反比例函数的实际应用典型例题
反比例函数的应用经典习题(含答案)
反比例函数的应用反比例函数应用——跨学科的综合性问题:解答该类问题的关键是确定两个变量之间的函数关系(常应用物理公式),然后利用待定系数法求出它们的关系式.常见模型:1.压力与压强、受力面积的关系2.电压、电流与电阻的关系3.水池中水的体积、排水量与所需时间的关系 4、气体的气压P(千帕)与气体体积V(立方米)的关系例1、某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务.你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力合计600 N,那么(1) 用含S的代数式表示p,并求木板面积为0.2 m2时.压强是多少?解:P=F/S=600/S ,S=0.2 m2 ,P=600/0.2=1200(Pa)(2)如果要求压强不超过6000 Pa,木板面积至少要多大?方法一:P=600/S≤6000,S≥600/6000=0.1,故面积至少0.1 m2方法二:已知图象上点的纵坐标不大于6000,求这些点所处位置及它们横坐标的取值范围.实际上这些点都在直线P=6000下方的图象上(3) 在直角坐标系中,作出相应的函数图象.注意:只需要坐第一象限的图,因为S>0.例2.蓄电池的电压为定值,使用此电源时,电流I(A)与电阻R( )之间的函数关系如图所示。
(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?解:因为电流I与电压U之间的关系为IR=U(U为定值),把图象上的点A的坐标(9,4)代入,得U=36.所以蓄电池的电压U=36V.这一函数的表达式为:I=36/R(2)完成下表,并回答问题:如果以此蓄电池为电源的用电器限制电流不得超过10A,那么用电器的可变电阻应控制在什么范围内?R(Ω) 3 4 5 6 7 8 9 10I(A) 4解:当I≤10A时,解得R≥3.6(Ω).所以可变电阻应不小于3.6Ω.试一试1.某蓄水池的排水管每时排水8m 3 ,6h 可将满池水全部排空。
人教版苏科版初中数学—反比例函数(经典例题 )
班级小组姓名成绩(满分120)一、反比例函数(一)反比例函数的定义(共4小题,每题3分,题组共计12分)例1.下列函数中,是反比例函数的是()A.()11x y -=B.11y x =+C.21y x =D.13y x=例1.变式1.若函数()22351mm y m x +-=-为反比例函数,求的m 值.例1.变式2.当k 为时,反比例函数.例1.变式3.下列函数关系是反比例函数关系的是()A.三角形的底边为一常数,则三角形的面积y 与三角形的高x 间的函数关系B.力F 为一常数,则力所做的功W 与物体在力的方向上移动的距离S 间的函数关系C.矩形的面积为一常数,则矩形的长y 与宽x 间的函数关系D.当圆锥的底面积为一常数,圆锥的体积V 与圆锥的高h 间的函数关系(二)根据描述列出反比例函数的表达式(共4小题,每题3分,题组共计12分)例2.已知y 是x 的反比例函数,下表给出了x 与y 的一些值,由表知函数表达式为.根据函数表达式完成下表.x -1368y3-32例2.变式1.若y 与21x +成反比例,且1x =时,2y =,则此函数表达式为.例2.变式2.已知12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当2x =时,4y =-;当1x =-时,5y =,则y 与x 之间的函数表达式为.()223kk y k k x--=+例2.变式3.已知12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当1x =时,4y =;当3x =时,5y =,求1x =-时y 的值.(三)确定实际问题中函数表达式(共4小题,每题3分,题组共计12分)例3.一块长方形花圃,长为a 米,宽为b 米,面积为8平方米,那么a 与b 成函数关系,列出a 关于b 的函数关系式为.例3.变式1.已知一个长方体的体积是100m³,它的长是y m ,宽是5m ,高为x m ,试写出,x y之间的函数关系式,并注明x 的取值范围.例3.变式2.有一水池装水12m³,如果从水管中1h 流出x m³的水,则经过y h 可以把水放完,写出y与x 的函数关系式及自变量x 的取值范围.例3.变式3.一定质量的氧气,它的密度()3/kg m ρ是它的体积()3V m 的反比例函数,当310V m =时,31.43/kg m ρ=.(1)求ρ与V 的函数关系式;(2)求当32V m =时,氧气的密度ρ.二、反比例函数的图像和性质(一)反比例函数的图象(共4小题,每题3分,题组共计12分)例4.关于反比例函数4y x=的图象,下列说法正确的是()A.必经过点(1,1)B.两个分支位于第二、四象限内C.两个分支关于x 轴成轴对称D.两个分支关于原点成中心对称例4.变式1.已知点(1,1)在反比例函数ky x=(k 是常数,0k ≠)的图象上,则这个反比例函数的大致图象是()A. B. C. D.例4.变式2.函数2y x =与函数1y x-=在同一坐标系中的大致图象是()A. B. C. D.例4.变式3.反比例函数1m y x-=的图象在第一、三象限内,则m 的取值范围是.(二)反比例函数的性质(共4小题,每题3分,题组共计12分)例5.如图,反比例函数ky x=的图象经过点A(-1,-2),则当1x >时,函数值y 的取值范围是()A.1y >B.01y << C.2y > D.02y <<例5.变式1.若点1P (1,m),2P (2,n)在反比例函数ky x=(0k <)的图象上,则m n(填“>”“<”或“=”).例5.变式2.在函数21a y x--=(a 为常数)的图像上有三点()11,x y 、()22,x y 、()33,x y ,且1230x x x <<<,则123,,y y y 的大小关系是()A.231y y y <<B.321y y y <<C.123y y y << D.312y y y <<例5.变式3.已知函数1y x-=,当自变量的取值为10x -<<或2x ≥,函数值y 的取值范围为.(三)反比例函数比例系数k 的几何意义(共4小题,每题3分,题组共计12分)例6.如图,已知A 是反比例函数ky x=(k 是常数,0k ≠)的图像上一点,AB⊥x 轴于点B,且△ABO 的面积是3,则k 的值是()A.3B.3-C.6D.6-例6.变式1.如图,正方形ABOC 的边长为2,反比例函数ky x=的图象过点A,则k 的值是()A.2B.2-C.4D.4-例6.变式2.如图,点A 在双曲线1y x =上,点B 在双曲线3y x=上,且AB∥x 轴,C,D 在x 轴上,若四边形ABCD 为矩形,则它的面积为.例6.变式3.如图,矩形AOBC 的面积为4,反比例函数ky x=的图象的一支经过矩形对角线的交点P,则该反比例函数的表达式是()A.4y x=B.2y x=C.1y x=D.12y x=三、反比例函数的应用(一)反比例函数解析式和图象问题(共4小题,每题3分,题组共计12分)例7.某段公路全长200km,一辆汽车要行驶完这段路程,则所行驶速度v (km/h)和时间t (h)间的关系式为,若限定汽车行驶速度不超过80km/h,则所用时间最少要.例7.变式1.一个三角形的面积为10,则底边长a 与这条边上的高h 间的关系式为,自变量的取值范围为.例7.变式2.某变阻器两端的电压为220V,则通过变阻器的电流I(A)与它的电阻R(Ω)之间的函数关系的图象大致为下图中的()例7.变式3.学校准备在校园内修建一个矩形的绿化带,矩形的面积为定值,它的一边长y (m)与相邻的另一边长x (m)之间的关系如图所示.(1)绿化带面积是多少?你能写出这一函数的表达式吗?(2)完成下表,并回答问题:如果该绿化带的长不得超过40m,那么它的宽应控制在什么范围内?(二)函数图象交点问题(共4小题,每题3分,题组共计12分)例8.双曲线8y x=与直线2y x =的交点坐标为.例8.变式1.同一坐标系中,正比例函数2y x =的图象与反比例函数()22k y k x-=≠的图象有公共点,则k 的取值范围为.例8.变式2.函数1y x =(x ≥0),29y x=(x >0)的图象如图所示,则有如下结论:①两函数图象的交点A 的坐标为(3,3);②当x >3时,21y y >;③当1x =时,BC=8;④当x 逐渐增大时,1y 随着x 的增大而增大,2y 随着x 的增大而减小.其中正确结论的序号是.x(m)10203040y(m)例8.变式3.右图中曲线是反比例函数7nyx+=的图象的一支.(1)这个反比例函数图象的另一支位于哪个象限?常数n的取值范围是什么?(2)若一次函数2433y x=-+的图象与反比例函数7nyx+=的图象交于点A,与x轴交于点B,△AOB的面积为2,求n的值.(三)反比例函数的综合应用(共4小题,每题3分,题组共计12分)例9.(1)已知反比例函数kyx=(0k≠),当13x=-,6y=-时,求这个函数的表达式.(2)若一次函数4y mx=-的图象与(1)中的反比例函数kyx=的图象有交点,求m的取值范围.例9.变式1.今年两会提出:随着城镇化水平的提高,为了房产去库存,国家鼓励农民进城买房,可享受政府担保免收利息的惠民政策,小王家购买了一套学区房,首付15万元后,剩余部分贷款,贷款金额按月分期还款,每月还款数相同,计划每月还款y万元,x个月还清贷款,已知y是x的反比例函数,其图象如图所示.(1)求y与x的函数关系式,并求小王家购买学区房的总价是多少万元?(2)若计划80个月还清贷款,则每月应还款多少万元?例9.变式2.如图,函数11y k x b =+的图象与函数()220k y x x=>的图象相交于A,B 两点,与y 轴交于点C,已知,A 点坐标为(2,1),C 点坐标为(0,3).(1)求这两个函数表达式和点B 的坐标;(2)观察图像,比较0x >时,1y 与2y 大小.例9.变式3.如图,在直角坐标系中,O 为坐标原点.已知反比例函数ky x=(k >0)的图象经过点A(2,m),过点A 作AB⊥x 轴于点B,且△AOB 的面积为12.(1)求k 和m 的值;(2)点C(x ,y )在反比例函数ky x=的图象上,求当1≤x ≤3时函数值y 的取值范围;(四)反比例函数的跨学科应用(共4小题,每题3分,题组共计12分)例10.某闭合电路中,电源电压为定值,电流I(A)与电阻R(Ω)成反比例.右图表示的是该电路中电流I 与电阻R 之间的函数关系的图象,则用电阻R 表示电流I 的函数表达式为()A.()60I R R =>B.()60I R R =->C.()30I R R=>D.()20I R R=>例10.变式1.某一电路中,电源电压()U V 保持不变,电流()I A 与电阻()R Ω之间的函数图像如图所示.(1)I 与R 的函数关系式为;(2)结合图象回答,当电路中的电流不超过12A 时,电路中电阻R 的取值范围是.例10.变式2.一定质量的二氧化碳,当它的体积35V m =时,它的密度31.98/kg m r =,则r 关于V 的函数图象大致是()例10.变式3.某小组到野外考察,路过一段临时铺设的木板路,木板对地面的压强()p Pa 是木板面积()2S m 的反比例函数,其图象如图所示.(1)请写出函数的表达式和变量的取值范围;(2)当木板的面积为20.2m 时,压强是多少;(3)如果要求压强不超过6000Pa ,木板的面积至少要多大?。
反比例函数的应用专项练习30题(有答案)ok
反比例函数的应用专项练习30题(有答案)1.如图所示,楠溪江引水工程蓄水池每小时的放水量q(万m3/h)与时间t(h)之间的函数关系图象.(1)求此蓄水池的蓄水量,并写出此图象的函数解析式;(2)当每小时放水4万m3时,需几小时放完水?2.经科学研究人的大脑中的记忆随时间的变化有一定的函数关系,其规律可以用如下图象来说明;现有一个同学在学习某知识点一天后经估计记忆中有80%没有忘记,那么请你用学过的数学知识说明:8天后该同学在不复习的前提下,大脑中尚存有多少记忆没有忘记?3.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度P是体积V的反比例函数,它的图象如图所示①求密度P(单位:kg/m3)与体积V(单位:m3)之间的函数表达式;②求当V=9m3时二氧化碳的密度P.4.某运输公司承担一项运送总量为100万立方米土石方的任务,计划安排若干辆同类型的卡车运输,每辆卡车每天的运载量为100立方米.(1)求安排卡车的数量y(辆)与完成运送任务所需的时间t(天)的函数关系式;(2)若所有的运输任务必须在90天内完成,则至少需要安排多少辆卡车运输?5.某石油公司要修建一个容积为10 000m3的圆柱形地下油库.(1)请写出油库的底面积s(m2)与其深度d(m)之间的函数关系.(2)当底面积为500m2时,施工队施工时应向下掘进多深?.6.甲加工A型零件60个所用时间和乙加工B型零件80个所用时间相同,每天甲、乙两人共加工35个零件,设甲每天加工x个.(1)直接写出乙每天加工的零件个数(用含x的代数式表示);(2)求甲、乙每天各加工多少个;(3)根据市场预测估计,加工A型零件所获得的利润为m元/件(3≤m≤5),加工B型零件所获得的利润每件比A 型少1元.求每天甲、乙加工的零件所获得的总利润P(元)与m的函数关系式,并求P的最大值、最小值.7.某车队有1辆大车和5辆小车,同时运送一批货物,大车每小时运送货物xt,大车每小时运送的货物是每辆小车每小时运送货物的3倍、设该车队运送货物800t需yh.(1)写出y与x的函数关系式:_________;(2)当x=12时,y的值是_________;(3)按(2)的工作效率运送800t货物,若要提前10h完成任务,问该车队在不增加大车的情况下,至少要增加几辆小车?8.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求P与V的函数关系式;(2)当气球内气体的体积是0.96m3时,气球内气体的气压是多少?9.矩形面积为4,试写出矩形的长y与宽x之间的函数关系式,并在直角坐标系中画出它的图象.10.某新建的大楼楼体外表需贴磁砖,楼体外表总面积为4800m2.(1)设所需磁砖的块数为n(块),每块磁砖的面积为S(m2),试求n与S的函数关系式;(2)如果每块磁砖的面积均为80cm2,每箱磁砖有120块,需买磁砖多少箱?11.某工厂计划生产1.2万吨化工产品:(1)生产时间t(天)与生产速度v(吨∕天)有怎样的函数关系?(2)若工厂平均每天可生产60吨化工产品,那么该厂完成生产任务需要多长时间?(3)若工厂有12个车间,每个车间的生产速度相同,当以问题(2)中的生产速度正常生产80天后,由于受到金融危机的影响,市场需求量下降,该厂决定关闭4个车间,其余车间正常生产,那么工厂实际完成任务的时间将比原来推迟多少天?12.某小区新建成的住宅楼主体工程已经竣工,只剩下楼外体表需贴瓷砖,已知楼体外表的面积为5×103(m2).(1)写出每块瓷砖的面积S(m2)与所需的瓷砖块数m(块)之间的函数关系式;(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白和蓝三种颜色的瓷砖,每块瓷砖的面积都是80(cm2),灰、白、蓝瓷砖使用比例是1:2:2,则需要三种瓷砖各多少块?13.设△ABC中BC边的长为x(cm),BC上的高AD为y(cm),△ABC的面积为常数.已知y关于x的函数图象过点(3,2).(1)求y关于x的函数解析式和△ABC的面积;(2)求当4<x<9时y的取值范围.14.一个水池的容积是8m2,如果从进水管中每小时流进x m2,那么经过y小时就可以把水池注满.(1)求y与x的函数关系式;(2)当x=2m2时,求y的值;(3)画出函数的图象.15.某车间承包一项生产1800个零件的任务,计划用t天完成.(1)每天生产零件s(个)与生产时间t(天)有怎样的函数关系;(2)车间有工人60名,每天最多生产300个零件,预计最快可在几天内完成任务?(3)如果由于特殊原因,必须提前两天完成任务,车间需要增加多少工人才能按要求完成任务?16.某司机驾驶汽车从甲地去乙地购买货物,他以80(千米/时)的平均速度用3小时到达目的地.(1)当他按原路匀速返回时,汽车的速度v与时间t有怎样的函数关系;(2)如果该司机必须在4小时之内回到甲地,则返程时的速度不能低于多少?17.一定量的气体的压强P与它的体积V成反比例,已知当V=200时,P=50.(1)试用V表示P;(2)当P=100时,求V的值.18.近视眼镜的度数y(度)与镜片的焦距x(米)满足函数关系为y=(k为常数),若100度镜片的焦距比500度镜片的焦距多0.8米,求k的值.19.某蓄水池的排水管每小时排水8立方米,6小时可将满池的水全部排空.求:(1)蓄水池的容积是多少?(2)如果增加排水管,使每小时的排水量达到x(立方米),将满池水排空所需的时间t(小时),试写出t关于x 的函数解析式,并指出定义域.(3)如果准备在5小时内将满池水排空,那么每小时的排水量至少为多少?(4)已知排水管的最大排水量为每小时12立方米,那么最少多长时间可将满池水全部排空?20.如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)求出此函数的解析式;(3)若要6h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量不超过5 000m3,那么水池中的水至少要多少小时排完?21.汽车匀速行驶在相距S千米的甲、乙两地之间,下图是行驶时间t(h)与行驶速度v(km/h)函数图象的一部分.(1)行驶时间t(h)与行驶速度v(km/h)之间的函数关系是:_________.(2)若该函数图象的两个端点为A(40,1)和B(m,0.5).求这个函数的解析式和m的值;(3)若规定在该段公路上汽车的行驶速度不得超过50km/h,则汽车通过该路段最少需要多少时间?22.近视眼的度数y(度)与镜片焦距x(米)成反比例函数关系,已知200度近视眼镜镜片焦距0.5米,求眼镜度数y与镜片焦距x之间的函数关系式,并画出该函数示意图.23.某工程队接受一项开挖水渠的工程,所需天数y(天)与每天完成的工程量x(m/天)的函数关系图象如图所示.(1)共需开挖水渠多少米?(2)求y与x之间的函数表达式;(3)如果为了防汛工作的紧急需要,必须在一个月内(按30天计算)完成任务,那么每天至少要完成多少米?24.如图,是一辆小汽车沿一条高速公路匀速前进的时间y(小时)与速度x(千米/时)关系的图象,根据图象提供的信息,解答下列问题:(1)这条公路的全长是多少千米;(2)写出速度与时间之间的函数关系式;(3)汽车最大速度可以达到多少;(4)汽车最慢用几个小时可以达到?如果要在3小时内达到,汽车的速度应不少于多少?25.某汽车油箱的容积为50升,司机加满油后准备从利川到100千米处的机场接客人,在接到客人后立即原路返回,请回答下列问题.(1)油箱加满油后,汽车能够行使的总路程y(千米)与平均耗油量x(升/千米)之间有怎样的函数关系?(2)司机驾驶汽车去机场时的平均耗油量为x升/千米.返回时司机降低车速,此时每行驶1千米的平均耗油量增加了1倍,司机一直以此速度行使,返回利川时邮箱里的油还能以此速度行驶100千米,求汽车去机场的平均耗油量是多少?26.为了提高某农作物的产量,有关部门选取了7500千克新产品供某地区使用.(1)写出可播种的亩数y(亩)与每亩所需的新品种的数量x(千克)之间的函数关系式;(2)若每亩需新品种15千克,这些新品种可供多少亩土地播种?27.为了预防流感,某校对教室进行“药熏消毒”.已知药物燃烧阶段室内每立方米空气中的含药量y(mg)与燃烧时间x(min)成正比例.燃烧完毕后,y与x成反比例(如图).根据图中信息解答下列问题:(1)求药物燃烧时,y与x函数关系式及自变量的取值范围;(2)求药物燃烧后,y与x函数关系式及自变量的取值范围;(3)当每立方米空气中含药量低于1.6mg时,对人体方能无毒副作用.那么从有人开始消毒,经多长时间后学生才可以回教室.28.我们学过反比例函数,如:当矩形面积S一定时,长a是宽b的反比例函数,其函数关系式.请你仿照上例另举一个在日常生活中具有函数关系的量的实例,并写出它的函数关系式.29.汽车在高速公路上行驶,从如皋驶往上海.已知汽车到上海所需时间t(h)与行驶速度v (km/h)满足函数关系式:t=,其图象为如图所示的一段曲线,且端点为A(60,4),B(120,m).根据给出的图象,解答下列问题.(1)汽车在高速公路上行驶的速度不低于_________km/h;(2)求如皋到上海的路程;(3)若汽车上午6:40从如皋出发,中途在服务区休息10分钟,则最快上午几点到达上海?30.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之变化,密度ρ是体积v的反比例函数,当它的体积v=5m3时,密度ρ=1.98kg/m3.(1)求密度ρ(单位:kg/m3)与体积v(单位:m3)之间的函数关系式;(2)当二氧化碳的密度ρ=4.5kg/m3时,求v的值.参考答案:1.(1)设y关于x的函数解析式为q=,∵函数图象经过点(12,3),∴=3,解得k=36,∴函数解析式为q=;(2)当q=4万m3时,=4,解得t=9.答:当每小时放水4m3时,需9小时放完水2.设y=k/x当x=1时,y=0.8则k=0.8(3分)所以y=x(2分)当x=8,y=0.1(3分)答:大脑中尚存有10%的记忆没有忘记.3.(1)由题意可设P=(m为常量,m≠0),把点(3,1.98)代入,1.98=,解得:m=5.94;∴P=.(2)当v=9m3时,P==0.66,∴当V=9m3时二氧化碳的密度为0.66kg/m34.(1)由题意得:yt×100=1000000,解得y=;(2)当t=90时,y=≈112.答:至少需要安排112辆卡车运输.故答案为:y=;1125.(1)由容积=底面积×深度,可得:sd=10000所以:;(2)当底面积为500m2,即S=500时,将之代入第一问的函数关系式可得:解得d=20(米)答:施工队施工时应向下掘进20米.6.(1)根据题意,每天甲、乙两人共加工35个零件,易得解得x=15经检验,x=15是原方程的解,且符合题意.35﹣15=20答:甲每天加工15个,乙每天加工20个;(3)P=15m+20(m﹣1)即P=35m﹣20∵在P=35m﹣20中,P是m的一次函数,k=35>0,P 随m的增大而增大又由已知得:3≤m≤5∴当m=5时,P最大值=155当m=3时,P最小值=85.7.(1)根据题意,小车每小时可运送吨货物,易得这个车队车每小时运送货物为x+x=x,故有y ×x=800,化简可得;(3分)(2)由(1)的解析式,当x=12时,y==25;(6分)(3)根据题意,若要提前10h完成任务,即要求y≤15,代入解析式可得≤15,解可得x≥20,而此时的工作效率为12吨/时,故至少要增加=6辆小车(8分).故答案为:(1);(2)25.8.(1)设P与V的函数关系式为P=,则=60,解得k=96,∴函数关系式为P=;(2)当气球内气体的体积是0.96m3时,P=,∴气球内气体的气压是100kPa.画图10.(1)所需磁砖的块数=楼体外表总面积÷每块磁砖的面积所以由此可得出,n与S 的函数关系式是:;(2)当s=80时,,需买磁砖的箱数=所需磁砖的块数÷每箱磁砖的块数所以由此可得出,需买磁砖的箱数是=5000(箱)答:需买磁砖的箱数5000箱11.(1)∵vt=12000,∴,即t与v 的函数关系为.(2)当v=60时,,即工厂完成生产1.2万吨化工产品需200天.(3)(12000﹣80×60)÷[]=180(天),由180+80﹣200=60(天),知工厂实际完成任务时间将比原来推迟60天.12.(1)∵每块瓷砖的面积Sm2=楼体外表的总面积÷所需的瓷砖块数m块,由此可得出S与n的函数关系式是:S=;(2)当S=80×10﹣4=8×10﹣3时,n==625000,设用灰瓷砖x块,则白瓷砖、蓝瓷砖分别为2x块、2x 块,依据题意得出:x+2x+2x=625000,解得:x=125000,∴需要灰瓷砖125000块,白瓷砖250000块、蓝瓷砖为250000块13.(1)设△ABC的面积为S,则S=xy,所以y=.所以2=,解得S=3(cm2),所以y与x 的函数解析式为,△ABC的面积为3cm2;(2)因为x>0,所以反比例函数的图象在第一象限,且y随x的增大而减小.当x=4时,y=;当x=9时,.所以y的取值范围为<y <.14.(1)∵水量×进水时间=容积,∴xy=8∴y=(2)令x=2,y===4,;(3)∵x>0,∴图象为:15.(1)∵某车间承包一项生产1800个零件的任务,计划用t天完成,∴每天生产零件s(个)与生产时间t(天)的函数关系为:s=;(2)1800÷300=6(天)故预计最快需要6天内完成任务;(3)设需要增加x人才能完成任务,则(x+60)××(6﹣2)=1800,解得x=30,答:需要增加30人才能按要求完成任务16.(1)∵s=80千米/时×3小时=240米,∴v=.(2)当t=4时,v==60,答:返回时的速度不低于60千米/小时.∵V=200时,P=50∴k=200×50=10000,∴p=;(2)当p=100时,v=10000÷100=100,故v的值是100.18.设100度镜片的焦距为x米,则500度镜片的焦距为(x﹣0.8)米.因为近视眼镜的度数y(度)与镜片的焦距x(米)满足函数关系为y=(k为常数),所以100=,500=,即k=100x,k=500(x﹣0.8),解得x=1,k=100.故k的值为10019.(1)v=8×6=48m3,答:蓄水池的容积是48m3.(2)(0≤x≤6);(3)当t=5时,,x=9.6(m3),答:每小时的排水量至少为9.6m3.(4)当x=12时,(小时)答:最少4小时可将满池水全部排空20.(1)设V=.∵点(12,4000)在此函数图象上,∴蓄水量为12×4000=48000m3;(2)∵点(12,4000)在此函数图象上,∴4000=,k=48000,∴此函数的解析式V=;(3)当t=6时,V==8000m3;∴每小时的排水量应该是8000m3;(4)∵V≤5000,∴≤5000,∴t≥9.6.∴水池中的水至少要9.6小时排完21.(1)把(40,1)代入t=,得k=40,∴行驶时间t(h)与行驶速度v(km/h)之间的函数关系是:t=,故答案为:t=.(2)由(1)得出:函数的解析式为:t=,把(m,0.5)代入t=,0.5=,解得:m=80;(3)把v=50代入t=,得t=0.8,答:汽车通过该路段最少需要0.8小时22.由题意设y=,由于点(0.5,200)适合这个函数解析式,则k=0.5×200=100,∴y=.故眼镜度数y与镜片焦距x之间的函数关系式为:y=.其图象为:23.(1)由图象,知共需开挖水渠24×50=1200(m);(3分)(2)设.∵点(24,50)在其图象上,故所求函数表达式为;(6分)(3)1200÷30=40(m).故每天至少要完成40m.24.(1)以150千米/时行驶了两小时,则路程=150×2=300千米.(2)由速度=,路程为300千米,则有y=;(3)据图象用1小时可以行驶完全程,所以汽车最大速度可以达到300千米/小时;(4)据图象,最低速度为50千米/小时,需要6时行完全程,汽车的速度应不少于每小时100千米25.(1)∵耗油量×行驶里程=50升;∴xy=50∴y=(x>0);(2)设平均耗油量为x升,根据题意得:解得:x=0.1.答:平均耗油量为0.1升/公里26.(1)∵一共有7500千克种子,∴xy=7500,即:y=;(2)当x=15时,y==500,答:若每亩需新品种15千克,这些新品种可供500亩土地播种27.(1)设药物燃烧阶段函数解析式为y=k1x(k1≠0),由题意得:8=10k1,∴k1=,∴此阶段函数解析式为y=x(0≤x<10).(2)设药物燃烧结束后函数解析式为y=(k2≠0),由题意得:8=,∴k2=80,∴此阶段函数解析式为y=(x≥10).(3)当y<1.6时,得<1.6,∵x>0,∴1.6x>80,x>50.∴从消毒开始经过50分钟学生才可返回教室28.当路程s一定时,速度v是时间t的反比例函数;函数关系式为:v=(s为常数).答案不唯一.29.(1)∵图象端点A的坐标为(60,4),∴汽车在高速公路上行驶的速度不低于60km/h;(2)将(60,4)代入t=,得k=240.答:如皋到上海的路程为240km;(3)由(2)可知,函数解析式为:t=.由图象可知,汽车在高速公路上行驶的速度不得超过120km/h.则当v=120时,t==2.答:汽车最快上午8:50到达上海.30.(1)设密度ρ与体积v 之间的函数解析式为:(k≠0),依题意得:,∴k=9.9,∴密度ρ与体积v 之间的函数解析式为:;(2)由(1)求得:,当二氧化碳的密度ρ=4.5时,,=2.2(m3).。
《实际问题与反比例函数》典型例题
《实际问题与反比例函数》典型例题
典型例题
例题:
1.如图,受力面积为S(m2)(S是常数,且S≠0)的物体所受的压强p(Pa)与压力F(N)之间的函数关系的图象大致是( )
A B
C D
答案:C
说明:由物理知识可知p,F,S三者关系为:p =;∵S是常数且S≠0,∴p =F是正比例函数,∵F>0,S>0,∴答案为C.
2.一定质量的某种气体,它的密度ρ(kg/m3)与它的体积V(m3)成反比例函数;当V = 10m3时ρ = 1.43kg/m3.
①求ρ与V的函数关系式;②求当V = 5m3时该气体的密度ρ.
解:①∵ρ与V成反比例
∴设ρ =
∵当V = 10m3时,ρ = 1.43kg/m3
∴1.43 =,得k = 14.3
∴ρ =
②当V = 5m3时,ρ == 2.86kg/m3.
3.某市上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55元~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x−0.4)元成反比例,又当x = 0.65,y = 0.8.
①求y与x之间的函数关系式;
②若每度电的成本价为0.3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20%?
解:①∵新增用电量y(亿度)与(x−0.4)元成反比例
∴设y =
∵当x = 0.65时,y = 0.8,∴0.8 =,解得k = 0.2
∴y ==
∴ y与x之间的函数关系式为y =.。
例题_反比例函数的应用
(3)当施工队按(2)中的计划掘进到已地知下自1变5m量时的,值碰求上
了坚硬的岩石.
函数值
为了节约建设资金,储存室的底面积应改为多少才
能满足需要(保留两位小数)?
10 解:(3)根据题意,把d=15代入S
4
10 s
4
d ,得:
15
解得: S≈666.67
答:当储存室的深为15m时,储存室的底面积应改为 666.67m2才能满足需要.
例1: 市煤气公司要在地下修建一个容积为104m3 的
圆柱形煤气储存室. (1)储存室的底面积S(单位:m2)与其深度d(单位:m) 有怎样的函数关系? 解:(1)根据圆柱体的体积公式,我们有
10 sd=104
4
变形得:S
d
即储存室的底面积S是其深度d的反比例函数.
(1)储存室的底面积S(单位:m2)与其深度d(单位:m)
有怎样的函数关系? S 104
d (2)公司决定把储存室的底面积S定为500 m2 ,施工
队施工时应该向下掘进多深?
10 解: (2)把S=500代入 S
4
,得:ห้องสมุดไป่ตู้
500 104
d
d
已知函数值求自 变量的值
解得: d 20
答:如果把储存室的底面积定为500m2,施工时应向 地下掘进20m深.
反比例函数经典例题
反比例函数经典例题1.(北京模拟)如图,直线AB 经过第一象限,分别与x 轴、y 轴交于A 、B 两点,P 为线段AB 上任意一点(不与A 、B 重合),过点P 分别向x 轴、y 轴作垂线,垂足分别为C 、D .设OC =x ,四边形OCPD 的面积为S .(1)若已知A (4,0),B (0,6),求S 与x 之间的函数关系式;(2)若已知A (a ,0),B (0,b ),且当x = 时,S 有最大值,求直线AB 的解析式;3498(3)在(2)的条件下,在直线AB 上有一点M ,且点M 到x 轴、y 轴的距离相等,点N 在过M 点的反比例函数图象上,且△OAN 是直角三角形,求点2.(北京模拟)已知点A 是双曲线y = (k 1>0)上一点,点A 的横坐标为1,过点A 作k 1x 平行于y 轴的直线,与x 轴交于点B ,与双曲线y =(k 2<0)交于点C .点D (m ,0)k 2x 是x 轴上一点,且位于直线AC 右侧,E 是AD 的中点.(1)如图1,当m =4时,求△ACD 的面积(用含k 1、k 2的代数式表示);(2)如图2,若点E 恰好在双曲线y =(k 1>0)上,求m 的值;k 1x (3)如图3,设线段EB 的延长线与y 轴的负半轴交于点F ,当m =2时,若△BDF 的面积为1,且CF ∥AD ,求k 1的值,并直接写出线段CF 的长.图1图2图33.(上海模拟)Rt △ABC 在直角坐标系中的位置如图所示,tan ∠BAC =,反比例函数12y =(k ≠0)在第一象限内的图象与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),k x △BDE 的面积为2.(1)求反比例函数和直线AB 的解析式;(2)设直线AB 与y 轴交于点F ,点P 是射线FD 上一动点,是否存在点P 使以E 、F 、P 为顶点的三角形与△AEO 相似?若存在,求点P4.(安徽某校自主招生)如图,直角梯形OABC 的腰OC 在y 轴的正半轴上,点A (5n ,0)在x 轴的负半轴上,OA : AB : OC =5 : 5 :3.点D 是线段OC 上一点,且OD =BD .(1)若直线y =kx +m (k ≠0)过B 、D 两点,求k 的值;(2)在(1)的条件下,反比例函数y = 的图象经过点B .mx ①求证:反比例函数y =的图象与直线AB 必有两个不同的交点;mx ②已知点P (p ,-n -1),Q (q ,-n -2)在线段AB 上,当点E 落在线段PQ 上时,求n 的取值范围.5.(浙江杭州)在平面直角坐标系中,反比例函数与二次函数y =k ( x 2+x -1)的图象交于点A (1,k )和点B (-1,-k ).(1)当k =-2时,求反比例函数的解析式;(2)要使反比例函数与二次函数都是y 随着x 的增大而增大,求k 应满足的条件以及x 的取值范围;(3)设二次函数的图象的顶点为Q ,当△ABQ 是以AB 为斜边的直角三角形时,求k 的值.6.(浙江义乌)如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为对角线OB 的中点,点E (4,n )在边AB 上,反比例函数y =在第一象限内的图象经过点k x D 、E ,且tan ∠BOA = .12(1)求反比例函数的解析式;(2)若反比例函数的图象与矩形的边BC 交于点F ,将矩形折叠,使点O 与点F 重合,折痕分别与x 、y 轴正轴交于点H 、G ,求线段OG 的长.7.(浙江某校自主招生)已知点P 的坐标为(m ,0),在x 轴上存在点Q (不与P 重合),以PQ 为边,∠PQM =60°作菱形PQMN ,使点M 落在反比例函数y =- 的图象上.(1)如图所示,若点P 的坐标为(1,0),图中已经画出一个符合条件的菱形PQMN ,若另一个菱形为PQ 1M 1N 1,求点M 1的坐标;(2)探究发现,当符合上述条件的菱形只有两个时,一个菱形的顶点M 在第四象限,另一个菱形的顶点M 1在第二象限.通过改变P 点坐标,对直线MM 1的解析式y =kx +b 进行探究可得k =__________,若点P 的坐标为(m ,0),则k =__________(用含m 的代数式表示);(3)继续探究:①若点P 的坐标为(m ,0),则m 在什么范围时,符合上述条件的菱形分别为两个、三个、四个?8.(浙江模拟)如图,在平面直角坐标系中,△AOB 的顶点O 是坐标原点,点A 坐标为(1,3),A 、B 两点关于直线y =x 对称,反比例函数y =(x >0)图象经过点A ,点P k x 是直线y =x 上一动点.(1)填空:B 点的坐标为(______,______);(2)若点C 是反比例函数图象上一点,是否存在这样的点C ,使得以A 、B 、C 、P 四点为顶点的四边形是平行四边形?若存在,求出点C 坐标;若不存在,请说明理由;(3)若点Q 是线段OP 上一点(Q 不与O 、P 重合),当四边形AOBP 为菱形时,过点Q 分别作直线OA 和直线AP 的垂线,垂足分别为E 、F ,当QE +QF +QB 的值最小时,求出Q 点坐标.9.(浙江模拟)已知点P (m ,n )是反比例函数y =(x >0)图象上的动点,PA ∥x 轴,6x PB ∥y 轴,分别交反比例函数y =(x >0)的图象于点A 、B ,点C 是直线y =2x 上的一3x 点.(1)请用含m 的代数式分别表示P 、A 、B 三点的坐标;(2)在点P 运动过程中,连接AB ,△PAB 的面积是否变化,若不变,请求出△PAB 的面积;若改变,请说明理由;(3)在点P 运动过程中,以点P 、A 、B 、C 为顶点的四边形能否为平行四边形,若能,请求出此时m的值;若不能,请说明理由.备用图11.(江苏泰州)如图,已知一次函数y 1=kx +b 的图象与x 轴相交于点A ,与反比例函数y 2= 的图象相交于B (-1,5)、C (,d )两点.点P (m ,n )是一次函数y 1=kx +b 的c x 52图象上的动点.(1)求k 、b 的值;(2)设-1<m < ,过点P 作x 轴的平行线与函数y 2=的图象相交于点D .试问△PAD 32c x 的面积是否存在最大值?若存在,请求出面积的最大值及此时点P 的坐标;若不存在,请说明理由;(3)设m =1-a ,如果在两个实数m 与n 之间(不包括m 和n )有且只有一个整数,求实数a 的取值范围.12.(江苏模拟)如图,双曲线y =(x >0)与过A (1,0)、B (0,1)的直线交于316x P 、Q 两点,连接OP 、OQ .(1)求证△OAQ ≌△OBP ;(2)若点C 是线段OA 上一点(不与O 、A 重合),CD ⊥AB 于D ,DE ⊥OB 于E .设CA =a .①当a 为何值时,CE =AC ?②是否存在这样的点C ,使得CE ∥AB ?若存在,求出点C 的坐标;若不存在,说明理由.13.(河北)如图,四边形ABCD 是平行四边形,点A (1,0),B (3,1),C (3,3).反比例函数y =(x >0)的图象经过点D ,点P 是一次函数m x y =kx +3-3k (k ≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y =kx +3-3k (k ≠0)的图象一定过点C ;(3)对于一次函数y =kx +3-3k (k ≠0),当y 随x 的增大而增大时,确定点P 横坐标的取值范围(不必写出过程).14.(山东济南)如图,已知双曲线y = 经过点D (6,1),点C 是双曲线第三象限分支k x 上的动点,过C 作CA ⊥x 轴,过D 作DB ⊥y(1)求k 的值;(2)若△BCD 的面积为12,求直线CD 的解析式;(3)判断AB 与CD 的位置关系,并说明理由.15.(山东淄博)如图,正方形AOCB 的边长为4,反比例函数的图象过点E (3,4).(1)求反比例函数的解析式;(2)反比例函数的图象与线段BC 交于点D ,直线y =-x +b 12点F ,求点F 的坐标;(3)连接OF ,OE ,探究∠AOF 与∠EOC 的数量关系,并证明.16.(湖北某校自主招生)在直角坐标系中,O 为坐标原点,A 是双曲线y =(k >0)在k x 第一象限图象上的一点,直线OA 交双曲线于另一点C .(1)如图1,当OA 在第一象限的角平分线上时,将OA 向上平移 个单位后与双曲线在32第一象限的图象交于点M ,交y 轴于点N ,若 =,求k 的值;MN OA 12(2)如图2,若k =1,点B 在双曲线的第一象限的图象上运动,点D 在双曲线的第三象17.2=0,直线y =(1)求反比例函数的解析式;(2)将线段BC 绕坐标平面内的某点M 旋转180°后B 、C 两点恰好都落在反比例函数的图象上,求点M 的坐标;(3)在反比例函数的图象上是否存在点P ,使以PB 为直径的圆恰好过点C ?若存在,求点P18.(广西北海)如图,在平面直角坐标系中有Rt △ABC ,∠A =90°,AB =AC ,A (-2,0)、B (0,1)、C (d ,2).(1)求d 的值;(2)将△ABC 沿x 轴的正方向平移,在第一象限内B 、C 两点的对应点B ′、C ′ 正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B ′C ′ 的解析式;(3)在(2)的条件下,设直线B ′C ′ 交y 轴于点G .问是否存在x 轴上的点M 和反比例函数图象上的点P ,使得四边形PGMC ′是平行四边形.如果存在,请求出点M 和点P 的坐标;如果不存在,请说明理由.19.(广西玉林、防城港)如图,在平面直角坐标系xO y 中,梯形AOBC 的边OB 在x 轴的正半轴上,AC ∥OB ,BC ⊥OB ,过点A 的双曲线y =的一支在第一象限交梯形对角线OC k x 于点D ,交边BC 于点E .(1)填空:双曲线的另一支在第_________象限,k 的取值范围是_______________(2)若点C 的坐标为(2,2),当点E 在什么位置时,阴影部分面积S 最小?(3)若 = ,S △OAC =2,求双曲线的解析式.OD OC 1220.(福建厦门)已知点A (1,c )和点B (3,d )是直线y =k 1x +b 与双曲线y = (k 2>0)的交点.k 2x (1)过点A 作AM ⊥x 轴,垂足为M ,连接BM .若AM =BM ,求点B 的坐标;(2)设点P 在线段AB 上,过点P 作PE ⊥x 轴,垂足为E ,并交双曲线y =(k 2>0)k 2x 于点N .当 取最大值时,有PN =,求此时双曲线的解析式.PN NE 1221.(福建莆田)如图,一次函数y =k 1x +b 的图象过点A (0,3),且与反比例函数y = (x >0)的图象相交于B 、C 两点.k 2x (1)若B (1,2),求k 1·k 2的值;(2)若AB =BC ,则k 1·k 2的值是否为定值?若是,请求出该定值;若不是,请说明理由.22.(福建某校自主招生)如图1,已知直线y =- x +m 与反比例函数y =的图象在第一12k x 象限内交于A 、B 两点(点A 在点B 的左侧),分别与x 、y 轴交于点C 、D ,AE ⊥x 轴于E .(1)若OE ·CE =12,求k 的值;(2)如图2,作BF ⊥y 轴于F ,求证:EF ∥CD ;(3)在(1)(2)的条件下,EF =,AB =2,P 是x 轴正半轴上一点,且△PAB 是以55P 为直角顶点的等腰直角三角形,求P 点的坐标.。
反比例函数的实际例子
反比例函数的实际例子
1. 你知道吗,汽车行驶的速度和时间就像是反比例函数一样!比如说,你要去一个地方,路程是固定的吧,如果速度超快,那到达的时间不就很短嘛!反之,要是慢悠悠地开,那花费的时间可就长啦!这多像反比例函数啊,速度和时间此消彼长。
2. 想想看啊,你做一项工作,工作效率和完成时间不也是反比例函数的关系嘛!如果你效率超高,那完成工作不就用时很短嘛,要是磨磨蹭蹭,那得花多少时间呀!这不是明摆着的吗!
3. 哎呀呀,打篮球的时候,投篮的准确率和出手次数也有点反比例函数的味道呢!你要是只求快,疯狂投篮,那准确率可能就下去了呀。
但要是好好瞄准,少投几次,说不定准确率就大大提高了呢!大家想想是不是这么回事呀!
4. 大家有没有发现,给花浇水的量和花存活的时长也类似反比例函数哦!水浇太多,可能花就被淹坏了,可水浇太少,花又会干死,这不是很神奇嘛?
5. 嘿,你们说学习时间和学习效果是不是也是反比例函数呀!一直不停地学,可能效率反而低了,适当地休息调整,那学习效果说不定蹭蹭往上涨呢,这可真有意思!
6. 平时用电的时候,电器功率和用电时间也像反比例函数呢!功率大的电器,用的时间长那电费可就吓人了,如果功率小一点,合理安排使用时间,电费不就少很多嘛!这难道不是很明显嘛!
我觉得反比例函数在生活中无处不在,只要我们细心观察就能发现很多有趣的例子,它真的很神奇呀!。
初二数学人教版(下册)反比例函数典型例题汇总(附答案)
例 下面函数中,哪些是反比例函数? (1)3x y -=;(2)x y 8-=;(3)54-=x y ;(4)15-=x y ;(5).81=xy 解:其中反比例函数有(2),(4),(5).说明:判断函数是反比例函数,依据反比例函数定义,xky =)0(≠k ,它也可变形为1-=kx y 及k xy =的形式,(4),(5)就是这两种形式.反比例函数的典型例题二例 在以下各小题后面的括号里填写正确的记号.若这个小题成正比例关系,填(正);若成反比例关系,填(反);若既不成正比例关系又不成反比例关系,填(非).(1)周长为定值的长方形的长与宽的关系 ( ); (2)面积为定值时长方形的长与宽的关系 ( ); (3)圆面积与半径的关系 ( ); (4)圆面积与半径平方的关系 ( );(5)三角形底边一定时,面积与高的关系 ( ); (6)三角形面积一定时,底边与高的关系 ( );(7)三角形面积一定且一条边长一定,另两边的关系 ( ); (8)在圆中弦长与弦心距的关系 ( );(9)x 越来越大时,y 越来越小,y 与x 的关系 ( ); (10)在圆中弧长与此弧所对的圆心角的关系 ( ). 答:说明:本题考查了正比例函数和反比例函数的定义,关键是一定要弄清出二者的定义.例 已知反比例函数62)2(--=a xa y ,y 随x 增大而减小,求a 的值及解析式.分析 根据反比例函数的定义及性质来解此题. 解 因为62)2(--=ax a y 是反比例函数,且y 随x 的增大而减小,所以⎩⎨⎧>--=-.02,162a a 解得⎩⎨⎧>±=.2,5a a所以5=a ,解析式为xy 25-=.反比例函数的典型例题四例 (1)若函数22)1(--=mx m y 是反比例函数,则m 的值等于( )A .±1B .1C .3D .-1(2)如图所示正比例函数0(>=k kx y )与反比例函数xy 1=的图像相交于A 、C 两点,过A 作x 轴的垂线交x 轴于B ,连结BC .若ABC ∆的面积为S ,则:A .1=SB .2=SC .3=SD .S 的值不确定解:(1)依题意,得⎩⎨⎧-=-≠-,12,012m m 解得1-=m .故应选D . (2)由双曲线x y 1=关于O 点的中心对称性,可知:O BC O BA S S ∆∆=. ∴12122=⋅=⨯⨯==∆AB OB AB OB S S OBA .故应选A .例 已知21y y y +=,1y 与x 成正比例,2y 与x 成反比例,当1=x 时,4=y ;当3=x 时,5=y ,求1-=x 时,y 的值.分析 先求出y 与x 之间的关系式,再求1-=x 时,y 的值.解 因为1y 与x 成正比例,2y 与x 成反比例,所以)0(,212211≠==k k xk y x k y . 所以xkx k y y y 2121+=+=.将1=x ,4=y ;3=x ,5=y 代入,得⎪⎩⎪⎨⎧=+=+.5313,42121k k k k 解得 ⎪⎪⎩⎪⎪⎨⎧==.821,81121k k 所以xx y 821811+=. 所以当1-=x 时,4821811-=--=y . 说明 不可草率地将21k k 、都写成k 而导致错误,题中给出了两对数值,决定了21k k 、的值.反比例函数的典型例题六例 根据下列表格x 与y x …… 1 2 3 456 …y…6 3 2 1.5 1.2 1 …(1x 的取值范围. 解:(1)图像如右图所示. (2)根据图像,设)0(≠=k xky ,取6,1==y x 代入,得16k=. ∴6=k .∴函数解析式为)0(6>=x xy . 说明:本例考查了函数的三种表示法之间的变换能力,即先由列表法通过描点画图转化为图像法,再由图像法通过待定系数法转化为解析法,题目新颖别致,有较强的趣味性.反比例函数的典型例题七例(1)一次函数1+-=x y 与反比例函数xy 3=在同一坐标系中的图像大致是如图中的( )(2)一次函数12--=k kx y 与反比例函数xky =在同一直角坐标系内的图像的大致位置是图中的( )解:1+-=x y 的图像经过第一、二、四象限,故排除B 、C ;又xy 3=的图像两支在第一、三象限,故排除D .∴答案应选A .(2)若0>k ,则直线)1(2+-=k kx y 经过第一、三、四象限,双曲线xky =的图像两支在第一、三象限,而选择支A 、B 、C 、D 中没有一个相符;若0<k ,则直线)1(2+-=k kx y 经过第二、三、四象限,而双曲线的两支在第二、四象限,故只有C 正确.应选C .例 已知函数24231-⎪⎭⎫ ⎝⎛+=mx m y 是反比例函数,且其函数图像在每一个象限内,y 随x 的增大而减小,求反比例函数的解析式.解:因为y 是x 的反比例函数,所以1242-=-m ,所以21=m 或.21-=m 因为此函数图像在每一象限内,y 随x 的增大而减小,所以031>+m ,所以31->m ,所以21=m ,所以反比例函数的解析式为.65xy = 说明:此题根据反比例函数的定义与性质来解反比例函数xky = )0(≠k ,当0>k 时,y 随x 增大而减小,当0<k 时,y 随x 增大而增大.例 一个长方体的体积是100立方厘米,它的长是y 厘米,宽是5厘米,高是x 厘米. (1)写出用高表示长的函数关系式; (2)写出自变量x 的取值范围; (3)当3=x 厘米时,求y 的值; (4)画出函数的图像.分析 本题依据长方体的体积公式列出方程,然后变形求出长关于高的函数关系式. 解 (1)因为长方体的长为y 厘米,宽为5厘米,高为x 厘米, 所以1005=xy ,所以xy 20=. (2)因为x 是长方体的高.所以0>x .即自变量x 的取值范围是0>x . (3)当3=x 时,326320==y (厘米) (4x … 0.525 1015…y … 40 10 4 2 311 …描点画图如图所示.例 已知力F 所作用的功是15焦,则力F 与物体在力的方向通过的距离S 的图象大致是( ).说明 本题涉及力学中作功问题,主要考查在力的作用下物体作功情况,由此,识别正、反比例函数,一次函数的图象位置关系.解 据S F W ⋅=,得15=S F ⋅,即SF 15=,所以F 与S 之间是反比例函数关系,故选(B ).例 一个圆台形物体的上底面积是下底面积的.32如果如下图所示放在桌上,对桌面的压强是Pa 200,翻过来放,对桌面的压强是多少?解:由物理知识可知,压力F ,压强p 与受力面积S 之间的关系是.SFp =因为是同一物体,F 的数值不变,所以p 与S 成反比例. 设下底面是0S ,则由上底面积是032S , 由SFp =,且0S S =时,200=p , 有.20020000S S pS F =⨯==因为是同一物体,所以0200S F =是定值.所以当032S S =时,).Pa (3003220000===S S SF p因此,当圆台翻过来时,对桌面的压强是300帕.说明:本题与物理知识结合考查了反比例函数,关键是清楚对于同一个物体,它对桌面的压力是一定的.例 如图,P 是反比例函数xky =上一点,若图中阴影部分的矩形面积是2,求这个反比例函数的解析式.分析 求反比例函数的解析式,就是求k 的值.此题可根据矩形的面积公式及坐标与线段长度的转化来解.解 设P 点坐标为),(y x .因为P 点在第二象限,所以0,0><y x . 所以图中阴影部分矩形的长、宽分别为y x ,-.又2=-xy ,所以2-=xy .因为xy k =,所以2-=k . 所以这个反比例函数的解析式为xy 2-=. 说明 过反比例函数图像上的一点作两条坐标轴的垂线,可得到一个矩形,这个矩形的面积等于xk y =中的k .例 当n 取什么值时,122)2(-++=n n x n n y 是反比例函数?它的图像在第几象限内?在每个象限内,y随x 增大而增大还是减小?分析 根据反比例函数的定义)0(≠=k x k y 可知,122)2(-++=n n x n n y 是反比例函数,必须且只需022≠+n n 且112-=-+n n .解 122)2(-++=n n xn n y 是反比例函数,则⎪⎩⎪⎨⎧-=-+≠+,11,0222n n n n ∴⎩⎨⎧-==-≠≠.10,20n n n n 或且即 1-=n .故当1-=n 时,122)2(-++=n nx n n y 表示反比例函数:xy 1-=. 01<-=k ,∴双曲线两支分别在二、四象限内,并且在每个象限内,y 随x 的增大而增大.11。
反比例函数经典例题(有答案)
一、反比例函数的对称性1、直线y=ax (a>0)与双曲线y= 3/x 交于A (x i, y〔)、B (X2, y2)两点,贝U 4x i y2-3x2y i=2、如图1,直线y=kx (k>0)与双曲线y= 2/x交于A, B两点,若A B两点的坐标分别为A (x i, y i),B (x2, y2),贝U x i y2+x2y i 的值为( )A 、-8B 、4C 、-4D 、0解析:直线Y=KX和双曲线Y=2/X图象都关于原点对称因此两交点A、B也关于原点对称X2=-Xi, Y2=-Yi双曲线形式可变化为XY=2即双曲线上点的横纵坐标乘积为 2因此XiYi=2XiY2+X2Yi=Xi(-Yi) + (-Xi) Yi=-XiYi-XiYi=-4图i 图2 图3 图4二、反比例函数中“ K”的求法1、如图2,直线l是经过点(i, 0)且与y轴平行的直线.Rt△ ABC中直角边AC=4, BC=3将BC边在直线l上滑动,使A, B在函数y=k/x的图象上.那么k的值是( )A、3 B 、6 C 、i2 D 、i5/4解析:BC 在直线X=i 上,设B(i , M),贝U C(i, M-3), .••A(5, M-3), 又A B都在双曲线上,二i*M=5*(M-3) , M=i5/4 即K=i5/4 2、如图3,已知点A、B在双曲线y= k/x (x>0)上,Adx轴于点C, Bdy轴于点D, AC与BD交于点P, P是AC的中点,若△ ABP的面积为3,则k=解析:A(xi,k/xi),B(x2,k/x2)AC:x=xi BD:y=k/x2P(xi,k/x2)k/x2=k/2xi 2xi=x2BP=x2-xi=xiAP=k/xi-k/x2=k/2xiS=xi*k/(2xi)*i/2)=k/4=3 k=i23、如图4,双曲线y= k/x (k > 0)经过矩形OABC的边BC的中点E,交AB于点D.若梯形ODBC的面积为3,则双曲线的解析式为( )A、y=i/xB、y=2/xC、y=3/xD、=6/解析:设E(x0,k/x0)E 是BC中点,二B(x0,2k/x0)B、D两点纵坐标相同,二D(x0/2,2k/x0)BD=x0/2,OC=x0,BC=2k/x0梯形面积=(BD+OC/ BC/2=3k/2=3•,- k=2 .•.双曲线的解析式为:y=2/x三、反比例函数“ K”与面积的关系1、如图5,已知双曲线y i=1/x(x >0) , y2=4/x(x >0),点P为双曲线y2=4/x上的一点,且PAlx 轴于点A, PBLy轴于点B, PA PB分别次双曲线y=/x于D C两点,则^ PCD的面积为( ) 图5 图6 图7解析:假设P的坐标为(a,b ),则C (a/4,b), D(a,b/4),PC=3/4*a PD=3/4*bS=1/2*3/4*a*3/4*b因为点P为双曲线y2=4/x上的一点所以a*b=4所以S=9/82、如图6,直线l和双曲线y=k/x(k >0)交于A B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为G D、E,连接OA OB 0P,设AAOC勺面积为S、△ BOD的面积为&、APOE的面积为S3,则( )A S I<S3B 、S I>S2>S3C 、S I=S2>&D 、S=S< S3解析:结合题意可得:AB者S在双曲线y=kx上,则有S1=S2而AB之间,直线在双曲线上方;故S1=SK S3.3、如图7,已知直线y=-x+3与坐标轴交于A、B两点,与双曲线y=k/x交于G D两点,且S3O C=&CO D=S\BOD 贝1J k=。
反比例函数的应用例题
反比例函数的应用例题一、题目:核电站发电机组的转速与负荷之间存在反比关系,当负荷为50%时转速为1500转/分钟,此时发电量为600兆瓦时;当负荷为75%时转速为1400转/分钟,求当负荷为80%时的发电量。
解答:根据题目所给条件,转速和负荷之间满足反比例关系,设转速为x,负荷为y,则有x×y=k,其中k为常数。
根据题意,当负荷为50%时转速为1500转/分钟,即有1500×0.5=k,解得k=750。
当负荷为75%时转速为1400转/分钟,即有1400×0.75=750。
由此可知,转速和负荷之间的反比例关系为x×y=750。
要求当负荷为80%时的发电量,设发电量为z,则有z=750÷0.8计算z=750÷0.8=937.5所以当负荷为80%时的发电量为937.5兆瓦时。
二、题目:一辆汽车以60km/h的速度行驶,行驶5小时后,汽车的速度缓慢下降至40km/h,求这辆汽车在行驶8小时后的速度。
解答:根据题目所给条件,速度和时间之间满足反比例关系,设速度为x,时间为y,则有x×y=k,其中k为常数。
根据题意,汽车以60km/h的速度行驶5小时后,即有60 × 5 = k,解得 k = 300。
设在行驶8小时后的速度为z,则有z×8=300。
计算z=300÷8=37.5所以在行驶8小时后,汽车的速度为37.5km/h。
三、题目:工厂的生产效率与工人数量之间存在反比关系,当工人数量为50人时,生产效率为1000件/小时;当工人数量减少为40人时,生产效率提高到1200件/小时,求当工人数量为30人时的生产效率。
解答:根据题目所给条件,生产效率和工人数量之间满足反比例关系,设生产效率为x,工人数量为y,则有x×y=k,其中k为常数。
所以当工人数量为30人时的生产效率约为1666.67件/小时。
四、题目:一个电阻器的电阻值与其长度之间满足反比关系,当电阻器长度为10cm时,电阻值为50欧姆;当电阻器长度缩短到8cm时,电阻值增加到60欧姆,求当电阻器长度为15cm时的电阻值。
反比例函数的应用例题
关于反比例函数的应用题例析及练习类型分析(一)关于"速度,时间,……"相关的反比例函数应用例:小明将一篇24000字的社会调查报告录入电脑,打印成文.(1)如果小明以每分钟120字的速度录入,他需要多长时间才能完成录入任务(2)录入文字的速度v(字/min)与完成录入的时间t(min)有怎样的函数关系(3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字(二)与"几何体积"相关的反比例函数应用例:某自来水公司计划新建一个容积为4×1010m3的长方形蓄水池.(1)蓄水池的底面积S(m2)与其深度h(m)有怎样的函数关系(2)如果蓄水池的深度设计为5m,那么蓄水池的底面积应为多少平方米(3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长和宽最多能分别设计为100m和60m,那么蓄水池的深度至少达到多少才能满足要求 (保留两位小数)练一练1,某蓄水池的排水管每小时排水8m3 ,6h可将满池水全部排空.⑴蓄水池的容积是多少 ____________⑵如果增加排水管.使每小时排水量达到Q(m3),那么将满池水排空所需时间t(h)将如何变化 __________⑶写出t与Q之间关系式.____________⑷如果准备在5小时内将满池水排空,那么每小时的排水量至少为____________.⑸已知排水管最多为每小时12 m3,则至少__________h可将满池水全部排空.2.小明用过年自己剩下的压岁钱去买每枝售价为 1.8元的圆珠笔,恰好买了12枝,他回家后高兴地告诉妈妈,自己用压岁钱买了学习用笔,妈妈夸奖了他,妈妈随即问他,假设用这些钱可买单价为x元的圆珠笔y枝,那么y与x间的函数关系式是什么呢妈妈说,如果他答上来,奖励他一枝钢笔,同学们一起来帮助他,好吗问题(1):题目中哪个量是一定的(2):哪些量是变化的(3):变量之间存在什么样的关系3.小丽是一个近视眼,整天眼镜不离鼻子,但自己一直不理解自己眼镜配制的原理,很是苦闷,近来她了解到近视眼镜的度数 2.小丽是一个近视眼,整天眼镜不离鼻子,但自己一直不理解自己眼镜配制的原理,很是苦闷,近来她了解到近视眼镜的度数y(度)与镜片的焦距x(m)成反比例,并请教了师傅了解到自己400度的近视眼镜镜片的焦距为0.2m,可惜她不知道反比例函数的概念,所以她写不出y(度)与镜片的焦距x(m)成反比例,并请教了师傅了解到自己400度的近视眼镜镜片的焦距为0.2m,可惜她不知道反比例函数的概念,所以她写不出y与x的函数关系式,我们大家正好学过反比例函数了,谁能帮助她解决这个问题呢问题(1)题目中告诉我们什么变量间是什么关系(2)当我们知道什么关系时应该怎么做(3)怎么计算出关系式4.某地上年度电价为0.8元/度,年用电量为1亿度.本年度计划将电价调至0.55元至0.75元之间.经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)(元)成反比例,当x=0.65时,y=-0.8.(1)求y与x之间的函数关系式;(2)若每度电的成本价为0.3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20% [收益=(实际电价-成本价)×(用电量)]。
反比例函数实际问题例题
1、某工厂生产一种零件,如果每天生产x个零件,那么需要y天完成全部生产任务。
已知当每天生产100个零件时,需要20天完成。
如果生产效率不变,当每天生产200个零件时,需要的天数是?A. 40天B. 20天C. 10天D. 5天(答案)C2、一个水池,如果用x台抽水机同时抽水,需要y小时才能抽干。
现在知道用3台抽水机需要8小时才能抽干。
如果增加抽水机的数量到6台,那么需要的小时数是?A. 16小时B. 8小时C. 4小时D. 2小时(答案)C3、某公司计划招聘x名新员工,如果每名员工的工作效率相同,那么完成一项任务需要y 天。
已知如果招聘10名员工,需要20天完成任务。
如果公司想要在10天内完成任务,那么需要招聘的员工数量是?A. 5名B. 10名C. 20名D. 40名(答案)C4、一个果园,如果每天摘x筐苹果,那么需要y天才能摘完。
现在知道如果每天摘10筐,需要20天才能摘完。
如果果园主想要在10天内摘完所有的苹果,那么每天需要摘的筐数是?A. 5筐B. 10筐C. 20筐D. 40筐(答案)C5、某城市的水费是按照用水量来计算的,如果每月用水x吨,那么需要支付y元的水费。
已知如果每月用水5吨,需要支付100元。
如果某月想要支付50元的水费,那么可以用的水量是?A. 1吨B. 2.5吨C. 5吨D. 10吨(答案)B6、一个工人如果每天工作x小时,那么可以完成y个零件。
现在知道如果每天工作8小时,可以完成16个零件。
如果工人想要在一天内完成32个零件,那么需要工作的小时数是?A. 4小时B. 8小时C. 12小时D. 16小时(答案)D7、某公司投资了一个项目,如果每年投资x万元,那么需要y年才能收回成本。
已知如果每年投资100万元,需要5年才能收回成本。
如果公司想要在3年内收回成本,那么每年需要投资的金额是?A. 50万元B. 100万元C. 150万元D. 约166.67万元(答案)D8、一个学生如果每天学习x小时,那么需要y天才能掌握一项技能。
九年级数学下册第二十六章反比例函数经典大题例题(带答案)
九年级数学下册第二十六章反比例函数经典大题例题单选题1、春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开⁄)与药物在空气中的持续时间x(min)之间的函数关系,在门窗进行通风,室内每立方米空气中含药量y(mg m3打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3B.室内空气中的含药量不低于8mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室内答案:C分析:利用图中信息一一判断即可.解∶由图象可知,经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3,故A选项正确.不符合题意.设0<x<5时函数解析式为y1=k1x,把(5,10)代入得,k1=2,∴y1=2x,∴y1=8时,x=4,15-4=11,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,故B选项正确,不符合题意;由图象可知,y=5时,x<5或x>15,,设反比例函数解析式为y2=k2x,把(15,8)代入得:8=k215解得:k2=120,∴y2=120,x当y1=5时,x1=2.5,当y2=5时,x2=24,24-2.5=21.5<35,故C选项错误,符合题意;当y1=2时,x1=1,当y2=2时,x2=60,60-1=59,故D选项正确.不符合题意,故选:C.小提示:本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,2、如图,正比例函数y=kx与反比例函数y=4x连接BC,则ΔABC的面积等于()A.8B.6C.4D.2答案:C分析:由于点A、C位于反比例函数图象上且关于原点对称,则SΔOBA=SΔOBC,再根据反比例函数系数k的几何意义作答即可.解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S =12|k|. 所以ΔABC 的面积等于2×12|k|=|k|=4. 故选C .小提示:考查了反比例函数y =k x 中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k |,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S =12|k |.3、某城市市区人口x 万人,市区绿地面积50万平方米,平均每人拥有绿地y 平方米,则y 与x 之间的函数表达式为( )A .y =x +50B .y =50xC .y =50x D .y =x 50 答案:C分析:根据:平均每人拥有绿地y =总面积总人数,列式求解.解:依题意,得:平均每人拥有绿地y =50x. 故选:C 小提示:本题考查了反比例函数,解题的关键是掌握题目中数量之间的相互关系.4、一次函数y =mx +n 的图像与反比例函数y =m x 的图像交于点A 、B ,其中点A 、B 的坐标为A (-1m ,-2m )、B (m ,1),则△OAB 的面积( )A .3B .134C .72D .154 答案:D分析:将点A 的坐标代入可确定反比例函数关系式,进而确定点B 的坐标,再利用待定系数法求出一次函数关系式;求出直线AB 与y 轴交点D 的坐标,确定OD 的长,再根据三角形的面积公式进行计算即可. 解:∵A (-1m ,-2m )在反比例函数y =m x 的图像上,∴m =(-1m ) • ( -2m )=2,∴反比例函数的解析式为y =2x , ∴B (2,1),A (-12,-4),把B (2,1)代入y =2x +n 得1=2×2+n ,∴n =-3,∴直线AB 的解析式为y =2x -3,直线AB 与y 轴的交点D (0,-3),∴OD =3,∴S △AOB =S △BOD +S △AOD=12×3×2+12×3×12 =154.故选:D . .小提示:本题考查一次函数与反比例函数的交点,把点的坐标代入函数关系式是解决问题常用的方法.5、为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产进行治污改造,其月利润y (万元)与月份x 之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的一部分,下列选项错误..的是( )A.4月份的利润为50万元B.治污改造完成后每月利润比前一个月增加30万元C.治污改造完成前后共有4个月的利润低于100万元D.9月份该厂利润达到200万元答案:C分析:直接利用已知点求出一次函数与反比例函数的解析式进而分别分析得出答案.A、设反比例函数的解析式为y=kx,把(1,200)代入得,k=200,∴反比例函数的解析式为:y=200x,当x=4时,y=50,∴4月份的利润为50万元,正确意;B、治污改造完成后,从4月到6月,利润从50万到110万,故每月利润比前一个月增加30万元,正确;C、当y=100时,则100=200x,解得:x=2,则只有3月,4月,5月共3个月的利润低于100万元,不正确.D、设一次函数解析式为:y=kx+b,则{4k+b=506k+b=110,解得:{k=30b=−70,故一次函数解析式为:y=30x−70,故y=200时,200=30x−70,解得:x =9,则治污改造完成后的第5个月,即9月份该厂利润达到200万元,正确.故选:C .小提示:此题主要考查了一次函数与反比函数的应用,正确得出函数解析式是解题关键.6、如图,A ,B 是反比例函数y =4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .1答案:B分析:先根据反比例函数图象上点的坐标特征及A ,B 两点的横坐标,求出A (2,2),B (4,1).再过A ,B 两点分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,根据反比例函数系数k 的几何意义得出S △AOC =S △BOD =12×4=2.根据S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC ,得出S △AOB =S 梯形ABDC ,利用梯形面积公式求出S 梯形ABDC =12(BD +AC )•CD =12×(1+2)×2=3,从而得出S △AOB =3.∵A ,B 是反比例函数y =4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,∴当x =2时,y =2,即A (2,2),当x =4时,y =1,即B (4,1),如图,过A ,B 两点分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,则S △AOC =S △BOD =12×4=2,∵S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC ,∴S △AOB =S 梯形ABDC ,∵S 梯形ABDC =12(BD +AC )•CD =12×(1+2)×2=3, ∴S △AOB =3,故选B .小提示:本题考查了反比例函数y =k x (k ≠0)中k 的几何意义,反比例函数图象上点的坐标特征,梯形的面积,熟知反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 与k 的关系为S =12|k |是解题的关键. 7、如图,点A 在反比例函数y =k x (x >0)图象上,AB ⊥x 轴于点B ,C 是OB 的中点,连接AO ,AC ,若△AOC 的面积为2,则k =( )A .4B .8C .12D .16答案:B分析:根据三角形中线的性质得出S △AOB =4,然后根据反比例函数k 的几何意义得解.解:∵点C 是OB 的中点,△AOC 的面积为2,∴S △AOB =4,∵AB ⊥x 轴于点B ,∴12AB ⋅OB =4,∴AB ⋅OB =8,∴k =8,故选:B.小提示:本题考查了反比例函数k的几何意义以及三角形中线的性质,熟知反比例函数k的几何意义是解本题的关键.8、学校的自动饮水机,通电加热时水温每分钟上升10°C,加热到100°C时,自动停止加热,水温开始下降.此时水温y(°C)与通电时间x(min)成反比例关系.当水温降至20°C时,饮水机再自动加热,若水温在20°C 时接通电源,水温y与通电时间x之间的关系如图所示,则水温要从20°C加热到100°C,所需要的时间为()A.6min B.7min C.8min D.10min答案:C分析:由图像知加热时水温y(°C)与通电时间x(min)成正比例关系,通电加热时水温每分钟上升10°C,所以关系式为y=10x+20,进而可求得水温要从20°C加热到100°C所需要的时间.解:由图可知水温要从20°C加热到100°C,水温y(°C)与通电时间x(min)成正比例关系,关系式为y=10x+ 20,当y=100时,x=8.故选:C.小提示:本题考查一次函数的实际应用,熟练掌握相关知识是解题的关键.9、已知电压U、电流I、电阻R三者之间的关系式为:U=IR(或者I=U),实际生活中,由于给定已知量R不同,因此会有不同的可能图象,图象不可能是()A.B.C.D.答案:A分析:在实际生活中,电压U、电流I、电阻R三者之中任何一个不能为负,依此可得结果.,但自变量R的取值为负值,故选项A错误;B、C、D选项正确,不符合题意.A图象反映的是I=UR故选:A.小提示:此题主要考查了现实生活中函数图象的确立,注意自变量取值不能为负是解答此题的关键.10、已知点(-2,a)(2,b)(3,c)在函数y=k2+2(k为常数)的图像上,则下列判断正确的是()xA.a<c<b B.b<a<c C.a<b<c D.c<b<a答案:A(k为常数)的图象分布在第一、三象限,在每一象限,y随分析:根据反比例函数的性质得到函数y=k2+2xx的增大而减小,则b>c>0,a<0.∵k2+2>0,∴函数y=k2+2(k为常数)的图像分布在第一、三象限,在每一象限,y随x的增大而减小,x∵﹣2<0<2<3,∴b>c>0,a<0,∴a<c<b.故选:A.小提示:本题考查反比例函数的增减性比较大小,熟记函数性质,判断每个象限内的特点是解题关键.填空题11、每年春季为预防流感,某校利用休息日对教室进行药熏消毒,已知药物燃烧过程及燃烧完后空气中的含药量y(mg/m3)与时间x(h)之间的关系如图所示,根据消毒要求,空气中的含药量不低于3mg/m3且持续时间不能低于10h.请你帮助计算一下,当空气中的含药量不低于3mg/m3时,持续时间可以达到__h.答案:12分析:利用待定系数法求出反比例函数,利用y=6求出两函数交点坐标,再求正比例函数,利用y=3,求出两函数自变量值作差即可解:∵反比例函数经过点(24,2),∴k=xy=24×2=48,∴反比例函数的解析式为y=48,x令y=6,解得:x=8,∴直线与双曲线的交点坐标为(8,6),∴正比例函数的解析式为y=3x,4=3,解得:x=16,令y=48xx=3,解得:x=4,令y=34∴当空气中的含药量不低于3mg/m3时,持续时间可以达到16﹣4=12h,所以答案是:12.小提示:本题考查正比例函数与反比例函数的联合应用,会用待定系数法求反比例函数解析式与正比例函数解析式,会求函数值是解题关键.12、如图,等腰ΔABC的两个顶点A(−1,−4)、B(−4,−1)在反比例函数y=k1(x<0)的图象上,AC=xBC.过点C作边AB的垂线交反比例函数y=k1(x<0)的图象于点D,动点P从点D出发,沿射线CD方向运动x3√2个单位长度,到达反比例函数y=k2(x>0)图象上一点,则k2=__________.x答案:1分析:由AC=BC,CD⊥AB,得到△ABC是等腰三角形,CD是AB的垂直平分线,即CD是反比例函数y=k1 x 的对称轴,直线CD的关系式是y=x,根据A点的坐标是A(−1,−4),代入反比例函数y=k1x,得反比例函数关系式为y=4x ,在根据直线CD与反比例函数y=4x(x<0)的图象于点D,求得D点的坐标是(-2,-2),则OD=2√2,根据点P从点D出发,沿射线CD方向运动3√2个单位长度,到达反比例函数y=k2x图象上,得到OP=√2,则P点的坐标是(1,1),将P(1,1)代入反比例函数y=k2x,得k2=1.解:如图示,AB与CD相交于E点,P在反比例函数y=k2x(x>0)图象上,∵AC=BC,CD⊥AB,∴△ABC是等腰三角形,CD是AB的垂直平分线,∴CD是反比例函数y=k1x的对称轴,则直线CD的关系式是y=x,∵A点的坐标是A(−1,−4),代入反比例函数y=k1x,得k1=xy=(−1)×(−4)=4则反比例函数关系式为y=4x又∵直线CD与反比例函数y=4x(x<0)的图象于点D,则有{y=xy=4x,解之得:{x=−2y=−2(D点在第三象限),∴D点的坐标是(-2,-2),∴OD=2√2,∵点P从点D出发,沿射线CD方向运动3√2个单位长度,到达反比例函数y=k2x图象上,∴OP=√2,则P点的坐标是(1,1)(P点在第一象限),将P(1,1)代入反比例函数y=k2x,得k2=xy=1×1=1,所以答案是:1.小提示:本题考查了用待定系数法求出反比例函数,反比例函数的对称性和解二元一次方程组的应用,熟悉相关性质是解此题的关键.13、如图,直线y=−x+3与y轴交于点A,与反比例函数y=kx(x<0)的图象交于点C,过点C作CB⊥x轴于点B,若AO=3BO,则k的值为________.答案:-4分析:先求出点A的坐标,然后表示出AO、BO的长度,根据AO=3BO,求出点C的横坐标,代入直线解析式求出纵坐标,用待定系数法求出反比例函数解析式.解:∵直线y=−x+3与y轴的交点A的坐标为(0,3),∴AO=3.∵AO=3BO,∴BO=1,∵CB⊥x轴∴点C的横坐标为−1.把x=−1代入y=−x+3,得y=−(−1)+3=4,∴点C的坐标为(−1,4),把C(−1,4)代入y=kx,得k=−4.故答案是:-4.小提示:本题考查的是反比例函数与一次函数的交点问题,根据题意确定点C的横坐标并求出纵坐标是解题的关键.14、如图,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直线l∥y轴,且直线l分别与反比例函数y=8x (x>0)和y=kx(x>0)的图象交于P、Q两点,若S∥POQ=13,则k的值为___________.答案:-18分析:根据反比例函数系数k的几何意义,则∥OPM和∥OMQ的面积都可求得(或用k表示),根据∥POQ的面积,即可得到一个关于k的方程,进而求解.解:由反比例函数的性质可知S∥OPM=12×8=4,S∥OMQ=12×|k|=-12k,∵S∥POQ=13,∴4-12k=13,解得k=-18,故答案是:-18.小提示:本题考查了反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,熟练掌握k的几何意义是解题的关键.15、已知△ABC的三个顶点为A(-1,1),B(-1,3),C(-3,-3),将△ABC向右平移m(m>0)个单位后,△ABC某一边的中点恰好落在反比例函数y= 3的图象上,则m的值为________.x答案:52分析:根据中点的坐标和平移的规律,利用点在函数图像上,可解出m的值.△ABC的三个顶点为A(-1,1),B(-1,3),C(-3,3)∴AB的中点(-1,2),BC的中点(-2,0),AC的中点(-2,-1)∴AB边的中点平移后为(-1+m,2),AC中点平移后为(-2+m,-1)∵△ABC某一边中点落在反比例函数上∴2(-1+m)=3或-1×(-2+m)=3m=2.5或-1(舍去).故答案是:5.2小提示:考查了反比例函数图象上点的坐标特点,关键是掌握反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.解答题(x>0)的图像交于点A(a,4).点B为x轴正半轴上一16、如图,正比例函数y=kx的图像与反比例函数y=8x点,过B作x轴的垂线交反比例函数的图像于点C,交正比例函数的图像于点D.(1)求a 的值及正比例函数y =kx 的表达式; (2)若BD =10,求△ACD 的面积. 答案:(1)a=2;y=2x ;(2)635分析:(1)已知反比例函数解析式,点A 在反比例函数图象上,故a 可求;求出点A 的坐标后,点A 同时在正比例函数图象上,将点A 坐标代入正比例函数解析式中,故正比例函数的解析式可求.(2)根据题意以及第一问的求解结果,我们可设B 点坐标为(b ,0),则D 点坐标为(b ,2b),根据BD=10,可求b 值,然后确认三角形的底和高,最后根据三角形面积公式即可求解.(1)已知反比例函数解析式为y=8x ,点A(a ,4)在反比例函数图象上,将点A 坐标代入,解得a=2,故A 点坐标为(2,4),又∵A 点也在正比例函数图象上,设正比例函数解析为y=kx ,将点A(2,4)代入正比例函数解析式中,解得k=2,则正比例函数解析式为y=2x . 故a=2;y=2x .(2)根据第一问的求解结果,以及BD 垂直x 轴,我们可以设B 点坐标为(b ,0),则C 点坐标为(b ,8b )、D 点坐标为(b ,2b),根据BD=10,则2b=10,解得b=5,故点B 的坐标为(5,0),D 点坐标为(5,10),C 点坐标为(5,85),则在△ACD 中,S △ACD =12×(10−85)×(5−2)=635.故△ACD 的面积为635.小提示:(1)本题主要考查求解正比例函数及反比例函数解析式,掌握求解正比例函数和反比例函数解析式的方法是解答本题的关键.(2)本题根据第一问求解的结果以及BD 垂直x 轴,利用待定系数法,设B 、C 、D 三点坐标,求出B 、C 、D 三点坐标,是解答本题的关键,同时掌握三角形面积公式,即可求解.17、心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课时间的变化而变化.学生的注意力指数y随时间x(分)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)上课后的第5分钟与第30分钟相比较,_______分钟时学生的注意力更集中.(2)分别求出线段AB和双曲线CD的函数关系式.(3)一道数学题,需要讲18分钟,为了学生听课效果较好,要求学生的注意力指数不低于40,那么经过适当的时间安排,教师能否在学生注意力达到所需状态下讲完这道题?.(3)教师能在学生注意力达到所需要求状态下讲完这道题.答案:(1)5;(2)y AB=2x+30;y CD=1000x分析:(1)(2)利用待定系数法分别求出AB和CD的函数表达式,得出第五分钟和第三十分钟的注意力指数,最后比较判断;(3)分别求出注意力指数为40时的两个时间,再将两时间之差和18比较,大于18则能讲完,否则不能.(1)(2)设线段AB所在的直线的解析式为y1=k1x+30,把B(10,50)代入得,k1=2,∴AB解析式为:y1=2x+30(0≤x≤10).设C、D所在双曲线的解析式为y2=k2,x把C(20,50)代入得,k2=1000,∴曲线CD的解析式为:y2=1000(x≥20);x当x1=5时,y1=2×5+30=40,,当x2=30时,y2=100030∴y1>y2∴第5分钟注意力更集中.所以答案是:5;(3)当y=40时,2x+30=40,x=5.1000=40,x=25.x∴25−5=20>18.∴教师能在学生注意力达到所需要求状态下讲完这道题.小提示:此题主要考查了反比例函数的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式,再根据自变量的值求算对应的函数值.18、反比例函数y=k与一次函数y=2x−4的图像都过A(n,4).x(1)求A点坐标;(2)求反比例函数解析式.答案:(1)点A的坐标为(4,4)(2)y=16x分析:(1)把点A(n,4)代入一次函数y=2x-4求出n的值即可得出A点的坐标;求出k的值即可.(2)再把点A的坐标代入反比例函数y=kx(1)解:将点A(n,4)代入y=2x﹣4得:2n﹣4=4,解得:n=4,∴点A的坐标为(4,4).(2)解:将点A(4,4)代入y=k得:k=16,x∴反比例函数解析式为y=16.x小提示:本题主要考查的是一次函数及反比例函数图像上点的坐标特点,掌握函数图像的交点坐标即为函数解析式组成的方程组的解是解答本题的关键.。
反比例函数经典例题(含详细解答)
(2)当矩形ABCD是正方形时,将反比例函数y= 的图象沿y轴翻折,得到反比例函数y= 的图象(如图2),求k1的值;
(3)在条件(2)下,直线y=-x上有一长为 动线段MN,作MH、NP都平行y轴交第一象限内的双曲线y= 于点H、P,问四边形MHPN能否为平行四边形(如图3)?若能,请求出点M的坐标;若不能,请说明理由.
反比例函数难题
1、如图,已知△P1OA1,△P2A1A2,△P3A2A3…△PnAn-1An都是等腰直角三角形,点P1、P2、P3…Pn都在函数y= (x>0)的图象上,斜边OA1、A1A2、A2A3…An-1An都在x轴上.则点A10的坐标为
2、如图1,矩形ABCD的边BC在x轴的正半轴上,点E(m,1)是对角线BD的中点,点A、E在反比例函数y= 的图象上.
由四边形OADM的面积为6得3+6+3=3t解得t=4
故点M为( D点为(3,4)
从而M点为BD中点,BM=DM
Welcome To
Download !!!
欢迎您的下载,资料仅供参考!
1.已知反比例函数y= 和一次函数y=2x-1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点.
(1)求反Leabharlann 例函数的解析式;(2)求反比例函数与一次函数两个交点A、B的坐标:
(3)根据函数图象,求不等式 >2x-1的解集;
(4)在(2)的条件下,x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由.
(3) 是反比例函数图象上的一动点,其中 过点 作直线 轴,交 轴于点 ;过点 作直线 轴交 轴于点 ,交直线 于点 .当四边形 的面积为6时,请判断线段 与 的大小关系,并说明理由.
反比例函数的应用六种题型
反比例函数实际应用的六种题型题型一:在面积中的应用 一:面积不变性(k 的几何意义)如图,设点P (a ,b )是反比例函数y=xk上任意一点,作PA ⊥x 轴于A 点,PB ⊥y 轴于B 点,则矩形PBOA 的面积是k (三角形PAO和三角形PBO 的面积都是k 21;面积是正数,所以k 要加绝对值) S 矩形PBOA =k ; S 三角形PAO =S 三角形PBO =k 21注意: (1)面积与P 的位置无关,即(0)ky k x=≠的面积不变性(2)当k 符号不确定的情况下须分类讨论S △ABC =︱K ︱; S ABCD =2︱K ︱二、曲直结合(一次函数与反比例函数)典型例题例1 如图,点P 是反比例函数xy 2=图象上的一点,PD ⊥x 轴于D.则△POD 的面积为 .例2 如图,已知,A,B 是双曲线)0(>=k xk y 上的两点,(1)若A(2,3),求K 的值;(2)在(1)的条件下,若点B 的横坐标为3,连接OA,OB,AB ,求△OAB 的面积。
(3)若A,B 两点的横坐标分别为a,2a ,线段AB 的延长线交X 轴于点C ,若6=∆AOC S ,求K 的值变式1 在双曲线)0(>=x xk y 上任一点分别作x 轴、y 轴的垂线段,与x 轴y 轴围成矩形面积为12,求函数解析式__________。
变式2 如图,在反比例函数2y x=(0x >)的图象上,有点1P ,2P ,3P ,4P 它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为1S ,2S ,3S ,求123S S S ++.S 3S 2S 11 2 3 4y=2xP 4P 3P 2xyO P 1变式3 如图,点P,Q是反比例函数y= 图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1,△QMN的面积记为S2,则S1________S2.(填“>”或“<”或“=”)变式4 已知A B C D E,,,,是反比例函数16yx=()0x>图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图5所示的五个橄榄形,则这五个橄榄形的面积总和是__________(用含π的代数式表示)变式5 如图正方形OABC的面积为4,点O为坐标原点,点B在函数kyx=(0,0)k x<<的图象上,点P(m,n)是函数kyx=(0,0)k x<<的图象上异于B的任意一点,过点P分别作x轴、y轴的垂线,垂足分别为E、F.(1)设矩形OEPF的面积为S l,判断S l与点P的位置是否有关(不必说理由).(2)从矩形OEPF的面积中减去其与正方形OABC重合的面积,剩余面积记为S2,写出S2与m的函数关系,并标明m的取值范围.(8分)总结:一个性质:反比例函数的面积不变性AB COyxy=16xEDCBAyx O两种思想:分类讨论和数形结合题型二:在工程与速度中的应用一、工程问题工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。
反比例函数经典例题(含详细解答)解析
反比例函数难题1、如图,已知△P1OA1,△P2A1A2,△P3A2A3…△P n A n-1A n都是等腰直角三角形,点P1、P2、P3…P n都在函数2、如图1,矩形ABCD的边BC在x轴的正半轴上,点E(m,1)是对角线BD的中点,点A、E在反比例函数y=(1)求AB的长;(2)当矩形ABCD是正方形时,将反比例函数y=kx的图象沿y轴翻折,得到反比例函数y=1kx的图象(如图2),求k1的值;(3)在条件(2)下,直线y=-x上有一长为2动线段MN,作MH、NP都平行y轴交第一象限内的双曲线y=kx于点H、P,问四边形MHPN能否为平行四边形(如图3)?若能,请求出点M的坐标;若不能,请说明理由.1.已知反比例函数y=2kx和一次函数y=2x-1,其中一次函数的图象经过(a ,b ),(a+k ,b+k+2)两点.(1)求反比例函数的解析式;(2)求反比例函数与一次函数两个交点A 、B 的坐标: (3)根据函数图象,求不等式2kx>2x-1的解集; (4)在(2)的条件下,x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.1.如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象与反比例函数y =(m ≠0)的图象交于二、四象限内的A 、B 两点,与x 轴交于C 点,点B 的坐标为(6,n ),线段OA =5,E 为x 轴负半轴上一点,且s i n ∠AOE =45.(1)求该反比例函数和一次函数; (2)求△AOC 的面积.(1)过A 点作AD⊥x 轴于点D ,∵sin ∠AOE = 45,OA =5,∴在Rt△ADO 中,∵sin∠AOE=AD AO =AD 5= 45,xm∴AD=4,DO =OA2-DA2=3,又点A 在第二象限∴点A 的坐标为(-3,4),将A 的坐标为(-3,4)代入y = m x ,得4=m -3∴m=-12,∴该反比例函数的解析式为y =-12x ,∵点B 在反比例函数y =-12x 的图象上,∴n=-126=-2,点B 的坐标为(6,-2), ∵一次函数y =kx +b(k≠0)的图象过A 、B 两点,∴⎩⎨⎧-3k +b=4,6k +b =-2,∴⎩⎨⎧k =-23, b =2∴ 该一次函数解析式为y =-23x +2.(2)在y =-23x +2中,令y =0,即-23x +2=0,∴x=3,∴点C 的坐标是(3,0),∴OC =3, 又DA=4, ∴S△AOC=12×OC×AD=12×3×4=6,所以△AOC 的面积为6.练习1.已知Rt△ABC 的斜边AB 在平面直角坐标系的x 轴上,点C (1,3)在反比例函数y = k x的图象上,且sin∠BAC = 35.(1)求k 的值和边AC 的长; (2)求点B 的坐标.(1)把C (1,3)代入y = kx得k =3设斜边AB 上的高为CD ,则sin∠BAC =CD AC =35∵C (1,3) ∴CD=3,∴AC=5(2)分两种情况,当点B 在点A 右侧时,如图1有:AD=52-32=4,AO=4-1=3 ∵△ACD ∽ABC ∴AC 2=AD ·AB ∴AB=AC 2AD =254∴OB=AB -AO=254-3=134 图1此时B 点坐标为(134,0)图2 当点B 在点A 左侧时,如图2 此时AO=4+1=5 OB= AB -AO=254-5=54此时B 点坐标为(-54,0)所以点B 的坐标为(134,0)或(-54,0).1.如图,矩形ABOD 的顶点A 是函数与函数在第二象限的交点,轴于B ,轴于D ,且矩形ABOD 的面积为3.(1)求两函数的解析式.(2)求两函数的交点A 、C 的坐标. (3)若点P 是y 轴上一动点,且,求点P 的坐标.解:(1)由图象知k<0,由结论及已知条件得-k=3 ∴∴反比例函数的解析式为,一次函数的解析式为(2)由,解得,∴点A 、C 的坐标分别为(,3),(3,)(3)设点P 的坐标为(0,m ) 直线与y 轴的交点坐标为M (0,2)∵O xyB A CD∴∣PM∣=,即∣m-2∣=,∴或,∴点P的坐标为(0,)或(0,)1.如图,已知,是一次函数的图像和反比例函数的图像的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线与轴的交点的坐标及三角形的面积.解:(1)在上.反比例函数的解析式为:.点在上经过,,解之得一次函数的解析式为:(2)是直线与轴的交点当时,点1.(1)探究新知如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.(2)结论应用:①如图2,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F.试证明:MN∥EF.②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行。
《反比例函数》典型例题、习题精选
《反比例函数》典型例题、习题精选典型例题例题:1.若函数y = (m−2)x是反比例函数,则m的值为( )A.3或2 B.3 C.2D.−2答案:B解:∵y = (m−2)x是反比例函数,∴m−2≠0且m2−5m+5 = −1,解之得∴m = 3,答案为B.2.下列选项中,是反比例函数关系的是( )A.直角三角形两锐角的关系B.多边形的内角和m(度)与边长n的关系C.小车油箱中有油10升,则小车每千米耗油量x(升)与行驶路程s(千米)的关系D.人的身高y(cm)与他的年龄x(岁)的关系答案:C说明:直角三角形中两锐角之和为90º,不是反比例函数关系,A错;多边形内角和m与边长n的关系是m = (n−2)×180º,不是反比例函数关系,B错;选项C,不难得出xs = 10,即小车每千米耗油量x(升)与行驶路程s(千米)的关系是反比例函数关系,C正确;人的身高与他的年龄显然不是反比例关系,D错;答案为C.3.已知某品牌灯泡的使用寿命大约为4×103小时①这种灯泡可使用的天数d(天)与平均每日使用的小时h(小时)之间有怎样的函数关系?②如果平均每天使用5小时,则这种灯泡的使用寿命大约是多少天?解:①依题意得:dh = 4×103∴d =∴d与h是反比例函数关系,其关系式为d =②当h>5时,d == 800(天)∴若平均每天使用5小时,则这种灯泡的使用寿命大约为800天.4.某市上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55元~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x−0.4)元成反比例,又当x = 0.65,y = 0.8.①求y与x之间的函数关系式;②若每度电的成本价为0.3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20%?解:①∵新增用电量y(亿度)与(x−0.4)元成反比例∴设y =∵当x = 0.65时,y = 0.8,∴0.8 =,解得k = 0.2∴y ==∴ y与x之间的函数关系式为y =.习题精选一.选择题1.若y与成反比例,x与成正比例,则y是z的( )A.正比例函数 B.反比例函数 C.一次函数 D.不能确定2.下列函数中,是反比例函数的是()A.y = −B.y = − C.y =−1 D.y =3.函数y = −kx与y =(k≠0)的图象的交点个数是()A.0 B. 1 C.2 D.不确定4.函数y = kx+b与y =(kb≠0)的图象可能是()A BC D5.若y与x成正比,y与z的倒数成反比,则z是x的()A.正比例函数B.反比例函数 C.二次函数 D.z随x增大而增大6.下列函数中y既不是x的正比例函数,也不是反比例函数的是()A. y = − B.10 = −5xy C.y =4 D.xy = −27.正比例函数y = kx与反比例函数y =若无交点,则有( )A.k>0,m<0 B.k<0,m>0 C.k·m>0 D.k·m<0二、填空题1.一般地,函数__________是反比例函数,其图象是__________,当k<0时,图象两支在__________象限内.2.已知反比例函数y =,当y = 6时,x = _________.3.反比例函数y = (a−3)的函数值为4时,自变量x的值是_________.4.反比例函数的图象过点(−3,5),则它的解析式为_________5.若函数y = 4x与y =的图象有一个交点是(,2),则另一个交点坐标是_________.三、解答题1.直线y = kx+b过x轴上的点A(,0),且与双曲线y =相交于B、C两点,已知B点坐标为(−,4),求直线和双曲线的解析式.2.已知一次函数y = x+2与反比例函数y =的图象的一个交点为P(a,b),且P到原点的距离是10,求a、b的值及反比例函数的解析式.3.已知函数y = (m2+ 2m)−2是一次函数,它的图象与反比例函数y =的图象交于一点,交点的横坐标是,求反比例函数的解析式.答案:一、1.B 说明:因为y与成反比例,所以可设y == k1x,同样x与成正比例,可设x = k2,所以y = k1(k2·) =,这样就可得出y是z的反比例函数,答案为B.2.B 3.A 4.A 5.A6.C7.D 说明:y = kx与y =的图象无交点可以下两种情形考虑;如图∴当k·m<0时,y = kx与y =无交点,答案为D.二、1.y =,k≠0;双曲线;二、四2. 3.−1 4.y =− 5.(−,−2)三、1.由题意知点A(,0),点B(−,4)在直线y = kx+b上,由此得∴∵点B(−,4)在双曲线y =上,∴,k= −2∴双曲线解析式为y = −2.由题设,得∴,∴a = 6,b = 8或a = −8,b = −6∴y =3.由已知条件∴∴m = 1使y = 3x−2,代入y =∴3x2−2x−k = 0因图象交于一点,∴Δ = 0即4+12k = 0∴k = −∴y = −.。
反比例函数典型例题
反比例函数典型例题例1、已知21y y y +=,x y 与1成正比例,22x y 与成反比例,且x=2时和x=3时。
y 的值都是19,求y 与x 之间的函数关系式。
例2、在函数1y x =的图象上有三个点的坐标分别为(1,1y )、(12,2y )、(3-,3y ),函数值y 1、y2、y 3的大小关系是 .例3、反比例函数xky =的图象如图所示,点M 是该函数图象上一点, MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为 .例4如图6,直线1x 21y +=分别交x 轴、y 轴于点A ,C ,点P 是直线AC与双曲线xk y =的交点,x PB ⊥轴,垂足为点B ,OB=m ,APB∆的面积为4+14m 2,求点P 的坐标; 例5如图,函数xy 5=在第一象限的图象上有一点C (1,5),过点C 的直线y=-kx +b (k >0)与x 轴交于点A (a ,0).(1)写出a 关于k 的函数关系式; (2)当该直线与双曲线xy 5=在第一象限的另一交点D 的横坐标是9时, 求△COA 的面积.例6甲乙两地相距80千米,一辆汽车从甲地开往乙地,设汽车到达乙地所用的时间为t (小时),汽车速度v (千米/小时).你能写出 t 与v 之间的函数关系式吗?它们之间是什么函数关系?例7你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y (m)是面条的粗细(横截面积)s (mm 2)的反比例函数,其图象如图4所示.⑴写出y 与s 的函数关系式;⑵求当面条粗1.6mm 2时,面条的总长度是多少米?1 在反比例函数12my x-=的图象上有两点1122()()A x y B x y ,,,,当120x x <<时,有12y y <,则m 的取值范围是 。
2已知反比例函数x ky =和一次函数y =ax +b 的图象的一个交点为A (-3,4),且一次函数的图象与x 轴的交点到原点的距离为5,求反比例函数与一次函数3 如图,A 、B 是函数2y x=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥轴,△ABC 的面积记为S ,则( )A . 2S =B . 4S =C .24S <<D .4S > 4 在反比例函数2y x=(0x >)的图象上,有点1234P P P P ,,,,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为123S S S ,,,则123S S S ++=. 5 如图,在x 轴的正半轴上依次截取112233445O A A A A A A A A A ====,过点12345A AAAA 、、、、分别作x 轴的垂线与反比例函数()20y x x =≠相交于点12345P PPPP 、、、、,得直角三角形1112233344455O P A A P A A P A A P A A P A 2、、、、,并设其面积分别为12345S S S S 、、、则5S的值为 ..6、如图,已知点A 、B 在双曲线xky =(x >0)上,AC ⊥x 轴于点C , BD ⊥y 轴于点D ,AC 与BD 交于点P ,P 是AC 的中点,若△ABP 的面积为3, 则k = .7 如图所示,反比例函数y=-8x 与一次函数y=-x+2的图像交于A ,B 两点. (1)求A ,B 两点的坐标;(2)求△AOB 的面积.2y x=xOP 1P 2P 3 P 4 12342。
反比例函数经典例题(含详细解答)
反比例函数难题1、如图,已知△P1OA1,△P2A1A2,△P3A2A3…△P n A n-1A n都是等腰直角三角形,点P1、P2、P3…P n都在函数2、如图1,矩形ABCD的边BC在x轴的正半轴上,点E(m,1)是对角线BD的中点,点A、E在反比例函数y=(1)求AB的长;(2)当矩形ABCD是正方形时,将反比例函数y=kx的图象沿y轴翻折,得到反比例函数y=1kx的图象(如图2),求k1的值;(3)在条件(2)下,直线y=-x上有一长为2动线段MN,作MH、NP都平行y轴交第一象限内的双曲线y=kx于点H、P,问四边形MHPN能否为平行四边形(如图3)?若能,请求出点M的坐标;若不能,请说明理由.1.已知反比例函数y=2kx和一次函数y=2x-1,其中一次函数的图象经过(a ,b ),(a+k ,b+k+2)两点.(1)求反比例函数的解析式;(2)求反比例函数与一次函数两个交点A 、B 的坐标: (3)根据函数图象,求不等式2kx>2x-1的解集; (4)在(2)的条件下,x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.1.如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象与反比例函数y =(m ≠0)的图象交于二、四象限内的A 、B 两点,与x 轴交于C 点,点B 的坐标为(6,n ),线段OA =5,E 为x 轴负半轴上一点,且s i n ∠AOE =45.(1)求该反比例函数和一次函数; (2)求△AOC 的面积.(1)过A 点作AD⊥x 轴于点D ,∵sin ∠AOE = 45,OA =5,∴在Rt△ADO 中,∵sin∠AOE=AD AO =AD 5= 45,xm∴AD=4,DO =OA2-DA2=3,又点A 在第二象限∴点A 的坐标为(-3,4),将A 的坐标为(-3,4)代入y = m x ,得4=m -3∴m=-12,∴该反比例函数的解析式为y =-12x ,∵点B 在反比例函数y =-12x 的图象上,∴n=-126=-2,点B 的坐标为(6,-2), ∵一次函数y =kx +b(k≠0)的图象过A 、B 两点,∴⎩⎨⎧-3k +b=4,6k +b =-2,∴⎩⎨⎧k =-23, b =2∴ 该一次函数解析式为y =-23x +2.(2)在y =-23x +2中,令y =0,即-23x +2=0,∴x=3,∴点C 的坐标是(3,0),∴OC =3, 又DA=4, ∴S△AOC=12×OC×AD=12×3×4=6,所以△AOC 的面积为6.练习1.已知Rt△ABC 的斜边AB 在平面直角坐标系的x 轴上,点C (1,3)在反比例函数y = k x的图象上,且sin∠BAC = 35.(1)求k 的值和边AC 的长; (2)求点B 的坐标.(1)把C (1,3)代入y = kx得k =3设斜边AB 上的高为CD ,则sin∠BAC =CD AC =35∵C (1,3) ∴CD=3,∴AC=5(2)分两种情况,当点B 在点A 右侧时,如图1有:AD=52-32=4,AO=4-1=3 ∵△ACD ∽ABC ∴AC 2=AD ·AB ∴AB=AC 2AD =254∴OB=AB -AO=254-3=134 图1此时B 点坐标为(134,0)图2 当点B 在点A 左侧时,如图2 此时AO=4+1=5 OB= AB -AO=254-5=54此时B 点坐标为(-54,0)所以点B 的坐标为(134,0)或(-54,0).1.如图,矩形ABOD 的顶点A 是函数与函数在第二象限的交点,轴于B ,轴于D ,且矩形ABOD 的面积为3.(1)求两函数的解析式.(2)求两函数的交点A 、C 的坐标. (3)若点P 是y 轴上一动点,且,求点P 的坐标.解:(1)由图象知k<0,由结论及已知条件得-k=3 ∴∴反比例函数的解析式为,一次函数的解析式为(2)由,解得,∴点A 、C 的坐标分别为(,3),(3,)(3)设点P 的坐标为(0,m ) 直线与y 轴的交点坐标为M (0,2)∵O xyB A CD∴∣PM∣=,即∣m-2∣=,∴或,∴点P的坐标为(0,)或(0,)1.如图,已知,是一次函数的图像和反比例函数的图像的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线与轴的交点的坐标及三角形的面积.解:(1)在上.反比例函数的解析式为:.点在上经过,,解之得一次函数的解析式为:(2)是直线与轴的交点当时,点1.(1)探究新知如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.(2)结论应用:①如图2,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F.试证明:MN∥EF.②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反函的实际应用
1、某单位打算在长和宽分别为20米和11米的矩形大厅内修建一个60平方米的矩形健身房ABCD.该健身房的四面墙壁中有两侧沿用大厅的旧墙壁(如图为平面示意图),已知装修旧墙壁的费用为20元/平方米,新建(含装修)墙壁的费用为80元/平方米.设健身房的高为3米,一面旧墙壁AB的长为米,修建健身房墙壁的总投入为元.(1)求与的函数关系式;(2)为了合理利用大厅,要求自变量必须满足条件:,当投入的资金为4800元时,问利用旧墙壁的总长度为多少?
2、保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1 月的利润为200万元.设2009年1 月为第1个月,第x个月的利润为y万元.由于排污超标,该厂决定从2009年1 月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y与x成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).⑴分别求该化工厂治污期间及治污改造工程完工后y与x之间对应的函数关系式.⑵治污改造工程完工后经过几个月,该厂月利润才能达到2009年1月的水平?⑶当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?
3、近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO 的浓度达到4 mg/L ,此后浓度呈直线型增加,在第7小时达到最高值46 mg/L ,发生爆炸;爆炸后,空气中的CO 浓度成反比例下降.如图11,根据题中相关信息回答下列问题:(1)求爆炸前后..
空气中CO 浓度y 与时间x 的函数关系式,并写出相应的自变量取值范围;(2)当空气中的CO 浓度达到34 mg/L 时,井下3 km 的矿工接到自动报警信号,这时他们至少要以多少km/h 的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO 浓度降到4 mg/L 及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?
4、如图所示,小华设计了一个探究杠杆平衡条件的实验:在一根匀质的木杆中点O 左侧固定位置B 处悬挂重物A ,在中点O 右侧用一个弹簧秤向下拉,改变弹簧秤与点O 的距离x (cm ),观察弹簧秤的示数y (N )的变化情况。
实验数据记录如下:
x (cm )
… 10 15 20 25 30 … y (N ) … 30 20 15 12 10 …
(1)把上表中x ,y 的各组对应值作为点的坐标,在坐标系中描出相应的点,用平滑曲线连接这些点并观察所得的图象,猜测y (N )与x (cm )之间的函数关系,并求出函数关系式;(2)当弹簧秤的示数为24N 时,弹簧秤与O 点的距离是多少cm ?随着弹簧秤与O 点的距离不断减小,弹簧秤上的示数将发生怎样的变化?
图11 y(N)
x(cm) O 5 10 15 20 25 30 35
35
30 25 20
15
10 5。