第四讲:分数乘除法的知识点总结和归纳练习培训资料

合集下载

分数的乘除混合运算知识点总结

分数的乘除混合运算知识点总结

分数的乘除混合运算知识点总结分数的乘除混合运算是数学中的一个基础概念,它涉及到分数的乘法和除法以及它们与整数的混合运算。

在这篇文章中,我们将介绍分数的乘除混合运算的基本规则和技巧。

1. 分数的乘法分数的乘法可以通过以下步骤进行:a) 将两个分数的分子相乘,作为新分数的分子;b) 将两个分数的分母相乘,作为新分数的分母;c) 对新分数进行约分,如果有需要的话。

举例来说,计算1/2乘以2/3,我们可以按照上述步骤进行计算:a) 1乘以2得到2,作为新分数的分子;b) 2乘以3得到6,作为新分数的分母;c) 新分数是2/6,我们可以将其约分为1/3。

2. 分数的除法分数的除法可以通过以下步骤进行:a) 将被除数的分子与除数的分母相乘,作为新分数的分子;b) 将被除数的分母与除数的分子相乘,作为新分数的分母;c) 对新分数进行约分,如果有需要的话。

举例来说,计算1/2除以2/3,我们可以按照上述步骤进行计算:a) 1乘以3得到3,作为新分数的分子;b) 2乘以2得到4,作为新分数的分母;c) 新分数是3/4,它已经是最简分数,无法再约分。

3. 分数与整数的乘法和除法分数与整数的乘法可以通过以下步骤进行:a) 将整数视为分母为1的分数,与分数的乘法规则相同。

举例来说,计算2乘以1/2,我们可以将2视为2/1,然后按照分数的乘法规则进行计算:a) 2乘以1得到2,作为新分数的分子;b) 1乘以2得到2,作为新分数的分母;c) 新分数是2/2,我们可以将其约分为1。

分数与整数的除法可以通过以下步骤进行:a) 将整数视为分母为1的分数,与分数的除法规则相同。

举例来说,计算2除以1/2,我们可以将2视为2/1,然后按照分数的除法规则进行计算:a) 2乘以2得到4,作为新分数的分子;b) 1乘以1得到1,作为新分数的分母;c) 新分数是4/1,它已经是最简分数,无法再约分。

4. 分数的混合运算在分数的混合运算中,我们可以根据运算顺序和运算规则,逐步进行计算。

分数乘除法知识点总结

分数乘除法知识点总结

分数乘除法知识点总结一、分数的乘法1.分数的乘法定义分数的乘法是指两个分数相乘的运算。

设a/b和c/d是两个分数,要求它们的积,即把这两个分数的乘法化为整数的乘法。

(a/b)×(c/d) =a×c/b×d2.分数的乘法性质分数的乘法具有交换律、结合律和分配律。

a)交换律:a/b×c/d = c/d×a/bb)结合律:a/b×(c/d)×e/f = a/b×c/d×e/fc)分配律:a/b×(c/d+e/f) = a/b×c/d+a/b×e/f3.分数的乘法计算方法分数的乘法计算的具体步骤是:1)对分数的乘法化为整数的乘法;2)化简运算;3)得出结果。

4.分数的乘法应用在实际生活和工作中,分数的乘法经常用于计算面积、体积、比例、概率等问题,例如:用分数的乘法计算长方形的面积、圆的面积,用分数的乘法计算两个速度的比值等。

二、分数的除法1.分数的除法定义分数的除法是指两个分数相除的运算。

分数的除法运算可以化为分数的乘法运算。

(a/b)÷(c/d) = a/b×d/c2.分数的除法性质分数的除法没有交换律和结合律,但有分配律。

a)分配律:a/b÷(c/d+e/f) = a/b÷c/d+a/b÷e/f3.分数的除法计算方法分数的除法计算的具体步骤是:1)对分数的除法化为分数的乘法;2)对乘法的分式进行倒数的运算;3)化简运算;4)得出结果。

4.分数的除法应用在实际生活和工作中,分数的除法经常用于计算比例、长高比、速度比等问题,例如用分数的除法计算两次工作所需的时间比值。

通过以上分数乘除法的知识点总结,我们了解到了分数的乘法和除法运算的定义、性质、计算方法和应用。

这些知识对于学生掌握分数的乘除法运算有着重要的指导作用。

在学习中,我们还要多做分数的乘除法运算练习,加强对这些知识的掌握,提高数学应用能力。

分数乘(除)法知识总结(完整)

分数乘(除)法知识总结(完整)

分数乘(除)法知识点总结一、基本定义1、分数的意义:把单位“ 1” 平均分成若干份,表示这样的一份或者几份的数,叫做分数。

表示其中的一份的数,叫做分数单位。

3的意义是:把单位“1”平均分成5份,表示其中的3份;eg :51。

分数单位是52、分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。

3、分子、分母只有公因数1的分数,叫做最简分数。

4、把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分;约分的方法:用分数的分子和分母同时除以分子和分母的公约数(1除外);通常要除到得出最简分数为止。

5、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分;通分的方法:先求出原来几个分母的公分母,然后把各分数化成用这个公分母作分母的分数。

6、乘积是1的两个数互为倒数。

7、除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。

8、名称:被除数÷除数=商商×除数=被除数被除数÷商=除数9、比的基本概念(1)比的意义:两个数相除又叫做两个数的比。

(2)比的符号和读写法:比用符号“:”表示,比号前面的数叫做前项,比号后面的数叫做后项。

(3)比的前项除以后项所得的商叫做比值。

注:比表示两个数的关系,比值是一个数值。

a的形式,比值可以是分数,也可以是整数或比只能写成a:b或b小数。

任何一个比的比值都不带单位名称。

10、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。

11、最简整数比:前项和后项只有公因数1的比,叫做最简整数比。

二、基本方法(一)分数大小的比较1、同分母分数大小比较,分子大的大,分子小的小。

2、通分子分数大小比较,分母大的反而小。

3、异分母分数大小比较,先通分再按同分母分数大小比较。

(二)分数加减法:1、同分母分数加减法:分母不变,分子相加减2、异分母分数相加减:先通分,再按同分母分数加减法进行计算。

分数的乘法与除法技巧知识点总结

分数的乘法与除法技巧知识点总结

分数的乘法与除法技巧知识点总结在数学中,分数是常见的数学概念之一。

在分数的运算中,乘法和除法是非常基础且重要的运算方式。

本文将总结分数的乘法和除法的技巧知识点,帮助读者更好地理解和掌握这两种运算。

一、分数的乘法技巧1. 相乘法则:分数乘以分数时,只需将两个分数的分子相乘作为新分数的分子,将两个分数的分母相乘作为新分数的分母。

例如: a/b * c/d = (a * c) / (b * d)(注:a、b、c、d代表任意整数)2. 化简分数:在进行分数的乘法计算时,我们常需要将结果化简为最简分数形式。

即分子和分母没有公约数的情况下不能再进行约简。

例如:4/8 * 3/5 = (4 * 3) / (8 * 5) = 12/40,可以约分为 3/103. 分数与整数相乘:分数与整数相乘时,可以将整数视为带有分母为1的分数。

例如:3/4 * 5 = (3/4) * (5/1) = 15/4二、分数的除法技巧1. 相除法则:分数除以分数时,可以通过将被除数乘以除数的倒数来实现。

即将除数的分子与被除数的分母相乘作为新分数的分子,除数的分母与被除数的分子相乘作为新分数的分母。

例如:(a/b) / (c/d) = (a/b) * (d/c) = (a * d) / (b * c)2. 化简分数:在进行分数的除法计算时,我们同样需要将结果化简为最简分数形式。

例如:6/15 ÷ 2/5 = (6/15) * (5/2) = (6 * 5) / (15 * 2) = 30/30,可以约分为1/1,即 13. 分数与整数相除:分数与整数相除时,可以将整数视为带有分母为1的分数,然后运用除法法则进行计算。

例如:5 ÷ 2/3 = (5/1) ÷ (2/3) = (5/1) * (3/2) = (5 * 3) / (1 * 2) = 15/2,可以约分为 7 1/2三、分数的乘法和除法综合运用在实际问题中,我们常常需要将分数的乘法和除法综合运用。

分数的乘除知识点总结

分数的乘除知识点总结

分数的乘除知识点总结一、分数的乘法基本概念1. 分数的乘法是指两个分数相乘的运算。

如:(1/2) × (2/3)2. 分数的乘法还可以与整数相乘。

如:(3/5) × 23. 分数的乘法可以看作是分子相乘得到新的分子,分母相乘得到新的分母。

如:a/b × c/d = (a×c)/(b×d)二、分数的乘法运算规则1. 分数的乘法满足交换律和结合律。

即,对于任意的分数a/b和c/d,有:a/b × c/d = c/d × a/b(a/b × c/d) × e/f = a/b × (c/d × e/f)2. 分数的乘法可以转化为通分的分数相乘。

当两个分数的分母不相同时,可以通过通分的方法将分母转化为相同的数,再进行乘法运算。

3. 分数的乘法还可以化简。

在运算过程中,我们可以化简分数,使分子和分母互质。

三、分数的乘法常见错误分析1. 错误:未进行通分运算就进行分数相乘。

如:(1/3) × (2/5) = 2/15正确的做法是先通分,然后再进行相乘:(1/3) × (2/5) = (1×2)/(3×5) = 2/152. 错误:运算过程中忽略了化简。

如:(5/10) × (3/5) = (5×3)/(10×5) = 15/50正确的做法是先化简,然后再进行相乘:(5/10) × (3/5) = (1/2) × (3/5) = (1×3)/(2×5) = 3/10四、分数的除法基本概念1. 分数的除法是指两个分数相除的运算。

如:(1/2) ÷ (2/3)2. 分数的除法还可以与整数相除。

如:(3/5) ÷ 23. 分数的除法可以看作是分子相乘得到新的分子,分母相乘得到新的分母。

初中数学知识归纳分数的乘法和除法运算

初中数学知识归纳分数的乘法和除法运算

初中数学知识归纳分数的乘法和除法运算在初中数学中,我们经常会遇到分数的运算,其中包括分数的乘法和除法运算。

本文将对分数的乘法和除法运算进行归纳总结,以帮助同学们更好地理解和掌握这些知识。

一、分数的乘法运算分数的乘法运算规则如下:1. 分数相乘时,只需将分子与分子相乘,分母与分母相乘,得到的积就是最简形式的结果。

例如,计算 2/3 × 4/5,我们只需将分子相乘得到 2 × 4 = 8,分母相乘得到 3 × 5 = 15,因此,2/3 × 4/5 = 8/15。

2. 如果分数中有一个分子与另一个分母相同的整数,可以进行约分。

例如,计算 3 × 2/7,我们可以将 3 写成分数形式 3/1,然后将分子3 与分母 2 相乘得到 3 × 2 = 6,分母保持不变得到 7,所以 3 × 2/7 = 6/7。

3. 如果分数中有一个分子与另一个分子相同的整数,可以进行约分。

例如,计算 4/5 × 5/3,我们可以将 5 写成分数形式 5/1,然后将分子 4 与分子 5 相乘得到 4 × 5 = 20,分母保持不变得到 5 × 3 = 15,所以4/5 × 5/3 = 20/15。

二、分数的除法运算分数的除法运算规则如下:1. 将除法转换为乘法,即将被除数乘以除数的倒数。

例如,计算 3/4 ÷ 2/5,我们可以将除号转换为乘号,即求 3/4 × 5/2,然后按照分数的乘法规则来计算。

将分子 3 与分子 5 相乘得到 3 × 5 = 15,分母 4 与分母 2 相乘得到 4 × 2 = 8,所以 3/4 ÷ 2/5 = 15/8。

2. 分数除以一个整数时,可以将整数转化为分数。

例如,计算 2 ÷ 3/4,我们可以将整数 2 转化为分数 2/1,然后按照分数的乘法规则进行计算。

分数的乘法与除法知识点总结

分数的乘法与除法知识点总结

分数的乘法与除法知识点总结分数在数学中有着重要的作用,特别是在运算中的乘法与除法。

掌握好分数的乘法与除法知识点,可以帮助我们解决实际生活中的问题,也为学习更高级的数学知识打下坚实的基础。

本文将对分数的乘法与除法进行详细阐述,帮助读者理解与运用这些知识点。

一、分数的乘法1. 相乘数的乘积分数的乘法主要针对两个分数进行操作,乘法的结果称为积。

当两个分数相乘时,分子相乘得到积的分子,分母相乘得到积的分母。

例如:3/4 × 2/5 = (3 × 2)/(4 × 5) = 6/20 = 3/102. 分数与整数的乘积当分数与整数相乘时,可以将整数看作是分母为1的分数,然后按照相乘数的规则进行计算。

例如:3/4 × 6 = (3/4) × (6/1) = (3 × 6)/(4 × 1) = 18/4 = 9/23. 约分在进行分数乘法时,我们通常会将结果进行约分,使其成为最简形式。

约分是指将分子与分母中的公因数进行约除,直到分子与分母没有公因数为止。

二、分数的除法1. 相除数的商分数的除法主要涉及到两个分数进行操作,除法的结果称为商。

当两个分数相除时,我们可以将除法转化为乘法,将被除数乘以除数的倒数。

例如:3/4 ÷ 1/2 = (3/4) × (2/1) = 6/4 = 3/22. 分数与整数的除法当分数除以整数时,可以将整数看作是分母为1的分数,然后按照相除数的规则进行计算。

例如:3/4 ÷ 2 = (3/4) ÷ (2/1) = (3/4) × (1/2) = 3/83. 整除与带余除法在分数的除法中,可以使用整除与带余除法来判断两个分数之间的整数关系。

如果被除数与除数能够整除,那么商就是一个整数;如果有余数,则商是一个带有分数的答案。

例如:5/2 ÷ 1/4 = (5/2) ÷ (1/4) = (5/2) × (4/1) = 20/2 = 109/4 ÷ 2/3 = (9/4) ÷ (2/3) = (9/4) × (3/2) = 27/8 = 3 3/8三、运用分数进行问题求解1. 比例问题分数的乘法与除法常常用于解决比例问题。

分数乘除的知识点总结

分数乘除的知识点总结

分数乘除的知识点总结一、分数乘法的基本概念1. 分数的乘法的定义分数的乘法是指将两个分数相乘,其中一个分数作为被乘数,另一个分数作为乘数,最后将它们的分子相乘得到新的分子,分母相乘得到新的分母。

具体的运算规则可以表示为:$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$。

其中,a、b、c、d分别为分数的分子和分母。

2. 分数的乘法的性质分数的乘法具有交换律和结合律,即对于任意两个分数$\frac{a}{b}$和$\frac{c}{d}$,有$\frac{a}{b} \times \frac{c}{d} = \frac{c}{d} \times \frac{a}{b}$,以及$(\frac{a}{b} \times \frac{c}{d}) \times \frac{e}{f} = \frac{a}{b} \times (\frac{c}{d} \times \frac{e}{f})$。

这些性质对于简化分数乘法的过程和结果具有重要的指导作用。

二、分数除法的基本概念1. 分数的除法的定义分数的除法是指将一个分数作为被除数,另一个分数作为除数,最终计算它们的商。

具体的运算规则可以表示为:$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}$。

其中,a、b、c、d分别为分数的分子和分母。

2. 分数的除法的性质分数的除法并不具有交换律,即对于任意两个分数$\frac{a}{b}$和$\frac{c}{d}$,通常有$\frac{a}{b} \div \frac{c}{d} \neq \frac{c}{d} \div \frac{a}{b}$。

但是它具有结合律,即$(\frac{a}{b} \div \frac{c}{d}) \div \frac{e}{f} = \frac{a}{b} \div (\frac{c}{d} \times\frac{e}{f})$。

小学数学点知识归纳分数的乘法与除法运算

小学数学点知识归纳分数的乘法与除法运算

小学数学点知识归纳分数的乘法与除法运算分数的乘法与除法运算是小学数学中的重要知识点之一。

学好这一知识点,对于深入理解分数的运算规则和解决实际问题都非常有帮助。

本文将对分数的乘法与除法运算进行归纳总结,旨在帮助小学生们更好地掌握这一知识。

一、分数的乘法运算分数的乘法运算可以简单地理解为两个分数相乘的过程。

具体运算规则如下:1. 分数乘法的定义设有两个分数a/b和c/d,其中a、b、c、d都是整数且b和d都不等于0。

则这两个分数的乘积可以表示为:(a/b) × (c/d) = (a × c) / (b × d)2. 分数乘法的性质分数乘法具有以下性质:①交换律:分数的乘法满足交换律,即a/b × c/d = c/d × a/b。

②结合律:分数的乘法满足结合律,即(a/b × c/d) × e/f = a/b × (c/d ×e/f)。

3. 分数乘法的简化在进行分数乘法的过程中,可以对分子和分母进行约分,使得分数的表示更简洁。

具体约分方法可参考约分的相关知识点。

二、分数的除法运算分数的除法运算是求两个分数相除的过程。

具体运算规则如下:1. 分数除法的定义设有两个分数a/b和c/d,其中a、b、c、d都是整数且b和d都不等于0。

则这两个分数的除法可以表示为:(a/b) ÷ (c/d) = (a/b) × (d/c)2. 分数除法的性质分数除法具有以下性质:①除法的倒数:分数a/b的倒数可以表示为b/a。

②分数除以整数:将一个分数除以一个整数可以转化为分数乘以该整数的倒数。

3. 分数除法的简化和分数乘法一样,在进行分数除法的过程中,也可以对分子和分母进行约分,使得分数的表示更简洁。

三、综合运用在实际问题中,分数的乘法和除法常常结合使用。

例如,在分数的运算过程中遇到了连乘或连除的情况,可以先进行分数的乘法,再进行分数的除法。

分数的乘法与除法运算知识点

分数的乘法与除法运算知识点

分数的乘法与除法运算知识点分数是数学中的一种常见表达形式,它可以表示一个整数和一个非整数之间的关系。

在分数的运算中,乘法和除法是非常基础而重要的运算。

本文将介绍分数的乘法和除法运算的相关知识点。

一、分数的乘法运算1.1 分数的乘法定义分数的乘法定义为,两个分数相乘,将其分子相乘,分母相乘,所得的结果即为乘积的分子和分母。

例如,将1/2和2/3相乘:(1/2) × (2/3) = (1 × 2) / (2 × 3) = 2/61.2 分数的乘法法则分数的乘法遵循以下法则:- 分数与整数相乘,可将整数视为分母为1的分数进行计算;- 两个分数相乘时,可以先化简分数,再进行乘法运算。

例如,计算3/4 × 2/5:3/4 × 2/5 = (3 × 2) / (4 × 5) = 6/20进一步化简分数,得到3/10。

1.3 分数的乘方运算分数的乘方运算即将一个分数乘以自身一定次数。

将分数的分子和分母分别进行乘方。

例如,(1/2)² = (1²) / (2²) = 1/4二、分数的除法运算2.1 分数的除法定义分数的除法定义为,将被除数乘以除数的倒数,得到的结果即为商。

例如,将1/2除以2/3:(1/2) ÷ (2/3) = (1/2) × (3/2) = 3/42.2 分数的除法法则分数的除法遵循以下法则:- 分数与整数相除,可将整数视为分母为1的分数进行计算;- 两个分数相除时,可以先化简分数,再进行除法运算。

例如,计算3/4 ÷ 2/5:3/4 ÷ 2/5 = (3/4) × (5/2) = 15/8进一步化简分数,得到1 7/8。

2.3 分数的倒数运算分数的倒数即将一个分数的分子和分母进行交换。

若一个分数的倒数与其本身相乘,则得到1。

例如,(3/4)的倒数为(4/3),(3/4) × (4/3) = 1三、应用实例下面通过几个实际问题来演示分数的乘法和除法运算。

分数的乘法与除法知识点总结

分数的乘法与除法知识点总结

分数的乘法与除法知识点总结在数学中,分数是一个很重要的概念。

而对于分数的乘法与除法操作,我们也需要掌握一些基本的知识点。

本文将为大家总结分数的乘法与除法的相关规则和技巧。

1. 分数的乘法分数的乘法可以通过以下步骤进行:(1)将两个分数的分子相乘得到新的分子;(2)将两个分数的分母相乘得到新的分母;(3)化简新的分子和分母,得到最简形式的分数。

举例说明:2/3 × 3/4 = (2 × 3) / (3 × 4) = 6/126/12可以化简为1/2,所以2/3 × 3/4 = 1/2。

需要注意的是,在进行分数的乘法运算时,我们可以先化简分数,然后再进行计算,可以避免繁琐的计算过程。

2. 分数的除法分数的除法可以通过以下步骤进行:(1)将除号变为乘号;(2)将除数与被除数互换位置;(3)根据分数的乘法规则进行计算;(4)化简新的分子和分母,得到最简形式的分数。

举例说明:2/3 ÷ 3/4 = 2/3 × 4/3 = (2 × 4) / (3 × 3) = 8/98/9是化简后的最简形式,所以2/3 ÷ 3/4 = 8/9。

同样地,在进行分数的除法运算时,我们也可以先化简分数,然后再进行计算,从而简化计算过程。

3. 分数的乘法与除法的复合运算在分数的乘法与除法中,我们也需要掌握复合运算的方法。

具体步骤如下:(1)先按照乘法规则进行乘法运算;(2)得到运算结果后,再按照除法规则进行除法运算。

举例说明:2/3 × 3/4 ÷ 1/2 = (2/3 × 3/4) ÷ 1/2 = (2/3 × 3/4) × 2/1= (2 × 3 × 2) / (3 × 4 × 1) = 12/1212/12可以化简为1,所以2/3 × 3/4 ÷ 1/2 = 1。

(完整版)分数乘法知识点归纳

(完整版)分数乘法知识点归纳

分数乘法知识点归纳(一)分数乘法的意义:(二)知识点1:分数与整数相乘:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

知识点2.整数乘分数的意义:整数乘分数的意义求一个数的几分之几是多少。

知识点3.:分数乘分数的意义分数乘分数的意义就是求一个分数的几分之几是多少。

(二)、分数乘法的计算方法:知识点1. 分数乘分数的计算方法:分子相乘的积做分子,分母相乘的积做分母,能约分的可以先约分。

(计算结果要求是最简分数。

)知识点3.分数乘整数的计算方法:用分数的分子和整数相乘的积作分子,分母不变。

计算时,应该先约分再计算。

计算结果要约成最简分数。

因为整数可以看成分母是1的分数,所以分数乘分数的计算法则也适用于分数和整数相乘。

知识点4.含带分数的分数计算方法带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

知识点5.分数乘小数的计算方法分数乘小数,可把小数化成分数,统一成分数乘分数,按照分数乘分数的计算方法计算。

分数乘小数,也可把分数化成小数,统一成小数乘小数乘小数,按照小数乘小数的计算方法计算。

注意:当分数不能化成有限小数时,则最好统一成分数乘分数(三)、乘法中乘数与积的大小关系的规律:一个数(0除外)乘小于1(真分数)(0除外)的数,积小于这个数。

一个数(0除外)乘1,积等于这个数。

一个数(0除外)乘大于1(带分数)的数,积大于这个数。

(四)、分数混合运算的运算顺序与整数的运算顺序相同:知识点1:整数加法的交换律结合律,对分数乘法同样适用。

加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)加法的交换律、结合律往往混合运用:三个或三个以上的数相加可以任意的交换加数的位置,可以任意的把其中两个加数结合在一起。

知识点2整数乘法的交换律、交换律和分配律,对分数乘法同样适用。

乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bc乘法交换律和结合律往往混合运用:三个或三个以上的数相乘可以任意的交换因数的位置,也可以任意的把其中两个因数结合在一起另附:倒数:知识点1.倒数的意义:(1)乘积是1的两个数互为倒数。

分数的乘法与除法知识点

分数的乘法与除法知识点

分数的乘法与除法知识点分数是数学中的重要概念,用于表示不完整的数量。

在分数运算中,乘法和除法是常见且重要的操作。

本文将详细介绍分数的乘法与除法的知识点,以帮助读者更好地理解和应用这些概念。

一、分数的乘法1.1 乘法的基本原理分数的乘法在数学中遵循以下原理:分子乘分子,分母乘分母。

即若有两个分数a/b和c/d,它们的乘积为(ac)/(bd)。

1.2 乘法的计算步骤在进行分数乘法计算时,可以按照以下步骤进行操作:步骤一:将两个分数的分子相乘,得到结果的分子部分;步骤二:将两个分数的分母相乘,得到结果的分母部分;步骤三:将结果的分子和分母化简至最简形式。

1.3 乘法的示例计算为了更好地理解分数乘法,以下是一些示例计算:例子一:计算1/2乘以2/3解答:首先将两个分数的分子相乘(1乘以2得到2),然后将两个分数的分母相乘(2乘以3得到6)。

最后化简得到最简形式的结果是1/3。

例子二:计算3/4乘以4/5解答:首先将两个分数的分子相乘(3乘以4得到12),然后将两个分数的分母相乘(4乘以5得到20)。

最后化简得到最简形式的结果是3/5。

二、分数的除法2.1 除法的基本原理分数的除法在数学中遵循以下原理:将除法转化为乘法,即将除法运算变为乘法运算的倒数。

若有两个分数a/b和c/d,它们的除法可以表示为(a/b)除以(c/d),转化为乘法为(a/b)*(d/c)。

2.2 除法的计算步骤在进行分数除法计算时,可以按照以下步骤进行操作:步骤一:将除数的倒数作为乘法的第二个数;步骤二:按照乘法的计算规则进行乘法操作;步骤三:将结果的分子和分母化简至最简形式。

2.3 除法的示例计算为了更好地理解分数除法,以下是一些示例计算:例子一:计算2/3除以1/4解答:首先将除数的倒数作为乘法的第二个数,即2/3乘以4/1。

然后按照乘法的计算规则进行乘法操作,分子相乘得到8,分母相乘得到3。

最后化简得到最简形式的结果是8/3。

例子二:计算3/4除以2/5解答:首先将除数的倒数作为乘法的第二个数,即3/4乘以5/2。

分数乘除法计算方法总结-分数的乘除法总结

分数乘除法计算方法总结-分数的乘除法总结

分数乘除法计算方法总结一、分数乘法:1.分数乘整数意义:分数乘整数与整数乘法的意义相同,都是求几个相同加数的和的简便运算。

计算方法:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

2.分数(整数)乘分数,即一个数乘以分数意义:求一个数的几分之几是多少。

计算方法:分数乘分数,分子相乘的积作新分子,分母相乘的积作新分母。

》能约分的要先约分,再计算,结果要试最简分数。

约分过程中,一定是分子和分母约分,整数和分母约分。

是带分数的要先化成假分数再按照计算方法进行计算。

3.乘积相等的几组乘法算式中,一个因数越大,另一个因数就越小(大配小,小配大)。

4.倒数:乘积是“1”的两个数互为倒数。

“1”的倒数是“1”,“0”没有倒数。

5.求一个数的倒数的方法:用“1”除以这个数。

真分数(假分数)的倒数,直接交换分子和分母的位置;求带分数的倒数,要先把带分数化成假分数,再交换分子和分母的位置;求小数的倒数,要先把小数化成分数,再交换分子和分母的位置;求整数的倒数,把整数写作分母,分子为“1”。

二、分数除法意义1:与整数除法的意义相同,都是已知两个因数的积与其中的一个因数,求另一个因数的运算。

[理解]:把一个数平均分成几份,每份是这个数的几份之一。

)求每份数是多少(每份数=一个数÷几份或每份数=一个数×几份之一)。

1、分数除以整数:A,可以用分子除以整数(0除外)的商作分子,分母不变。

B,分数除以整数(0除外),等于分数乘这个整数的倒数。

2、分数(整数)除以分数,即一个数除以分数A,可以用分子除以分子的商作新分子,分母除以分母的商作新分母。

B,一个数除以分数(0除外),等于这个数乘以分数的倒数。

分数除法的统一计算法则:甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

、三、分数乘、除法混合运算顺序整数、小数、分数的混合运算顺序都是一样的。

1.只含有同级运算的,按从左往右的顺序依次计算。

2.只含有两级运算的,先算第二级运算(乘除法),再算第一级运算(加减法)。

分数乘除知识点总结

分数乘除知识点总结

分数乘除知识点总结一、分数的乘法1.分数的乘法定义分数的乘法是指两个分数相乘的运算。

例如,1/2乘以3/4等于3/8。

在分数的乘法中,乘数和被乘数分别称为乘数和被乘数,乘积表示两数相乘的结果。

2.分数的乘法公式分数的乘法遵循以下公式:a/b * c/d = a*c/b*d其中,a、b、c、d分别表示分子和分母,*表示乘法运算,/表示除法运算。

3.分数的乘法规则分数的乘法遵循以下规则:(1)分子相乘,分母相乘;(2)将乘积的分子和分母化为最简分数形式;(3)如果有整数和分数相乘,在乘法运算前可以先将整数转换为分数的形式,然后按照分数乘法的规则进行运算。

4.分数的乘法例题例题1:计算2/3乘以4/5的结果。

解:根据分数的乘法规则,将两个分数的分子和分母分别相乘,得到8/15,然后将8/15化为最简分数形式,得到4/15。

例题2:计算3/4乘以2的结果。

解:首先将整数2转换为分数的形式,得到2/1,然后按照分数的乘法规则进行运算,得到6/4,然后将6/4化为最简分数形式,得到3/2。

二、分数的除法1.分数的除法定义分数的除法是指两个分数相除的运算。

例如,1/2除以3/4等于2/3。

在分数的除法中,被除数和除数分别称为被除数和除数,商表示两数相除的结果。

2.分数的除法公式分数的除法遵循以下公式:a/b ÷ c/d = a*d/b*c3.分数的除法规则分数的除法遵循以下规则:(1)将除数取倒数,然后按照分数的乘法规则进行运算;(2)将乘积的分子和分母化为最简分数形式;(3)如果有整数和分数相除,在除法运算前可以先将整数转换为分数的形式,然后按照分数除法的规则进行运算。

4.分数的除法例题例题1:计算2/3除以4/5的结果。

解:将4/5取倒数,得到5/4,然后按照分数的乘法规则进行运算,得到10/12,然后将10/12化为最简分数形式,得到5/6。

例题2:计算3/4除以2的结果。

解:首先将整数2转换为分数的形式,得到2/1,然后按照分数的除法规则进行运算,得到3/8。

分数的乘法和除法知识点总结

分数的乘法和除法知识点总结

分数的乘法和除法知识点总结分数是数学中的重要概念,分数的乘法和除法是我们在日常生活和学习中常用的运算方式。

了解和掌握分数的乘法和除法知识点对于解决实际问题和提高数学能力至关重要。

本文将对分数的乘法和除法进行总结,帮助读者更好地理解和应用这两个运算。

1. 分数的乘法分数的乘法可以通过以下步骤进行计算:步骤一:将两个分数的分子和分母分别相乘。

步骤二:将所得的乘积作为新分数的分子。

步骤三:将两个分数的分母相乘,作为新分数的分母。

步骤四:将新分数化简到最简形式(如果需要)。

例子:1/2 × 3/4 = (1 × 3)/(2 × 4) = 3/82. 分数的除法分数的除法可以通过以下步骤进行计算:步骤一:将除法转化为乘法,即将除数的倒数作为乘数。

步骤二:按照分数的乘法规则进行计算。

例子:1/2 ÷ 3/4 = 1/2 × 4/3 = (1 × 4)/(2 × 3) = 4/63. 分数的乘除混合运算在进行乘除混合运算时,一般按照从左到右的顺序进行计算。

乘法和除法的优先级相同,按照从左到右的顺序进行。

例子:1/2 × 3/4 ÷ 1/6 = (1/2 × 3/4) ÷ 1/6 = 3/8 ÷ 1/6 = (3/8) × (6/1) = 18/8 =9/44. 分数的乘法和除法的性质分数的乘法和除法具有以下性质:性质一:交换律。

分数的乘法和除法满足交换律,即a/b × c/d = c/d × a/b。

性质二:结合律。

分数的乘法和除法满足结合律,即(a/b × c/d) × e/f = a/b × (c/d × e/f)。

性质三:分配律。

分数的乘法和除法满足分配律,即(a/b) × (c/d +e/f) = (a/b × c/d) + (a/b × e/f)。

分数的乘法与除法运算知识点

分数的乘法与除法运算知识点

分数的乘法与除法运算知识点一、分数乘法运算知识点分数乘法是指两个分数进行相乘运算的过程。

在进行分数乘法运算时,需要注意以下几个知识点:1. 相乘原则:分数的乘法是将两个分数的分子相乘得到新的分子,分母相乘得到新的分母。

例如,对于分数a/b和c/d的乘法运算,结果可以表示为(a×c)/(b×d)。

2. 约分:在进行分数乘法运算时,可以对乘法结果进行约分。

即将分子和分母的公因数约去,得到最简分数形式。

3. 整数与分数相乘:整数与分数相乘时,先将整数转换为分数的形式,然后按照相乘原则进行运算。

例如,2 × (3/4) = (2/1) × (3/4) = 6/4 = 3/2。

4. 分数的乘方:分数的乘方是指同一个分数连乘多次。

例如,(2/3)³ = (2/3) × (2/3) × (2/3) = 8/27。

二、分数除法运算知识点分数除法是指将一个分数除以另一个分数的运算过程。

在进行分数除法运算时,需要注意以下几个知识点:1. 相除原则:分数的除法可以转化为乘法运算,即将除数取倒数后与被除数相乘。

例如,对于分数a/b和c/d的除法运算,结果可以表示为(a/b)÷(c/d) = (a/b) × (d/c)。

2. 约分:在进行分数除法运算时,可以对乘法结果进行约分。

即将分子和分母的公因数约去,得到最简分数形式。

3. 整数与分数相除:整数与分数相除时,先将整数转换为分数的形式,然后按照相除原则进行运算。

例如,6 ÷ (2/3) = (6/1) ÷ (2/3) = 6/1 ×3/2 = 18/2 = 9。

4. 分数的除方:分数的除方是指同一个分数连除多次。

例如,(3/5)² = (3/5) ÷ (3/5) = 3/5 × 5/3 = 1。

三、练习题示例1. 计算下列分数乘法:a) 2/3 × 4/5 = 8/15b) 1/2 × 3/4 = 3/8c) 5/6 × 2/5 = 1/32. 计算下列分数除法:a) 3/4 ÷ 1/2 = 3/2 = 1 1/2b) 5/6 ÷ 2/3 = 5/6 × 3/2 = 5/4 = 1 1/4c) 2/3 ÷ 4/5 = 2/3 × 5/4 = 5/63. 附加练习:a) 将1/4乘以5,并将结果化简为最简分数。

分数的乘除知识点总结

分数的乘除知识点总结

分数的乘除知识点总结分数是数学中常见的一个概念,它由分子与分母组成,分子表示分数的份数,分母表示被分成的份数。

在运算中,分数的乘法和除法是基础和重要的知识点。

本文将对分数的乘法和除法进行总结和讲解。

一、分数的乘法分数的乘法运算规则是:分子与分子相乘,分母与分母相乘。

具体步骤如下:1. 确定两个分数的乘法,如:2/3 × 3/4。

2. 将两个分数的分子相乘得到结果的分子,即 2 × 3 = 6。

3. 将两个分数的分母相乘得到结果的分母,即 3 × 4 = 12。

4. 根据上述两个步骤,得到最终结果为 6/12。

5. 如果需要化简分数,可以将分子和分母同时除以它们的最大公约数。

在此例中,6 和 12 的最大公约数为 6,所以最终结果为 1/2。

二、分数的除法分数的除法运算规则是:取第一个分数的倒数(即将分子与分母交换位置),再与第二个分数进行乘法运算。

具体步骤如下:1. 确定两个分数的除法,如:2/3 ÷ 4/5。

2. 将第一个分数的分子与分母交换位置,得到倒数,即 3/2。

3. 将倒数与第二个分数进行乘法运算,即 3/2 × 4/5。

4. 按照分数乘法的运算规则,分子相乘得到结果的分子,即 3 × 4 = 12。

5. 分母相乘得到结果的分母,即 2 × 5 = 10。

6. 根据上述两个步骤,得到最终结果为 12/10。

7. 同样地,如果需要化简分数,可以将分子和分母同时除以它们的最大公约数。

在此例中,12 和 10 的最大公约数为 2,所以最终结果为6/5。

三、分数的乘法与除法综合例题以下是一些分数乘法与除法的综合例题,我们将结合上述所学知识进行解答:例题一:2/3 × 1/5 = ?解答:根据分数乘法的运算规则,将分子相乘得到结果的分子,即2 × 1 = 2;将分母相乘得到结果的分母,即 3 × 5 = 15。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四讲:分数乘除法的知识点总结和归纳练习分数乘除法的知识点归纳和总结练习一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。

都是求几个相同加数的和的简便运算。

例如: 98×5表示求5个98的和是多少?2、分数乘分数是求一个数的几分之几是多少。

例如: 98×43表示求98的43是多少?(二)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

练一、分数与整数相乘。

512 ×4= 26×613 = 1115 ×5= 24×1348 = 221 ×7= 310×20= 425 ×15= 718 ×12= 16×920 = 练二、分数和分数相乘。

(注意:能约分的先约分,再计算。

) 25 ×34 = 67 ×78 = 59 ×815 = 911 ×715 = 1225 ×1516 = 45 ×910 = 1319 ×3839 = 910 ×5063 = 1234 ×1736=(三)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

练三、比较大小5 6×4○569×23○23×938×12○38(四)分数混合运算的运算顺序和整数的运算顺序相同。

练四、分数乘、加、减混合。

7 16×(5063-27)45×1516×1456×34+123+512×4159 14-59×27351-1819×3845615×(5-513)1991×7+813(五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: a × b = b × a乘法结合律: ( a × b )× c = a × ( b × c )乘法分配律:( a + b )×c = a × c + b × c练五、分数乘、加、减简便运算99×9798911×97×119(56-49)×369 13-718×913517×79+79×417914×1718×14二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。

2、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几几。

4、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“÷”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量练一、看图列式计算。

练二、解决问题。

1、甲乙两地相距420千米,一辆汽车行驶了全程的57,行驶了多少千米?2、一个果园占地20公顷,其中的25种苹果树,14种梨树,苹果树和梨树各种了多少公顷?3、某鞋店进来皮鞋600双。

第一周卖出总数的15,第二周卖出总数的38。

⑴两周一共卖出总数的几分之几?⑵两周一共卖出多少双?⑶还剩多少双?4、六年级同学给灾区的小朋友捐款。

六一班捐了500元,六二班捐的是六一班的45,六三班捐的是六二班的98。

六三班捐款多少元?5、一件西服原价180元,现在的价格比原来降低了15,现在的价格是多少元?6、希望小学三年级有学生216人,四年级人数比三年级多29,四年级有学生多少人?三、分数除法(一)、分数除法的意义1、分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

用(除法)计算。

例如:1013103=÷的意义是:已知两个因数的积是103,其中一个因数是3,求另一个因数是多少。

31÷2= 75÷15= 1211÷11= 31÷3= 95÷5= 21÷4= 54÷4= 53÷9= 练习二、整数除以分数6÷72= 4÷158= 5÷21= 8÷2516= 3÷75= 7÷83= 36÷4027= 4÷52= 6÷65= 7÷57= 6÷43= 24÷98= 练习三、分数除以分数185÷185= 98÷2710= 49÷223= 107÷65=51÷132= 74÷47= 87÷0.75= 2516÷98= 65÷85= 121÷113= 31÷32= 0.5÷83= 4、被除数与商的变化规律:(a ≠0 b ≠0)[35-(52+43)]÷431 31×43÷(43-125) 119523121÷⎪⎭⎫ ⎝⎛+÷)+(10915731712÷- 920 ÷[12 ×(25 +45 )] 52×(43+51)÷1019166201÷41 2000÷200020012000(972+792)÷(75+95)四、分数除法的解决问题1、已知一个数的几分之几是多少,求这个数的应用题解法 列方程解法:(1)找出单位“1”,设未知量为x ; (2)找出题中的数量关系式; (3)列出方程例如:一个数的51是30,这个数是多少?算术法:(1)找出单位“1”;(2)找出已知量和已知量占单位“1”的几分之几;(3)列除法算式。

即已知量÷已知量占单位“1”的几分之几=单位“1” 的量。

例如:妈妈给小林一些钱买衣服,小林买毛衣花了90元,买裤子花了60元,买这两样衣物花的钱是妈妈给小林钱数的43,妈妈给小林多少钱?2、分数连除应用题的解题方法(1)分数连除应用题的结构特点:题中有3个数量,两个单位“1”,都是未知的。

(2)分数连除应用题的解题方法:①方程解法:设所求单位“1”的量为x ,根据等量关系列方程解答。

即x ×a b ×cd=已知量。

②算术解法:用已知量连续除以它们所对应的单位“1”的几分之几。

即已知量÷c d ÷ab=另一个单位“1”的量。

(3)解题关键:找准单位“1”,求出中间量。

例如:商店有苹果84千克,苹果是香蕉重量的43;香蕉又是水果总数的403。

一共有水果多少千克?练习二、解决问题1、美术班有男生20人,是女生的65,女生有多少人?2、赵老师的讲桌上有红粉笔16支,白粉笔的支数是红粉笔的45,又是蓝粉笔的1110。

蓝粉笔有多少支?73、六(2)班的人数是六(1)班的109,六(2)班比六(1)班少5人,六(1)班有多少人?4、王李两位师傅做一批零件,王师傅做了40个,占总数的52;李师傅做了总数的41。

李师傅做了多少个?5、一块长方形草坪,长30米,宽是长的65。

这块草坪的面积是多少?6、爸爸今年40岁,儿子的年龄比爸爸年龄的41多4岁,儿子今年多少岁?7、某工厂一月份用电4800度,二月份比一月份节约用电101,二月份比一月份节约用电多少度?二月份实际用电多少度?8、人体中的血液约占体重的131,血液里的32是水。

小冬的体重39千克,他的血液中约含有多少千克水?精品资料仅供学习与交流,如有侵权请联系网站删除 谢谢119、东乡修了两条水渠,第一条长1200米,第二条比第一条的65少50米。

两条水渠一共长多少米?10、修一条3千米长的公路,第一次修了这条公路的65,第二次修了65千米,两次共修多少千米?11、一本故事书有96页,小兰看了43页。

小丽说:“剩下的页数比全书的43少15页。

”小莉说:“剩下的页数比全书的21多5页”。

小丽和小莉谁说得对?12、一根电线长400米,已经用去了150米。

再用去多少米就一共用去这根电线的85?。

相关文档
最新文档