第2课时 方向角和坡角问题(教案)
教与学 新教案九年级数学下册 28.2.2 坡度、方位角与解直角三角形(第2课时)教学设计 (新版)
坡度、方位角与解直角三角形(续表)(续表)(续表)【学习目标】1.知识技能知道测量中坡度、坡角的概念,掌握坡度与坡角的关系,能利用解直角三角形的知识解决与坡度有关的实际问题.2.解决问题(1)通过学习懂得坡比、坡角的意义,把实际问题转化为数学模型;(2)在研究有关坡比、坡角的问题的过程中,渗透数形结合的数学思想.3.数学思考(1)通过解决与坡比、坡角有关的实际问题为背景,发展应用意识;(2)经历解决实际问题的过程,掌握把实际问题转化为数学问题的能力.4.情感态度(1)经历由情境引出问题,经历先掌握数学知识,再运用于实践的过程,培养学数学、用数学的意识与能力;(2)体会数形结合的数学思想方法;(3)培养自主探索的精神,提高合作交流的能力.【学习重难点】1.重点:与坡度、坡角有关的实际问题.2.难点:把实际问题转化为数学问题.课前延伸【知识梳理】1.三角形中共有几个元素?2.在△ABC中,∠C=90°a=3,b=3,解这个直角三角形.自主学习记录卡课内探究一、课堂探究1(问题探究,自主学习)如图28-2-88,水库的横断面是梯形,坝顶宽6 m,坝高12 m,斜坡CD的坡度i′=1∶1,斜坡AB坡度i∶3,求斜坡AB的长及坡角α和坝底宽AD(精确到0.1 m).图28-2-88二、课堂探究2(分组讨论,合作探究)1.如图28-2-89,一段路基的横断面是梯形,高CD,,路基的坡面与地面的坡角分别是32°和28°.求路基下底的宽AB(精确到0.1米).图28-2-89三、反馈训练1.某人在斜坡上走了8米,高度上升了1米,则坡比i=2.如果斜坡的坡度i=1∶2,坡面铅垂高度为4米,那么斜坡的长是米.3.如图28-2-90所示,梯形ABCD是某水库大坝的横断面,其坝顶AD宽10米,坝高AE 为160米,坝的迎水坡的坡度是i1=1∶3,背水坡的坡度i2=2∶3.求水坝横截面的面积。
九年级数学上册《用直角三角形解实际中的方位角坡角问题》教案、教学设计
1.学生总结:邀请学生分享本节课的收获,总结方位角和坡角的概念及计算方法。
-让学生用自己的语言表述所学知识,提高他们的表达能力和逻辑思维。
2.教师点评:针对学生的总结,给予肯定和鼓励,并对本节课的重点内容进行梳理和强调。
-指出学生在学习过程中存在的问题,为后续学习提出建议。
五、作业布置
-视频内容要贴近生活,富有教育意义,能引发学生对本节课主题的思考。
(二)讲授新知
1.理论知识讲解:介绍方位角和坡角的概念,以及它们在直角三角形中的表示方法。
-结合教材,详细讲解方位角的定义,以及如何通过直角三角形来计算实际中的方位角和坡角。
2.图形演示:利用几何画板或幻灯片,动态演示方位角和坡角的变化,帮助学生形象地理解概念。
九年级数学上册《用直角三角形解实际中的方位角坡角问题》教案、教学设计
一、教学目标
(一)知识与技能
1.理解方位角和坡角的概念,掌握它们在实际问题中的应用。
-了解方位角是指从正北方向顺时针旋转到目标方向的角度,坡角是指地面与水平线的夹角。
-学会使用直角三角形来计算方位角和坡角。
2.能够运用三角函数(正弦、余弦、正切)解决实际问题中的方位角和坡角问题。
-例如,要求学生测量学校附近一座小山的坡角,或根据地图上的方位角描述行走路线。
3.探究性作业:鼓励学生自主选择一个实际情境,如规划一次徒步旅行路线,使用直角三角形和三角函数解决相关问题。
-此类作业旨在培养学生的探究精神和独立解决问题的能力,同时加强数学知识与实践的联系。
4.小组合作作业:布置需要小组合作完成的作业,要求学生在小组内部分工协作,共同解决一个综合性的问题。
-预习作业要难度适中,旨在培养学生自主学习的能力和良好的学习习惯。
解直角三角形方位角、坡度角讲课教案
解直角三角形方位角、坡度角讲课教案一、教学内容本节课的内容选自《初中数学》八年级下册第九章“勾股定理及其应用”的第三节“解直角三角形”。
具体包括:直角三角形的定义及性质,解直角三角形的概念,利用三角函数解直角三角形,以及方位角和坡度角的实际应用。
二、教学目标1. 知识目标:学生能够理解并掌握解直角三角形的基本概念,熟练运用三角函数求解直角三角形的未知边和角。
2. 技能目标:培养学生运用数学知识解决实际问题的能力,提高学生的空间想象力和逻辑思维能力。
3. 情感目标:激发学生学习数学的兴趣,培养学生合作交流、积极参与的学习态度。
三、教学难点与重点教学难点:解直角三角形的实际应用,特别是方位角和坡度角的计算。
教学重点:熟练运用三角函数解直角三角形,以及在实际问题中求解方位角和坡度角。
四、教具与学具准备教具:三角板、直尺、量角器、多媒体课件。
学具:直角三角形模型、计算器、练习本。
五、教学过程1. 导入:通过实际情景引入,如建筑工地上的方位角和坡度角问题,让学生了解解直角三角形在实际生活中的应用。
2. 新课导入:讲解直角三角形的定义及性质,引导学生回顾勾股定理,为解直角三角形打下基础。
3. 新知讲解:(1)介绍解直角三角形的定义及方法,如正弦、余弦、正切函数的定义和应用。
(2)通过例题讲解,让学生掌握解直角三角形的方法。
(3)讲解方位角和坡度角的概念,以及在实际问题中的应用。
4. 随堂练习:布置相关练习题,让学生独立完成,巩固所学知识。
5. 小组讨论:针对练习题中的问题,组织学生进行小组讨论,互相交流解题思路。
六、板书设计1. 直角三角形的定义及性质2. 解直角三角形的方法:(1)正弦函数:sin A = 对边/斜边(2)余弦函数:cos A = 邻边/斜边(3)正切函数:tan A = 对边/邻边3. 方位角和坡度角的计算方法七、作业设计1. 作业题目:(1)已知直角三角形的两个角和一条边,求其他未知边和角。
28.2.2方向角和坡角问题-2023-2024学年九年级下册数学(教案)人教版
在今天的教学中,我发现学生们对于方向角和坡角的概念掌握程度参差不齐。在导入新课环节,通过提问日常生活的问题,我注意到有些学生能够迅速联想到实际情境,而有些学生则显得有些迷茫。这让我意识到,在今后的教学中,需要更多地结合实际情境进行讲解,帮助学生建立起理论知识与生活实际之间的联系。
在新课讲授环节,我尽量用简洁明了的语言解释方向角和坡角的定义,并通过案例分析让学生们看到这些概念在实际中的应用。然而,我也发现对于计算方法这一部分,学生们普遍感到有些困难,尤其是涉及到三角函数的应用。在今后的教学中,我需要更加细致地讲解计算步骤,并设计更多的例题和练习,让学生们在实践中掌握计算方法。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了方向角和坡角的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-坡角的计算中涉及到的三角函数知识,如正切函数的应用;
-将方向角和坡角的概念与实际情境相结合,进行问题分析和解决。
举例:
a.难点解析:方向角的计算可能对于学生来说较难理解,特别是在不同坐标系下的转换。需要通过具体的例子,如从直角坐标系转换到极坐标系,指导学生如何进行角度的换算。
b.三角函数的应用:在计算坡角时,需要运用正切函数。学生可能对三角函数的概念不够熟悉,需要通过实际例题和图示来帮助学生理解正切函数与坡度之间的关系。
新湘教版九年级上册初中数学 课时2 坡度、方位角问题 教案(教学设计)
第4章锐角三角函数4.4 解直角三角形的应用课时2 坡度、方位角问题【知识与技能】巩固直角三角形中锐角的三角函数,学会解关于坡度角和有关角度的问题.【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.【情感态度与价值观】引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.1.理解并掌握坡度、坡比的定义.2.学会用坡度、坡比解决实际问题.(重点,难点)1.理解并掌握坡度、坡比的定义.2.学会用坡度、坡比解决实际问题.(重点,难点)多媒体课件.一、情境导入在现实生活中,测量某些量可以采取不同的方法,某斜面的截面如图所示,两位同学分别选取不同的点进行测量,从F处进行测量和从A处进行测量的数据如图所示.你能否通过所学知识求得该坡面的铅直高度?二、合作探究探究点一:坡度(坡比)问题【类型一】根据已知条件求坡面距离如图所示,在平面上种植树木时,要求株距(相邻两树间的水平距离)为4m,如果在坡度为0.75的山坡上种树,也要求株距离为4m,那么相邻两树间的坡面距离为()A.5mB.6mC.7mD.8m解析:由题知,水平距离l=4m,i=0.75,∴垂直高度h=l·i=4×0.75=3(m),∴坡面距离为32+42=5(m).故选A.方法总结:解此类题,首先根据坡度的定义,求得水平距离或垂直高度,再根据勾股定理,求得坡面距离.【类型二】根据已知条件求坡度一辆汽车从坡底走到坡顶共用30s,车速是2m/s,汽车行驶的水平距离是40m,则这个斜坡的坡度是W.解析:坡面距离为30×2=60m,水平距离为40m,∴垂直高度为602-402=205(m),∴坡度i=205∶40=5∶2.方法总结:根据坡度的定义i=hl,解题时需先求得水平距离l和垂直高度h,故填5∶2.探究点二:方位角问题如图所示,某渔船上的渔民在A处看见灯塔M在北偏东60°方向,这艘渔船以28海里/小时的速度航行30分钟到B处,在B处看见灯塔M在北偏东15°方向,此时灯塔M与渔船的距离是()A.72海里B.142海里C.7海里D.14海里解析:作BN⊥AM,垂足为N,由题意知,在Rt△ABN中,∠BAN=30°,AB=14海里,∴BN=AB·sin30°=7(海里),∴在Rt△BMN中,∠MBN=45°,BN=7海里,∴MB=BNcos45°=722=72(海里).故选A.方法总结:这类题目,首先根据题意画出几何图形,然后将问题转化为解直角三角形问题,最后解直角三角形.本课时所学习的内容强调实际应用,在教学过程中要引导学生展开联想,在日常生活中发现问题,联系所学知识并灵活运用,鼓励学生自己动手来解决问题.此类与实际应用练习结合紧密的知识,能更为有效地提升学生的应用能力精品文档精心整理。
人教版数学九年级下册第2课时 与方向角、坡角有关的应用问题 教案(表格式)(2024年)
义务教育学校课时教案备课时间:上课时间:PB 之间的距离.分析与解:易知P 点正东方向与AC 具有垂直关系,即图中 PC 丄AB ,若记垂足为C ,则图中出现了两个直角三角形APC 和直角三角形BPC.而在Rt △APC 中,知AP=80,∠APC=90°-65°=25°,故可求出线段PC 的长,即由AP PC=∠APC cos ,得PC=AP · cos25°=80·cos25°≈72.505,因此在Rt △BPC 中,由PB PCPB =∠C cos ,得,13056cos 505.7256cos ≈︒=︒=PC PB 从而可得知海轮在B 处时距离灯塔P 约130海里.你能小结出利用解直角三角形的知识解决实际问题的一般思路吗? 归纳:a.将实际问题抽象为数学问题;b.根据问题中的条件,适当选用锐角三角函数等解直角三角形;c.得到数学问题的答案;d.得到实际问题的答案. 练习1.海中有一个小岛A ,它周围8n mile 内有暗礁.渔船跟踪鱼群由西向东航行,在B 点测得小岛A 在北偏东60°方向上,航行12n mile 到达D 点,这时测得小岛A 在北偏东30°方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?知识点2 坡度类型的解直角三角形问题问题:我们经常说某某山的坡度很陡,那么坡度究竟是指什么呢?你能根据图示给出坡度的定义吗?1.坡面的垂直高度h 和水平宽度L 的比叫坡度(或叫坡比)用字母表示为Lh i =. 2.坡面与水平面的夹角记作α(叫坡角)则 tan α=Lh i =. 练习2.如图,拦水坝的横断面为梯形 ABCD ,斜面坡度 i =1:1.5 是指坡面的铅直高度 AF 与水平宽度 BF 的比,斜面坡度 i =1:3 是指DE 与CE 的比,根据图中数据,求: (1)坡角α 和 β 的度数;(2)斜坡 AB 的长(结果保留小数点后一位).三、随堂演练1. 已知外婆家在小明家的正东方,学校在外婆家的北偏西40°,外婆家到学校与小明家到学校的距离相等,则学校在小明家的( ) A.南偏东50° B.南偏东40° C.北偏东50° D.北偏东40°2.如图,某村准备在坡度为i=1:1.5的斜坡上栽树,要求相邻两棵树之间的水平距离为5 m ,则这两棵树在坡面上的距离AB 为 m.(结果保留根号)3.为方便行人横过马路,打算修建一座高5 m 的过街天桥.已知天桥的斜面坡度为1:1.5,计算斜坡AB 的长度(结果取整数).4.某型号飞机的机翼形状如图所示.根据图中数据计算AC,BD 和AB 的长度(结果保留小数点后两位).。
最新人教版初中数学九年级下册 28.2《方位角、坡度、坡角》教案
方位角、坡度、坡角掌握方位角的定义及表示方法教学目标:重点:理解坡度、坡比等相关概念在实际问题中的含义难点:与方位角有关的实际问题1.掌握方位角的定义及表示方法指或指方向线与目标方向线所成的小于90°的水平角,叫方位角,如图,目标方向线OA、OB、OC、OD的方位角分别表示, , , .2.理解坡度、坡比等相关概念在实际问题中的含义(1)坡度、坡比①如图,我们把坡面的高度h和宽度l的比叫做坡度(或叫做坡比),用字母i表示,即i=.坡度一般写成1∶m的形式.②坡面与的夹角α叫做坡角,坡角与坡度之间的关系为i==tanα.(2)水平距离、垂直距离(铅直高度)、坡面距离如图, 代表水平距离, 代表铅直高度, 代表坡面距离.重点一:与方位角有关的实际问题解答与方位角有关的实际问题的方法(1)弄清航行中方位角的含义,根据题意画出图形,画图时要先确定方向标,把实际问题转化为数学问题是解题的关键所在.(2)船在海上航行,在平面上标出船的位置、灯塔或岸上某目标的位置,关键在于确定基准点.当船在航行时,基准点在转移,画图时要特别注意.1. (2013河北)如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为( )(A)40海里(B)60海里 (C)70海里(D)80海里2.(2013荆门)A、B两市相距150千米,分别从A、B处测得国家级风景区中心C处的方位角如图所示,风景区区域是以C为圆心,45千米为半径的圆,tan α=1.627,tan β=1.373.为了开发旅游,有关部门设计修建连接AB两市的高速公路.问连接AB的高速公路是否穿过风景区,请说明理由.3. 如图,A、B、C分别是三个岛上的点,点C在点A的北偏东47°方向,点B在点A的南偏东79°方向,且A、B两点的距离约为5.5 km;同时,点B在点C的南偏西36°方向.若一艘渔船以30 km/h的速度从点A驶向点C捕鱼,需要多长时间到达(结果保留小数点后两位)?(参考数据:sin 54°≈0.81,cos 54°≈0.59,tan 47°≈1.07,tan 36°≈0.73,tan 11°≈0.19)重点二:与坡度、坡角有关的实际问题(1)坡度是坡角的正切值,坡度越大,坡角也越大.(2)与坡度有关的问题常与水坝有关,即梯形问题,常用的方法一般是过上底的顶点作下底的垂线,构造直角三角形和矩形来求解.4.(2014丽水)如图,河坝横断面迎水坡AB的坡比是1∶(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3 m,则坡面AB的长度是( )(A)9 m (B)6 m (C)6 m (D)3 m5. (2013安徽)如图,防洪大堤的横断面是梯形ABCD,其中AD∥BC,坡角α=60°.汛期来临前对其进行了加固,改造后的背水面坡角β=45°.若原坡长AB=20 m,求改造后的坡长AE.(结果保留根号)6.如图所示,某防洪指挥部发现长江边一处长500米,高10米,背水坡的坡角为45°的防洪大堤(横断面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:沿背水坡面用土石进行加固,并使上底加宽3米,加固后背水坡EF的坡比i=1∶.(1)求加固后坝底增加的宽度AF;(2)求共需多少立方米土石进行加固.1. 河堤横断面如图所示,迎水坡AB的坡比为1∶(坡比是坡面的铅直高度BC与水平宽度AC之比),则坡角α为( )(A)30° (B)45° (C)50° (D)60°2.王英同学从A地沿北偏西60°方向走100 m到B地,再从B地向正南方向走200 m到C地,此时王英同学离A地( )(A)150 m(B)50 m (C)100 m (D)100 m3.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为( )(A)5cos α(B)(C)5sin α(D)4.如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8 cm(如箭头所示),则木桩上升了( )(A)8tan 20° cm (B) cm(C)8sin 20° cm (D)8cos 20° cm5. (2013潍坊)如图,一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近.同时,从A处出发的救援船沿南偏西10°方向匀速航行.20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为( )(A)10海里/小时 (B)30海里/小时 (C)20海里/小时(D)30海里/小时6.在一次自助夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200 m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图),那么由此可知,B,C两地相距m.7. 如图所示,某公园入口处原有三级台阶,每级台阶高为18 cm,深为30 cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1∶5,则AC的长度是cm.8. 如图所示,一渔船上的渔民在A处看见灯塔M在北偏东60°方向,这艘船以28海里/时的速度向正东航行,半小时到B处,在B处看见灯塔M在北偏东15°方向,此时灯塔与渔船的距离是海里.9. (2013湘西州)钓鱼岛自古以来就是中国的神圣领土,为宣誓主权,我海监船编队奉命在钓鱼岛附近海域进行维权活动,如图,一艘海监船以30海里/小时的速度向正北方向航行,海监船在A处时,测得钓鱼岛C在该船的北偏东30°方向上,航行半小时后,该船到达点B处,发现此时钓鱼岛C与该船距离最短.(1)请在图中作出该船在点B处的位置;(2)求钓鱼岛C到B处距离(结果保留根号).10.(2013新疆)如图所示,一条自西向东的观光大道l上有A、B两个景点,A、B相距2 km,在A处测得另一景点C位于点A的北偏东60°方向,在B处测得景点C位于景点B的北偏东45°方向,求景点C到观光大道l的距离(结果精确到0.1 km).11.(2013烟台)如图,一艘海上巡逻船在A地巡航,这时接到B地海上指挥中心紧急通知:在指挥中心北偏西60°方向的C地,有一艘渔船遇险,要求马上前去救援.此时C地位于A地北偏西30°方向上,A地位于B地北偏西75°方向上,A、B两地之间的距离为12海里.求A、C两地之间的距离(参考数据:≈1.41,≈1.73,≈2.45,结果精确到0.1).12.如图,马路的两边CF、DE互相平行,线段CD为人行横道,马路两侧的A、B两点分别表示车站和超市.CD与AB所在直线互相平行,且都与马路两边垂直,马路宽20米,A,B相距62米,∠A=67°,∠B=37°(1)求CD与AB之间的距离;(2)某人从车站A出发,沿折线A→D→C→B去超市B,求他沿折线A→D→C→B到达超市比直接横穿马路多走多少米参考数据:sin 67°≈,cos 67°≈,tan67°≈,si n 37°≈,cos 37°≈,tan 37°≈. 13.如图,公路AB为东西走向,在点A北偏东36.5°方向上,距离5千米处是村庄M;在点A北偏东53.5°方向上,距离10千米处是村庄N(参考数据:sin 36.5°=0.6,cos 36.5°=0.8, tan 36.5°=0.75).(1)求M,N两村之间的距离;(2)要在公路AB旁修建一个土特产收购站P,使得M,N两村到P站的距离之和最短,求这个最短距离.教学反思:。
【人教版】九年级数学下册:第2课时与方向角、坡角有关的解直角三角形应用题教案
第 2 课时与方向角、坡角相关的解直角三角形应用题1.能运用解直角三角形解决航行问题.2.能运用解直角三角形解决斜坡问题.3.理解坡度 i=坡面的铅直高度=tan 坡角 .坡面的水平宽度阅读教材P76,自学“例5”和“概括”,掌握利用解直角三角形的知识解决方向角的实质问题.自学反应独立达成后小组内沟通①利用解直角三角形的知识解决实质问题的一般过程是:a.将实质问题抽象为数学识题,画出图形,转变为解的问题;b.依据条件的特色,适合地采用去解直角三角形;c.获得数学识题的答案;d.最后获得问题的答案.②已知外婆家在小明家的正东方,学校在外婆家的北偏西40°,外婆家到学校与小明家到学校的距离相等,则学校在小明家的方向 .活动 1小组议论例 1如图,海中一小岛A,该岛周围10 海里内有暗礁,今有货轮由西向东航行,开始在 A 岛南偏西 55°的 B 处,往东行驶20 海里后抵达该岛的南偏西25°的 C 处,以后,货轮持续向东航行,你以为货轮向东航行的途中会有触礁的危险吗?解 :如图 ,过点 A 作 AD⊥ BC 交 BC的延伸线于点 D.在 Rt △ ABD 中 ,∵ tan ∠ BAD=BD,AD∴ BD=AD · tan55° .在 Rt △ ACD 中,∵ tan ∠ CAD=CD,AD∴ CD=AD · tan25° .∵ BD=BC+CD,∴ AD · tan55° =20+AD ·tan25° .20≈20.79>10.∴ AD=tan55 tan25∴轮船持续向东行驶 ,不会碰到触礁危险 .应先求出点 A 距 BC 的近来距离, 若大于 10 则无危险, 若小于或等于 10 则有危险 .活动 2 追踪训练 (独立达成后展现学习成就 )如下图, A 、 B 两城市相距 100 km. 现计划在这两座城市间修建一条高速公路(即线段 AB).经测量,丛林保护中心 P 在 A 城市的北偏东 30°和 B 城市的北偏西45°的方向上, 已知丛林保护区的范围在以 P 点为圆心, 50 km 为半径的圆形地区内,请问计划修建的这条高速公路会不会穿越保护区 .为何? (参照数据 :3 ≈ 1.732, 2 ≈1.414)解这种题目时,第一弄清楚方向角的含义;其次是经过作垂线结构直角三角形,将问题转变为解直角三角形 .阅读教材 P77 练习 2,自学对于坡度的问题,弄懂坡度与坡角的实质意义,理解铅垂高度与水平宽度的实质意义 .自学反应独立达成后小组内沟通①拦水大坝的横断面为梯形,此中坡度i 是指与的比,这个值与坡角的值相等 .②坡度 i 一般写成 1∶ m 的形式,坡度 i 的值越大,表示坡角越,即坡越陡 .③已知一大坝的坡角为45°,则它的坡度i 的值等于.经过书上的例题掌握“化整为零,积零为整” “化曲为直,以直代曲”的方法来解决一些实质和数学识题 .活动 1小组议论例 2如图,水库大坝的横断面是梯形,坝顶宽 6 m,坝高 23 m,斜坡 AB 的坡度 i=1∶ 3,斜坡CD 的坡度 i′=1∶ 2.5,求斜坡AB 的坡角α,坝底宽AD 和斜坡 AB 的长 .(精准到 0.1 m)解 :如图 ,过点 B 作 BE⊥ AD 于点 E,过点 C 作 CF⊥AD 于点 F,在 Rt△ ABE和 Rt△ CDF中 , BE=1,CF=1,AE 3 FD 2.5∴AE=3BE=3× 23=69(m),FD=2.5CF=2.5× 23=57.5(m).∴AD=AE+EF+FD=69+6+57.5=132.5(m).∵斜坡的坡度i= 1≈0.333 3, 3∴BE=0.333 3,即 tanα =0.333 3. AE∴α≈ 18°26′ .∵BE=sinα , AB∴AB= BE≈23≈ 72.7(m).sin0.3162答 :斜坡 AB 的坡角α约为18° 26′ ,坝底宽 AD 为 132.5 m, 斜坡 AB 的长约为72.7 m.这种问题,第一要弄清楚坡度、坡角等名词的含义;其次,要将梯形予以切割,切割成特别的四边形和直角三角形.活动 2追踪训练如图,已知在山脚的 C 处测得山顶 A 的仰角为45°,沿着坡角为30°的斜坡行进400 m 到点 D 处,测得点 A 的仰角为60°,求出AB 的高度 .第 2 小题,要过点 D 作 AB 和 BC 的垂线,结构两个直角三角形和一个矩形,将AB 分红两段来求 .活动 3讲堂小结1.本节学习的数学知识:利用解直角三角形的知识解决实质问题.2.本节学习的数学方法:数形联合的思想和数学建模的思想.教课至此,敬请使用教案当堂训练部分.【预习导学1】自学反应①直角三角形锐角三角函数等实质②北偏东40°【合作研究1】活动 2追踪训练过点 P 作 PD 垂直 AB 于点 D,可求得 PD≈ 63.4 m>50 m,因此计划修建的这条高速公路不会穿越保护区 .【预习导学2】自学反应①坡面的铅垂高度它的水平宽度正切②大③1【合作研究2】活动 2追踪训练AB=(200 3 +200)m。
最新人教版初中数学九年级下册28.2《方位角、坡度、坡角》教案
最新⼈教版初中数学九年级下册28.2《⽅位⾓、坡度、坡⾓》教案⽅位⾓、坡度、坡⾓掌握⽅位⾓的定义及表⽰⽅法教学⽬标:重点:理解坡度、坡⽐等相关概念在实际问题中的含义难点:与⽅位⾓有关的实际问题1.掌握⽅位⾓的定义及表⽰⽅法指或指⽅向线与⽬标⽅向线所成的⼩于90°的⽔平⾓,叫⽅位⾓,如图,⽬标⽅向线OA、OB、OC、OD的⽅位⾓分别表⽰, , , .2.理解坡度、坡⽐等相关概念在实际问题中的含义(1)坡度、坡⽐①如图,我们把坡⾯的⾼度h和宽度l的⽐叫做坡度(或叫做坡⽐),⽤字母i表⽰,即i=.坡度⼀般写成1∶m的形式.②坡⾯与的夹⾓α叫做坡⾓,坡⾓与坡度之间的关系为i==tanα.(2)⽔平距离、垂直距离(铅直⾼度)、坡⾯距离如图, 代表⽔平距离, 代表铅直⾼度, 代表坡⾯距离.重点⼀:与⽅位⾓有关的实际问题解答与⽅位⾓有关的实际问题的⽅法(1)弄清航⾏中⽅位⾓的含义,根据题意画出图形,画图时要先确定⽅向标,把实际问题转化为数学问题是解题的关键所在.(2)船在海上航⾏,在平⾯上标出船的位置、灯塔或岸上某⽬标的位置,关键在于确定基准点.当船在航⾏时,基准点在转移,画图时要特别注意.1. (2013河北)如图,⼀艘海轮位于灯塔P的南偏东70°⽅向的M处,它以每⼩时40海⾥的速度向正北⽅向航⾏,2⼩时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为( )(A)40海⾥(B)60海⾥ (C)70海⾥(D)80海⾥2.(2013荆门)A、B两市相距150千⽶,分别从A、B处测得国家级风景区中⼼C处的⽅位⾓如图所⽰,风景区区域是以C为圆⼼,45千⽶为半径的圆,tan α=1.627,tan β=1.373.为了开发旅游,有关部门设计修建连接AB两市的⾼速公路.问连接AB的⾼速公路是否穿过风景区,请说明理由.3. 如图,A、B、C分别是三个岛上的点,点C在点A的北偏东47°⽅向,点B在点A的南偏东79°⽅向,且A、B两点的距离约为5.5 km;同时,点B在点C的南偏西36°⽅向.若⼀艘渔船以30 km/h的速度从点A驶向点C捕鱼,需要多长时间到达(结果保留⼩数点后两位)?(参考数据:sin 54°≈0.81,cos 54°≈0.59,tan 47°≈1.07,tan 36°≈0.73,tan 11°≈0.19)重点⼆:与坡度、坡⾓有关的实际问题(1)坡度是坡⾓的正切值,坡度越⼤,坡⾓也越⼤.(2)与坡度有关的问题常与⽔坝有关,即梯形问题,常⽤的⽅法⼀般是过上底的顶点作下底的垂线,构造直⾓三⾓形和矩形来求解.4.(2014丽⽔)如图,河坝横断⾯迎⽔坡AB的坡⽐是1∶(坡⽐是坡⾯的铅直⾼度BC与⽔平宽度AC之⽐),坝⾼BC=3 m,则坡⾯AB的长度是( )(A)9 m (B)6 m (C)6 m (D)3 m5. (2013安徽)如图,防洪⼤堤的横断⾯是梯形ABCD,其中AD∥BC,坡⾓α=60°.汛期来临前对其进⾏了加固,改造后的背⽔⾯坡⾓β=45°.若原坡长AB=20 m,求改造后的坡长AE.(结果保留根号)6.如图所⽰,某防洪指挥部发现长江边⼀处长500⽶,⾼10⽶,背⽔坡的坡⾓为45°的防洪⼤堤(横断⾯为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固⽅案是:沿背⽔坡⾯⽤⼟⽯进⾏加固,并使上底加宽3⽶,加固后背⽔坡EF的坡⽐i=1∶.(1)求加固后坝底增加的宽度AF;(2)求共需多少⽴⽅⽶⼟⽯进⾏加固.1. 河堤横断⾯如图所⽰,迎⽔坡AB的坡⽐为1∶(坡⽐是坡⾯的铅直⾼度BC与⽔平宽度AC之⽐),则坡⾓α为( )(A)30° (B)45° (C)50° (D)60°2.王英同学从A地沿北偏西60°⽅向⾛100 m 到B地,再从B地向正南⽅向⾛200 m到C地,此时王英同学离A地( )(A)150 m(B)50 m (C)100 m (D)100 m3.如图,先锋村准备在坡⾓为α的⼭坡上栽树,要求相邻两树之间的⽔平距离为5⽶,那么这两树在坡⾯上的距离AB为( )(A)5cos α(B)(C)5sin α(D)4.如图,将⼀个Rt△ABC形状的楔⼦从⽊桩的底端点P处沿⽔平⽅向打⼊⽊桩底下,使⽊桩向上运动,已知楔⼦斜⾯的倾斜⾓为20°,若楔⼦沿⽔平⽅向前移8 cm(如箭头所⽰),则⽊桩上升了( )(A)8tan 20° cm (B) cm(C)8sin 20° cm (D)8cos 20° cm5. (2013潍坊)如图,⼀渔船在海岛A南偏东20°⽅向的B处遇险,测得海岛A与B的距离为20海⾥,渔船将险情报告给位于A处的救援船后,沿北偏西80°⽅向向海岛C靠近.同时,从A处出发的救援船沿南偏西10°⽅向匀速航⾏.20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航⾏的速度为( )(A)10海⾥/⼩时 (B)30海⾥/⼩时 (C)20海⾥/⼩时(D)30海⾥/⼩时6.在⼀次⾃助夏令营活动中,⼩明同学从营地A出发,要到A地的北偏东60°⽅向的C处,他先沿正东⽅向⾛了200 m到达B地,再沿北偏东30°⽅向⾛,恰能到达⽬的地C(如图),那么由此可知,B,C两地相距m.7. 如图所⽰,某公园⼊⼝处原有三级台阶,每级台阶⾼为18 cm,深为30 cm,为⽅便残疾⼈⼠,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1∶5,则AC的长度是cm.8. 如图所⽰,⼀渔船上的渔民在A处看见灯塔M在北偏东60°⽅向,这艘船以28海⾥/时的速度向正东航⾏,半⼩时到B处,在B处看见灯塔M在北偏东15°⽅向,此时灯塔与渔船的距离是海⾥.9. (2013湘西州)钓鱼岛⾃古以来就是中国的神圣领⼟,为宣誓主权,我海监船编队奉命在钓鱼岛附近海域进⾏维权活动,如图,⼀艘海监船以30海⾥/⼩时的速度向正北⽅向航⾏,海监船在A处时,测得钓鱼岛C在该船的北偏东30°⽅向上,航⾏半⼩时后,该船到达点B处,发现此时钓鱼岛C与该船距离最短.(1)请在图中作出该船在点B处的位置;(2)求钓鱼岛C到B处距离(结果保留根号).10.(2013新疆)如图所⽰,⼀条⾃西向东的观光⼤道l上有A、B两个景点,A、B相距2 km,在A处测得另⼀景点C位于点A的北偏东60°⽅向,在B处测得景点C位于景点B的北偏东45°⽅向,求景点C到观光⼤道l的距离(结果精确到0.1 km).11.(2013烟台)如图,⼀艘海上巡逻船在A地巡航,这时接到B地海上指挥中⼼紧急通知:在指挥中⼼北偏西60°⽅向的C地,有⼀艘渔船遇险,要求马上前去救援.此时C地位于A地北偏西30°⽅向上,A地位于B地北偏西75°⽅向上,A、B两地之间的距离为12海⾥.求A、C两地之间的距离(参考数据:≈1.41,≈1.73,≈2.45,结果精确到0.1).12.如图,马路的两边CF、DE互相平⾏,线段CD为⼈⾏横道,马路两侧的A、B两点分别表⽰车站和超市.CD与AB所在直线互相平⾏,且都与马路两边垂直,马路宽20⽶,A,B相距62⽶,∠A=67°,∠B=37°(1)求CD与AB之间的距离;(2)某⼈从车站A出发,沿折线A→D→C→B去超市B,求他沿折线A→D→C→B到达超市⽐直接横穿马路多⾛多少⽶参考数据:sin 67°≈,cos 67°≈,tan67°≈,si n 37°≈,cos 37°≈,tan 37°≈. 13.如图,公路AB为东西⾛向,在点A北偏东36.5°⽅向上,距离5千⽶处是村庄M;在点A北偏东53.5°⽅向上,距离10千⽶处是村庄N(参考数据:sin 36.5°=0.6,cos 36.5°=0.8, tan 36.5°=0.75).(1)求M,N两村之间的距离;(2)要在公路AB旁修建⼀个⼟特产收购站P,使得M,N两村到P站的距离之和最短,求这个最短距离.教学反思:。
初中数学人教版九年级下册优质说课稿28-2-2 第2课时《 方向角和坡角问题》
初中数学人教版九年级下册优质说课稿28-2-2 第2课时《方向角和坡角问题》一. 教材分析《方向角和坡角问题》是人教版九年级下册数学的一节课。
本节课的主要内容是让学生理解方向角和坡角的概念,掌握它们的计算方法,并能够运用这些知识解决实际问题。
教材通过丰富的实例和图示,引导学生探究方向角和坡角的特点,培养学生的空间想象能力和解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识,对图形的认识和空间想象有一定的基础。
但是,对于方向角和坡角这两个概念,学生可能比较陌生,需要通过具体的实例和图示来帮助他们理解和掌握。
此外,学生可能对角度的计算方法不熟悉,需要通过练习来提高计算能力。
三. 说教学目标1.知识与技能:学生能够理解方向角和坡角的概念,掌握它们的计算方法,并能够运用这些知识解决实际问题。
2.过程与方法:学生通过观察实例和图示,培养空间想象能力和解决问题的能力。
3.情感态度与价值观:学生能够积极参与课堂活动,克服困难,增强对数学学科的兴趣和自信心。
四. 说教学重难点1.重点:学生能够理解方向角和坡角的概念,掌握它们的计算方法。
2.难点:学生能够运用方向角和坡角的知识解决实际问题。
五. 说教学方法与手段本节课采用问题驱动的教学方法,通过实例和图示引导学生探究方向角和坡角的特点。
同时,运用多媒体教学手段,展示清晰的图像和动画,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考方向角和坡角的概念。
2.新课导入:介绍方向角和坡角的定义,并通过图示和实例让学生理解它们的概念。
3.计算方法讲解:讲解方向角和坡角的计算方法,并通过练习让学生巩固知识点。
4.实际问题解决:引导学生运用方向角和坡角的知识解决实际问题,培养学生的应用能力。
5.总结与拓展:对本节课的内容进行总结,并提出相关的拓展问题,激发学生的思考。
七. 说板书设计板书设计主要包括方向角和坡角的定义、计算方法以及实际问题解决的方法。
初中数学人教版九年级下册同步教学设计28-2-2 第2课时《 方向角和坡角问题》
初中数学人教版九年级下册同步教学设计28-2-2 第2课时《方向角和坡角问题》一. 教材分析《方向角和坡角问题》是人教版初中数学九年级下册的一章内容。
本节课主要学习了方向角和坡角的概念,以及它们在实际问题中的应用。
通过本节课的学习,学生能够理解方向角和坡角的概念,掌握计算方法,并能运用所学知识解决实际问题。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对图形的认知和空间想象能力有一定的提升。
但是,对于方向角和坡角这两个概念,学生可能较为陌生,需要通过具体的实例和练习来理解和掌握。
此外,学生可能对于实际问题中的方向角和坡角的计算存在一定的困难,需要教师进行详细的讲解和指导。
三. 教学目标1.知识与技能:学生能够理解方向角和坡角的概念,掌握计算方法,并能运用所学知识解决实际问题。
2.过程与方法:通过观察实例,学生能够培养空间想象能力,提高解决问题的能力。
3.情感态度与价值观:学生能够积极参与课堂活动,增强对数学学科的兴趣和自信心。
四. 教学重难点1.重点:方向角和坡角的概念及计算方法。
2.难点:实际问题中方向角和坡角的计算。
五. 教学方法采用问题驱动法、案例分析法、合作学习法等教学方法。
通过具体的实例和练习,引导学生观察、思考、讨论和解决问题,提高学生的空间想象能力和解决问题的能力。
六. 教学准备1.教师准备:准备相关的实例和练习题,制作PPT课件。
2.学生准备:预习相关内容,了解方向角和坡角的概念。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的主题,如“小明从A地出发,向正北方向行进了2公里,然后向右转,继续行进了3公里,问小明现在的位置是哪里?”让学生思考并回答问题,引发学生对方向角和坡角的兴趣。
2.呈现(10分钟)教师通过PPT课件呈现方向角和坡角的定义和计算方法,结合实例进行讲解,让学生直观地理解这两个概念。
3.操练(10分钟)教师给出一些具体的练习题,让学生独立完成。
解直角三角形方位角、坡度角讲课教案
解直角三角形方位角、坡度角讲课教案一、教学内容本节课教学内容选自《数学》第九章第二节,主题为“解直角三角形方位角、坡度角”。
详细内容包括:回顾直角三角形的性质,掌握方位角和坡度角的概念,学会运用三角函数解决实际问题,包括计算方位角和坡度角。
二、教学目标1. 理解并掌握方位角和坡度角的概念,能够区分它们在实际问题中的应用。
2. 学会运用三角函数求解直角三角形中的方位角和坡度角。
3. 能够将所学知识应用于实际问题,提高解决实际问题的能力。
三、教学难点与重点教学难点:三角函数在求解方位角和坡度角中的应用。
教学重点:方位角和坡度角的概念及其在直角三角形中的应用。
四、教具与学具准备教具:三角板、量角器、直尺、多媒体教学设备。
学具:三角板、量角器、直尺、练习本、铅笔。
五、教学过程1. 导入:通过实际情景引入,如房屋建筑的斜坡、灯塔观测等,引导学生思考如何求解方位角和坡度角。
2. 知识讲解:a. 回顾直角三角形的性质。
b. 介绍方位角和坡度角的概念。
c. 讲解三角函数在求解方位角和坡度角中的应用。
3. 例题讲解:讲解两个典型例题,一个求解方位角,一个求解坡度角,详细演示解题过程。
4. 随堂练习:布置两道练习题,要求学生在课堂上完成,并及时给予反馈。
六、板书设计1. 解直角三角形方位角、坡度角2. 内容:a. 直角三角形的性质b. 方位角和坡度角的概念c. 三角函数在求解方位角和坡度角中的应用d. 典型例题及解题步骤e. 随堂练习题目七、作业设计1. 作业题目:a. 求解一个直角三角形的方位角。
b. 求解一个直角三角形的坡度角。
2. 答案:见附录。
八、课后反思及拓展延伸1. 反思:对本节课的教学效果进行反思,针对学生的掌握情况,调整教学方法。
2. 拓展延伸:a. 探讨非直角三角形中方位角和坡度角的求解方法。
b. 了解其他学科中方位角和坡度角的应用,如地理、物理等。
重点和难点解析一、教学难点与重点的关注细节1. 三角函数在求解方位角和坡度角中的应用。
【人教版】九年级数学下册-第2课时 方向角和坡角问题(导学案)
28.2.2 应用举例第2课时方向角和坡角问题一、新课导入1.课题导入情景:如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80 n mile 的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处,这时,海轮所在的B处距离灯塔P有多远?问题:怎样由方向角确定三角形的内角?2.学习目标(1)能根据方向角画出相应的图形,会用解直角三角形的知识解决方位问题.(2)知道坡度与坡角的含义,能利用解直角三角形的知识解决与坡度有关的实际问题.3.学习重、难点重点:会用解直角三角形的知识解决方向角、坡度的相关问题.难点:将实际问题转化为数学问题(即数学建模).二、分层学习1.自学指导(1)自学内容:教材P76例5.(2)自学时间:10分钟.(3)自学方法:独立探索解题思路,然后同桌之间讨论,写出规范的解题过程.(4)自学参考提纲:①如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处,这时,海轮所在的B处距离灯塔P有多远?(结果取整数,参考数据:cos25°≈0.91,sin25°≈0.42,tan25°≈0.47,sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)a.根据已知在图中标出方向角:如图所示.b.根据方向角得到三角形的内角:在△PAB中,∵海轮沿正南方向航行,∴∠A= 65°,∠B= 34°,PA= 80 .c.作高构造直角三角形:如图所示.d.写出解答过程:在Rt△APC中,PC=PA·cos(90°-65°)=80×cos25°≈72.505(n mile).在Rt△BPC中,∠B=34°,PB=72505sin sin34.PCB=︒≈130(n mile).②如图,海中有一个小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°的方向上,航行12海里到达D点,这时测得小岛A在北偏东30°的方向上,如果渔船不改变航向继续向东航行,有没有触礁的危险?解:过A作AE⊥BD于E.由题意知:∠ABE=30°,∠ADE=60°.∴∠BAD=60°-30°=30°=∠ABD.∴AD=BD=12.∴AE=AD·sin60°=12×32=63(海里)>8海里.∴无触礁的危险.2.自学:结合自学指导进行自学.3.助学(1)师助生:①明了学情:观察学生自学提纲的答题情况.②差异指导:根据学情对学习有困难的学生进行个别或分类指导. (2)生助生:小组内互相交流、研讨.4.强化:利用解直角三角形的知识解方向角问题的一般思路.1.自学指导(1)自学内容:教材P77.(2)自学时间:5分钟.(3)自学方法:先独立归纳利用解直角三角形的知识解决实际问题的一般思路,然后对照课本P77的内容归纳,进行反思总结.(4)自学参考提纲:①利用解直角三角形的知识解决实际问题的一般思路:a.将实际问题抽象为数学问题;b.根据问题中的条件,适当选用锐角三角函数等解直角三角形;c.得到数学问题的答案;d.得到实际问题的答案.②练习:如图,拦水坝的横断面为梯形ABCD,斜面坡度i=1∶1.5是指坡面的铅直高度AF与水平宽度BF的比,斜面坡度i=1∶3是指DE与CE的比,根据图中数据,求:a.坡角α和β的度数;b.斜坡AB的长(结果保留小数点后一位).2.自学:学生可参考自学指导进行自学.3.助学(1)师助生:①明了学情:明了学生解答问题的情况.②差异指导:根据学情进行相应指导.(2)生助生:小组内互相交流、研讨.4.强化(1)坡度、坡角的含义及其关系,梯形问题的解题方法.(2)在自学参考提纲第②题中,若补充条件“坝顶宽AD=4 m”,你能求出坝底BC的长吗?(3)利用解直角三角形的知识解决实际问题的一般思路:三、评价1.学生自我评价:在这节课的学习中你有哪些收获?掌握了哪些解题技巧和方法?2.教师对学生的评价:(1)表现性评价:点评学生学习的主动性、小组交流协作情况、解题方法的掌握情况等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时应先认知“方向角”“坡度”及其所代表的实际意义,添作适当的辅助线,构建直角三角形.然后结合解直角三角形的有关知识加以解答,层层展开,步步深入.一、基础巩固(70分)1.(10分)已知外婆家在小明家的正东方,学校在外婆家的北偏西40°,外婆家到学校与小明家到学校的距离相等,则学校在小明家的(D)A.南偏东50°B.南偏东40°C.北偏东50°D.北偏东40°2.(10分)如图,某村准备在坡度为i=1∶1.5的斜坡上栽树,要求相邻两棵树之间的水平距离为5 m,则这两棵树在坡面上的距离AB为5133m.(结果保留根号)3.(10分)在菱形ABCD中,AB=13,锐角B的正弦值sinB=513,则这个菱形的面积为65 .4.(20分)为方便行人横过马路,打算修建一座高5 m的过街天桥.已知天桥的斜面坡度为1∶1.5,计算斜坡AB的长度(结果取整数).解:∵i=115.ACBC=,AC=5,∴BC=1.5×5=7.5.∴AB=228125.AC BC+=≈9(m).5.(20分)一轮船原在A处,它的北偏东45°方向上有一灯塔P,轮船沿着北偏西30°方向航行4 h到达B处,这时灯塔P正好在轮船的正东方向上.已知轮船的航速为25 n mile/h,求轮船在B处时与灯塔的距离(结果可保留根号).解:过点A作AC⊥BP于点C.由题意知:∠BAC=30°,∠CAP=45°,AB=25×4=100.在Rt△ABC中,BC=12AB=50,AC=32AB=503.在Rt△ACP中,CP=AC=503.∴BP=BC+CP=50(3+1)(n mile).二、综合应用(20分)6.(20分)某型号飞机的机翼形状如图所示.根据图中数据计算AC,BD和AB 的长度(结果保留小数点后两位).解:如图所示,在Rt△BDE中,BE=5.00,∠DBE=30°,∴DE=BE·tan30°=533,BD=103cos303BE=︒≈5.77(m).在Rt△ACF中,CF=BE=5.00,∠FCA=45°,∴AF=CF=5.00,∴AC=2CF=52≈7.07(m).∴AB=BF-AF=DE+CD-AF=533+3.40-5.00≈1.29(m).三、拓展延伸(10分)7.(10分)海中有一小岛P,在以P为圆心、半径为162 n mile的圆形海域内有暗礁,一艘船自西向东航行,它在A处时测得小岛P位于北偏东60°方向上,且A,P之间的距离为32 n mile.若轮船继续向正东方向航行,轮船有无触礁危险?请通过计算加以说明.若有危险,轮船自A处开始至少沿东偏南多少度的方向航行,才能安全通过这一海域?解:如图,∠PAB=30°,AP=32.∴PB=12AP=16(n mile).∴PB<16n mile.∴轮船有触礁危险.假设轮船沿东偏南α恰好能安全通过,此时航线AC与⊙P相切,即PC⊥AC.又∵AP=32,,∴∠PAC=45°,∴α=15°.∴轮船自A处开始至少沿东偏南15度方向航行,才能安全通过这一海域.。
解直角三角形方位角、坡度角讲课教案
解直角三角形方位角、坡度角讲课教案一、教学内容本节课我们将探讨教材第十二章“直角三角形的应用”中的方位角与坡度角。
具体内容包括:1. 理解方位角的概念,掌握其在实际情境中的应用;2. 学习坡度角的计算,了解其在工程及地理等方面的实际意义;3. 掌握运用三角函数解决实际问题时,如何确定直角三角形的各个角度和边长。
二、教学目标1. 学生能够理解并运用方位角描述物体在空间中的位置关系;2. 学生能够通过计算得出坡度角,并应用于实际情境中;3. 学生能够运用三角函数解决直角三角形相关问题。
三、教学难点与重点1. 教学难点:方位角与坡度角的实际应用,以及三角函数在解决直角三角形问题中的应用;2. 教学重点:理解方位角和坡度角的概念,掌握计算方法,并能应用于实际情境。
四、教具与学具准备1. 教具:三角板、量角器、直尺、多媒体教学设备;2. 学具:练习本、铅笔、三角板、量角器。
五、教学过程1. 实践情景引入:通过展示一座山和观察点的位置关系,引导学生思考如何描述这个关系;2. 知识讲解:(1)方位角的概念及计算方法;(2)坡度角的概念及计算方法;(3)三角函数在解决直角三角形问题中的应用;3. 例题讲解:(1)通过实际例题,讲解如何计算方位角;(2)通过实际例题,讲解如何计算坡度角;4. 随堂练习:让学生分组讨论并完成指定的练习题;5. 答疑环节:对学生在练习中遇到的问题进行解答;六、板书设计1. 方位角、坡度角的概念;2. 方位角、坡度角的计算方法;3. 三角函数在解决直角三角形问题中的应用;4. 例题解答步骤;5. 练习题。
七、作业设计1. 作业题目:(1)已知一个观察点A,以及目标点B的方位角,求目标点B 到观察点A的距离;(2)已知一个斜坡的长度和高度,求该斜坡的坡度角。
2. 答案:八、课后反思及拓展延伸1. 反思:本节课学生对方位角和坡度角的概念理解是否到位,能否将其应用于实际情境;2. 拓展延伸:引导学生思考如何将方位角和坡度角应用于其他领域,如航海、建筑等。
教案:解直角三角形的应用(第二课时)刘新旺
abcB CA铅直线视线仰角 俯角视线 春来初中集体备课教学案春来初中集体备课教学案年级年级九科别科别 数学数学周次周次月 日主备课人主备课人刘新旺刘新旺课题课题 解直角三角形的应用(第二课时)一、 教学目标:教学目标:1. 知道方向角、方位角、坡角、坡比(坡度)的意义. 2. 能将有关实际问题转化为解直角三角形的问题. 3. 培养严谨致学的学习态度. 二、 教学重点:教学重点:把实际问题转化为解直角三角形的问题. 三、 教学难点:教学难点:将实际问题中的数量关系抽象为直角三角形中元素间的关系. 四、 教具准备:课件教具准备:课件 五、 教学过程:教学过程: (一)知识回顾:(一)知识回顾: 1.解直角三角形解直角三角形在直角三角形中,除直角外,由已知两元素(必有一边)求其余未知元素的过程叫解直角三角形. 2.解直角三角形的依据解直角三角形的依据(1)三边之间的关系: a 2+b 2=c 2(勾股定理); (2)两锐角之间的关系:∠ A + ∠ B = 90º;(3)边角之间的关系: sinA =a ccosA =b ctanA =a b3、仰角和俯角、仰角和俯角 在进行测量时,在进行测量时,从下向上看,视线与水平线的夹角叫做仰角; 从上往下看,视线与水平线的夹角叫做俯角. (二)探究新知:(二)探究新知:65°34°PCA 30° 45° BOA(结果保留小数点后一位)?一位)?900的角,叫BADF60°30°i=1:1.5 .问:根据定义,你能用坡度来刻画斜坡的倾斜、即陡的程度吗? 楼厅比楼外的地面高0.4米,求残疾人通道的坡度与坡角 (角,其他近似数取四位有效数字). hLa()222223AD D Fx x x--=A F 3tan 30x=31:1.6 2.8 1.2).米22223.20.4AB BC --AD6mα βi =1:3i =1:1.5 B F =2269117313+=»。
第2课时方向角和坡角问题省名师优质课赛课获奖课件市赛课一等奖课件
∴x=65×tan65°≈139.
答:这座金字塔原来高约139m.
8.如图,一枚运载火箭从底面L处发射.当火箭到 达A点时,从位于底面R处旳雷达站测得AR旳距 离是6Km,仰角为43°;1 s后火箭到达B点,此 时测得仰角为45.54°,这枚火箭从A到B旳平均 速度是多少(成果取小数点后两位)?
解:在Rt△ALR中,AL=AR· sin∠ARL=6×sin43°≈ 4.092 (km),
练习
1.海中有一种小岛A,它周围8n mile内有暗礁. 渔船跟踪鱼群由西向东航行,在B点测得小岛 A在北偏东60°方向上,航行12n mile到达D点, 这时测得小岛A在北偏东30°方向上,假如渔 船不变化航线继续向东航行,有无触礁旳危险?
北
西
东
南
60° B
A
30° D
解:过A点作AE⊥BD于E点. 易证∠A=∠ABD=30°, ∴AD=BD=12 n mile.
cosB BD, AB BD = 5 6.2(m).
AB
cosB cos36
3. 如图,某飞机于空中A处探测到目旳C,此 时飞行高度AC=1200m,从飞机上看地平面 指挥台B旳俯角=16°31′。求飞机A到指挥台 B旳距离?(成果保存整数)
解:由题意可知,在Rt△ABC中,
sinB AC ,B 1631, AB
学习重、难点: 要点:会用解直角三角形旳知识处理方向角、坡
度旳有关问题. 难点:将实际问题转化为数学问题(即数学建模).
推动新课
知识点1 方向角类型旳解直角三角形问题
例1 一艘海轮位于灯塔 P 旳北偏东 65°方向, 距离灯塔 80 n mile 旳 A 处,它沿正南方向航 行一段时间后,到达位于灯塔 P 旳南偏东 34°方向上旳 B 处,这时, B 处距距离灯塔 P 有多远(成果取整数)? 思索:根据题意,你能画出示意图吗?
解直角三角形方位角、坡度角讲课精品教案
解直角三角形方位角、坡度角讲课精品教案一、教学内容本节课选自《初中数学》八年级下册,第九章《直角三角形的应用》,具体内容包括:直角三角形方位角与坡度角的计算。
通过本章学习,学生将掌握实际情境中直角三角形的应用,特别是在计算方位角和坡度角方面的知识。
二、教学目标1. 知识与技能:掌握直角三角形方位角和坡度角的计算方法,能运用所学知识解决实际问题。
2. 过程与方法:培养学生运用数学知识解决实际问题的能力,提高逻辑思维和空间想象能力。
3. 情感态度与价值观:激发学生学习数学的兴趣,培养团队协作精神。
三、教学难点与重点教学重点:直角三角形方位角和坡度角的计算方法。
教学难点:如何将实际问题抽象成直角三角形,运用数学知识解决问题。
四、教具与学具准备1. 教具:多媒体教学设备、直角三角形模型、量角器、计算器。
2. 学具:直角三角形图纸、量角器、计算器。
五、教学过程1. 实践情景引入利用多媒体展示实际生活中与直角三角形相关的建筑、地理等图片,引导学生关注直角三角形在实际问题中的应用。
2. 知识讲解(1)方位角的计算结合教材内容,讲解直角三角形中方位角的定义,以及计算方法。
(2)坡度角的计算介绍坡度角的概念,以及如何利用直角三角形计算坡度角。
3. 例题讲解(1)方位角例题给出具体问题,引导学生运用所学知识解决问题。
(2)坡度角例题结合实际问题,讲解如何计算坡度角。
4. 随堂练习发给学生直角三角形图纸,让学生分组进行计算,巩固所学知识。
六、板书设计1. 方位角的定义及计算方法2. 坡度角的定义及计算方法3. 例题解答步骤七、作业设计1. 作业题目:(2)结合实际情境,设计一道与直角三角形方位角或坡度角有关的题目。
2. 答案:(1)见教材课后习题解答。
(2)根据实际情况自拟答案。
八、课后反思及拓展延伸1. 反思:本节课学生对方位角和坡度角的计算掌握情况,以及在实际问题中的应用能力。
2. 拓展延伸:引导学生关注生活中直角三角形的应用,提高学生运用数学知识解决实际问题的能力。
2018年九年级数学上4.4.2坡度与坡角方向角相关问题教案新版湘教版
2018年九年级数学上4.4.2坡度与坡角方向角相关问题教案新版湘教版第4章锐角三角函数4.4 解直角三角形的应用第2课时坡度与坡脚、方位角相关问题课题第2课时坡度与坡脚、方位角相关问题授课人教学目标知识技能1. 弄清铅垂高度、水平宽度、坡度(或坡比)、坡角等概念,并会解答相应的实际问题.2.能应用解直角三角形的知识,解答综合的实际问题.数学思考把坡度、坡角等实际问题转化为解直角三角形的问题来解决.问题解决通过阅读教材、结合看图、讨论交流、例题学习来了解坡高、坡度、坡角及其关系,并获得解答应用题的一些经验.情感态度通过本节课的学习一方面增强学生对解直角三角形的应用意识,另一方面培养学生耐心、细致、认真的学习态度.教学重点理解坡度和坡角的概念.教学难点利用坡度和坡角等条件,解决有关的实际问题.授课类型新授课课时教具多媒体教学活动教学步骤师生活动设计意图回顾如图4-4-51,在四边形ABCD中,AD∥BC,AB=CD=6米,若∠B的余弦值是,上底AD的长是2 米,求它的高AE 和四边形ABCD的面积.图4-4-51[答案: AE=2米,四边形ABCD的面积是12 平方米]学生回忆并回答,为本课的学习提供迁移或类比方法.活动一:创设情境导入新课【课堂引入】为了防汛,要修一段长为a千米的河堤,需要多少土石方,多少劳动力,多少资金,都要先计算筹备,如何计算?首先要知道河堤的横断面是什么形状.修好后如何检验是否符合设计标准并进行经费的决算,这些都取决于河堤的横断面的面积如何测算.那么究竟如何测算呢?这就需要我们探究坡度、坡角等问题.鼓励学生思考,让学生初步知道坡角、坡度等在实际生活中的应用.活动二:实践探究交流新知【探究1】 (多媒体出示)有关概念1.铅垂高度h.2.水平宽度l.图4-4-523.坡度(坡比)i:坡面的铅垂高度h和水平宽度l的比. i==tanα.4.坡角α:坡面与水平面的夹角.显然,坡度i越大,坡角α就越大,坡面就越陡.【探究2】 (多媒体出示)求坝高某水坝的坡度i=1∶,坡长AB=20米,求水坝的高度.如图4-4-53:图4-4-53∵坡度i=1∶,∴设AC=x,BC=x,根据勾股定理,得AC2+BC2=AB2,则x2+(x)2=202,解得x=10.即水坝的高度为10米.【探究3】 (多媒体出示)求斜坡长如图4-4-54所示,河堤横断面迎水坡AB的坡比是1∶,堤高BC=5米,求坡面AB的长.河堤横断面迎水坡AB的坡比是1∶,即==,∴∠BAC=30°,∴AB=2BC=2×5=10(米).图4-4-54【探究4】 (多媒体出示)探究坡角某水库大坝的横断面是梯形,坝内斜坡的坡度i=1∶,坝外斜坡的坡度i=1∶1,求坝内斜坡的坡角α及坝外斜坡的坡角β.坝内斜坡的坡度i=1∶,说明tanα=,则α=30°.坝外斜坡的坡度i=1∶1,说明tanβ=1,β=45°.1.本活动的设计意在引导学生通过自主探究,合作交流,使其对具体问题的认识从形象到抽象,训练学生能从实际问题中抽象出数学知识.旨在培养学生的问题意识;提高学生的抽象思维能力.2.四个探究主要是师生共同探究坡度、坡角、斜坡长的求法与简单的应用.活动三:开放训练体现应用【应用举例】例1 如图4-4-55,小明从点A出发,沿着坡角为α的斜坡向上走了0.65千米到达点B,sinα=,然后又沿着坡度为i=1∶4的斜坡向上走了1千米到达点C.问小明从A点到C点上升的高度CD是多少千米(结果保留根号)?图4-4-55变式如图4-4-56,在山坡上植树,已知山坡的倾斜角α是20°,小明种植的两棵树之间的坡面距离AB是6米.要求相邻两棵树间的水平距离AC在5.3~5.7米范围内,问小明种植的这两棵树是否符合这个要求?(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)[答案:小明种植的这两棵树符合要求]图4-4-56例2 [益阳中考] 益阳市为了改善市区交通状况,计划在康富路的北端修建通往资江北岸的新大桥.如图4-4-57,新大桥的两端位于A,B两点,小张为了测量A,B之间的河宽,在垂直于新大桥AB的直线型道路l上测得如下数据:∠BDA =76.1°,∠BCA=68.2°,CD=82米.求AB的长(精确到0.1米).参考数据:sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0,sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.[答案: AB的长约为546.7米]图4-4-57例3 [十堰中考] 如图4-4-58,轮船在A处观测灯塔C 位于北偏西70°方向上,轮船从A处以每小时20海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B处,此时观测到灯塔C位于北偏西25°方向上,则灯塔C与码头B 的距离是__24__海里.(结果保留整数,参考数据:≈1.4,≈1.7,≈2.4)图4-4-58例1考查了学生对解直角三角形的应用,解题的关键是通过作垂线构造直角三角形.同时引导学生作辅助线的思路和方法.例2主要是利用解直角三角形,求河宽.使学生在不同知识背景下灵活运用解直角三角形的知识解决问题.【拓展提升】1.利用坡度求缆绳长例4 [山西中考] 如图4-4-59,点A,B,C表示某旅游景区三个缆车站的位置,线段AB,BC表示连接缆车站的钢缆,已知A,B,C三点在同一竖直平面内,它们的海拔高度AA′,BB′,CC′分别为110米,310米,710米,钢缆AB 的坡度i=1∶2,钢缆BC的坡度i=1∶1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度i是指坡面的铅直高度与水平宽度的比)图4-4-59[答案:钢缆AC的长度为1000米]2.构造直角三角形求坡高和坡宽例5 [宿迁中考] 如图4-4-60是某通道的侧面示意图,已知AB∥CD∥EF,AM∥BC∥DE,AB=CD=EF,∠AMF=90°,∠BAM=30°,AB=6 m.(1)求FM的长;(2)连接AF,若sin∠FAM=,求AM的长.图4-4-60[答案: (1)9 m (2)18 m]例3考查了解直角三角形的应用——方位角,解题的关键是添加辅助线,将三角形分割为含特殊角的直角三角形.例4,例5主要考查解直角三角形的应用,解题的关键是构造直角三角形.此类问题容易出错的地方是构造不出直角三角形.活动四:课堂总结反思【当堂训练】1.教材P129练习中的T1,T2.2.教材P129习题4.4中的T1,T2. 当堂检测,及时反馈学习效果. 【知识网络】提纲挈领,重点突出.【教学反思】①[授课流程反思]用来源于学生比较熟悉的实际问题吸引他们的注意力,激发他们的好奇心,体会数学来源于生活并服务于生活,诱发学生对新知识的渴求.教师在新课引入时借助多媒体展示河堤的相关图片,边讲解边观看,最后落入到探究坡度、坡角等问题上.②[讲授效果反思]新课进行中主要有两个环节:一是师生共同探究简单的、单一的坡度、坡角、坡长和坡高之间的关系;二是以近年的中考题为例展示坡度、坡角、方位角的应用.通过四道不同类型、不同角度的例题展示,学生对这类问题会有比较全面的认识.③[师生互动反思]___________________________________________ ___________________________________________ ④[习题反思]好题题号_____________________________________ 错题题号____________________________________反思,更进一步提升.。
方向角坡度教案
方向角坡度教案教案标题:方向角坡度教案教学目标:1. 理解和应用方向角和坡度的概念;2. 能够计算和解释方向角和坡度的意义;3. 掌握方向角和坡度在实际问题中的应用。
教学内容:1. 方向角的概念和计算方法;2. 坡度的概念和计算方法;3. 方向角和坡度在地理和工程中的应用。
教学步骤:引入活动:1. 利用实际生活中的例子引导学生思考方向角和坡度的重要性,并与日常生活中的实际问题联系起来。
知识讲解:2. 介绍方向角的概念和计算方法,包括使用罗盘和角度计算工具;3. 介绍坡度的概念和计算方法,包括使用高度差和水平距离计算工具。
示例演练:4. 提供一些实际问题的示例,让学生运用所学知识计算方向角和坡度,并解释其意义;5. 引导学生进行小组讨论,分享各自的解答和思考过程。
拓展应用:6. 引导学生思考方向角和坡度在地理和工程中的应用,并提供相关案例;7. 让学生尝试解决一些实际问题,运用方向角和坡度的知识进行分析和计算。
总结回顾:8. 总结方向角和坡度的概念和计算方法;9. 回顾方向角和坡度在实际问题中的应用,并强调其重要性。
教学评估:10. 设计一些练习题或小测验,检验学生对方向角和坡度的理解和应用能力;11. 观察学生在解答实际问题时的思考过程和解决方法。
教学资源:1. 罗盘和角度计算工具;2. 高度差和水平距离计算工具;3. 实际问题示例和案例;4. 练习题或小测验。
教学延伸:对于学习较快的学生,可以引导他们进一步探究方向角和坡度的应用领域,如航海、建筑设计等,并鼓励他们进行相关研究或项目实践。
对于学习较慢的学生,可以提供更多的实际问题示例,并逐步引导他们进行思考和解答,帮助他们建立对方向角和坡度的理解和应用能力。
教学反思:根据学生的学习情况和反馈,及时调整教学方法和内容,确保教学目标的达成。
同时,鼓励学生在实际生活中运用所学知识,加深对方向角和坡度的理解和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:相似三角形的判定(1)课型:新授课课时:1课时
第2课时方向角和坡角问题
【知识与技能】
进一步掌握用解直角三角形的知识解决实际问题的方法,体会方位角、仰角、俯角、坡度(坡比)的含义及其所代表的实际意义,能用它们进行有关的计算.
【过程与方法】
通过实际问题的求解,总结出用解直角三角形的知识解决实际问题的一般过程,增强分析问题和解决问题的能力.
【情感态度】
渗透数形结合的思想方法,增强学生的数学应用意识和能力.
【教学重点】
用三角函数有关知识解决方位角问题.
【教学难点】
学会准确分析问题,并将实际问题转化为数学模型.
一、复习回顾,新知导引
1.仰角、俯角概念;
2.方位角的意义.
【教学说明】教师提出问题顾,为后继学习作好准备.
二、典例精析,掌握新知
例1 如图,一艘海轮位于灯塔P 的北偏东65°方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东34°方向上的B 处.这时,海轮所在的B 处距离灯塔P 有多远 (结果取整数)?
分析与解 易知P 点正东方向与AC 具有垂直关系,即图中 PC 丄AB ,若记垂足为C ,则图中出现了两个直角三角形APC 和直角三角形BPC.而在Rt △APC 中,知AP=80,∠APC=90°-65°=25°,故
可求出线段PC 的长,即由AP
PC =
∠APC cos ,得PC=AP · cos25°=80·cos25°≈72.505,因此在Rt △BPC 中,由PB
PC PB =∠C cos ,得,13056cos 505.7256cos ≈︒=︒=PC PB 从而可得知海轮在B 处时距离灯塔P 约130海里.
【教学说明】本例的设计较上节课所学过的应用问题不同之处在于用其中一个直角三角形中所获得的结论来作为另一个直角三角形的条件而获得问题的解答,这正是学生感到困难的地方,因而教师应作为引导,帮助学生进行观察思考.
例2 如图,拦水坝的横断面是梯形ABCD (图中i=1:3是指坡面的铅直高度DE 与水平宽度CE 的比,也称为坡度、坡比),根据图中数据求:
(1)坡角α和β;
(2)斜坡AB 的长(结果保留小数点后一位).
【教学说明】本例可由学生独立完成,教师巡视指导,让学生在自主探究中体会用解直角三角形的知识来解决史记问题的方法,在完成上述例题后,教师引导学生完成创优作业中本课时的“名师导学”部分.
三、师生互动,课堂小结
问题通过学习用解直角三角形知识解决实际问题过程中,你有哪些收获?
【教学说明】师生共同探索,完善知识体系.
1.布置作业:从教材P77〜79习题28.2中选取.
2.完成创优作业中本课时的“课时作业”部分.
本课时应首先认知“方位角、仰角、俯角、坡度”及其所代表的实际意义,然后结合解直角三角形的有关知识加以论证,层层展开,步步深入.。