量为x,则根据题意可列方程为()A. 1440(1−x)2=1000B. 1440(1+x)2=1000C. 1000(1−x)2=1440D. 1000(1+x)2=1440【答案】D【解析】解:设该梨园梨产量的年平均增长量为x,根据题意得:1000(1+x)2=1440.故选:D.设该梨园梨产量的年平均增长量为x,根据该梨园2016年及2018年的产量,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.已知二次函数y=x2+x+c的图象与x轴的一个交点为(1,0),则关于x的方程x2+x+c=0的两实数根分别是()A. 1和−1B. 1和−2C. 1和2D. 1和3【答案】B【解析】解:y=x2+x+c,−b2a =−12,即二次函数图象的对称轴是直线x=−12,设二次函数y=x2+x+c的图象与x轴的另一个交点的横坐标是a,∵二次函数y=x2+x+c的图象与x轴的一个交点为(1,0),∴1−(−12)=−12−a,解得:a=−2,∴关于x的方程x2+x+c=0的两实数根分别是1和−2,故选:B.先求出二次函数图象的对称轴,根据对称性求出二次函数图象和x轴的另一个交点的坐标,即可得出答案.本题考查了抛物线与x轴的交点、二次函数的性质等知识点,能熟记二次函数的性质是解此题的关键.9.若函数y=x2−2x+b的图象与坐标轴有三个交点,则b的取值范围是()A. b<1且b≠0B. b>1C. 0<b<1D. b<1【答案】A【解析】解:∵函数y=x2−2x+b的图象与坐标轴有三个交点,∴{b≠0△=(−2)2−4b>0,解得b<1且b≠0.故选:A.抛物线与坐标轴有三个交点,则抛物线与x轴有2个交点,与y轴有一个交点.本题考查了抛物线与x轴的交点.该题属于易错题,解题时,往往忽略了抛物线与y轴有交点时,b≠0这一条件.10.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x−m)2+n的顶点在线段AB上运动(抛物线随顶点一起平移),与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为−3,则点D的横坐标最大值为()A. −3B. 1C. 5D. 8【答案】D【解析】解:当点C横坐标为−3时,抛物线顶点为A(1,4),对称轴为x=1,此时D点横坐标为5,则CD=8;当抛物线顶点为B(4,4)时,抛物线对称轴为x=4,且CD=8,故C(0,0),D(8,0);由于此时D点横坐标最大,故点D的横坐标最大值为8;故选:D.当C点横坐标最小时,抛物线顶点必为A(1,4),根据此时抛物线的对称轴,可判断出CD间的距离;当D点横坐标最大时,抛物线顶点为B(4,4),再根据此时抛物线的对称轴及CD的长,可判断出D点横坐标最大值.能够正确地判断出点C横坐标最小、点D横坐标最大时抛物线的顶点坐标是解答此题的关键.二、填空题(本大题共6小题,共24.0分)11.已知y=(k−2)x k2−2是二次函数,则k=______.【答案】−2【解析】解:依题意得:k2−2=0且k−2≠0,解得k=−2.故答案是:−2.根据二次函数的定义得到k2−2=0且k−2≠0,由此求得k的值.本题考查了二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y=ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.12.菱形的两条对角线长分别是方程x2−14x+48=0的两实根,则菱形的面积为______.【答案】24【解析】解:x2−14x+48=0x=6或x=8.所以菱形的面积为:(6×8)÷2=24.菱形的面积为:24.故答案为:24.先解出方程的解,根据菱形面积为对角线乘积的一半,可求出结果.本题考查菱形的性质,菱形的对角线互相垂直,以及对角线互相垂直的四边形的面积的特点和根与系数的关系.13.已知m是关于x的方程x2−2x−3=0的一个根,则2m2−4m=______.【答案】6【解析】解:∵m是关于x的方程x2−2x−3=0的一个根,∴m2−2m−3=0,∴m2−2m=3,∴2m2−4m=6,故答案为:6.根据m是关于x的方程x2−2x−3=0的一个根,通过变形可以得到2m2−4m值,本题得以解决.本题考查一元二次方程的解,解题的关键是明确题意,找出所求问题需要的条件.14.已知抛物线y=a(x+1)2+k(a>0)经过点(−4,y1),(1,y2),则y1______y2(填“>”,“=”,或“<”).【答案】>【解析】解:抛物线y=a(x+1)2+k(a>0,a,k为常数)的对称轴为直线x=−1,所以点(−4,y1),(1,y2),到直线x=−1的距离分别为5和2,所以y1>y2.故答案为:>.先根据顶点式得到抛物线y=a(x+1)2+k(a>0,a,k为常数)的对称轴为直线x=−1,然后二次函数的性质和点离对称轴的远近进行判断.本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.15.如图,在平面直角坐标系中,点A在抛物线y=x2−6x+17上运动,过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连接BD,则对角线BD的最小值为______.【答案】8【解析】解:∵y=x2−6x+17=(x−3)2+8,∴抛物线的顶点坐标为(3,8).∴AC的最小值为8.∴BD的最小值为8.故答案为:8.先依据配方法确定出抛物线的最小值,依据矩形的对角线相等可得到BD=AC,然后确定出AC的最小值即可,本题主要考查的是矩形性质,配方法求二次函数的最值,求得AC的最小值是解题的关键.16.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC,则下列结论:①abc<0;②b2−4ac4a >0;③ac−b+1=0;④OA⋅OB=−ca.其中正确结论的序号是______.【答案】①③④【解析】解:观察函数图象,发现:开口向下⇒a<0;与y轴交点在y轴正半轴⇒c>0;对称轴在y轴右侧⇒−b2a>0;顶点在x轴上方⇒4ac−b24a>0.①∵a<0,c>0,−b2a>0,∴b>0,∴abc<0,①成立;②∵4ac−b24a>0,∴b2−4ac4a<0,②不成立;③∵OA=OC,∴x A=−c,将点A(−c,0)代入y=ax2+bx+c中,得:ac2−bc+c=0,即ac−b+1=0,③成立;④∵OA=−x A,OB=x B,x A⋅x B=ca,∴OA⋅OB=−ca,④成立.综上可知:①③④成立.故答案为:①③④.观察函数图象,根据二次函数图象与系数的关系找出“a<0,c>0,−b2a>0”,再由顶点的纵坐标在x轴上方得出4ac−b24a >0.①由a<0,c>0,−b2a>0即可得知该结论成立;②由顶点纵坐标大于0即可得出该结论不成立;③由OA=OC,可得出x A=−c,将点A(−c,0)代入二次函数解析式即可得出该结论成立;④结合根与系数的关系即可得出该结论成立.综上即可得出结论.本题考查了二次函数图象与系数的关系以及根与系数的关系,解题的关键是观察函数图象逐条验证四条结论.本题属于基础题,难度不大,解决该题型题目时,观察函数图形,利用二次函数图象与系数的关系找出各系数的正负是关键.三、计算题(本大题共1小题,共12.0分)17.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?【答案】解:(1)设y=kx+b,22k+b=36,把(22,36)与(24,32)代入得:{24k+b=32k=−2,解得:{b=80则y=−2x+80;(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,根据题意得:(x−20)y=150,则(x−20)(−2x+80)=150,整理得:x2−60x+875=0,(x−25)(x−35)=0,解得:x1=25,x2=35,∵20≤x≤28,∴x=35(不合题意舍去),答:每本纪念册的销售单价是25元;(3)由题意可得:w=(x−20)(−2x+80)=−2x2+120x−1600=−2(x−30)2+200,此时当x=30时,w最大,又∵售价不低于20元且不高于28元,∴x<30时,w随x的增大而增大,即当x=28时,w最大=−2(28−30)2+200=192(元),答:该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.【解析】(1)设y=kx+b,根据题意,利用待定系数法确定出y与x的函数关系式即可;(2)根据题意结合销量×每本的利润=150,进而求出答案;(3)根据题意结合销量×每本的利润=w,进而利用二次函数增减性求出答案.此题主要考查了二次函数的应用以及一元二次方程的应用、待定系数法求一次函数解析式等知识,正确利用销量×每本的利润=w得出函数关系式是解题关键.四、解答题(本大题共8小题,共74.0分)18.解方程(1)x2+4x−5=0(2)3x(x−2)=2(x−2)【答案】解:(1)因式分解得(x+5)(x−1)=0,∴x+5=0或x−1=0,∴x1=−5,x2=1;(2)3x(x−2)−2(x−2)=0,(x−2)(3x−2)=0,∴x−2=0或3x−2=0,∴x1=2,x2=2.3【解析】根据解一元二次方程的方法−因式分解法解方程即可.本题考查了解一元二次方程−因式分解法,熟练掌握因式分解法是解题的关键.19.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于原点对称的△A1B1C1,并写出A1,B1,C1的坐标;(2)请画出△ABC绕点B逆时针旋转90∘后的△A2B2C2.【答案】解:(1)如图所示:△A1B1C1,即为所求,A1(−2,−4);(2)如图所示:△A2B2C2,即为所求【解析】(1)直接利用关于原点对称点的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置,进而得出答案.此题主要考查了旋转变换,正确得出对应点位置是解题关键.20.观察下列一组方程:①x2−x=0;②x2−3x+2=0;③x2−5x+6=0;④x2−7x+12=0;…它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.(1)若x2+kx+56=0也是“连根一元二次方程”,写出k的值,并解这个一元二次方程;(2)请写出第n个方程和它的根.【答案】解:(1)由题意可得:k=−15,则原方程为:x2−15x+56=0,则(x−7)(x−8)=0,解得:x1=7,x2=8;(2)第n个方程为:x2+(2n−1)x+n(n−1)=0,(x−n)(x−n+1)=0,解得:x1=n−1,x2=n.【解析】(1)直接利用连根一元二次方程得出k的值;(2)利用因式分解法得出符合题意的值.此题主要考查了一元二次方程的解法以及新定义,正确得出规律是解题关键.21.已知关于x的方程kx2+(3k+1)x+3=0,求证:不论k取任何实数,该方程都有实数根.【答案】证明:①当k=0时,方程为x+3=0解得x=−3方程有实数根;②当k≠0时,△=(3k=1)2−4k×3=(3k−1)2≥0方程有两个实数根,综上所述,方程总有实数根.【解析】①当该方程是一元一次方程时,解方程即可;②当该方程是一元二次方程时,根据已知方程的根的判别式的符号进行判定该方程的根的情况.本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2−4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了解方程的方法和整数的整除性质.22.已知抛物线的顶点为(1,4),与y轴交点为(0,3)(1)求该抛物线的解析式,并画出抛物线的草图(无需列表,要求标出抛物线与坐标轴的交点坐标).(2)观察图象,写出当y<0时,自变量x的取值范围.【答案】解:(1)设抛物线的解析式为y=a(x−1)2+4,将点(0,3)代入,得a+4=3.解得a=−1,抛物线的解析式为y=−(x−1)2+4,其函数图象如下:(2)由函数图象知,y<0时x的范围即为抛物线位于x轴下方部分对应的x的范围,∴x<−1或x>3.【解析】(1)根据顶点坐标设其顶点式,再将(0,3)代入求解可得;(2)根据函数图象知,y<0时x的范围即为抛物线位于x轴下方部分对应的x的范围,据此可得.本题主要考查抛物线与x轴的交点,解题的关键是熟练掌握待定系数法求函数解析式及二次函数与一元二次不等式间的关系.23.参与两个数学活动,再回答问题:活动①:观察下列两个两位数的积(两个乘数的十位上的数都是9,个位上的数的和等于10),猜想其中哪个积最大?91×99,92×98,93×97,94×96,95×95,96×94,97×93,98×92,99×91.活动②:观察下列两个三位数的积(两个乘数的百位上的数都是9,十位上的数与个位上的数组成的数的和等于100),猜想其中哪个积最大?901×999,902×998,903×997,…,997×903,998×902,999×901.(1)分别写出在活动①、②中你所猜想的是哪个算式的积最大?(2)对于活动①,请用二次函数的知识证明你的猜想.【答案】(1)解:①∵91×99=9009,92×98=9016,93×97=9021,94×96=9024,95×95=9025,…∴95×95的积最大;②由①中规律可得950×950的积最大;(2)证明:将①中的算式设为(90+x)(100−x)(x=1,2,3,4,5,6,7,8,9),(90+x)(100−x)=−x2+10x+9000=−(x−5)2+9025∵a<0,∴当x=5时,有最大值9025,即95×95的积最大.【解析】(1)①的结果可根据整数乘法的运算法则,计算出大小在比较;②的结果由①的规律可得结果;(2)可将①中的算式设为(90+x)(100−x)的形式(x=1,2,3,4,5,6,7,8,9),利用二次函数的最值证得结论.本题主要考查了根据已知归纳规律和二次函数的最值问题,发现规律,运用二次函数的最值证明是解答此题的关键.24.(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.(2)如图②,在Rt△ABD中,∠BAD=90∘,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45∘,将△ABM绕点A逆时针旋转90∘至△ADH位置,连接NH,试判断MN,ND,DH之间的数量关系,并说明理由.(3)在图①中,连接BD分别交AE,AF于点M,N,若EG=4,GF=6,BM=3√2,求AG,MN的长.【答案】解:(1)在Rt△ABE和Rt△AGE中,AB=AG,AE=AE,∴Rt△ABE≌Rt△AGE(HL).∴∠BAE=∠GAE.同理,∠GAF=∠DAF.∴∠EAF=1∠BAD=45∘.2(2)MN2=ND2+DH2.∵∠BAM=∠DAH,∠BAM+∠DAN=45∘,∴∠HAN=∠DAH+∠DAN=45∘.∴∠HAN=∠MAN.又∵AM=AH,AN=AN,∴△AMN≌△AHN.∴MN=HN.∵∠BAD=90∘,AB=AD,∴∠ABD=∠ADB=45∘.∴∠HDN=∠HDA+∠ADB=90∘.∴NH2=ND2+DH2.∴MN2=ND2+DH2.(3)由(1)知,BE=EG,DF=FG.设AG=x,则CE=x−4,CF=x−6.在Rt△CEF中,∵CE2+CF2=EF2,∴(x−4)2+(x−6)2=102.解这个方程,得x1=12,x2=−2(舍去负根).即AG=12.在Rt△ABD中,∴BD=√AB2+AD2=√2AG2=12√2.在(2)中,MN2=ND2+DH2,BM=DH,∴MN2=ND2+BM2.设MN=a,则a2=(12√2−3√2−a)2+(3√2)2.即a2=(9√2−a)2+(3√2)2,∴a=5√2.即MN=5√2.【解析】(1)根据高AG与正方形的边长相等,证明三角形全等,进而证明角相等,从而求出解.(2)用三角形全等和正方形的对角线平分每一组对角的知识可证明结论.(3)设出线段的长,结合方程思想,用数形结合得到结果.本题考查正方形的性质,四边相等,对角线平分每一组对角,以及全等三角形的判定和性质,勾股定理的知识点等.25.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=−1时,直线y=−2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.【答案】解:(1)∵抛物线y =ax 2+ax +b 有一个公共点M(1,0),∴a +a +b =0,即b =−2a ,∴y =ax 2+ax +b =ax 2+ax −2a =a(x +12)2−9a 4, ∴抛物线顶点D 的坐标为(−12,−9a4);(2)∵直线y =2x +m 经过点M(1,0),∴0=2×1+m ,解得m =−2,∴y =2x −2,则{y =ax 2+ax −2a y=2x−2,得ax 2+(a −2)x −2a +2=0,∴(x −1)(ax +2a −2)=0,解得x =1或x =2a −2,∴N 点坐标为(2a −2,4a −6),∵a <b ,即a <−2a ,∴a <0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为x =−a 2a =−12,∴E(−12,−3),∵M(1,0),N(2a −2,4a −6),设△DMN 的面积为S ,∴S =S △DEN +S △DEM =12|(2a −2)−1|⋅|−9a 4−(−3)|=274−3a −278a ,(3)当a =−1时,抛物线的解析式为:y =−x 2−x +2=−(x +12)2+94,有{y =−2x y=−x 2−x+2,−x 2−x +2=−2x ,解得:x 1=2,x 2=−1,∴G(−1,2),∵点G 、H 关于原点对称,∴H(1,−2),设直线GH 平移后的解析式为:y =−2x +t ,−x2−x+2=−2x+t,x2−x−2+t=0,△=1−4(t−2)=0,t=9,4当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=−2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<9.4【解析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.。

福建省龙岩市2018-2019学年九年级(上)期中数学试卷(解析版)

福建省龙岩市2018-2019学年九年级(上)期中数学试卷(解析版)

2018-2019学年福建省龙岩市九年级(上)期中数学试卷一、选择题(本大题共10小题,共40.0分)1.下列图形中,是中心对称图形的是A. B. C. D.【答案】D【解析】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确.故选:D.根据中心对称图形的概念求解.本题考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列方程中,是一元二次方程的是A. B. C.D.【答案】D【解析】解:A、是一元一次方程,故本选项错误;B、,当时是一元一次方程,故本选项错误;C、,不是一元二次方程,故本选项错误;D、是一元二次方程,故本选项正确;故选:D.根据一元二次方程的定义进行选择即可.本题考查了一元二次方程,掌握一元二次方程的定义是解题的关键.3.配方法解方程,则方程可化为A. B. C. D.【答案】B【解析】解:方程移项得:,配方得:,即.故选:B.方程常数项移到右边,两边加上16变形即可得到结果.此题考查了解一元二次方程配方法,熟练掌握解方程的步骤与方法是解决问题的关键.4.如图所示,当时,函数与在同一坐标系内的图象可能是A. B. C. D.【答案】B【解析】解:A、由一次函数的图象可知,二次函数对称轴,错误;B、由一次函数的图象可知,二次函数对称轴,正确;C、由一次函数的图象可知,由二次函数的图象可知,错误;D、由一次函数的图象可知,由二次函数的图象可知,错误;故选:B.本题可先由一次函数象得到字母系数的正负,再与二次函数的图象相比较看是否一致.数形结合思想就是,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状.5.一元二次方程的根的情况是A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个相等的实数根D. 没有实数根【答案】D【解析】解:,方程没有实数根,故选:D.求出一元二次方程根的判别式;根据根的判别式即可判断根的情况.本题考查了根的判别式,一元二次方程根的情况与判别式的关系:方程有两个不相等的实数根;方程有两个相等的实数根;方程没有实数根.6.对于抛物线,下列结论:抛物线的开口向下;对称轴为直线;顶点坐标为;时,y随x的增大而减小,其中正确结论的个数为A. 1B. 2C. 3D. 4【答案】C【解析】解:,抛物线的开口向下,正确;对称轴为直线,故本小题错误;顶点坐标为,正确;时,y随x的增大而减小,时,y随x的增大而减小一定正确;综上所述,结论正确的个数是共3个.故选:C.根据二次函数的性质对各小题分析判断即可得解.本题考查了二次函数的性质,主要利用了抛物线的开口方向、对称轴、顶点坐标,以及二次函数的增减性.7.根据下列表格中二次函数的自变量x与函数值y的对应值,判断方程a,b,c为常数的一个解x的范围是A. B. C. D.【答案】C【解析】解:由表格中的数据看出和更接近于0,故x应取对应的范围.故选:C.利用二次函数和一元二次方程的性质.该题考查了用表格的方式求函数的值的范围.8.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共有人.A. 12B. 10C. 9D. 8【答案】C【解析】解:设这小组有x人.由题意得:,解得,不合题意,舍去.即这个小组有9人.故选:C.每个人都要送给他自己以外的其余人,等量关系为:人数人数,把相关数值代入计算即可.本题考查一元二次方程的应用,得到互送贺卡总张数的等量关系是解决本题的关键,注意理解本题中互送的含义,这不同于直线上点与线段的数量关系.9.已知点,,在二次函数的图象上,则下列结论正确的是A. B. C. D.【答案】B【解析】解:抛物线的对称轴为,,函数开口向上,有最小值,时函数值最小,时,y随x的增大而减小,时,y随x的增大而增大,.故选:B.求出二次函数的对称轴,再根据二次函数的增减性判断即可.本题考查了二次函数图象上点的坐标特征,掌握二次函数的性质是解题的关键.10.如图为二次函数的图象,则下列说法:;;;当时,其中正确的个数为A. 1B. 2C. 3D. 4【答案】C【解析】解:图象开口向下,能得到,与y轴交于正半轴,则,对称轴在y轴右侧,故,则,故错误;对称轴在y轴右侧,,则有,即,故正确;当时,,则,故正确;由图可知,当时,,故正确.故选:C.根据函数的开口方向,对称轴以及与y轴的交点确定a,b,c的符号,从而判断;根据对称轴的位置判断;根据时的纵坐标的位置判断;根据二次函数图象落在x轴上方的部分对应的自变量x的取值,判断.本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与一元一次不等式的关系,难度适中.二、填空题(本大题共6小题,共24.0分)11.抛物线的顶点坐标为______.【答案】.【解析】解:顶点坐标是.故答案为:.直接利用顶点式的特点可知顶点坐标.此题主要考查了二次函数的性质,根据顶点式得出顶点坐标是考查重点同学们应熟练掌握.12.平面直角坐标系中,关于原点对称的点A 坐标是______.【答案】【解析】解:关于原点对称的点A 坐标是,故答案为:.根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.本题考查了关于原点对称的点的坐标,熟记关于原点对称的点的横坐标互为相反数,纵坐标互为相反数是解题关键.13.若是关于x的方程的根,则的值为______.【答案】【解析】解:把n代入方程得到,将其变形为,因为所以解得.利用方程解的定义找到相等关系,再把所求的代数式化简后整理出,即为所求.本题考查的是一元二次方程的根即方程的解的定义.14.如图所示的五角星绕中心点旋转一定的角度后能与自身完全重合,则其旋转的角度至少为______度【答案】72【解析】解:五角星绕中心点旋转一定的角度后能与自身完全重合,则其旋转的角度至少为度.根据旋转的性质和五角星的特点解答.本题考查旋转对称图形的概念,旋转的最小度数是解决本题的关键.【链接】旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.15.如图,在平面直角坐标系中,将抛物线经过平移得到抛物线,其对称轴与两段抛物线所围成的阴影部分的面积为______.【答案】4【解析】解:过B作轴于C,根据平移得:x轴上面的阴影部分的面积等于四边形OABC中空白部分的面积,则对称轴与两段抛物线所围成的阴影部分的面积等于四边形OABC的面积,,点B是抛物线的顶点,,,,四边形OABC为矩形,,四边形即对称轴与两段抛物线所围成的阴影部分的面积等于4,故答案为:4.过B作轴于C,根据抛物线的对称性可知阴影部分的面积等于矩形OABC的面积,然后求解即可.本题考查了阴影部分面积的求法,观察图形,将阴影部分的图形转化为与它相等的四边形或三角形是解题的关键.16.在实数范围内定义一种运算“”,其规则为,根据这个规则,方程的解为______.【答案】或【解析】解:据题意得,,,或.故答案为:或此题考查学生的分析问题和探索问题的能力解题的关键是理解题意,在此题中,,代入所给公式得:,则可得一元二次方程,解方程即可求得.此题将规定的一种新运算引入题目中,题型独特、新颖,难易程度适中.三、计算题(本大题共1小题,共8.0分)17.汽车产业的发展,有效促进我国现代化建设某汽车销售公司2015年盈利1500万元,到2017年盈利2160万元,且从2015年到2017年,每年盈利的年增长率相同.求平均年增长率?若该公司盈利的年增长率继续保持不变,预计2018年盈利多少万元?【答案】解:设平均年增长率为x,根据题意得:,整理得:,开方得:,解得:或舍去,则平均年增长率为;根据题意得:万元,则2018年盈利2592万元.【解析】设平均年增长率为x,根据题意列出方程,求出方程的解即可得到结果;由求出的年增长率确定出所求即可.此题考查了一元二次方程的应用,弄清题意是解本题的关键.四、解答题(本大题共8小题,共78.0分)18.解方程:;.【答案】解:,..,,或,解方程得:,.【解析】首先把方程移项,然后在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解.先移项,然后提取公因式进行因式分解.本题考查了解一元二次方程的应用,解一元二次方程的方法:直接开平方法、配方法、公式法和因式分解法.19.如图,以点O为中心,把顺时针旋转.【答案】解:如图所示,即为所求:【解析】根据旋转角、旋转方向、旋转中心找出旋转后的对称点,顺次连接即可.本题主要考查的是旋转变换的作图方法,在旋转作图时,一定要明确三个要素:旋转中心、旋转方向、旋转角度.20.某工厂大门是一抛物线形水泥建筑物如图,大门地面宽米,顶部C离地面高度为米现有一辆满载货物的汽车欲通过大门,货物顶部距地面米,装货宽度为米请通过计算,判断这辆汽车能否顺利通过大门?【答案】解:根据题意知,,,设这个函数为.将A的坐标代入,得,、F两点的横坐标就应该是和,将代入函数式,得,,因此这辆汽车正好可以通过大门.【解析】本题只要计算大门顶部宽米的部分离地面是否超过米即可如果设C点是原点,那么A的坐标就是,B的坐标是,可设这个函数为,那么将A的坐标代入后即可得出,那么大门顶部宽的部分的两点的横坐标就应该是和,因此将代入函数式中可得,因此大门顶部宽部分离地面的高度是,因此这辆汽车正好可以通过大门.本题主要结合实际问题考查了二次函数的应用,得出二次函数式进而求出大门顶部宽部分离地面的高度是解题的关键.21.已知关于x的方程.若该方程有两个不相等的实数根,求实数a的取值范围;当该方程的一个根为1时,求a的值及方程的另一根.【答案】解:,解得:.的取值范围是;设方程的另一根为,由根与系数的关系得:,解得:,则a的值是,该方程的另一根为.【解析】关于x的方程有两个不相等的实数根,即判别式即可得到关于a的不等式,从而求得a的范围.设方程的另一根为,根据根与系数的关系列出方程组,求出a的值和方程的另一根.本题考查了一元二次方程根的判别式,一元二次方程根的情况与判别式的关系:方程有两个不相等的实数根;方程有两个相等的实数根;方程没有实数根.22.已知二次函数的图象与x轴交于、两点,且函数有最大值是2.求二次函数的图象的解析式;设二次函数的顶点为P,求的面积.【答案】解:该二次函数有最大值,该函数的图象开口方向向下.又二次函数的图象与x轴交于,两点,该抛物线的对称轴是,函数有最大值2,该函数的顶点是.可设该二次函数解析式为,则将点A的坐标代入,得,解得,二次函数的函数关系式;由知,顶点P的坐标是则点P到x轴的距离是2;由,知,则,即的面积是5.【解析】根据题意知该抛物线的顶点是,则可设该二次函数解析式为,然后将点A代入代入该解析式即可求得a的值;根据三角形的面积公式来求的面积.本题考查了抛物线与x轴的交点求二次函数解析式时,也可以设两点式方程,然后把顶点坐标代入求得a值即可.23.如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.若,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;求矩形菜园ABCD面积的最大值.【答案】解:设,则,根据题意得,解得,,当时,,不合题意舍去;当时,,答:AD的长为10m;设,,当时,则时,S的最大值为1250;当时,则当时,S随x的增大而增大,当时,S的最大值为,综上所述,当时,S的最大值为;当时,S的最大值为.【解析】设,则,利用矩形的面积公式得到,解方程得,,然后计算后与20进行大小比较即可得到AD的长;设,利用矩形面积得到,配方得到,讨论:当时,根据二次函数的性质得S的最大值为;当时,则当时,根据二次函数的性质得S的最大值为.本题考查了二次函数的应用:解此类题的关键是通过几何性质确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.24.有两个全等的等腰直角三角板ABC和其直角边长均为如图1所示叠放在一起,使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合现将三角板EFG绕O 点顺时针旋转,旋转角满足,四边形CHGK是旋转过程中两块三角板的重叠部分如图.在上述旋转过程中,与CK有怎样的数量关系?四边形CHGK的面积是否发生变化?并证明你发现的结论.如图3,连接KH,在上述旋转过程中,是否存在某一位置使的面积恰好等于面积的?若存在,请求出此时KC的长度;若不存在,请说明理由.【答案】解:在上述旋转过程中,理由如下:如图1,为等腰直角三角形,为其斜边中点,,,且.如图2,连接CG.,与均为旋转角,.在和中,≌.;在上述旋转过程中,四边形CHGK的面积不变理由如下:由知,≌则..四边形即:旋转过程中,,四边形的面积为9,是一个定值,在旋转过程中没有变化;假设存在使的面积恰好等于面积的的位置.如图3,设,由题意及中结论可得,,,,,四边形的面积恰好等于面积的,,解得,经检验,均符合题意存在使的面积恰好等于面积的的位置,此时x的值为2或4.【解析】利用旋转的性质,图形的形状和大小不变,可以得到角的度数没有变化,进一步可以得到,得证≌,则全等三角形的对应边相等;全等三角形的性质得到:全等三角形的面积相等,则四边形CHGK的面积等于的面积,所以四边形CHGK的面积不变;,根据的面积根据面积公式得出四边形恰好等于面积的,代入得出方程,求出即可.本题考查了旋转的性质,三角形的面积,全等三角形的性质和判定等知识点,此题有一定的难度,但是一道比较好的题目25.已知抛物线.Ⅰ当顶点坐标为时,求抛物线的解析式;Ⅱ当时,,是抛物线图象上的两点,且,求实数m 的取值范围;Ⅲ若抛物线上的点,满足时,,求b,c的值.【答案】解:Ⅰ由已知得,抛物线的解析式为;Ⅱ当时,对称轴直线由图取抛物线上点Q,使Q与N关于对称轴对称,由得又在抛物线图象上的点,且,由函数增减性得或;Ⅲ分三种情况:当,即时,函数值y随x的增大而增大,依题意有,当,即时,时,函数值y取最小值,ⅰ若,即时,依题意有,或舍去ⅱ若,即时,依题意有,舍去当,即时,函数值y随x的增大而减小,依题意得,,舍去综上所述,或.【解析】Ⅰ利用抛物线的顶点坐标公式即可得出结论;Ⅱ先确定出抛物线对称轴,进而得出点Q的坐标,即可得出结论;Ⅲ分三种情况利用抛物线的增减性建立方程组即可得出结论.此题是二次函数综合题,主要考查了抛物线的顶点坐标,抛物线的对称性,抛物线的增减性,解方程组,用分类讨论的思想解决问题是解本题的关键.。

2018-2019学年福建省龙岩市连城县九年级(上)期中数学试卷

2018-2019学年福建省龙岩市连城县九年级(上)期中数学试卷

2018-2019学年福建省龙岩市连城县九年级(上)期中数学试卷一、选择题(每小题4分,共40分)1.方程x 2﹣3=0的根是( )A. B .﹣ C .± D .32.将一元二次方程x 2﹣4x ﹣7=0配方,所得的方程是( )A .(x ﹣2)2=11B .(x ﹣2)2=3C .(x +2)2=11D .(x +2)2=3 3.一元二次方程2x 2﹣5x ﹣2=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根 4.抛物线y =2x 2+4x ﹣3的顶点坐标是( )A .(1,﹣5)B .(﹣1,﹣5)C .(﹣1,﹣4)D .(﹣2,﹣7)5.满足函数y =x ﹣1与y =﹣的图象为( )A .B .C .D .6.下列所述图形中,既是轴对称图形又是中心对称图形的是( ) A .等边三角形 B .平行四边形 C .正五边形 D .圆7.过⊙O 内一点P 的最长弦长为10cm ,最短弦长为8cm ,那么OP 的长为( ) A.9 B . C .6 D .38.已知⊙O 的直径CD =10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB =8cm ,则AC 的长为( )A.2cm B .4cm C .2cm 或4cm D .2cm 或4cm9.如图,AB 是半圆的直径,点D 是的中点,∠ABC =50°,则∠DAB 等于( )A.55°B.60°C.65°D.70°10.要组织一次排球邀请赛,参赛的每个队之间要比赛两场,根据场地和时间等条件,赛程计划安排7天,每天安排8场比赛,若设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=56B.x(x﹣1)=56C.x(x+1)=56D.x(x﹣1)=56二、填空题(每小题4分,共24分)11.已知α,β是方程x2﹣3x﹣4=0的两个实数根,则α2+αβ﹣3α的值为.12.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2016的值为.13.已知直线y=x+2上有一点P(5,n),则点P关于原点的对称点P1的坐标为.14.如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若AC=,∠B=60°,则CD的长为.15.如图,在边长为1的正方形网格中,若一段圆弧恰好经过四个格点,则该圆弧所在圆的圆心是图中的点.16.平面直角坐标系下,一组有规律的点A1(0,1)、A2(1,0)、A3(2,1)、A4(3,0)、A5(4,1)A6(5,0)…(注:当n为奇数时,A n(n﹣1,1),n为偶数时,A n(n﹣1,0)),抛物线C1经过点A1、A2、A3三点,…抛物线∁n经过∁n,C n+1,C n+2三点,请写出抛物线C2n的解析式.三、简答题(9小题,共86分)17.解关于x的一元二次方程:x2﹣2x=4.18.已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b 的值.19.已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.20.如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺按要求画图.(1)在图1中,画出△ABC的三条高的交点;(2)在图2中,画出△ABC中AB边上的高.21.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,求弦DC的长.22.阅读下面的例题:例:解方程x2﹣2|x|﹣3=0解:(1)当x≥0时,原方程可化为x2﹣2x﹣3=0,解得x1=﹣1(舍去),x2=3(2)当x<0时,原方程可化为x2+2x﹣3=0,解得x1=1(舍去),x2=﹣3.综上所述,原方程的根是x1=3,x2=﹣3.解答问题:(1)如果我们将原方程化为|x|2﹣2|x|﹣3=0求解可以吗?请你大胆试一下写出求解过程.(2)依照题目给出的例题解法,解方程x2+2|x﹣2|﹣4=023.某商场试销一种成本为60元/件的T恤,规定试销期间单价不低于成本单价,又获利不得高于40%,经试销发现,销售量y(件)与销售单价x(元/件)符合一次函数y=kx+b,且x=70时,y=50;x=80时,y=40;(1)求出一次函数y=kx+b的解析式(2)若该商场获得利润为w元,试写出利润w与销售单价x之间的关系式,销售单价定为多少时,商场可获得最大利润,最大利润是多少?24.(12分)(1)如图1,点P是等边△ABC内一点,已知PA=3,PB=4,PC=5,求∠APB的度数.要直接求∠A的度数显然很因难,注意到条件中的三边长恰好是一组勾股数,因此考虑借助旋转把这三边集中到一个三角形内,如图2,作∠PAD=60°使AD=AP,连接PD,CD,则△PAD是等边三角形.∴=AD=AP=3,∠ADP=∠PAD=60°∵△ABC是等边三角形∴AC=AB,∠BAC=60°∴∠BAP=∴△ABP≌△ACD∴BP=CD=4,=∠ADC∵在△PCD中,PD=3,PC=5,CD=4,PD2+CD2=PC2∴∠PDC=°∴∠APB=∠ADC=∠ADP+∠PDC=60°+90°=150°(2)如图3,在△ABC中,AB=BC,∠ABC=90°,点P是△ABC内一点,PA=1,PB=2,PC=3,求∠APB的度数.25.(14分)如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,C在x轴的正半轴上,已知A(0,8)、C(10,0),作∠AOC的平分线交AB于点D,连接CD,过点D作DE⊥CD交OA于点E.(1)求点D的坐标;(2)求证:△ADE≌△BCD;(3)抛物线y=x2﹣x+8经过点A、C,连接AC.探索:若点P是x轴下方抛物线上一动点,过点P作平行于y轴的直线交AC于点M.是否存在点P,使线段MP的长度有最大值?若存在,求出点P的坐标;若不存在,请说明理由.2018-2019学年福建省龙岩市连城县九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.方程x2﹣3=0的根是()A.B.﹣C.±D.3【分析】先变形得到x2=3,然后利用直接开平方法求解.【解答】解:x2﹣3=0,x2=3,x=±,故选:C.【点评】本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.2.将一元二次方程x2﹣4x﹣7=0配方,所得的方程是()A.(x﹣2)2=11B.(x﹣2)2=3C.(x+2)2=11D.(x+2)2=3【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确使用,把左边配成完全平方式,右边化为常数.【解答】解:∵x2﹣4x﹣7=0∴x2﹣4x=7∴x2﹣4x+4=7+4∴(x﹣2)2=11故选:A.【点评】此题主要考查了解一元二次方程的解法,配方法;配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.3.一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选:B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.4.抛物线y=2x2+4x﹣3的顶点坐标是()A.(1,﹣5)B.(﹣1,﹣5)C.(﹣1,﹣4)D.(﹣2,﹣7)【分析】利用二次函数顶点公式(﹣,)进行解题.【解答】解:∵x=﹣=﹣1,=﹣5,∴顶点为(﹣1,﹣5).故选:B.【点评】要求熟练运用顶点公式并会用公式进行计算.5.满足函数y=x﹣1与y=﹣的图象为()A.B.C.D.【分析】本题可先由一次函数与二次函数得到大致图象,直接解答即可.【解答】解:∵一次函数y=x﹣1中,a>0,b<0,∴图象经过一、三、四象限,∵二次函数y=﹣中,a<0,∴抛物线开口方向向下,符合以上条件的图象为C.故选C.【点评】解决此类问题步骤一般为:(1)现根据图象的特点判断a取值是否矛盾;(2)根据二次函数图象判断其顶点坐标是否符合要求.6.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆【分析】根据中心对称图形和轴对称图形的定义对各选项进行判断.【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选:D.【点评】本题考查了中心对称图形:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.也考查了轴对称图形.7.过⊙O内一点P的最长弦长为10cm,最短弦长为8cm,那么OP的长为()A.9B.C.6D.3【分析】根据直径是圆中最长的弦,知该圆的直径是10cm;最短弦即是过点P 且垂直于过点P的直径的弦;根据垂径定理即可求得CP的长,再进一步根据勾股定理,可以求得OP的长.【解答】解:如图所示,CD⊥AB于点P.根据题意,得AB=10cm,CD=8cm.∵CD⊥AB,∴CP=CD=4cm.根据勾股定理,得OP===3(cm).故选:D.【点评】此题综合运用了垂径定理和勾股定理.正确理解圆中,过一点的最长的弦和最短的弦.8.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm【分析】先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.【解答】解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4(cm),OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3(cm),∴CM=OC+OM=5+3=8(cm),∴AC===4(cm);当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2(cm),在Rt△AMC中,AC===2(cm).故选:C.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.如图,AB是半圆的直径,点D是的中点,∠ABC=50°,则∠DAB等于()A.55°B.60°C.65°D.70°【分析】连结BD,由于点D是AC弧的中点,即弧CD=弧AD,根据圆周角定理得∠ABD=∠CBD,则∠ABD=25°,再根据直径所对的圆周角为直角得到∠ADB=90°,然后利用三角形内角和定理可计算出∠DAB的度数.【解答】解:连结BD,如图,∵点D是的中点,即弧CD=弧AD,∴∠ABD=∠CBD,而∠ABC=50°,∴∠ABD=×50°=25°,∵AB是半圆的直径,∴∠ADB=90°,∴∠DAB=90°﹣25°=65°.故选:C.【点评】本题考查了圆周角定理及其推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角为直角.10.要组织一次排球邀请赛,参赛的每个队之间要比赛两场,根据场地和时间等条件,赛程计划安排7天,每天安排8场比赛,若设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=56B.x(x﹣1)=56C.x(x+1)=56D.x(x﹣1)=56【分析】设比赛组织者应邀请x个队参赛,则每个队需与(x﹣1)个队比赛,根据该邀请赛共56场比赛,即可得出关于x的一元二次方程,此题得解.【解答】解:设比赛组织者应邀请x个队参赛,则每个队需与(x﹣1)个队比赛,根据题意得:x(x﹣1)=7×8,即x(x﹣1)=56.故选:D.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题(每小题4分,共24分)11.已知α,β是方程x2﹣3x﹣4=0的两个实数根,则α2+αβ﹣3α的值为0.【分析】根据根与系数的关系得到得α+β=3,再把原式变形得到a(α+β)﹣3α,然后利用整体代入的方法计算即可.【解答】解:根据题意得α+β=3,αβ=﹣4,所以原式=a(α+β)﹣3α=3α﹣3α=0.故答案为0.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.12.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2016的值为2019.【分析】把x=m代入方程,求出2m2﹣3m=1,再变形后代入,即可求出答案.【解答】解:∵m是方程2x2﹣3x﹣1=0的一个根,∴代入得:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴6m2﹣9m+2016=3(2m2﹣3m)+2016=3×1+2016=2019,故答案为:2019.【点评】本题考查了求代数式的值和一元二次方程的解,能求出2m2﹣3m=1是解此题的关键.13.已知直线y=x+2上有一点P(5,n),则点P关于原点的对称点P1的坐标为(﹣5,﹣7).【分析】直接利用一次函数图象上点的坐标特征将P点代入函数解析式得出n 的值,进而利用关于原点对称点的性质得出答案.【解答】解:∵直线y=x+2上有一点P(5,n),∴n=5+2,解得:n=7,故P(5,7),则点P关于原点的对称点P1的坐标是:(﹣5,﹣7).故答案为:(﹣5,﹣7).【点评】此题主要考查了一次函数图象上点的坐标特征以及关于原点对称点的性质,正确得出P点坐标是解题关键.14.如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若AC=,∠B=60°,则CD的长为1.【分析】在直角三角形ABC中利用三角函数首先求得AB和BC的长,然后证明△ABD是等边三角形,根据CD=BC﹣BD即可求解.【解答】解:∵直角△ABC中,AC=,∠B=60°,∴AB===1,BC===2,又∵AD=AB,∠B=60°,∴△ABD是等边三角形,∴BD=AB=1,∴CD=BC﹣BD=2﹣1=1.故答案是:1.【点评】本题考查了三角函数和旋转的性质,正确证明△ABD是等边三角形是关键.15.如图,在边长为1的正方形网格中,若一段圆弧恰好经过四个格点,则该圆弧所在圆的圆心是图中的点C.【分析】圆心在任意两个格点连线(弦)的中垂线上,是两条弦的中垂线的交点,据此即可判断.【解答】解:圆心是弦EF和弦FG的中垂线的交点,是C.故选C.【点评】本题考查了垂径定理,理解圆心一定在弦的中垂线上是关键.16.平面直角坐标系下,一组有规律的点A1(0,1)、A2(1,0)、A3(2,1)、A4(3,0)、A5(4,1)A6(5,0)…(注:当n为奇数时,A n(n﹣1,1),n为偶数时,A n(n﹣1,0)),抛物线C1经过点A1、A2、A3三点,…抛物线∁n经过∁n,C n+1,C n+2三点,请写出抛物线C2n的解析式y2n=﹣(x﹣2n)2+1.【分析】根据顶点式即可求出C1,C4的解析式,找出规律即可求得.【解答】解:由A1(0,1)、A2(1,0)、A3(2,1)、A4(3,0)、A5(4,1)、A6(5,0)…可知:C1的对称轴为x=1,C2的对称轴为x=2,C3对称轴为x=3,C4对称轴为x=4,…,根据顶点式求出C1的解析式为:y1=(x﹣1)2,C2解析式为y2=﹣(x﹣2)2+1,C3解析式为y3=(x﹣3)2,C4解析式为y4=﹣(x﹣4)2+1,…∴抛物线C2n的解析式应该为:y2n=﹣(x﹣2n)2+1.故答案为y2n=﹣(x﹣2n)2+1.【点评】本题考查了待定系数法求二次函数的解析式,发现经过的三点的规律,并利用顶点式求得解析式是解题的关键.三、简答题(9小题,共86分)17.解关于x的一元二次方程:x2﹣2x=4.【分析】利用配方法得到(x﹣1)2=5,然后利用直接开平方法解方程.【解答】解:x2﹣2x+1=4+1,(x﹣1)2=5,x﹣1=±,所以x1=1+,x2=1﹣.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.18.已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b 的值.【分析】根据抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),可以求得a、b的值,本题得以解决.【解答】解:∵抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),∴,解得,,即a的值是1,b的值是﹣2.【点评】本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.19.已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.【分析】根据根与系数的关系即可求出答案.【解答】解:(1)由题意可知:△=(2m﹣2)2﹣4(m2﹣2m)=4>0,∴方程有两个不相等的实数根.(2)∵x1+x2=2m﹣2,x1x2=m2﹣2m,∴+=(x1+x2)2﹣2x1x2=10,∴(2m﹣2)2﹣2(m2﹣2m)=10,∴m2﹣2m﹣3=0,∴m=﹣1或m=3【点评】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系以及一元二次方程的解法,本题属于中等题型.20.如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺按要求画图.(1)在图1中,画出△ABC的三条高的交点;(2)在图2中,画出△ABC中AB边上的高.【分析】(1)根据圆周角定理:直径所对的圆周角是90°画图即可;(2)与(1)类似,利用圆周角定理画图.【解答】解:(1)如图所示:点P就是三个高的交点;(2)如图所示:CT就是AB上的高.【点评】此题主要考查了复杂作图,关键是掌握三角形的三条高交于一点,直径所对的圆周角是90°.21.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,求弦DC的长.【分析】利用圆周角定理得到∠BAD=∠BCD=90°,则可计算出∠CAD=30°,∠CBD=∠CAD=30°,∠ADB=∠BDC=×60°=30°,然后根据含30度的直角三角形三边的关系先计算出BD,从而可得到CD的长.【解答】解:∵BD为⊙O的直径,∴∠BAD=∠BCD=90°,∵∠BAC=120°,∴∠CAD=120°﹣90°=30°,∴∠CBD=∠CAD=30°,又∵∠BAC=120°,∴∠BDC=180°﹣∠BAC=180°﹣120°=60°,∵AB=AC,∴∠ADB=∠ADC,∴∠ADB=∠BDC=×60°=30°,在Rt△ABD中,AB=AD=×6=2,BD=2AB=4,在Rt△BCD中,CD=BD=2.【点评】本题考查了三角形的外接圆和外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.22.阅读下面的例题:例:解方程x2﹣2|x|﹣3=0解:(1)当x≥0时,原方程可化为x2﹣2x﹣3=0,解得x1=﹣1(舍去),x2=3(2)当x<0时,原方程可化为x2+2x﹣3=0,解得x1=1(舍去),x2=﹣3.综上所述,原方程的根是x1=3,x2=﹣3.解答问题:(1)如果我们将原方程化为|x|2﹣2|x|﹣3=0求解可以吗?请你大胆试一下写出求解过程.(2)依照题目给出的例题解法,解方程x2+2|x﹣2|﹣4=0【分析】当绝对值内的数不小于0时,可直接去掉绝对值,而当绝对值内的数为负数时,去绝对值时,绝对值内的数要变为原来的相反数.本题要求参照例题解题,要先对x的值进行讨论,再去除绝对值将原式化简.【解答】解:(1)当x≥0时,原方程可化为x2﹣2x﹣3=0,解得x1=﹣1(舍去),x2=3当x<0时,原方程可化为x2+2x﹣3=0,解得x1=1(舍去),x2=﹣3.综上所述,原方程的根是x1=3,x2=﹣3.(2)当x≥2时,原方程可可化为x2+2x﹣4﹣3=0,解得x1=﹣1+(舍去),x2=﹣1﹣(舍去).当x<2时,原方程化为x2﹣2x+4﹣3=0,解得x1=x2=1综上所述,原方程的根是x1=x2=1.【点评】本题考查了绝对值的性质和一元二次方程的解法,另外去绝对值时要注意符号的改变.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.23.某商场试销一种成本为60元/件的T恤,规定试销期间单价不低于成本单价,又获利不得高于40%,经试销发现,销售量y(件)与销售单价x(元/件)符合一次函数y=kx+b,且x=70时,y=50;x=80时,y=40;(1)求出一次函数y=kx+b的解析式(2)若该商场获得利润为w元,试写出利润w与销售单价x之间的关系式,销售单价定为多少时,商场可获得最大利润,最大利润是多少?【分析】(1)可用待定系数法来确定一次函数的解析式.(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润.【解答】解:(1)由题意得:,∴.∴一次函数的解析式为:y=﹣x+120;(2)w=(x﹣60)(﹣x+120)=﹣x2+180x﹣7200=﹣(x﹣90)2+900,∵抛物线开口向下,∴当x<90时,w随x的增大而增大,而60≤x≤84,∴当x=84时,w=(84﹣60)×(120﹣84)=864.答:当销售价定为84元/件时,商场可以获得最大利润,最大利润是864元.【点评】本题考查的是一次函数的应用:(1)问中,主要考察用待定系数法求一次函数的综合应用;(2)问中,主要结合(1)问中一次函数的性质,求出二次函数的最值问题;主要运用了一次函数及二次函数的性质.在本题中,还需注意的是自变量的取值范围,否则容易按照“顶点式”的做法,求出误解.24.(12分)(1)如图1,点P是等边△ABC内一点,已知PA=3,PB=4,PC=5,求∠APB的度数.要直接求∠A的度数显然很因难,注意到条件中的三边长恰好是一组勾股数,因此考虑借助旋转把这三边集中到一个三角形内,如图2,作∠PAD=60°使AD=AP,连接PD,CD,则△PAD是等边三角形.∴PD=AD=AP=3,∠ADP=∠PAD=60°∵△ABC是等边三角形∴AC=AB,∠BAC=60°∴∠BAP=∠CAD∴△ABP≌△ACD∴BP=CD=4,∠APB=∠ADC∵在△PCD中,PD=3,PC=5,CD=4,PD2+CD2=PC2∴∠PDC=90°∴∠APB=∠ADC=∠ADP+∠PDC=60°+90°=150°(2)如图3,在△ABC中,AB=BC,∠ABC=90°,点P是△ABC内一点,PA=1,PB=2,PC=3,求∠APB的度数.【分析】(1)如图2,作∠PAD=60°使AD=AP,连接PD,CD,则△PAD 是等边三角形.只要证明△ABP≌△ACD(SAS),推出BP=CD=4,∠APB =∠ADC,再利用勾股定理的逆定理即可解决问题;(2)把△PAC绕A点逆时针旋转90°得到△DBA,如图,想办法证明△BPD 是等腰三角形即可解决问题;【解答】解:(1)如图2,作∠PAD=60°使AD=AP,连接PD,CD,则△PAD 是等边三角形.∴PD=AD=AP=3,∠ADP=∠PAD=60°,∵△ABC是等边三角形,∴AC=AB,∠BAC=60°,∴∠BAP=∠CAD,∴△ABP≌△ACD(SAS),∴BP=CD=4,∠APB=∠ADC∵在△PCD中,PD=3,PC=5,CD=4,PD2+CD2=PC2∴∠PDC=90°∴∠APB=∠ADC=∠ADP+∠PDC=60°+90°=150°故答案为:PD,∠CAD,∠APB,90.(2)解:∵∠ABC=90°,BC=AB,∴把△PAC绕A点逆时针旋转90°得到△DBA,如图,∴BD=PC=3,AD=AP=2,∠PAD=90°,∴△PAD为等腰直角三角形,∴DP=PA=2,∠DPA=45°,在△BPD中,PB=2,PD=2,DB=3,∵12+(2)2=32,∴AP2+PD2=BD2,∴△BPD为直角三角形,∴∠BPD=90°,∴∠APB=∠APD+∠DPB=90°+45°=135°.【点评】本题考查旋转变换、等边三角形的性质、全等三角形的判定和性质、勾股定理以及逆定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题.25.(14分)如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,C在x轴的正半轴上,已知A(0,8)、C(10,0),作∠AOC的平分线交AB于点D,连接CD,过点D作DE⊥CD交OA于点E.(1)求点D的坐标;(2)求证:△ADE≌△BCD;(3)抛物线y=x2﹣x+8经过点A、C,连接AC.探索:若点P是x轴下方抛物线上一动点,过点P作平行于y轴的直线交AC于点M.是否存在点P,使线段MP的长度有最大值?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用角平分线的性质以及矩形的性质得出∠ADO=∠DOC,以及∠AOD=∠ADO,进而得出答案;(2)利用全等三角形的判定方法(ASA)即可得出答案;(3)设P点坐标为(t,t2﹣t+8),设AC所在的直线的函数关系式为y =kx+b,根据A(0,8)、C(10,0),求出AC的解析式,进而用t表示出PM的长,利用二次函数的性质求出PM的最值,点P的坐标也可以求出.【解答】解:(1)∵OD平分∠AOC,∴∠AOD=∠DOC.∵四边形AOCB是矩形,∴AB∥OC∴∠AOD=∠DOC∴∠AOD=∠ADO.∴OA=AD(等角对等边).∵A点的坐标为(0,8),∴D点的坐标为(8,8)(2)∵四边形AOCB是矩形,∴∠OAB=∠B=90°,BC=OA.∵OA=AD,∴AD=BC.∵ED⊥DC∴∠EDC=90°∴∠ADE+∠BDC=90°∴∠BDC+∠BCD=90°.∴∠ADE=∠BCD.在△ADE和△BCD中,∵∠DAE=∠B,AD=BC,∠ADE=∠BCD,∴△ADE≌△BCD(ASA)(3)存在,∵二次函数的解析式为:,点P是抛物线上的一动点,∴设P点坐标为(t,)设AC所在的直线的函数关系式为y=kx+b,∵A(0,8)、C(10,0),∴,解得∴直线AC的解析式为.∵PM∥y轴,∴M(t,).∴PM=﹣()+(﹣)=﹣.∴当t=5时,PM有最大值为10.∴所求的P点坐标为(5,﹣6).【点评】本题主要考查二次函数的综合题的知识点,此题设计了三角形全等的证明,二次函数的性质,函数最值的求解,难度较大,希望同学们仔细思考.。

2018-2019学年九年级上期中数 学试卷含答案解析

2018-2019学年九年级上期中数 学试卷含答案解析

2018—2019学年九年级(上)期中数学试卷一.细心选一选1.(3分)将图所示的图案按顺时针方向旋转90°后可以得到的图案是()A.B.C.D.2.(3分)方程x2﹣3x=0的解是()A.x=3 B.x=0 C.x=1或x=3 D.x=3 或x=03.(3分)设x1,x2是一元二次方程x2+3x﹣4=0的两个根,则x1+x2的值是()A.3 B.﹣3 C.4 D.﹣44.(3分)如图,在圆O中,圆心角∠BOC=100°,那么∠BAC=()A.50°B.60°C.70°D.75°5.(3分)抛物线y=2(x﹣3)2+1的顶点坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)6.(3分)将抛物线y=(x﹣1)2+3向左平移1个单位,再向右平移3个单位得到的解析式是()A.y=(x﹣2)2 B.y=(x﹣2)2+6 C.y=x2 D.y=x2+67.(3分)某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是()A.200(1+a%)2=148 B.200(1﹣a%)2=148 C.200(1﹣2a%)=148 D.200(1﹣a2%)=1488.(3分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么线段OE的长为()A.6 B.5 C.4 D.39.(3分)已知A(﹣1,y1),B(2,y2)是抛物线y=﹣(x+2)2+1上的两点,则y1,y2的大小关系()A.y1>y2 B.y1≥y2 C.y1<y2 D.y1≤y210.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列说法不正确的是()A.b2﹣4ac>0 B.a>0 C.c>0 D.二.耐心填一填11.(3分)已知抛物线y=﹣2(x﹣1)2+3,当x时,y随x的增大而减小.12.(3分)如图,AB是圆O的直径,点C在圆O上,若∠A=40°,则∠B的度数为.13.(3分)已知点A(﹣3,b)与点B(a,2)关于原点对称,则a+b=.14.(3分)二次函数y=x2﹣2x﹣3的图象如图所示.当y<0时,自变量x的取值范围是.15.(3分)已知点P(3,2),将OP绕点O逆时针旋转90°到OP′,那么点P′的坐标是.16.(3分)一个足球被从地面向上踢出,它距地面的高度h(m)与足球被踢出后经过的时间t(s)之间具有函数关系h=at2+19.6t,已知足球被踢出后经过4s落地,则足球距地面的最大高度是m.三.用心答一答17.解方程(1)x2﹣4x﹣5=0(2)2x(x﹣1)+x﹣1=0.18.已知关于x的方程:3x2﹣kx+1=0的一根是x=1,求k的值以及方程的另一个根.19.抛物线y=2x2+bx+c经过(﹣3,0),(1,0)两点(1)求抛物线的解析式,并求出其开口方向和对称轴(2)用配方法求出该抛物线的顶点坐标.20.已知△ABC,点A(﹣3,1),B(﹣1,﹣1),C(0,2)(2)利用关于原点对称的点的坐标的关系作出与△ABC关于原点对称的△A′B′C′;(3)写出△A′B′C′三个顶点的坐标.21.如图小张想用总长60m的篱笆围成矩形ABCD场地,其中AD边靠墙,墙体最多能用30m,矩形ABCD的面积S(m2)随矩形边长AB设为x(m)的变化而变化.(1)求S与x之间的函数关系(2)当x为多少m时,矩形的面积是400m2?此时长宽分别是多少m?22.已知关于x的方程(k﹣1)x2+2kx+2=0(1)求证:无论k为何值,方程总有实数根(2)设x1,x2是上述方程的两个实数根,记,S的值能为6吗?若能,求出此时的k值,若不能请说明理由.23.在△ABC中,∠A=90°,AC=AB,点D再射线BA上(不与B,A重合),连接CD,将CD 绕点D顺时针旋转90°得到DE,连接BE.(1)如图1,点D在BA边上.依题意补全图1作DF⊥BA交CB与点F,若AC=6,DF=2,求BE的长(2)如图2,点D在BA边的延长线上,用等式表示线段CB,BD,BE之间的数量关系(直接写出结论)24.如图,在平面直角坐标系中,点B(﹣1,﹣1),A(3,﹣3),抛物线经过A,O,B三点,连接OA,OB,AB,线段AB交y轴于点C.(2)若点P为线段OA上的一个动点(不与O,A重合),直线PC与抛物线交于D,E两点(点D在y轴右侧),连接OD,AD①当△OPC为等腰三角形,求点P的坐标;②求△AOD面积的最大值,并求出此时点D的坐标.25.如图1点M为x轴上的一点,圆M与x轴交于点B,A,与y轴交于点C,D,设C(0,),A(3,0)(1)求点M的坐标(2)如图2所示,点F为弧AC的上的任一点,点E为弧CF上的中点,AF,DE交于点G,求AG的长(3)如图3所示,连BC,AC,做∠ACG的平分线CF交圆M于点E,连接BE,求的值.参考答案与试题解析一.细心选一选1.(3分)将图所示的图案按顺时针方向旋转90°后可以得到的图案是()A.B.C.D.【解答】解:根据旋转的性质可知,图案按顺时针方向旋转90°,得到的图案是.故选:B.2.(3分)方程x2﹣3x=0的解是()A.x=3 B.x=0 C.x=1或x=3 D.x=3 或x=0【解答】解:x2﹣3x=0x(x﹣3)=0∴x=0或x﹣3=0,∴x1=0,x2=3.故选:D.3.(3分)设x1,x2是一元二次方程x2+3x﹣4=0的两个根,则x1+x2的值是()A.3 B.﹣3 C.4 D.﹣4【解答】解:∵x1,x2是一元二次方程x2+3x﹣4=0的两个根,∴x1+x2=﹣3,故选:B.4.(3分)如图,在圆O中,圆心角∠BOC=100°,那么∠BAC=()A.50°B.60°C.70°D.75°【解答】解:∵圆心角∠BOC=100°,∴∠BAC=50°.故选:A.5.(3分)抛物线y=2(x﹣3)2+1的顶点坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)【解答】解:由y=2(x﹣3)2+1,根据顶点式的坐标特点可知,顶点坐标为(3,1).故选:A.6.(3分)将抛物线y=(x﹣1)2+3向左平移1个单位,再向右平移3个单位得到的解析式是()A.y=(x﹣2)2 B.y=(x﹣2)2+6 C.y=x2 D.y=x2+6【解答】解:∵向左平移1个单位,再向上平移3个单位,∴y=(x﹣1+1)2+3+3.故得到的抛物线的函数关系式为:y=x2+6.故选:D.7.(3分)某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是()A.200(1+a%)2=148 B.200(1﹣a%)2=148 C.200(1﹣2a%)=148 D.200(1﹣a2%)=148【解答】解:依题意得两次降价后的售价为200(1﹣a%)2,∴200(1﹣a%)2=148.故选:B.8.(3分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么线段OE的长为()A.6 B.5 C.4 D.3【解答】解:连接OC,∵AB是⊙O的直径,弦CD⊥AB,垂足为E,AB=10,CD=8,∴OC=5,CE=4,∴OE===3.故选:D.9.(3分)已知A(﹣1,y1),B(2,y2)是抛物线y=﹣(x+2)2+1上的两点,则y1,y2的大小关系()A.y1>y2 B.y1≥y2 C.y1<y2 D.y1≤y2【解答】解:∵y=﹣(x+2)2+1,∴当x>﹣2时,y随x的增大而减小,∵A(﹣1,y1),B(2,y2)是抛物线y=﹣(x+2)2+1上的两点,﹣2<﹣1<2,∴y1>y2,故选:A.10.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列说法不正确的是()A.b2﹣4ac>0 B.a>0 C.c>0 D.【解答】解:A、正确,∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0;B、正确,∵抛物线开口向上,∴a>0;C、正确,∵抛物线与y轴的交点在y轴的正半轴,∴c>0;D、错误,∵抛物线的对称轴在x的正半轴上,∴﹣>0.故选:D.二.耐心填一填11.(3分)已知抛物线y=﹣2(x﹣1)2+3,当x>1时,y随x的增大而减小.【解答】解:抛物线y=﹣2(x﹣1)2+3的顶点坐标为(1,3),对称轴为直线x=1;当x>1时,y随x增大而减小.故答案为:>112.(3分)如图,AB是圆O的直径,点C在圆O上,若∠A=40°,则∠B的度数为50°.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∴∠B=90°﹣∠A=90°﹣40°=50°,故答案为50°.13.(3分)已知点A(﹣3,b)与点B(a,2)关于原点对称,则a+b=1.【解答】解:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),所以得到a=3,b=﹣2,故a+b=1.故答案为:1.14.(3分)二次函数y=x2﹣2x﹣3的图象如图所示.当y<0时,自变量x的取值范围是﹣1<x<3.【解答】解:∵二次函数y=x2﹣2x﹣3的图象如图所示.∴图象与x轴交在(﹣1,0),(3,0),∴当y<0时,即图象在x轴下方的部分,此时x的取值范围是:﹣1<x<3,故答案为:﹣1<x<3.15.(3分)已知点P(3,2),将OP绕点O逆时针旋转90°到OP′,那么点P′的坐标是(﹣2,3).【解答】解:如图所示,将OP绕点O逆时针旋转90°到OP′,那么点P′的坐标是(﹣2,3),故答案为:(﹣2,3),16.(3分)一个足球被从地面向上踢出,它距地面的高度h(m)与足球被踢出后经过的时间t(s)之间具有函数关系h=at2+19.6t,已知足球被踢出后经过4s落地,则足球距地面的最大高度是19.6m.【解答】解:由题意得:t=4时,h=0,因此0=16a+19.6×4,解得:a=﹣4.9,∴函数关系为h=﹣4.9t2+19.6t,足球距地面的最大高度是:=19.6(m),故答案为:19.6.三.用心答一答17.解方程(1)x2﹣4x﹣5=0(2)2x(x﹣1)+x﹣1=0.【解答】解:(1)(x﹣5)(x+1)=0,x﹣5=0或x+1=0,所以x1=5,x2=﹣1;(2)(x﹣1)(2x+1)=0,x﹣1=0或2x+1=0,所以x1=1,x2=﹣.18.已知关于x的方程:3x2﹣kx+1=0的一根是x=1,求k的值以及方程的另一个根.【解答】解:设方程的另一根为x=m,∵方程的一个根为x=1,∴m×1=,即m=,∵m+1=,∴+1=,解得k=4,∴k的值为4,方程的另一个根为x=.19.抛物线y=2x2+bx+c经过(﹣3,0),(1,0)两点(1)求抛物线的解析式,并求出其开口方向和对称轴(2)用配方法求出该抛物线的顶点坐标.【解答】解:(1)将点(﹣3,0)、(1,0)代入解析式可得:,解得:,则抛物线解析式为y=2x2+4x﹣6,开口向上,对称轴为直线x==﹣1;(2)∵y=2x2+4x﹣6=2(x2+2x)=2(x2+2x+1﹣1)﹣6=2(x+1)2﹣8,∴抛物线的顶点坐标为(﹣1,﹣8).20.已知△ABC,点A(﹣3,1),B(﹣1,﹣1),C(0,2)(1)作出△ABC;(2)利用关于原点对称的点的坐标的关系作出与△ABC关于原点对称的△A′B′C′;(3)写出△A′B′C′三个顶点的坐标.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,△A′B′C′即为所求;(3)由图可知,点A′(3,﹣1)、B′(1,1)、C′(0,﹣2).21.如图小张想用总长60m的篱笆围成矩形ABCD场地,其中AD边靠墙,墙体最多能用30m,矩形ABCD的面积S(m2)随矩形边长AB设为x(m)的变化而变化.(1)求S与x之间的函数关系(2)当x为多少m时,矩形的面积是400m2?此时长宽分别是多少m?【解答】解:(1)当AB=x时,BC=60﹣2x,则S=x(60﹣2x)=﹣2x2+60x;(2)根据题意知S=400时,﹣2x2+60x=400,解得:x=10或x=20,∵,∴15≤x<30,∴x=20,则AB=20米,BC=60﹣40=20米,答:当x为20m时,矩形的面积是400m2,此时长,宽分别是20m、20m.22.已知关于x的方程(k﹣1)x2+2kx+2=0(1)求证:无论k为何值,方程总有实数根(2)设x1,x2是上述方程的两个实数根,记,S的值能为6吗?若能,求出此时的k值,若不能请说明理由.【解答】(1)证明:当k﹣1=0时,则k=1,方程为2x+2=0,解得x=﹣1,方程有实数根;当k﹣1≠0时,则△=(2k)2﹣4(k﹣1)×2=4k2﹣8k+8=4(k﹣1)2+4>0恒成立,即方程有两个实数根,综上可知,无论k为何值,方程总有实数根;(2)解:∵x1,x2是上述方程的两个实数根,∴x1+x2=﹣,x1x2=,∴=+x1+x2=+x1+x2=﹣,令S=6,即﹣=6,解得k=4,即当k的值为4时,S的值为6.23.在△ABC中,∠A=90°,AC=AB,点D再射线BA上(不与B,A重合),连接CD,将CD 绕点D顺时针旋转90°得到DE,连接BE.(1)如图1,点D在BA边上.依题意补全图1作DF⊥BA交CB与点F,若AC=6,DF=2,求BE的长(2)如图2,点D在BA边的延长线上,用等式表示线段CB,BD,BE之间的数量关系(直接写出结论)【解答】解:(1)补全图形,如图1所示.由题意可知CD=DE,∠CDE=90°.∵DF⊥BA,∴∠FDB=90°.∴∠CDF=∠EDB.∵∠A=90°,AC=BA,∴∠ABC=∠DFB=45°.∴DB=DF.∴△CDF≌△EDB.∴CF=EB.在△ABC和△DFB中,AC=6,DF=2,∴BC=6,BF=2.∴CF=CB﹣BF=4,即BE=4.(2)BD=BE+CB.理由如下:如图2,过D作DF⊥AB交BC的延长线于点F,∵∠BAC=90°,AC=AB,∴∠F=∠ACB=∠ABC=45°,∴DF=DB,由旋转可得,∠BDF=∠EDC=90°,CD=ED,∴∠FDC=∠BDE,∴△DCF≌△DEB,∴CF=BE,又∵等腰Rt△BDF中,BF=BD,BF=BC+CF,∴BD=BE+CB.24.如图,在平面直角坐标系中,点B(﹣1,﹣1),A(3,﹣3),抛物线经过A,O,B三点,连接OA,OB,AB,线段AB交y轴于点C.(1)求点C的坐标;(2)若点P为线段OA上的一个动点(不与O,A重合),直线PC与抛物线交于D,E两点(点D在y轴右侧),连接OD,AD①当△OPC 为等腰三角形,求点P 的坐标;②求△AOD 面积的最大值,并求出此时点D 的坐标.【解答】解:(1)设直线AB 的解析式为y=kx+b .∴,解得:,∴直线AB 的解析式为y=﹣x ﹣,∴C 点坐标为(0,﹣).(2)①∵直线OB 过点O (0,0),A (3,﹣3),∴直线OA 的解析式为y=﹣x .∵△OPC 为等腰三角形,∴OC=OP 或OP=PC 或OC=PC .设P (x ,﹣x )(0<x <3),当OC=OP 时,x2+(﹣x )2=.解得x1=,x2=﹣(舍去),此时P 点坐标为(,﹣);当OP=PC 时,点P 在线段OC 的中垂线上,此时P 点坐标为(,﹣);当OC=PC 时,x2+(﹣x +)2=,解得x1=,x2=0(舍去).此时P 点坐标为P (,﹣).综上所述,P 点坐标为(,﹣)或(,﹣)或(,﹣);②作DG ∥y 轴于G ,如图,设D (t ,﹣t2+t ),则G (t ,﹣t ),∴DG=﹣t2+t﹣(﹣t)=﹣t2+t,∴S△AOD=S△ODG+S△ADG=DG•3=﹣t2+t=﹣(t﹣)2+,当t=时,△AOD面积有最大值,最大值为,此时D点坐标为(,﹣).25.如图1点M为x轴上的一点,圆M与x轴交于点B,A,与y轴交于点C,D,设C(0,),A(3,0)(1)求点M的坐标(2)如图2所示,点F为弧AC的上的任一点,点E为弧CF上的中点,AF,DE交于点G,求AG的长(3)如图3所示,连BC,AC,做∠ACG的平分线CF交圆M于点E,连接BE,求的值.【解答】解:(1)如图1,连接CA、CB、CM、DA、DB,∵x轴⊥y轴,即AB⊥CD,又AB为⊙M直径,∴AB垂直平分C D,∴CO=DO,BC=BD,AC=AD,∵点C坐标为(0,),点A坐标为(3,0),∴CO=DO=,OA=3,设点M坐标为(a,0),则OM=a,∴MC=MA=OA﹣OM=3﹣a,Rt△COM中,CO2+OM2=CM2,可求得a=1,∴点M坐标为(1,0),(2)如图2,连接AC、AD、AQ,∵点M坐标为(1,0),∴OM=1,MB=MA=MC=3﹣1=2,AB=2+2=4,BO=BM﹣OM=2﹣1=1,由勾股定理可求得:BC=BD=2,AC=AD=2.点E为弧CF上的中点,∴=,∴∠1=∠2,又∠1=∠5,∴∠2=∠5,∵AC=AD,∴∠4=∠5+∠6,又∠3=∠4,∴∠3=∠5+∠6,∵∠3=∠2+∠G(三角形外角),∴∠2+∠G=∠5+∠6,∴∠6=∠G,∴AG=AD=2;(2)如图3,过点E作FK⊥AG于点K,连接EA,∵AB为直径,∴∠AEB=∠ACB=90°,∴∠ACG=180°﹣90°=90°,∵CE平分∠ACG.∴∠ACE=∠ECK=∠ACG=45°,∵∠ABE=∠ACE=45°,∠AEB=90°,∴△AEB为等腰Rt△,∴AE=BE===2,∵∠ECK=45°,∠EKC=90°,∴△EKC为等腰Rt△,设CE=m,则CK=KE=m,BK=BC+CK=2+m,Rt△BKE中,BK2+KE2=BE2,即(2+m)2+(m)2=(2)2,解得:m=﹣,∴==.。

福建省龙岩市2018-2019学年上学期期中考试九年级数学试题(解析版)

福建省龙岩市2018-2019学年上学期期中考试九年级数学试题(解析版)

福建省龙岩市2018-2019学年上学期期中考试九年级数学试题(解析版)一、选择题(本大题共10小题,共40.0分)1.下列图形中,既是轴对称图形,又是中心对称图形的是A. B. C. D.【答案】C【解析】解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,也是轴对称图形,故本选项正确;D、不是中心对称图形,也不是轴对称图形,故本选项错误.故选:C.根据轴对称图形与中心对称图形的概念,结合选项所给图形即可判断.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下列方程中,为一元二次方程的是A. B. C. D.【答案】D【解析】解:A、是二元一次方程,故本选项错误;B、是分式方程,故本选项错误;C、是一元一次方程,故本选项错误;D、是一元二次方程,故本选项正确;故选:D.根据一元二次方程的定义选择即可.本题考查了一元二次方程,掌握一元二次方程的定义是解题的关键.3.平面直角坐标系内,点关于原点对称点的坐标是A. B. C. D.【答案】D【解析】解:根据关于原点对称的点的坐标的特点,点关于原点过对称的点的坐标是.故选:D.根据“平面直角坐标系中任意一点,关于原点的对称点是,即关于原点的对称点,横纵坐标都变成相反数”解答.本题主要考查了关于原点对称的点的坐标的特点,比较简单.4.已知抛物线经过和两点,那么下列关系式一定正确的是A. B. C. D.【答案】C【解析】解:时,,时,,,故选:C.求出、的值即可判断即可判断.本题主要考查的是二次函数的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.用配方法解方程时,原方程应变形为A. B. C. D.【答案】D【解析】解:由原方程移项,得,等式的两边同时加上一次项系数一半的平方,得,配方得.故选:D.把常数项移项后,应该在左右两边同时加上一次项系数的一半的平方.本题考查了解一元二次方程--配方法配方法的一般步骤:把常数项移到等号的右边;把二次项的系数化为1;等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.6.已知二次函数的图象如图所示,则下列结论正确的是A.B.C.D.【答案】D【解析】解:A、由抛物线开口向上知,此选项错误;B、由抛物线与y轴交于负半轴知,此选项错误;C、由抛物线的对称轴知,此选项错误;D、由且知,此选项正确;故选:D.分别根据抛物线开口方向、与y轴交点位置、对称轴逐一判断可得答案.本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键.7.将抛物线向右平移1个单位,再向上平移3个单位后所得抛物线的表达式为A. B. C. D.【答案】D【解析】解:抛物线的顶点坐标为,把点先向右平移1个单位,再向上平移3个单位后所得对应点的坐标为,所以新抛物线的表达式为.故选:D.先确定抛物线的顶点坐标为,再利用点平移的规律得到点平移后对应点的坐标为,然后根据顶点式写出平移后的抛物线解析式.本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.8.如图,在中,,,将绕点A顺时针旋转,B,C旋转后的对应点分别是和,连接,则的度数是A.B.C.D.【答案】D【解析】解:由旋转可得,,,.故选:D.在中根据等边对等角,以及三角形内角和定理,即可求得的度数.本题考查了旋转的性质,在旋转过程中根据旋转的性质确定相等的角和相等的线段是关键.9.一元二次方程有实数根,则k的取值范围是A. 且B.C. 且D. 或【答案】A【解析】解:一元二次方程有实数根,,且,解得:,且,故选:A.根据方程有实数根,得到根的判别式大于等于0,求出不等式的解集即可得到k的取值范围.此题考查了根的判别式,以及一元二次方程的定义,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.10.在等边中,点D为内的一点,,,,则CD的长是A. B. C. 3 D.【答案】A【解析】解:如图,将绕点A逆时针旋转得到,连接DE.,,是等边三角形,,,,,,,故选:A.如图,将绕点A逆时针旋转得到,连接只要证明,利用勾股定理即可解决问题;本题考查等边三角形的性质和判定、旋转变换、勾股定理等知识,解题的关键是学会利用旋转变换添加辅助线,构造全等三角形解决问题,属于中考常考题型.二、填空题(本大题共6小题,共24.0分)11.一元二次方程化为一般形式为______.【答案】【解析】解:去括号得,,移项得,,合并同类项得,,故答案为.把方程化为的形式即可.本题考查了一元二次方程,掌握一元二次方程的一般形式是解题的关键.12.在平面直角坐标系中,O为坐标原点,点A的坐标为,将OA绕原点逆时针方向旋转得OB,则点B的坐标为______.【答案】【解析】解:如图所示:点B的坐标为:.故答案为:.直接利用旋转的性质得出B点位置,进而得出答案.此题主要考查了图形的旋转,正确得出对应点位置是解题关键.13.在某次聚会上,每两人互送一件礼物,所有人共送礼物30件,参加这次聚会的有______人【答案】6【解析】解:设有x人参加了聚会,由题意,得,解,解得,,不合题意,舍去所以有6人参加了聚会.故答案为:6.设x人参加了聚会,根据共送礼物30件,得到关于x的一元二次方程,求解即可.本题考查了一元二次方程的应用解决本题的关键是根据题意,列出方程.14.已知方程的两个根为和,那么可知抛物线的对称轴为______.【答案】【解析】解:方程的两个根为和,抛物线与x的两交点坐标为、,而抛物线与x轴的两交点是关于抛物线的对称轴的,对称轴为.故答案为:由于方程的两个根为和,由此得到抛物线与x的两交点坐标,而两个交点关于抛物线的对称轴对称的,由此可以求出抛物线的对称轴.此题主要考查了抛物线与x轴的交点的横坐标和一元二次方程的根之间的关系,也利用了抛物线的对称性.15.三角形两边的长分别是8和6,第三边的长是一元二次方程的一个实数根,则该三角形的面积是______.【答案】24或【解析】解:,,解得:,,当时,则三角形是等腰三角形,如图:,,AD是高,,,;当时,如图,,,,,是直角三角形,,.该三角形的面积是:24或.故答案为:24或.由,可利用因式分解法求得x的值,然后分别从时,是等腰三角形;与时,是直角三角形去分析求解即可求得答案.此题考查了一元二次方程的解法、等腰三角形的性质与直角三角形的性质此题难度适中,解题的关键是注意分类讨论思想,小心别漏解.16.如图,射线OC与x轴正半轴的夹角为,点A是OC上一点,轴于H,将绕着点O逆时针旋转后,到达的位置,再将沿着y轴翻折到达的位置,若点G恰好在抛物线上,则点A的坐标为______.【答案】【解析】解:点G的坐标为,则点D的坐标为,点A的坐标为,射线OC与x轴正半轴的夹角为,,即,解得,,点A的坐标为根据点G在上,可以设出点G的坐标,从而可以表示出点D和点A的坐标,然后根据特殊角的三角函数值可以求得点A的坐标.本题考查二次函数图象上点的坐标特征、翻折变换、坐标与图形变化旋转,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、计算题(本大题共3小题,共26.0分)17.选用适当的方法,解下列方程:;.【答案】解:原方程可变形为:,整理得:或,,;移项得,,提公因式得,,或,,.【解析】用因式分解法解方程即可;用因式分解法提公因式法进行解方程即可.本题考查了一元二次方程,掌握一元二次方程的解法是解题的关键.18.已知二次函数.求该二次函数图象的顶点和对称轴.在所给坐标系中画出该二次函数的图象.当时,x的取值范围是什么?【答案】解:顶点坐标为,对称轴为直线;抛物线与x轴的交点坐标函数图象如图:由图象可知,当时,.【解析】把函数解析式用配方的办法化成顶点式或者根据求二次函数图象的顶点和对称轴的公式计算即可;由知抛物线的顶点,根据函数解析式判断图象的开口方向,再求出抛物线和x轴、y轴的交点坐标,画出图象即可;图象在x轴的下方的部分,满足时.本题考查了二次函数的性质以及二次函数图象上点的坐标特征,掌握二次函数的性质是解题的关键.19.一座隧道的截面由抛物线和长方形构成,长方形的长为8m,宽为2m,隧道最高点P位于AB的中央且距地面6m,建立如图所示的坐标系.求抛物线的表达式;该隧道内设双行道,中间隔离带1m,一辆货车高4m,宽,能否安全通过,为什么?【答案】解:设抛物线的解析式为,顶点,,它过点,,解得,设抛物线的解析式为;当时,,该货车不能通过隧道.【解析】设出抛物线的解析式,根据抛物线顶点坐标,代入解析式求解可得;根据题意求出时y的值,比较大小可得答案.本题是二次函数的应用,属于抛物线型隧道或拱桥问题,此类题一般函数表达式求法比较简单,但若货运卡车等是否能通过隧道问题,有两种情况:单向车道或双向车道,要仔细审题,可以利用宽来计算高,也可以利用高来计算宽,把对应的坐标代入即可.四、解答题(本大题共6小题,共60.0分)20.当m为何值时,关于x的一元二次方程有两个相等的实数根?此时这两个实数根是多少?【答案】解:由题意知,,即,解得:.当时,方程化为:,,方程有两个相等的实数根.【解析】方程有两个相等的实数根,必须满足,从而求出实数m的值及方程的两个实数根.总结:一元二次方程根的情况与判别式的关系:方程有两个不相等的实数根;方程有两个相等的实数根;方程没有实数根.21.在如图的方格纸中,每个小方格都是边长为1个单位的正方形,的三个顶点都在格点上每个小方格的顶点叫格点.画出向下平移6个单位后的;画出绕原点O顺时针旋转后的.【答案】解:如图,为所作;如图,为所作.【解析】先利用关于点的平移坐标规律写出A、B、C的对应点、、的坐标,然后描点即可;根据网格特点和旋转的性质画出、、的对应点、、,从而得到.本题考查了作图旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形也考查了平移的性质.22.如图,正方形ABCD中,E在BC上,按顺时针方向转动一个角度后成.图中哪一个点是旋转中心?旋转了多少度?已知,,求GE长.【答案】解:旋转中心是点D;按顺时针方向转动一个角度后成,旋转角的度数等于的度数,四边形ABCD是正方形,,旋转了;四边形ABCD是正方形,,,,,按顺时针方向转动一个角度后成,≌,,,在中,.【解析】根据已知和图形即可得出答案.根据图形,结合旋转的性质,即可得出旋转角的度数等于的度数,求出即可.根据旋转得出,求出BE、BG,根据勾股定理求出即可.本题考查了旋转的性质,正方形性质,勾股定理的应用,主要考查学生的观察图形的能力和计算能力.23.如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.若,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;若,求矩形菜园ABCD面积的最大值.【答案】解:设,则,根据题意得,解得,,当时,,不合题意舍去;当时,,答:AD的长为10m;设.,,时,S的最大值为1250.答:若,矩形菜园ABCD面积的最大值为1250平方米.【解析】设,则,构建方程即可解决问题;构建二次函数,利用二次函数的性质即可解决问题;本题考查一元二次方程、二次函数的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.24.在中,,将绕点A逆时针旋转度得到,B,C两点的对应点分别为点D,E,BD,CE所在直线交于点F.当旋转到图1位置时,______用的代数式表示,的度数为______;当时,在图2中画出,并求此时点A到直线BE的距离.【答案】 45【解析】解:绕点A逆时针旋转度得到,如图1,,,,而,;,,,,,.故答案为;;如图2,为所作,BE与AC相交于G,绕点A逆时针旋转45度得到,而,,点D与点C重合,,,为等腰直角三角形,,而AG平分,,,即此时点A到直线BE的距离为.如图1,利用旋转的性质得,,,则;再利用等腰三角形的性质和三角形内角和得到,所以.如图2,为所作,BE与AC相交于G,利用旋转的性质得点D与点C重合,,,则为等腰直角三角形,所以,再证明,然后根据等腰直角三角形的性质求出AG的长即可.本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了等腰直角三角形的性质和旋转的性质.25.抛物线对称轴为直线,交x轴于点,点C两点,与y轴交于点B,其部分图象如图所示.直接写出b,k的值及点B,C的坐标;点E是线段AB上一动点点A、B除外,过点E作x轴的垂线交抛物线于点F,求线段EF的最大长度;过点B作直线BD垂直于y轴,交抛物线于点D,连接CD交AB 于点H,求与的面积之差.【答案】解:抛物线对称轴为直线,,.把代入,得,解得.则该抛物线解析式为,,.令,则,即,综上所述,,,,.由,易得直线AB解析式,设点E的坐标为,则点F的坐标为..,当时,.最大.【解析】利用待定系数法确定函数关系式,结合函数解析式求得点B,C的坐标;利用待定系数法求得直线AB解析式,设点E的坐标为,则点F的坐标为由两点间的距离的求法列出二次函数关系式:,由二次函数最值的意义得到答案;将相关三角形的面积代入求值即可.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

2018-2019学年九 年级上期中数学试卷含答案解析

2018-2019学年九 年级上期中数学试卷含答案解析

2018—2019学年九年级(上)期中数学试卷一、选择题1.(3分)顺次连接菱形各边中点所得的四边形一定是()A.等腰梯形B.正方形C.平行四边形D.矩形2.(3分)若x=2关于x的一元二次方程x2﹣ax+2=0的一个根,则a的值为()A.3 B.﹣3 C.1 D.﹣13.(3分)用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是()A.种植10棵幼树,结果一定是“有9棵幼树成活”B.种植100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”C.种植10n棵幼树,恰好有“n棵幼树不成活”D.种植n棵幼树,当n越来越大时,种植成活幼树的频率会越来越稳定于0.94.(3分)如图,在△ABC中,E、F分别是AB、AC上的点,EF∥BC,且=,若△AEF 的面积为2,则四边形EBCF的面积为()A.4 B.6 C.16 D.185.(3分)如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为()A.B.C.D.6.(3分)某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为()A.5.3米B.4.8米C.4.0米D.2.7米7.(3分)若双曲线位于第二、四象限,则k的取值范围是()A.k<1 B.k≥1 C.k>1 D.k≠18.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A.B.2 C.D.9.(3分)李明去参加聚会,每两人都互相赠送礼物,他发现共送礼物20件,若设有n人参加聚会,根据题意可列出方程为()A.=20 B.n(n﹣1)=20 C.=20 D.n(n+1)=2010.(3分)如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD 上的任意一点,则PK+QK的最小值为()A.1 B.C.2 D.+1二、填空题11.(3分)已知关于x的方程kx2﹣4x+2=0有两个实数根,则k的取值范围是.12.(3分)若==,则=.13.(3分)如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是.14.(3分)如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图.已知桌面直径为1.2米,桌面离地面1米.若灯泡离地面3米,则地面上阴影部分的面积为㎡.15.(3分)如图,反比例函数y=的图象与直线y=kx(k>0)相交于A、B两点,AC∥y轴,BC∥x轴,则△ABC的面积等于个面积单位.三、解答题16.画几何体的三种视图(注意符合三视图原则)17.解方程:(1)x2﹣4x﹣5=0(2)x2﹣5x+1=0.18.如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,3,4.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.19.“泥兴陶,是钦州的一张文化名片.钦州市某妮兴陶公司以每只60元的价格销售一种成本价为40元的文化纪念杯,每星期可售出100只.后来经过市场调查发现,每只杯子的售价每降低1元,则平均何星期可多买出10只.若该公司销售这种文化纪念杯要想平均每星期获利2240元,请回答:(1)每只杯应降价多少元?(2)在平均每星期获利不变的情况下,为尽可能让利于顾客,赢得市场,该公司应该按原售价的几折出售?20.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.21.如图,已知反比例函数与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.22.如图,梯形ABCD中,AD∥BC,点E是边AD的中点,连结BE并延长交CD的延长线于点F,交AC于点G.(1)若FD=2,,求线段DC的长;(2)求证:EF•GB=BF•G E.23.如图,在Rt△ABC中,∠ACB=90°,AC=10cm,BC=15cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒(1)当t=4时,求线段PQ的长度(2)当t为何值时,△PCQ是等腰三角形?(4)当t为何值时,△PCQ的面积等于16cm2?(4)当t为何值时,△PCQ∽△ACB.参考答案与试题解析一、选择题1.(3分)顺次连接菱形各边中点所得的四边形一定是()A.等腰梯形B.正方形C.平行四边形D.矩形【解答】解:如图:菱形ABCD中,E、F、G、H分别是AB、BC、CD、AD的中点,∴EH∥FG∥BD,EH=FG=BD;EF∥HG∥AC,EF=HG=AC,故四边形EFGH是平行四边形,又∵AC⊥BD,∴EH⊥EF,∠HEF=90°∴边形EFGH是矩形.故选:D.2.(3分)若x=2关于x的一元二次方程x2﹣ax+2=0的一个根,则a的值为()A.3 B.﹣3 C.1 D.﹣1【解答】解:把x=2代入x2﹣ax+2=0,得22﹣2a+2=0,解得a=3.故选:A.3.(3分)用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是()A.种植10棵幼树,结果一定是“有9棵幼树成活”B.种植100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”C.种植10n棵幼树,恰好有“n棵幼树不成活”D.种植n棵幼树,当n越来越大时,种植成活幼树的频率会越来越稳定于0.9【解答】解:用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,是在大量重复实验中得到的概率的近似值,故A、B、C错误,D正确,故选:D.4.(3分)如图,在△ABC中,E、F分别是AB、AC上的点,EF∥BC,且=,若△AEF 的面积为2,则四边形EBCF的面积为()A.4B.6 C.16 D.18【解答】解:∵=,∴=,∵EF∥BC,∴△AEF∽△ABC,∴=()2=()2=,∵△AEF的面积为2,∴S△ABC=18,则S四边形EBCF=S△ABC﹣S△AEF=18﹣2=16.故选:C.5.(3分)如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为()A.B.C.D.【解答】解:由几何体所示,可得主视图和俯视图分别为:和.故选:B.6.(3分)某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为()A.5.3米B.4.8米C.4.0米D.2.7米【解答】解:设这棵树的高度为x.∵在同一时刻同一地点任何物体的高与其影子长比值是相同的.∴∴x==4.8∴这棵树的高度为4.8米.故选:B.7.(3分)若双曲线位于第二、四象限,则k的取值范围是()A.k<1 B.k≥1 C.k>1 D.k≠1【解答】解:∵双曲线位于第二、四象限,∴k﹣1<0,∴k<1.故选:A.8.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A.B.2 C.D.【解答】解:∵AH=2,HB=1,∴AB=3,∵l1∥l2∥l3,∴==,故选:D.9.(3分)李明去参加聚会,每两人都互相赠送礼物,他发现共送礼物20件,若设有n人参加聚会,根据题意可列出方程为()A.=20 B.n(n﹣1)=20 C.=20 D.n(n+1)=20【解答】解:设有n人参加聚会,则每人送出(n﹣1)件礼物,由题意得,n(n﹣1)=20.故选:B.10.(3分)如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD 上的任意一点,则PK+QK的最小值为()A.1 B.C.2 D.+1【解答】解:∵四边形ABCD是菱形,∴AD∥BC,∵∠A=120°,∴∠B=180°﹣∠A=180°﹣120°=60°,作点P关于直线BD的对称点P′,连接P′Q,P′C,则P′Q的长即为PK+QK的最小值,由图可知,当点Q与点C重合,CP′⊥AB时PK+QK的值最小,在Rt△BCP′中,∵BC=AB=2,∠B=60°,∴P′Q=CP′=BC•sinB=2×=.故选:B.二、填空题11.(3分)已知关于x的方程kx2﹣4x+2=0有两个实数根,则k的取值范围是k≤2且k ≠0..【解答】解:∵关于x的方程kx2﹣4x+2=0有两个实数根,∴,解得:k≤2且k≠0.故答案为:k≤2且k≠0..12.(3分)若==,则=.【解答】解:设===k,∴x=3k,y=4k,z=6k,∴==,故答案为.[来源:学+科+网]13.(3分)如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是 4.8.【解答】解:连接OP,∵矩形的两条边AB、BC的长分别为6和8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD==10,∴OA=OD=5,∴S△ACD=S矩形ABCD=24,∴S△AOD=S△ACD=12,∵S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,解得:PE+PF=4.8.故答案为:4.8.14.(3分)如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图.已知桌面直径为1.2米,桌面离地面1米.若灯泡离地面3米,则地面上阴影部分的面积为0.81π㎡.【解答】解:如图设C,D分别是桌面和其地面影子的圆心,CB∥AD,∴△OBC∽△OAD∴,∵OD=3米,CD=1米,∴OC=OD﹣CD=3﹣1=2(米),BC=×1.2=0.6(米),∴,∴AD=0.9 S⊙D=π×0.92=0.81πm2,这样地面上阴影部分的面积为0.81πm2.故答案为:0.81π.15.(3分)如图,反比例函数y=的图象与直线y=kx(k>0)相交于A、B两点,AC∥y轴,BC∥x轴,则△ABC的面积等于4个面积单位.【解答】解:设A的坐标是:(a,b),则ab=2,B的坐标是:(﹣a,﹣b),∴AC=2b,BC=2a,则△ABC的面积是:AC•BC=×2a•2b=2ab=2×2=4.故答案为4三、解答题16.画几何体的三种视图(注意符合三视图原则)【解答】解:.17.解方程:(1)x2﹣4x﹣5=0(2)x2﹣5x+1=0.【解答】解:(1)(x﹣5)(x+1)=0,x﹣5=0或x+1=0,所以x1=5,x2=﹣1;(2)△=(﹣5)2﹣4×1=21,x=,所以x1=,x2=.18.如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,3,4.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵两个数字的积为奇数的4种情况,∴两个数字的积为奇数的概率为:=.19.“泥兴陶,是钦州的一张文化名片.钦州市某妮兴陶公司以每只60元的价格销售一种成本价为40元的文化纪念杯,每星期可售出100只.后来经过市场调查发现,每只杯子的售价每降低1元,则平均何星期可多买出10只.若该公司销售这种文化纪念杯要想平均每星期获利2240元,请回答:(1)每只杯应降价多少元?(2)在平均每星期获利不变的情况下,为尽可能让利于顾客,赢得市场,该公司应该按原售价的几折出售?【解答】解(1)设每只杯子降价x元,根据题意,可列方程:(100+10x)(20﹣x)=2240,整理得到:x2﹣10x+24=0,解得x1=4,x2=6.所以每只杯子应降价4元或6元.(2)因为要保持每星期获利不变,且尽可能利于顾客,因为该公司应使价格尽量低,因此应降价6元.所以有,所以应按原价的九折出售.20.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.【解答】(1)证明:∵四边形EFGH是正方形,∴EH∥BC,∴∠AEH=∠B,∠AHE=∠C,∴△AEH∽△ABC.(2)解:如图设AD与EH交于点M.∵∠EFD=∠FEM=∠FDM=90°,∴四边形EFDM是矩形,∴EF=DM,设正方形EFGH的边长为x,∵△AEH∽△ABC,∴=,∴=,∴x=,∴正方形EFGH的边长为cm,面积为cm2.21.如图,已知反比例函数与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.【解答】解:(1)∵已知反比例函数经过点A(1,﹣k+4),∴,即﹣k+4=k,∴k=2,∴A(1,2),∵一次函数y=x+b的图象经过点A(1,2),∴2=1+b,∴b=1,∴反比例函数的表达式为.一次函数的表达式为y=x+1.(2)由,消去y,得x2+x﹣2=0.即(x+2)(x﹣1)=0,∴x=﹣2或x=1.∴y=﹣1或y=2.∴或.∵点B在第三象限,∴点B的坐标为(﹣2,﹣1),由图象可知,当反比例函数的值大于一次函数的值时,x的取值范围是x<﹣2或0<x<1.22.如图,梯形ABCD中,AD∥BC,点E是边AD的中点,连结BE并延长交CD的延长线于点F,交AC于点G.(1)若FD=2,,求线段DC的长;(2)求证:EF•GB=BF•GE.【解答】解:(1)∵AD∥BC,∴△DEF∽△CBF,∴==,∴FC=3FD=6,∴DC=FC﹣FD=4;(2)证明:∵AD∥BC,∴△DEF∽△CBF,△AEG∽△CBG,∴=,=,∵点E是边AD的中点,∴AE=DE,∴=,∴EF•GB=BF•GE.23.如图,在Rt△ABC中,∠ACB=90°,AC=10cm,BC=15cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒(1)当t=4时,求线段PQ的长度(2)当t为何值时,△PCQ是等腰三角形?(4)当t为何值时,△PCQ的面积等于16cm2?(4)当t为何值时,△PCQ∽△ACB.【解答】解:(1)当t=4时,由运动知,AP=4cm,PC=AC﹣AP=6cm、CQ=2×4=8cm,∴PQ==10cm;(2)由运动知,AP=t,PC=AC﹣AP=10﹣t、CQ=2t,∵△PCQ是等腰三角形,∴PC=CQ,∴10﹣2t=2t,∴t=2.5(3)由运动知,AP=t,PC=AC﹣AP=10﹣t、CQ=2t,∴S△PQC=PC×CQ=t(10﹣t)=16,∴t1=2,t2=8,当t=8时,CQ=2t=16>15,∴舍去,∴当t=2时,△PQC的面积等于16cm2;(4)由运动知,AP=t,PC=AC﹣AP=10﹣t、CQ=2t,∵△PCQ∽△ACB,∴,∵AC=10,B C=15,∴,∴t=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年福建省龙岩市新罗区莲东中学九年级(上)期中数学试卷一、选择题(本大题共10小题,共40.0分)1.下列图形中,是中心对称图形的是A. B. C. D.【答案】D【解析】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确.故选:D.根据中心对称图形的概念求解.本题考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列方程中,是一元二次方程的是A. B. C. D.【答案】D【解析】解:A、是一元一次方程,故本选项错误;B、,当时是一元一次方程,故本选项错误;C、,不是一元二次方程,故本选项错误;D、是一元二次方程,故本选项正确;故选:D.根据一元二次方程的定义进行选择即可.本题考查了一元二次方程,掌握一元二次方程的定义是解题的关键.3.配方法解方程,则方程可化为A. B. C. D.【答案】B【解析】解:方程移项得:,配方得:,即.故选:B.方程常数项移到右边,两边加上16变形即可得到结果.此题考查了解一元二次方程配方法,熟练掌握解方程的步骤与方法是解决问题的关键.4.如图所示,当时,函数与在同一坐标系内的图象可能是A. B. C. D.【答案】B【解析】解:A、由一次函数的图象可知,二次函数对称轴,错误;B、由一次函数的图象可知,二次函数对称轴,正确;C、由一次函数的图象可知,由二次函数的图象可知,错误;D、由一次函数的图象可知,由二次函数的图象可知,错误;故选:B.本题可先由一次函数象得到字母系数的正负,再与二次函数的图象相比较看是否一致.数形结合思想就是,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状.5.一元二次方程的根的情况是A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个相等的实数根D. 没有实数根【答案】D【解析】解:,方程没有实数根,故选:D.求出一元二次方程根的判别式;根据根的判别式即可判断根的情况.本题考查了根的判别式,一元二次方程根的情况与判别式的关系:方程有两个不相等的实数根;方程有两个相等的实数根;方程没有实数根.6.对于抛物线,下列结论:抛物线的开口向下;对称轴为直线;顶点坐标为;时,y 随x的增大而减小,其中正确结论的个数为A. 1B. 2C. 3D. 4【答案】C【解析】解:,抛物线的开口向下,正确;对称轴为直线,故本小题错误;顶点坐标为,正确;时,y随x的增大而减小,时,y随x的增大而减小一定正确;综上所述,结论正确的个数是共3个.故选:C.根据二次函数的性质对各小题分析判断即可得解.本题考查了二次函数的性质,主要利用了抛物线的开口方向、对称轴、顶点坐标,以及二次函数的增减性.7.根据下列表格中二次函数的自变量x与函数值y的对应值,判断方程a,b,c为常数的一个解x的范围是A. B. C. D.【答案】C【解析】解:由表格中的数据看出和更接近于0,故x应取对应的范围.故选:C.利用二次函数和一元二次方程的性质.该题考查了用表格的方式求函数的值的范围.8.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共有人.A. 12B. 10C. 9D. 8【答案】C【解析】解:设这小组有x人.由题意得:,解得,不合题意,舍去.即这个小组有9人.故选:C.每个人都要送给他自己以外的其余人,等量关系为:人数人数,把相关数值代入计算即可.本题考查一元二次方程的应用,得到互送贺卡总张数的等量关系是解决本题的关键,注意理解本题中互送的含义,这不同于直线上点与线段的数量关系.9.已知点,,在二次函数的图象上,则下列结论正确的是A. B. C. D.【答案】B【解析】解:抛物线的对称轴为,,函数开口向上,有最小值,时函数值最小,时,y随x的增大而减小,时,y随x的增大而增大,.故选:B.求出二次函数的对称轴,再根据二次函数的增减性判断即可.本题考查了二次函数图象上点的坐标特征,掌握二次函数的性质是解题的关键.10.如图为二次函数的图象,则下列说法:;;;当时,其中正确的个数为A. 1B. 2C. 3D. 4【答案】C【解析】解:图象开口向下,能得到,与y轴交于正半轴,则,对称轴在y 轴右侧,故,则,故错误;对称轴在y轴右侧,,则有,即,故正确;当时,,则,故正确;由图可知,当时,,故正确.故选:C.根据函数的开口方向,对称轴以及与y轴的交点确定a,b,c的符号,从而判断;根据对称轴的位置判断;根据时的纵坐标的位置判断;根据二次函数图象落在x 轴上方的部分对应的自变量x的取值,判断.本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与一元一次不等式的关系,难度适中.二、填空题(本大题共6小题,共24.0分)11.抛物线的顶点坐标为______.【答案】.【解析】解:顶点坐标是.故答案为:.直接利用顶点式的特点可知顶点坐标.此题主要考查了二次函数的性质,根据顶点式得出顶点坐标是考查重点同学们应熟练掌握.12.平面直角坐标系中,关于原点对称的点A 坐标是______.【答案】【解析】解:关于原点对称的点A 坐标是,故答案为:.根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.本题考查了关于原点对称的点的坐标,熟记关于原点对称的点的横坐标互为相反数,纵坐标互为相反数是解题关键.13.若是关于x的方程的根,则的值为______.【答案】【解析】解:把n代入方程得到,将其变形为,因为所以解得.利用方程解的定义找到相等关系,再把所求的代数式化简后整理出,即为所求.本题考查的是一元二次方程的根即方程的解的定义.14.如图所示的五角星绕中心点旋转一定的角度后能与自身完全重合,则其旋转的角度至少为______度【答案】72【解析】解:五角星绕中心点旋转一定的角度后能与自身完全重合,则其旋转的角度至少为度.根据旋转的性质和五角星的特点解答.本题考查旋转对称图形的概念,旋转的最小度数是解决本题的关键.【链接】旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.15.如图,在平面直角坐标系中,将抛物线经过平移得到抛物线,其对称轴与两段抛物线所围成的阴影部分的面积为______.【答案】4【解析】解:过B作轴于C,根据平移得:x轴上面的阴影部分的面积等于四边形OABC中空白部分的面积,则对称轴与两段抛物线所围成的阴影部分的面积等于四边形OABC的面积,,点B是抛物线的顶点,,,,四边形OABC为矩形,,即对称轴与两段抛物线所围成的阴影部分的面积等于4,故答案为:4.过B作轴于C,根据抛物线的对称性可知阴影部分的面积等于矩形OABC的面积,然后求解即可.本题考查了阴影部分面积的求法,观察图形,将阴影部分的图形转化为与它相等的四边形或三角形是解题的关键.16.在实数范围内定义一种运算“”,其规则为,根据这个规则,方程的解为______.【答案】或【解析】解:据题意得,,,或.故答案为:或此题考查学生的分析问题和探索问题的能力解题的关键是理解题意,在此题中,,代入所给公式得:,则可得一元二次方程,解方程即可求得.此题将规定的一种新运算引入题目中,题型独特、新颖,难易程度适中.三、计算题(本大题共1小题,共8.0分)17.汽车产业的发展,有效促进我国现代化建设某汽车销售公司2015年盈利1500万元,到2017年盈利2160万元,且从2015年到2017年,每年盈利的年增长率相同.求平均年增长率?若该公司盈利的年增长率继续保持不变,预计2018年盈利多少万元?【答案】解:设平均年增长率为x,根据题意得:,整理得:,开方得:,解得:或舍去,则平均年增长率为;根据题意得:万元,则2018年盈利2592万元.【解析】设平均年增长率为x,根据题意列出方程,求出方程的解即可得到结果;由求出的年增长率确定出所求即可.此题考查了一元二次方程的应用,弄清题意是解本题的关键.四、解答题(本大题共8小题,共78.0分)18.解方程:;.【答案】解:,..,,或,解方程得:,.【解析】首先把方程移项,然后在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解.先移项,然后提取公因式进行因式分解.本题考查了解一元二次方程的应用,解一元二次方程的方法:直接开平方法、配方法、公式法和因式分解法.19.如图,以点O为中心,把顺时针旋转.【答案】解:如图所示,即为所求:【解析】根据旋转角、旋转方向、旋转中心找出旋转后的对称点,顺次连接即可.本题主要考查的是旋转变换的作图方法,在旋转作图时,一定要明确三个要素:旋转中心、旋转方向、旋转角度.20.某工厂大门是一抛物线形水泥建筑物如图,大门地面宽米,顶部C离地面高度为米现有一辆满载货物的汽车欲通过大门,货物顶部距地面米,装货宽度为米请通过计算,判断这辆汽车能否顺利通过大门?【答案】解:根据题意知,,,设这个函数为.将A的坐标代入,得,、F两点的横坐标就应该是和,将代入函数式,得,,因此这辆汽车正好可以通过大门.【解析】本题只要计算大门顶部宽米的部分离地面是否超过米即可如果设C点是原点,那么A的坐标就是,B的坐标是,可设这个函数为,那么将A的坐标代入后即可得出,那么大门顶部宽的部分的两点的横坐标就应该是和,因此将代入函数式中可得,因此大门顶部宽部分离地面的高度是,因此这辆汽车正好可以通过大门.本题主要结合实际问题考查了二次函数的应用,得出二次函数式进而求出大门顶部宽部分离地面的高度是解题的关键.21.已知关于x的方程.若该方程有两个不相等的实数根,求实数a的取值范围;当该方程的一个根为1时,求a的值及方程的另一根.【答案】解:,解得:.的取值范围是;设方程的另一根为,由根与系数的关系得:,解得:,则a的值是,该方程的另一根为.【解析】关于x的方程有两个不相等的实数根,即判别式即可得到关于a的不等式,从而求得a的范围.设方程的另一根为,根据根与系数的关系列出方程组,求出a的值和方程的另一根.本题考查了一元二次方程根的判别式,一元二次方程根的情况与判别式的关系:方程有两个不相等的实数根;方程有两个相等的实数根;方程没有实数根.22.已知二次函数的图象与x轴交于、两点,且函数有最大值是2.求二次函数的图象的解析式;设二次函数的顶点为P,求的面积.【答案】解:该二次函数有最大值,该函数的图象开口方向向下.又二次函数的图象与x轴交于,两点,该抛物线的对称轴是,函数有最大值2,该函数的顶点是.可设该二次函数解析式为,则将点A的坐标代入,得,解得,二次函数的函数关系式;由知,顶点P的坐标是则点P到x轴的距离是2;由,知,则,即的面积是5.【解析】根据题意知该抛物线的顶点是,则可设该二次函数解析式为,然后将点A代入代入该解析式即可求得a的值;根据三角形的面积公式来求的面积.本题考查了抛物线与x轴的交点求二次函数解析式时,也可以设两点式方程,然后把顶点坐标代入求得a值即可.23.如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.若,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;求矩形菜园ABCD面积的最大值.【答案】解:设,则,根据题意得,解得,,当时,,不合题意舍去;当时,,答:AD的长为10m;设,,当时,则时,S的最大值为1250;当时,则当时,S随x的增大而增大,当时,S的最大值为,综上所述,当时,S的最大值为;当时,S的最大值为.【解析】设,则,利用矩形的面积公式得到,解方程得,,然后计算后与20进行大小比较即可得到AD的长;设,利用矩形面积得到,配方得到,讨论:当时,根据二次函数的性质得S的最大值为;当时,则当时,根据二次函数的性质得S的最大值为.本题考查了二次函数的应用:解此类题的关键是通过几何性质确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.24.有两个全等的等腰直角三角板ABC和其直角边长均为如图1所示叠放在一起,使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合现将三角板EFG 绕O点顺时针旋转,旋转角满足,四边形CHGK是旋转过程中两块三角板的重叠部分如图.在上述旋转过程中,与CK有怎样的数量关系?四边形CHGK的面积是否发生变化?并证明你发现的结论.如图3,连接KH,在上述旋转过程中,是否存在某一位置使的面积恰好等于面积的?若存在,请求出此时KC的长度;若不存在,请说明理由.【答案】解:在上述旋转过程中,理由如下:如图1,为等腰直角三角形,为其斜边中点,,,且.如图2,连接CG.,与均为旋转角,.在和中,≌.;在上述旋转过程中,四边形CHGK的面积不变理由如下:由知,≌则..即:旋转过程中,,的面积为9,是一个定值,在旋转过程中没有变化;假设存在使的面积恰好等于面积的的位置.如图3,设,由题意及中结论可得,,,,,的面积恰好等于面积的,,解得,经检验,均符合题意存在使的面积恰好等于面积的的位置,此时x的值为2或4.【解析】利用旋转的性质,图形的形状和大小不变,可以得到角的度数没有变化,进一步可以得到,得证≌,则全等三角形的对应边相等;全等三角形的性质得到:全等三角形的面积相等,则四边形CHGK的面积等于的面积,所以四边形CHGK的面积不变;根据面积公式得出,根据的面积恰好等于面积的,代入得出方程,求出即可.本题考查了旋转的性质,三角形的面积,全等三角形的性质和判定等知识点,此题有一定的难度,但是一道比较好的题目25.已知抛物线.Ⅰ当顶点坐标为时,求抛物线的解析式;Ⅱ当时,,是抛物线图象上的两点,且,求实数m的取值范围;Ⅲ若抛物线上的点,满足时,,求b,c的值.【答案】解:Ⅰ由已知得,抛物线的解析式为;Ⅱ当时,对称轴直线由图取抛物线上点Q,使Q与N关于对称轴对称,由得又在抛物线图象上的点,且,由函数增减性得或;Ⅲ分三种情况:当,即时,函数值y随x的增大而增大,依题意有,当,即时,时,函数值y取最小值,若,即时,依题意有,或舍去若,即时,依题意有,舍去当,即时,函数值y随x的增大而减小,依题意得,,舍去综上所述,或.【解析】Ⅰ利用抛物线的顶点坐标公式即可得出结论;Ⅱ先确定出抛物线对称轴,进而得出点Q的坐标,即可得出结论;Ⅲ分三种情况利用抛物线的增减性建立方程组即可得出结论.此题是二次函数综合题,主要考查了抛物线的顶点坐标,抛物线的对称性,抛物线的增减性,解方程组,用分类讨论的思想解决问题是解本题的关键.。

相关文档
最新文档