53反比例函数的应用2
湘教版九年级上册数学精品教学课件 第1章 反比例函数 反比例函数的应用 (2)
(1) 写出电流 I 与电阻 R 的函数关系式;(2) 如果该电路的
电阻 R 为220Ω,则通过它的电流是多少的值. 解:(1) 因为 U = IR,且 U = 220V ,
所以 IR = 220 ,
即该电路的电流 I 关于电阻 R 的函数表达式为 I 220 .
(2) 因为该电路的电阻 R = 220Ω,
(2) 若到达目的地后,按原路匀速返回,并要求
在 3 小时内回到 A 城,则返回的速度不能低 于__2_4_0_千__米__/_时__.
4. 学校锅炉旁建有一个储煤库,开学时购进一批煤, 现在知道:按每天用煤 0.6 吨计算,一学期 (按 150 天 计算) 刚好用完. 若每天的耗煤量为 x 吨,那么这批煤 能维持 y 天.
解:对当于提F函示=数:40对F0×于 6函120l 0数=,2F0当0时l6>0l,00,由时F2,0随0l =越l 的大60l增0,大F得而越减 小小. .因因此此,,只若要想l求用 出6力00不F=超32,过004N00时N对的应一的半l,的则值, 就动能力确臂定至动少力要臂加l长至201少0.5应m加. 长的量. 3-1.5 = 1.5 (m).
解:由 p= ,得 p= p 是 S 的反比例函数,因为给定一个 S 的值,就有唯一 的一个 p 值和它相对应,这符合反比例函数的定义. (2) 当木板面积为 0.2 m2 时,压强是多少? 解:当 S=0.2 m2 时,p= =3000 (Pa) . 答:当木板面积为 0.2 m2 时,压强是 3000 Pa.
天卸载完,则平均每天至少要卸载 48 吨.
练一练 某乡镇要在生活垃圾存放区建一个老年活动中心,
这样必须把 1200 立方米的生活垃圾运走. (1) 假如每天能运 x 立方米,所需时间为 y 天,写出 y
反比例函数的应用
反比例函数的应用反比例函数是数学中的一种特殊函数形式,也称为倒数函数。
它的形式可以表示为y=k/x,其中k是常数。
在实际生活中,反比例函数有着广泛的应用,本文将探讨几个常见的反比例函数应用场景。
1. 面积与边长的关系在几何学中,矩形的面积与其两条边长之间存在着反比例关系。
假设一个矩形的长为L,宽为W,那么它的面积S可以表示为S=L*W。
由于长度和宽度是矩形两个独立的参数,它们之间存在反比例关系。
当一个参数增加时,另一个参数相应地减小,以保持面积不变。
这种反比例关系可以应用于很多实际问题中,比如房间的面积与家具的数量,农田的面积与种植作物的产量等。
通过理解面积与边长之间的反比例关系,我们可以在实际问题中做出合理的决策。
2. 时间和速度的关系另一个常见的反比例函数应用是时间和速度之间的关系。
在物理学中,速度可以定义为物体在单位时间内所移动的距离。
假设一个物体在时间t内移动的距离为d,则它的速度v可以表示为v=d/t。
根据这个公式,我们可以看到时间和速度之间呈现出反比例关系。
这个关系在实际生活中有很多应用。
比如旅行中的车辆速度与到达目的地所需时间之间的关系,运输货物的速度与到达目的地所需的时间之间的关系等。
这种反比例关系帮助我们计算和预测在不同速度下所需的时间。
3. 电阻与电流的关系在电学中,电阻和电流之间存在着反比例关系。
根据欧姆定律,电流I通过一个电阻R时,产生的电压V可以表示为V=I*R。
由于电阻是电流通过的障碍物,当电阻增加时,电流减小,反之亦然。
这种反比例关系在电路设计和计算中起着重要的作用。
我们可以根据电阻和电流之间的关系来选择合适的电阻值,以控制电路中的电流大小。
此外,这种关系还能帮助我们解决一些实际电路中的问题,比如计算电路中的功率、阻值等。
总结:反比例函数在各个领域中都有广泛的应用。
通过理解反比例关系,我们能够分析和解决实际问题,做出合理的决策。
本文介绍了三个常见的反比例函数应用,包括面积与边长的关系、时间和速度的关系,以及电阻与电流的关系。
反比例函数的性质与应用
反比例函数的性质与应用反比例函数是数学中一种常见的函数类型,也被称为倒数函数。
在反比例函数中,两个变量的乘积为常数,其中一个变量的增大伴随着另一个变量的减小。
本文将探讨反比例函数的性质,并介绍其在实际生活中的应用。
一、反比例函数的定义与表示方式反比例函数是一种特殊的函数形式,可以使用以下的定义和表示方式:定义:如果两个变量x和y满足x*y=k,其中k为非零常数,则称y为x的反比例函数。
表示方式:反比例函数通常以y = k/x的形式表示,其中k为常数。
二、反比例函数的性质反比例函数具有以下几个重要的性质:1. 当x趋近于零时,反比例函数的值趋于无穷大。
这意味着函数图像会与y轴趋近于平行,但永远不会触及y轴。
2. 反比例函数的图像是一个双曲线。
具体来说,当k为正数时,图像位于第一和第三象限;当k为负数时,图像位于第二和第四象限。
3. 反比例函数的图像关于y轴和x轴均对称。
这意味着,如果(x, y)是函数图像上的一点,那么(-x, -y)也是该函数图像上的一点。
三、反比例函数的应用反比例函数在实际生活中有广泛的应用。
以下是一些常见的应用领域:1. 物体运动问题:当物体的速度与时间成反比例关系时,可以使用反比例函数来描述物体的运动。
例如,当汽车以恒定的速率行驶时,行驶的距离与所用时间成反比例关系。
2. 电阻与电流问题:在电路中,电阻和电流之间的关系可以由反比例函数来描述。
根据欧姆定律,电阻与电流成反比例关系。
3. 货币兑换问题:在国际贸易中,货币兑换率通常与两个国家的经济情况有关,它们之间呈现反比例关系。
这种关系可以用反比例函数来表示。
4. 物质的浓度问题:在化学中,溶液的浓度与所使用的溶剂的体积成反比例关系。
因此,反比例函数可以用来描述溶液的浓度变化。
5. 行动与反应问题:在心理学和社会科学中,人们的行动和其他人的反应通常呈反比例关系。
例如,人们参与某项活动的数量可能与其他人的参与数量成反比例关系。
总结:反比例函数是数学中常见的函数类型,具有特殊的性质。
湘教版数学九年级上册1.3《反比例函数的应用》说课稿2
湘教版数学九年级上册1.3《反比例函数的应用》说课稿2一. 教材分析湘教版数学九年级上册1.3《反比例函数的应用》这一节的内容,是在学生已经掌握了反比例函数的定义、性质的基础上进行学习的。
本节课的主要内容是让学生学会如何运用反比例函数解决实际问题,从而提高学生的数学应用能力。
教材中通过实例引入反比例函数的应用,让学生了解反比例函数在实际生活中的应用,接着通过例题和练习题,让学生学会如何运用反比例函数解决实际问题。
教材还设置了“思考题”和“探索题”,激发学生的思考,提高学生的学习兴趣。
二. 学情分析九年级的学生已经掌握了反比例函数的定义和性质,对于如何运用反比例函数解决实际问题,他们可能还存在一定的困难。
因此,在教学过程中,我将会引导学生运用已学的知识解决实际问题,帮助他们克服学习中的困难。
三. 说教学目标1.知识与技能目标:让学生掌握反比例函数的应用,能够运用反比例函数解决实际问题。
2.过程与方法目标:通过实例引入,让学生了解反比例函数在实际生活中的应用,培养学生的数学应用能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 说教学重难点1.教学重点:让学生掌握反比例函数的应用。
2.教学难点:如何引导学生运用反比例函数解决实际问题。
五. 说教学方法与手段在教学过程中,我将采用实例引入、小组合作、讨论交流等教学方法,以激发学生的学习兴趣,提高学生的学习积极性。
同时,我还会运用多媒体教学手段,如PPT、网络资源等,以丰富教学内容,提高学生的学习效果。
六. 说教学过程1.导入新课:通过实例引入反比例函数的应用,让学生了解反比例函数在实际生活中的重要性。
2.讲解新课:讲解反比例函数的应用,让学生学会如何运用反比例函数解决实际问题。
3.巩固新课:通过练习题,让学生巩固所学知识。
4.拓展延伸:设置“思考题”和“探索题”,激发学生的思考,提高学生的学习兴趣。
5.课堂小结:对本节课的内容进行总结,让学生掌握反比例函数的应用。
反比例函数的应用与问题解决
反比例函数的应用与问题解决反比例函数是数学中常见的一种函数形式,其特点是自变量和因变量之间的关系满足倒数关系。
在实际应用中,反比例函数可以用来描述一些与数量和比例有关的问题,同时也可以帮助我们解决一些实际生活中的难题。
本文将介绍反比例函数的基本性质和常见应用,并通过实例来讨论一些与反比例函数相关的问题解决方法。
一、反比例函数的基本性质反比例函数的一般形式为y = k/x,其中k是常数,x和y分别表示自变量和因变量。
反比例函数的基本性质如下:1. 定义域和值域:自变量x的取值范围为除0以外的实数集,当x趋近于0时,函数值趋于无穷大;因变量y的取值范围为除0以外的实数集,当x趋近于无穷大时,函数值趋近于0。
2. 奇偶性:反比例函数不具有奇偶性,即不满足f(-x) = f(x)或f(-x)= -f(x)。
3. 对称轴:反比例函数的图像关于原点对称。
二、反比例函数的应用反比例函数在实际应用中具有广泛的应用,常见的领域包括物理学、经济学和工程学等。
下面将介绍几个常见的反比例函数应用实例:1. 电阻与电流关系:根据欧姆定律,电阻R与通过其的电流I之间的关系为R = U/I,其中U为电压常数。
可以看出,当电流增大时,电阻减小,两者成反比关系。
2. 速度与时间关系:对于匀速直线运动,速度v与时间t之间的关系为v = s/t,其中s为位移常数。
可以看出,当时间增加时,速度减小,两者成反比关系。
3. 药物浓度与体积关系:在化学实验中,溶液的浓度C与溶质在溶剂中的体积V之间的关系为C = n/V,其中n为溶质的量。
可以看出,当体积增大时,浓度减小,两者成反比关系。
三、反比例函数问题的解决方法在实际问题中,与反比例函数相关的问题可能涉及到函数值的计算、变量之间的关系以及最值的求解等。
下面将针对几种常见问题提供解决方法。
1. 计算函数值:根据反比例函数的定义,要计算函数在某一点的值,只需将该点的自变量代入函数表达式中即可。
反比例函数的应用
反比例函数的应用反比例函数是一种特殊的函数形式,在数学中应用十分广泛。
它的形式为f(x) = k/x,其中k为常数,x为自变量。
反比例函数具有一些独特的性质,例如当x趋近于无穷大或无穷小时,y趋近于0;当x增大时,y的值会很快变小,但不会变为0。
反比例函数在工程学、物理学、经济学等领域中有着广泛的应用。
下面分别介绍其中几个应用案例。
一、雷达波与距离在雷达信号的发送和接收中,控制信号的强度是非常重要的。
当雷达的发射功率增加时,雷达信号到达目标的时间会减少,信号在传输过程中所损失的能量也会减少。
这就是反比例函数的应用。
设雷达发射的电磁波在经过距离r后到达了目标,电磁波在传输过程中会损失能量,但总的能量仍然保持不变。
于是,我们可以利用反比例函数来描述这种情况:当雷达距离目标的距离越近时,信号的强度越大;反之亦然。
这一应用极大地提高了雷达的精准度和可靠性,为军事和民用领域带来实际效益。
二、人口增长与资源分布在生态学和环保学领域,反比例函数被用于描述人口增长和资源分布的关系。
一个经典的例子是章鱼和鱼类的数量之间的关系:章鱼数量越多,鱼类数量就会减少,反之亦然。
这可以用反比例函数来表示:鱼类数量F与章鱼数量O成反比例函数,即F = k/O。
这种函数形式可以非常准确地描述章鱼和鱼类数量之间的关系,为保护海洋生态系统提供了重要参考。
另一个例子是城市发展与资源分配的关系。
城市人口增长越快,资源的消耗和浪费也会相应增加。
如果我们考虑到城市中空气污染、水质污染、垃圾处理等因素,就可以将城市人口数量和资源分配写成反比例函数的形式,建立定量模型,提供对城市可持续发展的指导。
三、化学反应动力学反比例函数在化学领域中也有大量的应用,尤其是在化学反应动力学中。
在很多化学反应中,反应速率和反应物浓度是成反比例关系的。
这种现象可以用反比例函数来描述:当反应物浓度越高时,化学反应的速率会越低。
在化学反应动力学实验中,这一性质可以为实验设计和数据计算带来便利,提高研究化学反应的准确度。
反比例函数的性质与应用总结
反比例函数的性质与应用总结反比例函数是数学中常见的函数类型之一,它与比例关系相反。
在反比例函数中,当一个变量增大时,另一个变量会相应地减小,而当一个变量减小时,另一个变量会相应地增大。
本文将对反比例函数的性质及其应用进行总结,并探讨在实际问题中的具体应用。
一、反比例函数的性质1. 定义域与值域:反比例函数的定义域通常为实数集,值域为除零以外的实数集。
2. 函数表达式:反比例函数的一般形式为 y = k/x,其中 k 为常数。
3. 曲线特征:反比例函数的图像为一条经过原点的双曲线。
随着 x 的增大,y 的值逐渐减小,反之亦然。
4. 渐近线:反比例函数的图像存在两条渐近线,即 y = 0 和 x = 0,分别表示 y 趋近于 0 和 x 趋近于无穷大的情况。
二、反比例函数的应用反比例函数在实际问题中具有广泛的应用,以下是一些常见的应用示例:1. 电阻与电流关系:根据欧姆定律,电阻与电流之间的关系符合反比例函数。
电阻越大,通过电阻的电流越小;电阻越小,通过电阻的电流越大。
2. 时间与速度关系:在匀速运动中,时间与速度之间的关系也是反比例函数。
时间越长,相同距离下的速度越小;时间越短,相同距离下的速度越大。
3. 工作人员数量与完成时间关系:在一项任务中,工作人员数量与完成时间之间存在着反比例关系。
工作人员数量增多,完成时间相应缩短;工作人员数量减少,完成时间相应延长。
4. 投资收益与投入资金关系:一些投资项目中,投资收益与投入资金之间符合反比例函数。
投入资金越多,相同周期下的投资收益越低;投入资金越少,相同周期下的投资收益越高。
5. 音乐演奏中的音高与音强关系:在音乐领域,音高与音强之间也存在反比例关系。
音高越高,音强相对较小;音高越低,音强相对较大。
综上所述,反比例函数在数学中具有明确的性质,同时也在各个领域中有着广泛的应用。
了解反比例函数的性质以及在实际问题中的应用,无论是在解题过程还是在实际生活中都能带来便利,为我们解决问题提供了有力的数学工具。
反比例函数实际应用
反比例函数实际应用反比例函数是数学中的一个重要概念,它在实际生活中有着广泛的应用。
本文将探讨反比例函数的实际应用,并举例说明其在不同领域的具体用途。
一、什么是反比例函数反比例函数是指函数关系中,当自变量变化时,因变量与自变量的乘积保持不变的函数。
一般表达式为 y = k/x,其中 k 是常数。
当 x 增大时,y 的值减小;当 x 减小时,y 的值增大,呈现反比例关系。
二、反比例函数在实际应用中的例子1. 照明系统设计反比例函数在照明系统设计中有着重要的应用。
考虑到照明强度与照明距离的关系,当光源与被照射物体之间的距离增大时,光照强度会随之减小。
根据反比例函数的特性,可以通过调整灯具的位置和光源的强度来满足照明需求,使得不同距离下的照明质量保持一致。
2. 电阻和电流关系在电路中,电阻和电流之间的关系通常可以用反比例函数来描述。
根据欧姆定律,电流大小与电阻大小成反比例关系。
当电阻增大时,电流减小;当电阻减小时,电流增大。
这种关系在电路设计和电子元件选型中起到了重要的指导作用。
3. 时间与速度关系在运动学中,时间与速度之间的关系可以用反比例函数来表示。
例如,在汽车行驶的过程中,如果保持驱动力和负载不变,车辆行驶的速度与所用时间成反比。
行驶的时间越长,速度越慢;行驶的时间越短,速度越快。
这种关系在交通规划和车辆调度中具有重要意义。
4. 物质浓度与溶液体积关系在化学实验中,物质浓度与溶液体积之间的关系可以用反比例函数来描述。
根据稀释定律,当物质浓度增大时,溶液体积减小;当物质浓度减小时,溶液体积增大。
利用反比例函数的特性,可以根据需求调整溶液的浓度和体积,实现精确的配制和稀释。
5. 传输速率和带宽关系在计算机网络领域,传输速率和带宽之间的关系可以用反比例函数来表达。
根据香农理论,带宽越大,传输速率越快;带宽越小,传输速率越慢。
利用反比例函数的特性,可以优化网络带宽的分配,提高数据传输的效率和可靠性。
三、总结反比例函数作为数学中的一个重要概念,在实际生活中有着广泛的应用。
反比例函数的性质与应用
反比例函数的性质与应用反比例函数是数学中的一种特殊函数形式,它的性质和应用在实际问题中非常重要。
本文将介绍反比例函数的性质,并探讨它在实际生活中的应用。
1. 反比例函数的定义反比例函数是指一个函数,其自变量x和因变量y满足以下关系式:y = k/x其中,k为常数,x ≠ 0。
2. 反比例函数的性质2.1 定义域和值域:反比例函数的定义域为除去0的实数集,值域为除去0的实数集。
这是由于在反比例函数中,除数不能为0。
2.2 反比例函数的图像特点:反比例函数的图像呈现出一种特殊的形状,即从左上方无限逼近于x轴和y轴。
随着自变量x的增大,因变量y呈现逐渐趋近于0的趋势;而随着自变量x的减小,因变量y也逐渐趋近于0。
2.3 反比例函数的对称性:反比例函数的图像关于一条直线对称,该直线过原点并且与y轴和x轴都垂直。
这种对称性使得反比例函数的图像在途中呈现出镜像对称的特点。
3. 反比例函数的应用3.1 物理学中的应用:反比例函数在物理学中具有广泛的应用,如弹簧的伸长和力的关系、电路中电阻和电流的关系等等。
通过研究反比例函数,我们可以更好地理解物理现象,为实际问题的解决提供依据。
3.2 经济学中的应用:在经济学中,反比例函数也有重要的应用。
例如,生产线的吞吐量与工人数量之间的关系,以及企业的销售量与售价之间的关系等。
通过建立反比例函数模型,我们可以更好地了解经济规律,并进行经济决策的优化。
3.3 生活中的应用:反比例函数的应用也可以在日常生活中找到。
例如,汽车行驶过程中的速度和所需要的时间之间的关系,以及购买商品的价格与所能购买的数量之间的关系等。
通过了解反比例函数的性质,我们可以更好地规划日常生活,做出合理的决策。
通过对反比例函数的性质和应用的研究,我们不仅能够深入理解数学中的一个重要概念,还能够将其应用于实际问题的解决中。
反比例函数不仅在学术领域有着丰富的内涵,也在实际生活中发挥着重要的作用。
八年级数学反比例函数的应用2
80 y x
k y x
(一)关于“速度、时间、……”相关的反比例函数 应用 1、小明将一篇24000字的社会调查报告录入电脑, 打印成文.(1)如果小明以每分钟120字的速度录 入,他需要多长时间才能完成录入任务?
(2)录入文字的速度v(字/min)与完成录入的 时间t(min)有怎样的函数关系?
3.如图所示,正比例函数y=k1x的图象与 反比例函数y=
k2 的图象交于A、B两点,其 x 3
中点A的坐标为(
,2
3
).
(1)分别写出这两个函数的表达式. (2)你能求出点B的坐标吗?你是怎样求的?
2 33
(3)若点C坐标是(–4,0). 请求△BOC的面积. (4)试着在坐标轴上找 点D,使△AOD≌△BOC.
问题(1):题目中哪个量是一定的? (2):哪些量是变化的? (3):变量之间存在什么样的关系? 21.6 S= _________________________ x
想一想
2.小丽是一个近视眼,整天眼镜不离鼻子,但自己一直不理解自己 眼镜配制的原理,很是苦闷,近来她了解到近视眼镜的度数2.小丽 是一个近视眼,整天眼镜不离鼻子,但自己一直不理解自己眼镜配 制的原理,很是苦闷,近来她了解到近视眼镜的度数y(度)与镜 片的焦距x(m)成反比例,并请教了师傅了解到自己400度的近视眼 镜镜片的焦距为0.2m,可惜她不知道反比例函数的概念,所以她写 不出y(度)与镜片的焦距x(m)成反比例,并请教了师傅了解到自 己400度的近视眼镜镜片的焦距为0.2m,可惜她不知道反比例函数 的概念,所以她写不出y与x的函数关系式,我们大家正好学过反比 例函数了,谁能帮助她解决这个问题呢? 问题(1)题目中告诉我们什么?变量间是什么关系? 反比例关系 (2)当我们知道什么关系时应该怎么做? 设出反比例函数关系式的通式 (3)怎么计算出关系式?
反比例函数的性质与应用
反比例函数的性质与应用反比例函数是数学中一类特殊的函数,其形式为y=k/x,其中k为常数。
反比例函数具有一些特殊的性质和广泛的应用。
本文将探讨反比例函数的性质以及其在实际问题中的应用。
一、反比例函数的性质1. 反比例函数的图像特点:反比例函数的图像呈现出一条双曲线,曲线在坐标系的第一和第三象限中。
当x趋于正无穷或负无穷时,y趋于0,当x为0时,y趋于无穷大或无穷小。
2. 反比例函数的单调性:反比例函数在定义域内是单调的,即如果x1>x2,则k/x1<k/x2或k/x1>k/x2。
3. 反比例函数的对称性:反比例函数具有关于原点的对称性,即对于任意实数x,有k/x=-k/(-x)。
4. 反比例函数的渐近线:反比例函数的图像有两条渐近线,即x轴和y轴,当x趋于正无穷大或负无穷大时,反比例函数的图像趋近于x 轴;当y趋于正无穷大或负无穷大时,反比例函数的图像趋近于y轴。
二、反比例函数的应用反比例函数在实际问题中有着广泛的应用,以下是几个常见的应用领域:1. 电阻与电流关系:欧姆定律可以表示为U=RI,其中U为电压,I 为电流,R为电阻。
当电阻保持不变时,电压与电流成反比例关系;当电流保持不变时,电压与电阻成正比例关系。
2. 时间与速度关系:在旅行中,速度等于路程除以时间,即v=s/t。
当路程保持不变时,速度与时间成反比例关系;当速度保持不变时,速度与路程成正比例关系。
3. 投资收益率:在投资领域,投资的收益率与投资金额成反比例关系。
投资金额越大,收益率越低;投资金额越小,收益率越高。
4. 物体质量与重力关系:牛顿第二定律可以表示为F=ma,其中F 为物体受到的力,m为物体的质量,a为物体的加速度。
当力保持不变时,加速度与物体质量成反比例关系;当加速度保持不变时,力与物体质量成正比例关系。
以上仅是反比例函数的一些常见应用示例,实际上反比例函数在各个科学领域都有广泛的应用,如经济学、物理学、工程学等。
反比例函数的应用举例及实际意义
反比例函数的应用举例及实际意义反比例函数的应用举例及实际意义2023年,反比例函数已经成为了不可缺少的数学工具之一。
从自然科学到社会科学,从经济学到医学,都有着广泛的应用。
反比例函数的实际意义不仅在于解决目前面临的许多问题,同时也为未来的科学研究带来了巨大的潜力和发展空间。
接下来,本文将通过实例阐述反比例函数的应用及其实际意义。
1. 反比例函数在自然科学中的应用反比例函数在自然科学中有着广泛的应用,尤其是在物理学和化学领域。
例如,牛顿第二定律是运动学中的重要概念,它指出运动对象的加速度与所受的力成反比例关系。
这个定律可以表示为:F = ma其中,F是物体所受的力,m是物体的质量,a是物体的加速度。
由此可以得出,加速度与质量成反比例关系。
因此,反比例函数可以用来描述牛顿第二定律的关系。
在化学领域中,反比例函数也有着重要的应用。
例如,当溶液浓度变化时,反应速率的变化可以通过反比例函数来描述。
这种反应速率与浓度的反比例关系被称为“速率方程”,它是现代化学研究的重要基础概念之一。
2. 反比例函数在社会科学中的应用反比例函数在社会科学中的应用也非常广泛。
在经济学中,经济学家常用反比例函数来描述价格弹性和需求弹性。
例如,当商品价格下降时,价格弹性和需求弹性成反比例关系,即价格弹性愈大,需求弹性愈小。
此外,在管理学、市场营销、社会学和心理学领域,反比例函数也有着广泛的应用。
例如,管理学中的知名学者Fayol提出了“建立权力原则”,其中包括“管理单位的规模越大,管理层级的数量就越多,这种数量与管理效率呈反比例关系”。
这一原则指导了现代企业的组织架构和管理模式,成为企业管理领域的重要标志。
3. 反比例函数在医学中的应用反比例函数在医学中也有着重要的应用。
例如,药物代谢速率与药物浓度成反比例关系,这在药物的临床应用中非常重要。
当药物的浓度达到一定水平时,药物的代谢速率就会降低,这意味着需要调整剂量以保持药物在安全范围内的有效浓度。
反比例函数及其应用
反比例函数及其应用反比例函数是一种常见的函数类型,其特点是当自变量x的值增加时,因变量y的值会相应地减小,而当x的值减小时,y的值会增大。
在数学上,反比例函数可以表示为y = k/x,其中k是一个常数。
反比例函数的图像可以呈现出一条曲线,这条曲线以原点为对称中心,与x轴和y轴都有渐近线。
通常,反比例函数的图像在x轴右侧表现为下降的曲线,在x轴左侧表现为上升的曲线。
反比例函数在现实世界中有许多应用。
以下是一些常见的应用领域:1.电路中的电阻和电流:在电路中,电阻与电流之间的关系可以用反比例函数来表示。
根据欧姆定律,电流(I)等于电压(V)除以电阻(R),即I = V/R。
当电阻增加时,电流减小,而当电阻减小时,电流增大。
2.物体的速度和时间:在物理学中,某些情况下物体的速度与时间呈反比例关系。
例如,当一个物体以恒定的速度运动时,它所用的时间与路程成反比。
如果一个物体的速度为v,而它行驶的距离为d,那么时间t可以表示为t = d/v。
3.水桶的注水速度和注水时间:当我们在一个容器中注水时,水桶的注水速度和注水时间呈反比例关系。
如果我们将水桶的注水速度表示为r(单位为升/分钟),而注水时间表示为t(单位为分钟),那么注水的总容量可以表示为r*t。
4.工作人员数量和完成工作所需时间:在某些工作场合,完成一项工作所需的时间与工作人员的数量成反比例关系。
例如,如果一个项目需要20个工人完成,而现在只有10个工人,那么完成该项目所需的时间将是之前的两倍。
5.药物的浓度和溶液体积:在制备溶液时,药物的浓度和溶液体积之间存在反比例关系。
根据浓度公式C1V1 = C2V2,其中C1和V1分别表示初始浓度和初始体积,C2和V2分别表示最终浓度和最终体积。
以上只是反比例函数在现实生活中的一些应用举例,事实上,反比例函数在数学、经济学、工程学等各个领域都有广泛的应用。
通过了解反比例函数的特点和应用,我们可以更好地理解和解决实际问题。
八年级数学反比例函数的应用2
(3)小明希望能在3h内完成录入任务,那么他 每分钟至少应录入多少个字?
(二)与“几何体积”相关的反比例函数应用 2.某自来水公司计划新建一个容积为4×1010m3的 长方形蓄水池.(1)蓄水池的底面积S(m2)与其 深度h(m)有怎样的函数关系?
1.某蓄水池的排水管每小时排水8m3 ,6h 可将满池水全部排空. ⑴蓄水池的容积是多少?____________
⑵如果增加排水管.使每小时排水量达到 Q(m3),那么将满池水排空所需时间t(h) 将如何变化?__________ ⑶写出t与Q之间关系式____________ . ⑷如果准备在5小时内将满池水排空,那么 每小时的排水量至少为____________. ⑸已知排水管最多为每小时12 m3,则至少 __________h可将满池水全部排空.
3.如图所示,正比例函数y=k1x的图象与 反比例函数y= k2的图象交于A、B两点,其
x
中点A的坐标为( 3 ,2 3 ).
(1)分别写出这两个函数的表达式. (2)你能求出点B的坐标吗?你是怎样求的?
2 33
(请3求)△若B点 OCC的坐面标积是.(–4,0).
(4)试着在坐标轴上找 C 点D,使△AOD≌△BOC.
S= _4×__1_0_10_ h
(2)如果蓄水池的深度设计为5m,那么蓄水池 的底面积应为多少平方米?
8×109 (m2 )
(3)由于绿化以及辅助用地的需要,经过实地测 量,蓄水池的长和宽最多能分别设计为100m和 60m,那么蓄水池的深度至少达到多少才能满足 要求?(保留两位小数)
练一 练
你一定行
50 h
反比例函数的应用(二)
例 4:一个用电器的电阻 R 是可调节的,其范围为 110-220 欧姆。已知电压 U 为 220 伏,这个用电器的电路图如下图所示。 (1)输出功率 P 与电阻 R 有怎样的函数关系? (公式: PR U 2 ) (2)这个用电器输出功率的范围多大?
解: (1)根据公式: PR U 2 ,把 U=220 代入,得 则 P= ① 函数。 即输出功率 P 是电阻 R 的
学习内容
数学
【自主探究】
例 3:小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂不变,分别为 1200 牛 顿和 0.5 米. (1)动力 F 与动力臂 l 有怎样的函数关系?当动力臂为 1.5 米时, 撬动石头至少需要多大的力? (2) 若想使动力 F 不超过题 (1) 中所用力的一半, 则动力臂至少要加长多少? (可以参考课本 15 页)
鸡西市第十九中学初三数学组
鸡西市第十九中学学案
班级 姓名
学科 时间 学习 目标 重点 难点
课题 反比例函数的应用(二) 课型 新课 八年级下 2014 年 月 日 人教版 1、进一步运用反比例函数的概念解决实际问题; 2、 运用反比例函数解决实际问题的过程中, 进一步体会数学建模思想 运用反比例函数的意义和性质解决实际问题。
(2)由①式可以看出,电阻越大则功率越 ∴把电阻的最小值 R=110 代入①式,得到输出功率的最 P= = 把电阻的最大值 R=220 代入①式,得到输出功率的最 P= = 【当堂训练】 某蓄水池的排水管每时排水 8m3 ,6h 可将满池水全部排空。 (1)蓄水池的容积是多少? (2)如果增加排水管,使每时的排水量达到 Q( m 3 ),那么将满池水排空所需的 时间 t(h)将如何变化? (3)写出 t 与 Q 之间的关系;
反比例函数的性质与应用
反比例函数的性质与应用反比例函数是数学中常见的一类函数,它的性质和应用广泛而重要。
本文将围绕反比例函数的性质和应用展开讨论,旨在帮助读者更好地理解和应用这一概念。
一、反比例函数的定义和特点反比例函数的定义是:设x和y是两个变量,如果它们之间的关系可以用y=k/x(k≠0)表示,那么就说y是x的反比函数。
其中,k称为比例常数。
反比例函数的特点如下:1. 定义域:在反比例函数中,x的取值范围一般是整个实数集,除了x=0的情况(因为分母不能为零)。
2. 值域:由于反比例函数的定义,可以得知当x无限接近于正无穷大或负无穷小时,y的值将趋近于零。
3. 增减性:反比例函数的曲线不是递增的,也不是递减的,而是一种特殊的形态。
当x增大时,y减小,反之亦然,呈现出一种呈现出一种“倒U”型的趋势。
4. 渐近线:反比例函数的图像有两条渐近线,分别是x轴和y轴。
当x趋近于无穷大或负无穷小时,函数的图像会无限接近x轴;当y趋近于无穷大或负无穷小时,函数的图像会无限接近y轴。
二、反比例函数的应用反比例函数在实际生活中有着广泛的应用,下面将介绍其中几个常见的应用场景。
1. 电阻和电流的关系:在电学中,欧姆定律表明电阻(R)和电流(I)之间存在着反比关系,即I=U/R,其中U为电压。
这个关系式可以表示为一个反比例函数,因为电阻越大,电流就越小,反之亦然。
2. 时间和速度的关系:在物理学和运动学中,速度(v)和时间(t)之间的关系也可以用反比例函数表示。
例如,当一个物体以恒定的速度匀速运动时,物体所需要的时间与其行进的距离成反比,即t=k/v,其中k为常数。
3. 直角三角形中的三边关系:在几何学中,直角三角形中的三边关系可以用反比例函数来表示。
例如,根据毕达哥拉斯定理,直角三角形的两条直角边的平方和等于斜边的平方,即a² + b² = c²。
这个关系可以表达为一个反比例函数,其中c为斜边,而a和b为两条直角边。
53反比例函数的应用
课题第五章《反比例函数》5.3反比例函数的应用学习目标1、基本目标掌握建立反比例函数模型的一般过程。
2、中层目标体会数学与现实生活的紧密联系,增加应用意识,提高运用代数方法解决问题的能力。
3、发展目标反比例函数性质的综合应用。
学习重点反比例函数性质的应用。
学习难点从实际问题中建立数学模型。
预习案(新旧链接,温故知新)一、旧知回顾1、反比例函数的一般表达式是,图象的形状是。
2、反比例函数的性质有哪些?二、预习自测1、建立反比例函数模型的方法是从实际问题中抽象出,即根据实际问题中的数量关系确定,从而利用反比例函数的知识来解决实际问题。
2、已知压力F一定,则压强P与受力面积S之间的函数关系式为三、本课时预习后我的疑惑探究案(大胆质疑,勇敢展示)探究一、反比例函数的应用某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务.你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力合计600 N,那么(1)用含S的代数式表示p,p是S的反比例函数吗?为什么?(2)当木板画积为0.2 m2时.压强是多少?(3)如果要求压强不超过6000 Pa,木板面积至少要多大?(4)在直角坐标系中,作出相应的函数图象. (5)利用图象对(2)和(3)作出直观解释,并与同伴进行交流。
提示:首先要根据题意分析实际问题中的两个变量,然后看这两个变量之间存在的关系,从而去分析它们之间的关系是否为反比例函数关系,若是则可用反比例函数的有关知识去解决问题探究二、反比例函数与一次函数的综合应用如下图,正比例函数y=k1x的图象与反比例函数y=xk2的图象相交于A,B两点,其中点A的坐标为(3,23).(1)分别写出这两个函数的表达式:(2)你能求出点B的坐标吗?你是怎样求的?与同伴进行交流思路提示:(1)确定正比例函数和反比例函数的表达式只需知道图象上一点坐标即可,将点A坐标分别代入求出k1、k2即可;(2)点B是两个函数图象的另一交点,将其表达式联立成方程组求出其解即可。
反比例函数的应用
一、反比例函数的应用反比例函数在实际生活和科学领域都有广泛的应用,我们通过对题目的阅读理解,抽象出实际问题中的函数关系,将文字转化为数学语言,再利用反比例函数的思想方法来解决实际问题.1.用反比例函数解决实际问题的方法和步骤(1)审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系;(2)根据常量与变量之间的关系,设出函数的关系式,待定的系数用字母来表示;(3)有题目中的已知条件列出方程,求出待定系数.(4)写出函数关系式,并注意关系式中的变量的取值范围.(5)用函数关系去解决实际问题.2.运用反比例函数模型解实际问题时,要掌握一些基本的模型(1)当体(面)积为定值时,底面积(边长)与高成反比例函数关系.(2)当工程总量为定值时,工作时间与工作效率成反比例函数关系.(3)当力F所作的功一定时,力F与物体在F方向通过的距离s成反比例函数关系;(4)杠杆定律:力×力臂=定值(5)压强公式:P=F÷S,其中p为压强,F为压力,S为受力面积;3.用反比例函数解决实际问题时应注意几个问题:(1)设未知量要恰当.恰当地设未知量可以使运算简单,解题过程简单,计算准确率高,否则将会带来不必要的麻烦.(2)求出函数关系式后,要注意字母(或自变量)的取值范围:一般在实际问题中,①自变量的取值范围都是非负的.②有的取值范围只能是某一些范围内的数.(3)求出问题的解,既要符合题目中的方程,还要符合问题中的实际意义.一、反比例函数的应用【例1】某种灯的使用寿命为1000小时,它的可使用天数y与平均每天使用的小时数x之间的关系式为.【例2】近视眼镜的度数y(度)与镜片焦距x(米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y与镜片焦距x之间的函数关系式为.【例3】已知三角形的面积一定,则它底边a上的高h与底边a之间的函数关系的图象大致是()反比例函数的应用【例4】 下图左,在对物体做功一定的情况下,力F (牛)与此物体在力的方向上移动的距离s (米)成反比例函数关系,其图象如图所示,()5,1P 在图象上,则当力达到10牛时,物体在力的方向上移动的距离是 米.【例5】 上图右,某闭合电路中,电源电压不变,电流I(A)与电阻()R Ω成反比例,如下图表示的是该电路中电流I 与电阻R 之间函数关系的图象,则用电阻R 表示电流I 的函数解析式为( )A.8I R = B.8I R =-C.4I R = D.2I R=【例6】 某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (kPa )是气体体积V (m 3)的反比例函数,其图象如图所示.当气球内的气压大于120kPa 时,气球将爆炸.为了安全起见,气球的体积应( )A .不大于54m 3B .大于54m 3C .不小于45m 3D .小于45m 3【例7】 已知甲、乙两地相距S (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (/km h )的函数关系图象大致是( )D .C .B .A .OOOt/hv/(km/h)t/ht/ht/hv/(km/h)OO P (5,1)S (米)F (牛O M R (欧姆)I (安培)【例8】 某汽车的功率P 为一定值,汽车行驶时的速度v (米/秒)与它所受的牵引力F (牛)之间的函数关系如图所示:(1)这辆汽车的功率是多少?请写出这一函数的表达式;(2)当它所受牵引力为1200牛时,汽车的速度为多少千米/时? (3)果限定汽车的速度不超过30米/秒,则F 在什么范围内?【例9】 一人站在平放在湿地上的木板上,当人和木板对湿地的压力一定时,随着木板面积()2S m 的变化,人和木板对地面的压强()p Pa 将如何变化?如果人和木板对湿地地面的压力为600N ,回答下列问题:(1)用含S 的代数式表示P .P 是S 的反比例函数吗?为什么? (2)当木板面积为20.2m 时,压强是多少?(3)如果要求压强不超过6000Pa ,木板面积至少要多大? (4)画出相应的函数图象.【例10】 某医药研究所开发一种新药,成年人按规定的剂量限用,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的函数关系近似满足如图所示曲线,当每毫升血液中的含药量不少于0.25毫克时治疗有效,求服药一次治疗疾病有效的时间.y=ktyt14321y=m tO【例11】 为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系为ay t=(a 为常数).如图所示,据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y 与t 之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米和含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?y【例12】 某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x 元与日销售量y 之(1(2)猜测并确定y 与x 之间的函数关系式,并画出图象;(3)设经营此卡的销售利润为W 元,试求出W 与x 之间的函数关系式,若物价局规定此卡的售价最高不超过10元/个,请你求出当日销售单价定为多少元时,才能获得最大日销售利润?【例13】如图,帆船A和帆船B在太湖湖面上训练,O为湖面上的一个定点,教练船静候于O点.训练时要求A B,两船始终关于O点对称.以O为原点,建立如图所示的坐标系,x轴,y轴的正方向分别表示正东、正北方向.设A B,两船可近似看成在双曲线4yx=上运动.湖面风平浪静,双帆远影优美.训练中当教练船与A B,两船恰好在直线y x=上时,三船同时发现湖面上有一遇险的C船,此时教练船测得C船在东南45方向上,A船测得AC与AB的夹角为60,B船也同时测得C船的位置(假设C船位置不再改变,A B C,,三船可分别用A B C,,三点表示).(1)发现C船时,A B C,,三船所在位置的坐标分别为(______)(______)A B,,,和(______)C,;(2)发现C船,三船立即停止训练,并分别从A O B,,三点出发船沿最短路线同时..前往救援,设A B,两船的速度相等,教练船与A船的速度之比为3:4,问教练船是否最先赶到?请说明理由.【例14】/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?。
5.3反比例函数的应用
如果人和木板对湿地地面的压力合计600N,那么 (1)用含S的代数式表示P,P是S的反比例函数吗? 为什么? 解:
600 p ( s 0) P是S的反比例函数. s
(2)当木板面积为0.2m2时,压强是多少? 解:当S=0.2m2时,P=600/0.2=3000(Pa)
探究:
某科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地. 为了安全迅速通过这片湿地,他们沿着前进路线铺垫了若干木 板,构筑了一条临时通道,从而顺利完成了任务.你能解释他们 这样做的道理吗?当人和木板对湿地的压力一定时,随着木板 面积S(m2)的变化,人和木板对地面的压强P(Pa)将如何变化?
(2)当木板面积为0.2m2时,压强是多少?
(3)如果要求压强不超过6000Pa,木板面积至少要多大? (5)请利用图象对(2)和(3)作出直观解释,并与同伴 交流. 解:问题(2)是已知图象上的某点的横坐标为0.2,求 该点的纵坐标;问题(3)是已知图象上点的纵坐标不 大于6000,求这些点所处位置及它们横坐标的取值 范围.实际上这些点都在直线P=6000下方的图象上.
(2)如果增加排水管,使每时的排水量达到Q(m3),那 么将满池水排空所需的时间t(h)将如何变化?
答:此时所需时间t(h)将减少.
(3)写出t与Q之间的函数关系式;
48 解:t与Q之间的函数关系式为: t Q
随堂练习:课本147页. 1.某蓄水池的排水管每时排水8m3,6h可将满池水全 部排空. (4)如果准备在5h内将满池水排空,那么每时的排水 量至少为多少? 解:当t=5h时,Q=48/5=9.6m3.所以每时的排水量至 少为9.6m3. (5)已知排水管的最大排水量为每时12m3,那么最少 多长时间可将满池水全部排空? 解:当Q=12(m3)时,t=48/12=4(h).所以最少需5h可 将满池水全部排空. (6)画出函数图象,根据图象请对问题(4)和(5)作出直 观解释,并和同伴交流.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学导学案总课时数课题 5.3反比例函数的应
用
课时数 1 撰写人
学习目标经历分析实际问题中变量之间的关系、建立反比例函数模型,进而解决问题的过程。
体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。
重点难点建立反比例函数模型,进而解决问题的过程。
.
自学指导复习反比例函数的图象与性质
反比例函数:当k>0时,两支曲线分别在,在每一象限内,y的值随
x的增大而。
当k<0时,两支曲线分别在,在每一象限内,y的值随x的增大而。
自主探究某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、
迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通
道,从而顺利完成了任务的情境。
你能解释他们这样做的道理吗?(见书P143)
(1)用含S的代数式表示P,P是S的反比例函数吗?为什么?
(2)当木板面积为0.2 2
m时,压强是多少
(3)如果要求压强不超过6000Pa,木板面积至少要多大
(4)在直角坐标系中,作出相应的函数图象。
(5)请利用图象对(2)和(3)作出直观解释,并与同伴进行交流。
做一做
1.蓄电池的电压为定值,使用此电源时,电流
I(A)与电阻R( )之间的函数关系如图所示。
(书上P144)
(1)蓄电池的电压是多少?你能写出这一函数的
表达式吗?
(2)完成下表,并回答问题:如果以此蓄电池为
电源的用电器限制电流不得超过10A,那么用电器的可变电阻应控制在什么范
围内?
2.如图,正比例函数y=k
1
x的图象与反比例函数y=x
k
2
的
图象相交于A,B两点,其中点A的坐标为(3,23).
(1)分别写出这两个函数的表达式:
(2)你能求出点B的坐标吗?你是怎样求的?与同伴进
行交流.
尝
试
应
用
1.某蓄水池的排水管每时排水8m3,6h可将满池水全部排空。
(1)蓄水池的容积是多少?
(2)如果增加排水管,使每时的排水量达到Q(3
m),那么将满池水排空所需的
时间t(h)将如何变化?
(3)写出t与Q之间的关系;
(4)如果准备在5h内将满池水排空,那么每时的排水量至少为多少?
(5)已知排水管的最大排水量为每时123
m,那么最少多长时间可将满池水全部
排空?
自学时发现的问题。