豆粕蛋白溶解度和尿酶值

豆粕蛋白溶解度和尿酶值
豆粕蛋白溶解度和尿酶值

大豆蛋白是家禽日粮中最为重要的,也是质量最好的植物蛋白饲料,除蛋氨酸略缺乏外,其它各种氨基酸都接近理想平衡。如同其它蛋白质饲料一样,豆粕质量受各种营养素含量的影响,如能量、蛋白质、纤维素和氨基酸等,例如普通豆粕与去皮豆粕间在以上指标方面就有很大的差别(见表1)。去皮豆粕由于纤维素含量低而有较高的能量水平。但是蛋白质水平高的豆粕不一定保证低纤维和高能量水平,例如某些未去皮中国豆粕的蛋白质含量可高达48%甚至50%,而仍然含有6%至7%的纤维素。因此高蛋白水平豆粕的代谢能水平仍然可能因纤维素含量高而下降,尚未见到这些高蛋白质“高纤维素”豆粕的代谢能测定值。但一般可以估计:在去皮豆粕纤维素正常含量3.5%以上时,每增加1%纤维素使每公斤猪饲料的代谢能下降32至42大卡,而每公斤禽饲料则下降将近60大卡。另一方面,豆粕质量在很大程度上受加工方面问题的影响而使它的氨基酸含量和氨基酸消化率以致于能量受到影响。本文主要讨论由加工不足或加热过度所引起的豆粕质量变异以及对生产性能的影响,同时介绍目前可行的鉴定豆粕质量的方法—尿酶活性(pH变化值)与0.2%氢氧化钾蛋白溶解度,并加以评估。

一、生大豆——抗胰蛋白酶与尿酶

众所周知,豆粕必须经过适度热加工以破坏大豆中所含的数种抗营养物质。其中对畜禽影响最大者为抗胰蛋白酶(Tripsin Inhibitor),有幸的是这些抗营养因子在加热后都会遭到破坏。适度加热是豆粕加工的关键,因为加热不足或过度都会降低豆粕的营养价值。

抗胰蛋白酶是生大豆中的一种蛋白酶抑制物,它在消化道内能使胰蛋白酶和凝乳酶失活,从而降低蛋白质的消化率,并引起胰脏代偿性增大,由于胰酶富含硫氨基酸,因此,大量分泌消化酶可能加剧大豆蛋白含硫氨基酸的缺乏现象。抗胰蛋白酶的测定方法很耗时也很昂贵,因此需要寻找一种简易而快速的测定方法。

生大豆中含不等量尿酶(Urease)。尿酶本身无营养意义,但它与抗胰蛋白酶的含量接近,而且遇热变性失活的程度与抗胰蛋白酶相似(图1),因此可用尿酶活性作为豆粕加工适宜度的间接估测指标。

抗胰蛋白和尿酶(UA)活性不仅受到加热的温度影响,而且还受加热时间及水分含量的影响(图2,图3)。由图可见,在水分含量很低时,抗胰蛋白酶和尿酶活性的破坏程度不大。

尿酶的测定方法比较简单,它的原理是过生豆粕中的尿酶使试剂中的尿素释放氨气而使溶液的pH值升高,并以尿酶指数表示。尿酶活性定义为:在30±0.5℃和pH为7的条件下,每分钟每克大豆制品分解尿素后,所释放氨态氮的毫升数。

大多数美国的测定表明:为破坏抗营养物质尿酶值应在0.20或以下。美国饲料工业协会建议的尿酶值为0.05—0.20。反刍家畜的日粮中往往加有尿素,因而过高的尿酶值有可能导致氨中毒。因此,在美国,反刍动物饲养者对豆粕尿酶值的要求是≤0.20。Waldroup及其同事(1985)在阿肯色大学的研究表明用尿酶值为0.5的豆粕饲喂肉用仔鸡也能得到良好的生长效果与饲料报酬(图4)。

在欧洲则认为0.5是可接受的尿酶值(Deschrifver,1977)。但是,加工的适宜度不仅取决于畜种、年龄和畜禽的生产阶段,而且也取决于大豆品种及储存时的状况。例如,若将严寒损害的大豆储存6个月以上,则抗胰蛋白酶含量会增加(Wright,1981),但未受严寒损伤的大豆并不出现此种现象。以下列出尿酶pH变化值和尿酶活性(毫克氮/分钟,30℃)与豆粕加工程度的关系,以供参考。

尿酶活性的测定方法按美国油料与谷物协会(A.O.C.S-American Oil and Cerea1 Society)建议的方法进行(见附录1),为便于饲料厂或原料采购地使用的尿酶快速测定方法见附录2。

二、什么是蛋白溶解度,为什么要测定蛋白溶解度

高温能使还原性碳水化合物,如葡萄糖与赖氨酸的epsi1on游离氨基酸起作用,即美拉德反应(Mail1ard Reaction)。其结果使赖氨酸分子成为不能被利用,因而使蛋白质的消化率降低。蛋白质分子中的其它氨基酸,如精氨酸、组氨酸和色氨酸也受热过度的影响,还原性化合物也包括酮与醛。感观上美拉德反应的产物呈现棕色。故又称棕色反应。该过程的反应式如下:

鉴定豆粕过熟的方法是在0.2%KOH溶液中测定豆粕的蛋白溶解度。此方法在近十年来被认为是评估大豆加工过度与加工不足的最佳方法。其原理是:加热使游离氨基酸与其它化合物的基团形成不能为消化酶所打开的分子间和分子内的结合键,因而降低了蛋白质的溶解度(Ford&Shamrock,1941)。60年代末,Rinehart先生在为Purina饲料公司工作时,首先将蛋白溶解度作为评定豆粕加工适宜度的方法。之后十年间,此法在巴西得到广泛的应用。

由于该项技术基本上为私人公司所采用,所以美国的科研文献在80年代末才开始出现对它的评估(Da1e等,1987;Araba&Dale,1990;Anderson-Haferman等,1992;Parson等,1992,1998等)。

测定样品在0.2%氢氧化钾溶液中的蛋白溶解度,需要使用离心机,并进行两次定氮。具体方法见附录3。

Araba和Dale在1990年发表的文章中的结论是:对于小鸡,蛋白溶解度低于70%的豆粕营养价值已受到破坏,蛋白溶解度低于65%几乎可以肯定豆粕加热过度。近年来由于美国加工技术的改进,蛋白溶解度有增高的趋势。

三、豆粕质量与家禽生产性能

本节将列举不同的试验结果说明加工不当的豆粕对家禽生产性能的影响以及鉴定豆粕的化学指标与生产性能的关系。

Dale等1987年率先使用蛋白溶解度指标评定豆粕质量,并进行了饲养试验,结果见表2。

80年代末作者见到国内使用全豆粕的无鱼粉日粮的效果较差,便模仿国内豆粕(饼)加工过生或过熟的条件,在加拿大Guelph大学进行两个饲养试验,结果见表3。

从试验I的结果可见,肉鸡的增重与饲料转化效率随豆粕的过热程度加深而降低。正常豆粕组内添加与不添加赖氨酸两个水平之间,增重和饲料报酬的差异均不显著,数字上的差别说明基础日粮稍缺赖氨酸。但随着温度的升高,各温度处理的增重和饲料报酬在添加与不添加赖氨酸两个水平间差异显著(p<0.05)。尤以187℃下差异最大;赖氨酸组较不添加的组增重提高211克(p<0.05),饲料转化效率提高0.43(p<0.05)。试验充分表明ε氨基发生美拉德反应(Maillard)而降低豆粕中赖氨酸的利用率,而日粮中添加赖氨酸有助于克服过度加热对生产性能的不良影响。

试验II中生豆粕组21日龄肉用仔鸡的增重较正常组低159克,而饲料转化效率差0.4。可见生豆粕中抗胰蛋白酶对肉用仔鸡的生长具有明显的抑制作用。

试验I和II的结果表明:豆粕质量的化学指标与肉鸡生产性能密切相关,试验II中生豆粕的尿酶活性非常高,为3.08,蛋白溶解度为91%,而正常豆粕这两种指标分别为0.24与76%。

长期以来已知生豆粕中的抗胰蛋白酶使生长鸡的胰脏肿大。试验II中生豆粕对胰脏的影响见表4,由表可见饲喂生豆粕的肉仔鸡21日龄湿胰重比正常豆粕组高2.5倍(p<0.05),干胰重高2倍(p<0.05)。从外观上看,饲喂生豆粕组肉用仔鸡胰脏明显肿大,色黄白,

较正常胰脏稍坚硬。组织学检查发现:生豆粕组鸡的胰脏细胞显著肥大;而且细胞质为酶原颗粒所充满。从形态上看,以每0.18mm2的细胞计数,生豆粕组显著地少于正常豆粕组。在90年代初本文作者用蛋白溶解度和尿酶指标对中国的豆粕(饼)质量进行了评估。张志搏(1990)进行了4(四种不同加工处理的豆饼)×2(加0.3%赖氨酸,0)的蛋鸡试验。豆饼加工条件与试验结果见表5与表6。

蛋鸡试验结果(表6)表明:豆饼质量对产蛋率、日产蛋量、饲料转化效率及母鸡体重的影响极为显著(p<0.01)。饲喂生豆饼(I)的生产性能最差,它与饲喂正常豆饼母鸡的蛋重相差1.8克;日产蛋量相差12.2克;饲料转化效率差1.21,试验期末母鸡体重相差309克,饲喂生豆饼的母鸡处于减重状态。其它三号豆饼(II、III、IV)之间的饲喂效果在总体统计分析时差异不显著,但数字上有差异,以正常的III号豆饼的效果最佳,过熟的IV号最差。添加赖氨酸对蛋鸡生产性能影响不显著(P>0.05),很可能是由于基础日粮含有足够的赖氨酸或平均产蛋率过低之故。但单独统计采食过熟豆饼中不加与加0.3%赖氨酸的两组母鸡的生产性能时,它们的产蛋率、蛋重和日产蛋量差异显著(P<0.05),同样说明豆饼加热过度对赖氨酸有破坏作用。

以上饲喂效果与表中四种豆饼的化学指标非常相符。显然,从化学指标看;I号豆饼为生饼;II号偏生;III号的蛋白溶解度(76%)与尿酶值(0.15)都说明加工适宜,而且饲喂效果最佳。IV号饼为模仿生产中的过熟豆饼,即将II号饼粉碎后在180℃下烘烤20分钟而制成。由于饼层过厚,致使受热不均。因此所测化学指标为过生和过熟二者的混合效果。

杨秀文(1991)用南苑出口免检的豆粕作对照与当时国内市场上质量较差的豆粕(饼)进行4(不同豆粕)×2(蛋白为22.5,17.5%)×2(赖氨酸为0.35%,0)的肉用仔鸡试验。豆粕的化学指标及试验结果见表7。

由表可见:评定豆粕加工程度的化学指标——尿酶活性与蛋白溶解度的测定值与肉仔鸡的生产性能相符。不论在高、低蛋白水平下,优质豆粕的饲喂效果都显著优于过生与过熟的,低蛋白加0.35%赖氨酸足以补偿因加热过度而对营养的破坏作用。

Araba与Dale(1992)给加热过度的豆粕单独或同时补加两种、三种氨基酸(赖、精、蛋),结果如下表(见表8)。

该试验将豆粕高压蒸煮0~40分钟后,蛋白溶解度与尿酶活性分别为80.3%、48.2%与0、0。对于加热过度的豆粕,无论单独补充或一同补充精氨酸(0.2%)、蛋氨酸(0.1%),其结果与未补充组的饲喂效果没有差异。但是,给加热过度的豆粕补充0.2%赖氨酸,无论单独补

充,或同时补充精氨酸(0.2%)、蛋氨酸(0.1%)中的一种;或二种;或三者一同补充,与加热过度未补充赖氨酸;或仅补充精氨酸、蛋氨酸中的一种或二者一同补充;或与未补充而又未经蒸煮的豆粕相比,雏鸡的增重都有显著的提高。

以上数个试验结果一致表明:豆粕加热过度降低了赖氨酸的利用率,因而使家禽的生产性能下降,额外补充赖氨酸能起到一定的补偿作用。

为了调查国内豆粕(饼)的质量,本文作者(1991)分析了来自不同地区豆粕(饼)的化学指标,见表9,并就影响测定蛋白溶解度的因素—样品粒度进行了测定。

由表9可见,直至九十年代初我国各地豆粕(饼)的质量差异很大。上述大量试验已充分表明豆粕(饼)加工的适宜度对家禽生产性能的影响。我们可以用尿酶活性和蛋白溶解度监测豆粕的质量。但是,尿酶活性没有负值,它对任何过熟豆粕的最低值为零;而蛋白溶解度却能反映出豆粕加热过度的程度。还应指出:豆粕(饼)粉碎的粒度影响蛋白溶解度值,从表8可知随着粒度的减小,蛋白溶解度值增大,因此建议测定蛋白溶解度时,样品应过60目(Dale,1987)。影响蛋白溶解度值高低的主要因素是加热,丁丽敏(1992)用生豆粕在121℃下,高压、蒸煮不同时间并测定相应的蛋白溶解度,其结果如图5。

由图可见随着加热时间的延长蛋白溶解度逐渐下降,而蛋白溶解度与加热时间之间存在高度相关,其相关系数r = 0.98(丁丽敏,1992)。

四、豆粕加热不当(不足或过度)对氨基酸利用率的影响

豆粕加热不足或过度都会使豆粕的氨基酸利用率下降。Anderson-Haferman等(1992)报导了生大豆中四种氨基酸的消化率随着在121℃、15磅大气压条件下加工而大为提高。而且这四种氨基酸的消化率都得到了提高(见表10)。

Parson(1998)在乔治亚大学的营养年会上对豆粕因加热不足或加热过度而导致对氨基酸利用率的影响作了进一步的分析与报导。他指出在Anderson-Haferman试验中生大豆中四种主要氨基酸的消化率都得到了提高。可是,在加热过度的情况下却不是如此(表11)。

由表11可见,商品豆粕在高压下过度加热对赖氨酸和胱氨酸的浓度以及消化率都有很大的负作用,但却不影响蛋氨酸与苏氨酸,大多数其它氨基酸也不受影响,由此可见,加热过度豆粕的蛋白质质量下降既是由于赖氨酸和胱氨酸遭到了破坏,也因未破坏的氨基酸的消化率降低所致。这种加热对赖氨酸的影响多半可用美拉德反应(Mai11ard Reaction)来解释。

大多数氨基酸在美拉德反应中的早期产物(Amadori化合物是可以分析到的,可是在进一步美拉德反应中的一些产物如:吡口泰(Pyrazines)和吡咯(Pyrroles)却都是分析不出的,即被破坏了。而且,美拉德反应的早期与后期生成物对于动物来说都是不可利用的。加热过度对胱氨酸的影响尚不清楚。

Parson又进一步对一些商用豆粕在加热过度后的氨基酸利用率进行研究,得到相似的结果(表12)。当发现一些样品中赖氨酸消化率稍低而进一步检查后,发现它们的赖氨酸含量也低。由于无法测定未加热豆粕中的赖氨酸含量, Parson用迪高莎(Degussa)公司建议的回归公式按蛋白质含量计算出样品应含多少赖氨酸。结果是赖氨酸的计算值大大高于分析值,说明一些赖氨酸在加工过程中遭到破坏。于是在表12中计算出两个不同的赖氨酸消化率,一个以分析值为基础,另一个以较高的计算值为基础。计算结果清楚地表明:由推算的氨基酸含量所得的赖氨酸消化率总是低于从赖氨酸分析值计算出的消化率。

表12的结果与Parson以前的实验室结果相仿,说明加热过度使赖氨酸消化率下降的原因,一方面是由于部分赖氨酸被破坏,另一方面由于未破坏赖氨酸的消化率也降低所致。因此Parson教授建议:从实用角度看,营养学家应监测豆粕中赖氨酸占蛋白质的百分数,对怀疑加热过度的豆粕更应监测。豆粕如果加热非常过度,则赖氨酸作为蛋白质的百分比总是偏低的,只看赖氨酸消化率可能会出现误导现象。

以上有关豆粕加热不当对赖氨酸利用率影响的分析是很新的观点(Parson, 1998),它有助于我们进一步认识加热过度对豆粕营养价值的损害。

此外,加热过度也使代谢能值降低(Renner和Hill,1960)。Sibbald(1980)测定了不同加工程度豆粕的真代谢能值:生豆粕为2.25;正常豆粕为3.01;加热过度豆粕为2.70兆卡/公斤。可见,生豆粕及加热过度的豆粕的真代谢能值都低于正常豆粕的。

五、对尿酶测定值与蛋白溶解度的评估

尿酶测定值一直被认为是传统的评定豆粕质量的方法。可是,Araba和Dale(1990)的进一步试验表明尿酶测定值不能恰当地反映加热过度以及加热程度对豆粕质量的影响。他们进行了五个试验,用0.2%氢氧化钾溶液测定的蛋白溶解度每次都随加热时间的延长稳定而明显地下降;但尿酶指标却因无负值而停留在0.00,因此不能反映出豆粕营养价值的受损程度。现举其中两例如下(表13和14)

试验所用豆粕在高压蒸煮前的尿酶pH变化值为0.03;在高压加热5分钟后降至0.02;加热10分钟,甚至80分钟,尿酶值都保持为0.00而在0.2%KOH溶液中的蛋白溶解度却从高压蒸煮前的86%稳定地下降,在80分钟时达到40.8%;而且雏鸡的增重与饲料报酬也相应地下降。

表14所示情况与表13相仿。只是所用豆粕在高压蒸煮前已显示尿酶pH值为零,由于尿酶指标无负值,因此在进一步加热过程中尿酶值没有变化,始终为零,而蛋白溶解度则随每次热处理时间的增加从82.3%降至72.6、66.9、60.5直至46.1%。高压蒸煮时间从10分钟增加至20和40分钟,使雏鸡的体重和饲料转化效率都下降(P<0.05)。

以上结果表明:对于加热过度的豆粕尿酶测定值不是一个可靠的指标;而蛋白溶解度却克服了以上局限性,可以区别不同程度的过度加热。

Parson(1998)引用 Anderson-Haferman等(1992)的两个试验对监测豆粕质量的两个指标——尿酶(pH 变化值)和蛋白溶解度给予评估(表15)。

由表15可知,这是一个观察生大豆高压蒸煮效果的试验。在两个试验中都可看到以下现象:在前几次的高压时间递增时,虽然小鸡生长速度很快提高,这两个指标却一直保持在较高水平,没有发生变化。尿酶值在2.0左右或2.0以上,蛋白溶解度在90%左右;试验2中蛋白溶解度高值的保持时间远超过最低的适宜高压蒸煮时间。尿酶测定值的一般规律是在保持一段高值后,再增加3分钟高压蒸煮时间,便从2.0左右骤然下降至0.2以下。基于以上试验结果以及他人的研究,Parson认为尿酶(pH变化值)是用以鉴定豆粕加热程度是否足以有效地破坏其中大部分抗营养因素的一个指标,它对加热过度的豆粕意义不大。因为它对测定所需最低加热量不够敏感。此外,对尿酶活性的最佳水平也有争议(见第一节)。Parson 认为尿酶活性低于0.05者有可能过熟,但不一定过熟,因为在过去15年间,他的实验室里评估了许多豆粕样本,它们的尿酶活性等于“0”,但是氨基酸利用率都很高,如赖氨酸利用率有高达90%或以上的。这可能与美国近年来加工技术的不断改进有关。而蛋白溶解度则随加热时间的增加而递减并与小鸡生长的速度相关,因此是鉴定加热过度和严重程度的良好指标;但它对生大豆或加热不足的豆粕却不灵敏。我们在国内的试验也得到相似的结果(表7与表9)。

由于加工不当的豆粕都会在不同程度上降低畜禽的生产性能(见第三节),因此,我们建议:在采购豆粕时既要测定它的尿酶值以确保其中的抗胰蛋白酶受到有效的破坏(不同类别与不

同年龄的适宜指标不同)(见第一节);同时也要测定蛋白溶解度,以确保其中的氨基酸与氨基酸利用率未因豆粕加热过度而受损。

六、结论

1. 豆粕质量不稳定已给我国家禽(或其它家畜)生产造成了不可估量的无形损失。人们往往误认为必须添加某种动物性饲料原料,如鱼粉等才能达到最佳生产性能。实质上,这是在用昂贵的鱼粉氨基酸弥补因加工不当而从豆粕中损失的那部分氨基酸。豆粕质量不稳定也是我国无鱼粉日粮不易获得成功的主要原因之一。

2. 豆粕质量对家禽生产性能影响显著,加热不足或过度均可降低蛋鸡产蛋率、肉用仔鸡增重以及饲料转化效率。

3. 豆粕加热不足使其中四种主要氨基酸,即赖氨酸、蛋氨酸、胱氨酸与苏氨酸的利用率不能达到最佳程度;而加热过度不但使部分赖氨酸受到破坏,同时也使未破坏部分的消化率降低。因此,加工不当的豆粕由于氨基酸与能量含量受到影响而使畜禽生产性能下降。

4. 尿酶活性与蛋白溶解度是评定豆粕质量的两个常用指标。其中尿酶(pH变化值)是用以鉴定豆粕加热程度是否足以破坏其中大部分抗营养因素的一个指标,由于它无负值,所以对加热过度的豆粕意义不大。而蛋白溶解度则可区别加热过度的严重程度,同时它也可鉴别生大豆或加热不足的豆粕,但不够灵敏。因此,我们建议在采购豆粕时两个指标——尿酶活性与蛋白溶解度都要测定。

尿常规正常值

尿常规正常值 尿常规是医学检验“三大常规”项目之一,不少肾脏病变早期就可以出现蛋白尿或者尿沉渣中有形成分。对于某些全身性病变以及身体其他脏器影响尿液改变的疾病如糖尿病、血液病、肝胆疾患、流行性出血热等的诊断,也有很重要的参考价值。同时,尿液的化验检查还可以反映一些疾病的治疗效果及预后。通过此项检查可以判断相应的病征。那么,在繁多的检查项目里,尿常规正常值范围是多少呢?相信了解清楚这些尿常规正常值将有助于我们对尿常规化验单的解读、分析。 1、尿液颜色 正常范围:淡黄色。 2、尿透明度 正常范围:清 3、尿酸硷度(尿pH值) 正常范围:一般为酸性 4、尿酸硷度(尿pH值) 正常范围:一般为酸性 5、红细胞 正常范围:男:0,女:0-2(高倍视野) 6、白细胞 正常范围:男:0-3,女:0-5(高倍视野) 7、颗粒管型 正常范围:无

8、透明管型 正常范围:无或偶见 9、蛋白 正常范围:阴性 10、糖 正常范围:阴性 11、酮体 正常范围:阴性 12、尿胆原 男性0.3~3.55μmol/L;女性:0.00~2.64μmol/L;儿童:0.13~2.30μmol/L 13、胆红素 正常范围:阴性。 尿常规化验结果分析 尿常规化验的检查项目有很多,密密麻麻一大串的数字看得眼睛都花了。尿常规化验单上的结果要怎么看呢?小编教您如何进行尿常规化验检查结果分析。 做尿常规检查所得结果写在一张纸上,这张纸就叫尿常规化验单。尿常规化验单上的指标包括:酸碱度(pH)、尿比重(SG)、尿胆原(URO)、隐血(BLO)、白细胞(WBC)、尿蛋白(PRO)、尿糖(GLU)、胆红素(BIL)、酮体(KET)、尿红细胞(RBC)、尿液颜色(GOL)。 尿常规化验单是分析接受尿常规检查者的身体状况的重要依据。尿检包括了尿常规、中段尿培养、尿三杯检验、阿迪氏计数、尿蛋白定量等等项目。因此说尿检不等同于尿常规检查,但平常通俗所说的“尿检”多指查尿常规。

影响蛋白质水合和溶解性的因素有哪些

1.影响蛋白质水合和溶解性的因素有哪些?这两方面的影响因素有何异同? 答:(1)蛋白质的水合性质(PropertiesHydration of Proteins) A.蛋白质水合性质:蛋白质分子中带电基团、主链肽基团、Asn、 Gln的酰胺基、Ser、Thr和非极性残基团与水分子相互结 合的性质。 B. 蛋白质水合能力:当干蛋白质粉与相对湿度为90-95%的水蒸汽 达到平衡时,每克蛋白质所结合的水的克数。 α=?C +0.4 ?P+0.2 ?N (α:水合能力,g水/g蛋白质;?C, ?P , ?N:带电的、极性和非极性的分数) C.影响蛋白质结合水的环境因素: 1.pH 当pH=pI时,蛋白质的水合能力最低 2.温度温度升高,氢键作用和离子基团的水合作用减弱,水合能力下降。 3.氨基酸组成极性氨基酸越多,水合能力越高 4,离子强度低浓度的盐能提高蛋白质的水合能力。 5.盐的种类 (2)蛋白质的溶解度(SolubilityofProteins) 影响蛋白质溶解性质的主要的相互作用: A 疏水相互作用能促进蛋白质—蛋白质相互作用,使蛋白质溶解度降低; B离子相互作用能促进蛋白质—水相互作用,使蛋白质溶解度增加。 1.pH 当pH高于或低于等电点时,蛋白质带净的负电荷或净的正电荷, 水分子能同这些电荷相互作用并起着稳定作用 U-形曲线,最低溶解度出现在蛋白 2.①“盐溶”(salted in)中性盐的离子在0.1-1M能提高蛋白质的溶 解度。 ②“盐析”(salted out)中性盐的离子大于1M,蛋白质的溶解 度降低,并可能导致蛋白质沉淀。 ③当离子强度<0.5时,离子中和蛋白质表面的电荷。 电荷掩蔽效应对蛋白质的溶解度的影响取决于蛋白质的表面性质。如果蛋白质含 有高比例的非极性区域,那么此电荷掩蔽效应使它的溶解度下降,反之, 溶解度提高。 当离子强度>1.0时,盐对蛋白质溶解度具有特殊的离子效应。 硫酸盐和氟化物(盐)逐渐降低蛋白质的溶解度。在相同的μ,各种离子对蛋 白质溶解度的相对影响(提高溶解度)的能力。Hofmeister系列 阴离子(提高蛋白质溶解度的能力): SO42-<F-

(人)胰蛋白酶

重组人胰蛋白酶 Cat.No.:RHT03 CAS:9002-07-7 EC:3.4.21.4 来源:人胰蛋白酶,基因工程生产,大肠杆菌表达 1.重组生产,无动物源性 重组人胰蛋白酶,氨基酸序列及性质与人胰蛋白酶完全相同。无动物源性,无病毒污染。可用于干细胞治疗、肿瘤的细胞治疗等过程中,无抗原性。 2.优势 安全性高 重组生产,无动物源性的病毒污染,如猪流感病毒、猪细小病毒等; 特殊工艺,无内源性病毒污染,无细菌、真菌、支原体污染; 冻干粉,运输及储存安全,活性不易损失; 不含任何蛋白酶抑制剂,如PMSF等。 上海雅心生物技术有限公司

?纯度高 HPLC纯化; 活性特异,无其它蛋白酶活性。 ?活性高 比活性不低于2500USP u/mg。 3.用途范围 胰蛋白酶是一种内肽酶,可用于赖氨酸及精氨酸C末端剪切肽键,从而将大分子蛋白裂解为小肽。 胰蛋白酶广泛用于各种生物技术过程中,如:细胞培养各种组织的细胞分离;变性蛋白质的降解;蛋白质的酶解、测序;干细胞、肿瘤的细胞治疗等。 4.特性 纯化HPLC 产品性状白色或类白色冻干粉 纯度(HPLC)≥95% 比活不低于2500USP u/mg 其他酶含量无糜蛋白酶、羧肽酶A等污染及活性 不含任何蛋白酶抑制剂无PMSF、EDTA等任何蛋白酶抑制剂 上海雅心生物技术有限公司

5.信息 产品名称比活包装产地 重组人胰蛋白酶≥2500USP u/mg10mg,100mg,1g上海雅心 活力单位:25℃,pH7.6,反应体系3.0ml(1cm光路),每分钟酶解BAEE使253nm下的吸收值增加0.003定义为一个USP单位。 6.相关产品 重组猪胰蛋白酶; 重组胰蛋白酶细胞消化液。 上海雅心生物技术有限公司

豆粕营养成份及准则

豆粕营养成份及标准 [关键词]豆粕标准 植物蛋白类 植物性蛋白亦是提供饲料蛋白质的主要来源,其与鱼粉在饲料的关系中互为消长,而豆类及油实类等油脂含量丰富者,在采油后所得到的油粕类,通常蛋白质含量高,普通用来补给蛋白质,是极有用处的饲料来源。惟这些油粕类的饲料价值常视其成分、营养价,适口性、不良因子等而有差异。 系指大豆采油过的残渣经过适度加热、干燥、粉碎者。大豆粕是鸡、猪、牛适口性良好的蛋白质源。黄豆粕之粗蛋白质含量约45%,其消化率高达85-92%。黄豆内存在着非营养成分的urease等酵素,trypsininhibiter,且活性很高,在生的情况下会阻碍消化率,雏鸡、子猪的发育。黄豆粕经过某种程度加热后,成长阻碍因子即失去活性,且饲料价值提高,但视其制造工程宫之加热条件面品质受到影响。其指标是使用水溶性氮素指数(NSI),ursease活性,trypsihninhibiter含量,通常NSI25%以下为一个指标。牛方面,加热不充分之urease 活性高者不能使用于尿素配合饲料。 豆粕的自然属性 1、物理性质 颜色:浅黄色至浅褐色,颜色过深表示加热过度,太浅则表示加热不足。整批豆粕色泽应基本一致。 味道:具有烤大豆香味,没有酸败、霉败、焦化等异味,也没有生豆腥味。 质地:均匀流动性好,呈不规则碎片状、粉状或粒状,不含过量杂质。 比重:0.515?/FONT>0.65Kg/l 2、化学成份 豆粕中含蛋白质43%左右,赖氨酸2.5%~3.0%,色氨酸 0.6%~0.7%,蛋氨酸0.5%~0.7%,胱氨酸0.5%~0.8%;胡萝卜素较少,仅0.2~0.4mg/Kg,流胺素、核黄素各3~ 6mg/Kg,烟酸15~30mg/Kg,胆碱2200~2800mg/Kg。豆粕中较缺乏蛋氨酸,粗纤维主要来自豆皮,无氮浸出物主要是二糖、三糖、四糖,淀粉含量低,矿物质含量低,钙少磷多,维生素A、B、B2较少。表2反映的是豆粕与其他各种油粕的组成比较。 去皮与带皮豆粕组成比较 原蛋白质 CrudeProteinExtract 以太纤维 EtherFiber% 粗纤维 Crude% 能量 Energy(kcal/kg)带 皮 豆 粕 44.0(8)0.5(10)7.0(7)2240(8) 去 皮 豆 粕 48.5(10) 1.0(7) 3.0 (10) 2475(10) 带皮与去皮豆粕氨基酸组成比较 带皮豆粕去皮豆粕精氨酸 3.4 3.8 赖氨酸 2.9 3.2 蛋氨酸0.650.75 胱氨酸0.670.74 色氨酸0.60.7 组氨酸 1.1 1.3 亮氨酸 3.4 3.8 异亮氨酸 2.5 2.6 苯丙氨酸 2.2 2.7 苏氨酸 1.72 总价值 2.4 2.7 豆粕在饲养中的应用 大约85%的豆粕用于家禽和猪的饲养。豆粕中富含的多种氨基酸对家禽和猪摄入营养很有好处。实验表明,在不需额外加入动物性蛋白的情况下,仅豆粕中含有的氨基酸就足以平衡家禽和猪的食谱,从而促进它们的营养吸收。在生猪饲料中,有时也会加入动物性蛋白作为额外的蛋白质添加剂,但总体看来,豆粕得到了最大限度的利用。只有当其他粕类单位蛋白成本远低于豆粕

酸性蛋白酶的作用机理

酸性蛋白酶与碱性蛋白酶生产工艺的不同之处? 酸性蛋白酶是一种在酸性环境下(pH 2.5-4.0)催化蛋白酶水解的酶制剂,适用于酸性介质中水解动植物蛋白质。可用于毛皮软化,酒精发酵,啤酒、果酒澄清,动植物蛋白质水解营养液,羊毛染色,废胶片回收,饲料添加剂等等。本品在酸性条件下有利于皮纤维松散,且软化液可连续使用,是当前理想的毛皮软化酶制剂;在酒精发酵中,添加酸性蛋白酶,能有效水解原料中的蛋白质,破坏原料颗粒粒间细胞壁的结构,有利于糖化酶的作用,使原料中可利用碳源增加,从而可提高原料出酒率;另一方面,蛋白质的水解提高了醪液中α-氨基态氮的含量,促进酵母菌的生长与繁殖,提高发酵速度,从而缩短发酵周期和提高发酵设备的生产能力。 碱性蛋白酶碱性蛋白酶是在碱性条件下水解蛋白质肽键的酶类,是一类非常重要的工业用酶,最早发现于猪胰脏。碱性蛋白酶广泛存在于动、植物及微生物中。微生物蛋白酶均为胞外酶,不仅具有动植物蛋白酶所具有的全部特性,还有下游技术处理相对简单、价格低廉、来源广、菌体易于培养、产量高、高产菌株选育简单、快速、易于实现工业化生产等诸多优点。1945年瑞士M等在地衣芽孢杆菌中发现了微生物碱性蛋白酶。 碱性蛋白酶是由细菌原生质体诱变选育出的地衣芽孢杆菌2709,经深层发酵、提取及精制而成的一种蛋白水解酶,其主要酶成分为地衣芽孢杆菌蛋白酶,是一种丝氨酸型的内切蛋白酶,它能水解蛋白质分子肽链生成多肽或氨基酸,具有较强的分解蛋白质的能力,广泛应用

于食品、医疗、酿造、洗涤、丝绸、制革等行业。 1、碱性蛋白酶是一种无毒、无副作用的蛋白质,属于丝氨酸型内切蛋白酶,应用在食品行业可水解蛋白质分子肽链生成多肽或氨基酸,形成具有独特风味的蛋白质水解液。 2、碱性蛋白酶成功应用于洗涤剂用酶工业,可添加在普通洗衣粉、浓缩洗衣粉和液体洗涤剂当中,既可用于家庭洗衣,也可用于工业洗衣,可以有效的去除血渍、蛋类、乳制品、或肉汁、菜汁等蛋白类的污渍,另外也可作为医用试剂酶清洗生化仪器等。 3、在生物技术领域,碱性蛋白酶可作为工具酶用于核酸纯化过程中的蛋白质(包括核酸酶类)去除,而对DNA无降解作用,避免对DNA 完整性的破坏。 酸性蛋白酶如何灭活第一种方法几乎所有酶都适用,就是加热。第二种,既然是酸性酶,加入强碱应该也是可以的。 酸性蛋白酶产生菌的筛选方法?酸性蛋白酶是一种能在酸性环境下水解蛋白质的酶类,其最适作用pH值为2.5-5.0。由于酸性蛋白酶具有较好的耐酸性,因此被广泛地应用于食品、医药、轻工、皮革工艺以及饲料加工工业中。目前用于工业化生产的酸性蛋白酶大多为霉菌酸性蛋白酶,此类酶的最适作用pH值为3.0左右,当pH值升高时,酸性蛋白酶的酶活会明显降低,且此类酶不耐热,当温度达到50℃以上时很不稳定,从而限制了酸性蛋白酶的应用范围。因此,本研究以开发耐温偏酸性蛋白酶为目标,进行了以下几方面的研究:(1)偏酸性蛋白酶产生菌的分离筛选。(2)偏酸性蛋白酶粗酶酶学性质的

尿常规检查项目及正常值 尿常规参考值

尿常规检查项目及正常值尿常规参考值 尿常规在临床上是不可忽视的一项初步检查,那么尿常规检查有哪些项目?尿常规正常值范围是多少?尿常规检查参考值又是多少呢?下面为您介绍。 尿常规在临床上是不可忽视的一项初步检查,不少肾脏病变早期就可以出现蛋白尿或者尿沉渣中有形成分。一旦发现尿异常,常是肾脏或尿路疾病的第一个指征,亦常是提供病理过程本质的重要线索。近年来有不少人强调,负责医生应自己动手做患者尿常规检查,是有利于医生发现肾脏疾病的一般诊断方法。尿常规检查内容包括尿的颜色、透明度、酸碱度、红细胞、白细胞、上皮细胞、管型、蛋白质、比重及尿糖定性。尿常规检查是诊断肾炎早期的敏感指标,当尿常规异常尤其是蛋白尿、潜血呈阳性时,则高度怀疑肾炎的发生。尿常规的检查意义在于对泌尿道感染、结石、胆道阻塞、急慢性肾炎、糖尿病、肾病变症状群等疾病有预报性作用。 尿常规检查项目尿常规检查内容包括尿的颜色、透明度、酸碱度、红细胞、白细胞、上皮细胞、管型、蛋白质、比重及尿糖定性。 (1)尿色:正常尿液的色泽,主要由尿色素所致,其每日的排泄量大体是恒定的,故尿色的深浅随尿量而改变。正常尿呈草黄色,异常的尿色可因食物、药物、色素、血液等因素而变化。

(2)透明度:正常新鲜尿液,除女性的尿可见稍混浊外,多数是清晰透明的,若放置过久则出现轻度混浊,这是由于尿液的酸碱度改变,尿内的粘液蛋白、核蛋白等逐渐析出之故。 (3)酸碱度:正常尿为弱酸性,也可为中性或弱碱性,尿的酸碱度在很大程度上取决于饮食种类、服用的药物及疾病类型。 (4)细胞:在临床上尿中有重要意义的细胞为红细胞、白细胞及小圆上皮细胞。①红细胞。正常人尿中可偶见红细胞,离心沉淀后每高倍镜视野不超过3个。若尿中出现多量红细胞,则可能由于肾脏出血、尿路出血、肾充血等原因所致。剧烈运动及血液循环障碍等,也可导致肾小球通透性增加,而在尿中出现蛋白质和红细胞。②白细胞。正常人尿中有少数白细胞存在,离心尿每高倍镜视野不超过5个。异常时,尿中含有大量白细胞,表示泌尿道有化脓性病变,如肾盂肾炎、膀胱炎及尿道炎等。③小圆形上皮细胞。正常尿液中,有时可发现少数脂肪变性的小圆形上皮细胞。若肾小球肾炎时,尿中上皮细胞增多。若肾小管有病变时,可出现许多小圆形上皮细胞。 (5)管型:正常尿液中仅含有极微量的白蛋白,没有管型,或偶见少数透明管型。若尿中出现1个管型,可以反映至少1个肾单位的情况,是肾脏疾病的一个信号,对诊断具有重要意义。 (6)蛋白质:一般认为正常人每日排出蛋白质量为40~80毫克,最多100~150毫克,常规定性检测为阴性。病理性蛋白尿见于肾小球肾炎、肾盂肾炎、急性肾功能衰竭、高血压肾病、糖尿病肾病、妊娠中毒症、狼疮性肾炎、放射性肾炎及肾内其它炎症病变、中毒、

氢氧化钾蛋白质溶解度的测定

氢氧化钾蛋白质溶解度 ---参照GB/T 19541-2004 1适用范围:豆粕、菜籽粕、棉籽粕。 2 氢氧化钾蛋白质溶解度 大豆粕样品在规定的条件下,可溶于0.2%氢氧化钾溶液中的粗蛋白质含量占样品中总的粗蛋白质含量的质量百分数。 3氢氧化钾蛋白质溶解度的测定 3.1 方法原理 氢氧化钾蛋白质溶解度可以反映大豆粕产品加热过度的情况。不同加热程度的大豆粕,氢氧化钾蛋白质溶解度不同。先测定大豆粕样品在规定的条件下,可溶于氢氧化钾溶液中的粗蛋白质含量;再测定同一大豆粕样品中总的粗蛋白含量,计算出氢氧化钾蛋白质溶解度。 3.2 试剂 所用试剂均为分析纯,所用的水为按GB/T 6682中规定的三级水。 3.2.1 0.2%的氢氧化钾溶液:2.44g氢氧化钾(含量:≥82%)溶解于水中,稀释并定容至1L。 3.3 仪器设备 3.3.1实验室用样品粉碎机。 3.3.2样品筛:孔径0.25mm。 3.3.3分析天平:感量0.0001g。 3.3.4 磁力搅拌器。 3.3.5离心机:转速为2700 r/min以上。 3.3.6 TECATOR装置:消化管、消化系统、蒸馏系统。 3.4 样品的制备 取具有代表性的大豆粕样品,用四分法缩减分取200g左右,粉碎过0.25mm 孔径的样品筛,充分混匀,装入磨口瓶中备用。 3.5 测定步骤

称取大豆粕式样1.0g,精确到0.1mg,置于250mL高型烧杯中,加入50.00mL 氢氧化钾溶液,在磁力边搅拌器上搅拌20min,将溶液转移至离心管中,以2700 r/min离心10min,小心移取清液10.00ml,放入消化管中,加入6.4g混合催化剂和10mL浓硫酸,消化,蒸馏,测其粗蛋白,同时测定同一式样总的粗蛋白质含量。 3.6 结果计算 氢氧化钾蛋白质溶解度X,数值以质量分数表示,按式计算: X = W1 / W2 ×K × 100 公式中: W1 —大豆粕式样溶于氢氧化钾溶液中的粗蛋白质含量,%。 W2 —大豆粕式样总的粗蛋白质含量(以两次平行测定结果的算术平均值为测定结果),%。 K —稀释倍数。 计算记过表示到小数点后一位。 3.7 精密度 3.7.1重复性 在同一实验室,由同一操作人员完成的两个平行测定结果,相对偏差不大于2%;以两次平行测定结果的算术平均值为测定结果。 3.7.2 再现性 再不同实验室,由不同操作人员用不同的仪器设备完成的两个测定结果,相对偏差不大于4%。

胰蛋白酶抑制剂的测定.doc - NY

NY 中华人民共和国农业行业标准 NY/T1103.2-2006 转基因植物及其产品食用安全检测 抗营养素第2部分:胰蛋白酶抑制剂的测定 Safety assessment of genetically modified plant and derived products Part 2: assay of anti-nutrients pancreatic typsin inhibiter 2006-07-10发布2006-10-01实施 中华人民共和国农业部发布

前言 本标准由中华人民共和国农业部提出。 本标准由全国农业转基因生物安全管理标准化技术委员会归口。 本标准起草单位:中国疾病预防控制中心营养与食品安全所、农业部科技发展中心、中国农业大学、天津市卫生防病中心。 本标准主要起草人:杨月欣、王竹、韩军花、李宁、汪其怀、黄昆仑、刘克明、刘培磊、连庆。 本标准首次发布。

转基因植物及其产品食用安全检测 抗营养素第2部分:胰蛋白酶抑制剂的测定 1 范围 本标准规定了转基因植物及其产品中胰蛋白酶抑制剂的测定方法。 本标准适用于转基因大豆及其产品、转基因谷物及其产品中胰蛋白酶抑制剂的测定。其他的转基因植物,如花生、马铃薯等也可用该方法进行测定。 2 术语和定义 下列术语和定义适用于本标准。 2.1 转基因植物genetically modified plant 指利用基因工程技术改变基因组构成,用于农业生产或者农产品加工的植物。 2.2 转基因植物产品products derived from genetically modified plant 指转基因植物的直接加工产品和含有转基因植物的产品。 3 原理 胰蛋白酶可作用于苯甲酰-DL-精氨酸对硝基苯胺(BAPA),释放出黄色的对硝基苯胺,该物质在410 nm下有最大吸收值。转基因植物及其产品中的胰蛋白酶抑制剂可抑制这一反应,使吸光度值下降,其下降程度与胰蛋白酶抑制剂活性成正比。用分光光度计在410 nm 处测定吸光度值的变化,可对胰蛋白酶抑制剂活性进行定量分析。 4 试验材料 转基因植物及其产品、受体植物及其产品。如果对转基因植物产品中的胰蛋白酶抑制剂进行测定,转基因植物产品和受体植物产品的处理条件应相同。 上述材料的水分含量和种植环境应基本一致。

豆粕营养成份及标准

豆粕营养成份及标准集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

豆粕营养成份及标准 植物蛋白类 植物性蛋白亦是提供饲料蛋白质的主要来源,其与鱼粉在饲料的关系中互为消长,而豆类及油实类等油脂含量丰富者,在采油后所得到的油粕类,通常蛋白质含量高,普通用来补给蛋白质,是极有用处的饲料来源。惟这些油粕类的饲料价值常视其成分、营养价,适口性、不良因子等而有差异。 系指大豆采油过的残渣经过适度加热、干燥、粉碎者。大豆粕是鸡、猪、牛适口性良好的蛋白质源。黄豆粕之粗蛋白质含量约45%,其消化率高达85-92%。黄豆内存在着非营养成分的urease等酵素,trypsininhibiter,且活性很高,在生的情况下会阻碍消化率,雏鸡、子猪的发育。黄豆粕经过某种程度加热后,成长阻碍因子即失去活性,且饲料价值提高,但视其制造工程宫之加热条件面品质受到影响。其指标是使用水溶性氮素指数(NSI),ursease活性,trypsihninhibiter含量,通常NSI25%以下为一个指标。牛方面,加热不充分之urease活性高者不能使用于尿素配合饲料。 豆粕的自然属性 1、物理性质 颜色:浅黄色至浅褐色,颜色过深表示加热过度,太浅则表示加热不足。整批豆粕色泽应基本一致。 味道:具有烤大豆香味,没有酸败、霉败、焦化等异味,也没有生豆腥味。 质地:均匀流动性好,呈不规则碎片状、粉状或粒状,不含过量杂质。 比重:0.515?/FONT>0.65Kg/l 2、化学成份 豆粕中含蛋白质43%左右,赖氨酸2.5%~3.0%,色氨酸 0.6%~0.7%,蛋氨酸0.5%~0.7%,胱氨酸0.5%~0.8%;胡萝卜素较少,仅0.2~0.4mg/Kg,流胺素、核黄素各3~ 6mg/Kg,烟酸15~30mg/Kg,胆碱2200~2800mg/Kg。豆粕中较缺乏蛋氨酸,粗纤维主要来自豆皮,无氮浸出物主要是二糖、三糖、四糖,淀粉含量低,矿物质含量低,钙少磷多,维生素A、B、B2较少。表2反映的是豆粕与其他各种油粕的组成比较。 去皮与带皮豆粕组成比较 原蛋白质 CrudeProteinExtract 以太纤维 EtherFiber% 粗纤维 Crude% 能量 Energy(kcal/kg)带 皮 豆 粕 44.0(8)0.5(10) 7.0 (7) 2240(8) 去 皮 豆 粕 48.5(10) 1.0(7) 3.0 (10) 2475(10) 带皮与去皮豆粕氨基酸组成比较 带皮豆粕去皮豆粕精氨酸 3.4 3.8 赖氨酸 2.9 3.2 蛋氨酸0.650.75 胱氨酸0.670.74 色氨酸0.60.7 组氨酸 1.1 1.3 亮氨酸 3.4 3.8 异亮氨酸 2.5 2.6 苯丙氨酸 2.2 2.7 苏氨酸 1.72 总价值 2.4 2.7 豆粕在饲养中的应用 大约85%的豆粕用于家禽和猪的饲养。豆粕中富含的多种氨基酸对家禽和猪摄入营养很有好处。实验表明,在不需额外加入动物性蛋白的情况下,仅豆粕中含有的氨基酸就足以平衡家禽和猪的食谱,从而促进它们的营养吸收。在生猪饲料中,有时也会加入动物性蛋白作为额外的蛋白质添加剂,但总体看来,豆粕得到了最大限度的利用。只有当其他粕类单位蛋白成本远低于豆粕时,人们才会考虑使用其他粕类作为替代品。 在奶牛的饲养中,味道鲜美、易于消化的豆粕能够提高出奶量。在肉用牛的饲养中,豆粕也是最重要的油籽粕之一。但是,在牛的饲养过程中,有些时候并不需要高质量的豆粕,用其他粕类可以达到同样的喂养效果,因此,豆粕在牛饲养的地位要略逊于生猪饲养中的地位。 最近几年来,豆粕也被广泛应用于水产养殖业中。豆粕中含有的多种氨基酸枣例如蛋胺酸和胱胺酸枣能够充分满足鱼类对氨基酸的特殊需要。由于鱼粉用鱼捕捞过度原因,造成世界鱼粉减产,供给的短缺使鱼粉价格居高不下,因此,具有高蛋白质的豆粕已经开始取代鱼粉。在水产养殖业中发挥越来越重要的作用。 此外,豆粕还被用于制成宠物食品。简单的玉米、豆粕混合食物同使用高动物蛋白制成的食品对宠物来说,具有相同的价值。美国依利诺斯大学进行的一次实验表明,豆粕具有同猪肉一样的高蛋白,却不含影响营养消化的低糖酸盐。

尿常规检查正常值是多少

尿常规检查正常值是多少 尿常规是医学检验“三大常规“项目之一。人们到医院检查是总是要检查尿常规的指数, 最常见的是泌尿系统疾病。主要是为了测试人体情况是否出现异常有助于我们了解自己的病情,。尿常规正常值有一个大致的范围那么,尿常规正常值是多少? 1、尿白细胞(LEU)→标准值或现象:-(此项目无病变的情况下一般不予筛查) 2、红细胞管型(U_RBC-)→标准值或现象:阴性 3、尿蛋白(PRO)→标准值或现象:+-(+表示轻度白色混浊,-表示清淡无混浊,两者或介于两者之间为正常) 4、酮体(KET)→标准值或现象:-(此项目一般不予筛查或者筛查时呈紫红色为正常) 5、葡萄糖(GLU-U)→标准值或现象:-(蓝色溶液) 6、尿胆原(URO)→标准值或现象:-(此项目普通情况下一般不予筛查) 6.、酸碱性:即pH值,一般在7左右正常,主要是反映人体酸碱平衡情况以及肾脏的调节功能是否正常。pH值升高可能是碱中毒、泌尿系统感染等;pH值降低可能是患有糖尿病、酸中毒、痛风、慢性肾小球肾炎等。 7、葡萄糖:呈阴性为正常,如果呈阳性,可能是妊娠后期或者患有糖尿病、甲亢等。但是,如果服用维生素C过量,会出现假阴性;如果服用强氧化剂药物会出现假阳性。 8、蛋白质:正常为阴性,如果是阳性,多出现于肾病综合征、各种肾小球肾炎、肾功能不全,或者服用磷酸盐、药物之后。如果注射青霉素导致pH值小于4时,可能会出现假阴性;当尿检pH值大于8,尿蛋白检测会出现假阳性。 9、胆红素:正常呈阴性,呈阳性多见于阻塞性或肝细胞性黄疽。如果摄入亚硝酸盐、维生素C过量、大量氯丙嗪,会出现假阴性;如果摄人酚噻嗪等药物可能会出现假阳性。 10、尿胆原:正常为阴性,如果呈阳性一般见于肝细胞性或溶血性黄疸,如果阻塞性黄疸尿胆原呈阴性。如果摄入对氨基水杨酸、亚硝酸盐会呈假阴性;如果摄入维生素K、磺胺类药、酚噻嗪等药物,会出现假阳性。 11、酮体:正常为阴性,如果呈阳性多见于长期饥饿、糖尿病酮症酸中毒、孕吐等;还有摄入甲基多巴、L多巴等药物也会呈阳性。

氢氧化钾蛋白质溶解度的测定

氢氧化钾蛋白质溶解度的测定 1、原理 氢氧化钾蛋白质溶解度可以反映蛋白质变性的情况。不同的蛋白质品种,氢氧化钾蛋白质溶解度不同。蛋白质变性越大,氢氧化钾蛋白质溶解度越小。 用一定浓度的氢氧化钾溶液提取试样中的可溶性蛋白质,在催化剂作用下用浓硫酸将提取液中可溶性蛋白质的氮转化为硫酸铵。加入强碱进行蒸馏使氨逸出,用硼酸吸收后,再用盐酸滴定测出试样中可溶性蛋白质含量;同时,测定原始试样中粗蛋白质含量,计算出试样的蛋白溶解度。 2、试剂 a)??氢氧化钾(分析纯),无水硫酸钾、五水硫酸铜、氢氧化钠、硼酸、甲基红、溴甲酚绿、硫酸铵; b)??浓硫酸、盐酸(分析纯)、95%乙醇、蒸馏水。 3、仪器和设备 a)??感量为g分析天平; b)??磁力搅拌器; c)??离心机(带离心管),转速为2700r/min以上; d)??样品粉碎机; e)??60目分析筛; f)??电炉;

g)??100 mL或250 mL凯氏烧瓶; h)??凯氏蒸馏装置; i)??250 mL锥形瓶; j)??1000 mL容量瓶; k)??微量滴定管。 4、试剂的制备 a)??%氢氧化钾溶液 称取g氢氧化钾,加水溶解后,转移至1000 mL容量瓶中,用水定容至刻度。 b)??混合催化剂 称取6 g硫酸钾和g硫酸铜,磨碎混匀。 c)??氢氧化钠溶液 称取400 g氢氧化钠,加水溶解后,转移至1000 mL容量瓶中,用水定容至刻度。 d)??硼酸溶液 称取20 g硼酸,加水溶解后,转移至1000 mL容量瓶中,用水定容至刻度。 e)??盐酸标准溶液 量取mL浓盐酸,注入1000 mL水中混匀,按GB 601-88要求进行标定即可。 f)??混合指示剂 称取1 g甲基红和5 g溴甲酚绿,加入乙醇溶解后,转移至1000 mL

胰蛋白酶抑制剂对Wnt信号通路的作用

万方数据

万方数据

万方数据

万方数据

胰蛋白酶抑制剂对Wnt信号通路的作用 作者:伊凤双, YI Feng-shuang 作者单位:山西大学生物技术研究所,太原,030006 刊名: 国际肿瘤学杂志 英文刊名:JOURNAL OF INTERNATIONAL ONCOLOGY 年,卷(期):2010,37(5) 参考文献(21条) 1.Fogarty MP;KesslerJD;Wechsler-Reya RJ Morphing into cancer:the role of developmental signaling pathway in brain tumor formation 2005(04) 2.Moon KC;Cho SY;Lee HS Distinct expression pattems of E-Cadherinand beta-cateninin signetring cell carcinoma components of primary pulmonary adcnoesrcinoma 2006(09) 3.Khor TO;Gul YA;Ithnin H A comparative study of the expression of Wnt-1.WISP-1 sundvin and cyclin-D1 in colorectal carcinomas[外文期刊] 2006(04) 4.Luo W;Zou H;Jin L Axin contains three separable domains that confer intramolecular,homodimeric,and heterodimeric interactions involved in distinct fuctions 2005(06) 5.Krieghoff E;Behrens J;Mayr B Nucleo-cytoplasmic distribution of beta-catenin is regulated by retention[外文期刊] 2006(Pt7) 6.Li YY;Zhang Z;Wang ZH rBTI induces apoptosis in human solidtumor cell lines by loss in mitoehondrial transmembrane potential and caspase activation[外文期刊] 2009(02) 7.Kennedy AR;Billings PC;Wan XS Effects of Bowman-Birk inhibitor on rat colon carcinogenesis[外文期刊] 2002(02) 8.李卓玉;袁静明肿瘤抑制蛋白APC的结构与功能[期刊论文]-生命的化学 2006(02) 9.While SR;Williams P;Wojcik KR Initiation of apoptosis by actin cytoskeletal derangement in human airway epithelial cells[外文期刊] 2001(03) 10.Avizienyte E;Wyke AW;Jones RJ Scr-induced deregulation of E-cadherin in colon cancer cdlls requires integrin signaling[外文期刊] 2002(08) 11.Kim PJ;Plescia j;Clevers H Survivin and molecular patho-genesis of colorectal cancer[外文期刊] 2003(9379) 12.Zhang T;Otevrel T;Gao Z Evidence that APC regulates survivin expression:a possible mechanism contributing to the stem cell origin of colon[外文期刊] 2001(24) 13.Hoffman WH;Biade S;Zilfou JT Transcriptional repression of the anti-apoptotic survivin gene by wild type p53 2002(05) 14.Masur K;Lang K;Niggemann B High PKC alpha and low E -cadherin expression contribute to high migratory activity of colon carcinoma cells 2001(07) 15.Le TL;Joseph SR;Yap AS Protein kinase C regulates endocytosis and recycling of E-cadherin 2002(02) 16.Chen CL;Chen HC Functional suppression of E-cadherin by protein kinase Cdelta 2009(Pt 4) 17.Kobayashi H;Suzuki M;Tanaka Y Suppression of urokinase expression and invasiveness by urinary trypsin inhibitor is mediated through inhibition of protein kinase C-and MEK/ERK/c-Jun-dependent

豆粕营养成份及标准

, 豆粕营养成份及标准 [关键词]豆粕标准 植物蛋白类 植物性蛋白亦是提供饲料蛋白质的主要来源,其与鱼粉在饲料的关系中互为消长,而豆类及油实类等油脂含量丰富者,在采油后所得到的油粕类,通常蛋白质含量高,普通用来补给蛋白质,是极有用处的饲料来源。惟这些油粕类的饲料价值常视其成分、营养价,适口性、不良因子等而有差异。 豆粕 系指大豆采油过的残渣经过适度加热、干燥、粉碎者。大豆粕是鸡、猪、牛适口性良好的蛋白质源。黄豆粕之粗蛋白质含量约45%,其消化率高达 85-92%。黄豆内存在着非营养成分的urease等酵素,trypsin inhibiter,且活性很高,在生的情况下会阻碍消化率,雏鸡、子猪的发育。黄豆粕经过某种程度加热后,成长阻碍因子即失去活性,且饲料价值提高,但视其制造工程宫之加热条件面品质受到影响。其指标是使用水溶性氮素指数(NSI),ursease活性,trypsihn inhibiter含量,通常NSI 25%以下为一个指标。牛方面,加热不充分之urease活性高者不能使用于尿素配合饲料。 豆粕的自然属性 1、物理性质 颜色:浅黄色至浅褐色,颜色过深表示加热过度,太浅则表示加热不足。整批豆粕色泽应基本一致。 味道:具有烤大豆香味,没有酸败、霉败、焦化等异味,也没有生豆腥味。 质地:均匀流动性好,呈不规则碎片状、粉状或粒状,不含过量杂质。 比重:/FONT>0.65Kg/l 2、化学成份 豆粕中含蛋白质43%左右,赖氨酸%~%,色氨酸%~%,蛋氨酸%~%,胱氨酸%~%;胡萝卜素 去皮与带皮豆粕组成比较 原蛋白 质Crude Protein Extract 以太纤 维Ether Fiber % 粗纤维 Crude % ~ 能量 Energy (kcal/kg)带皮豆 粕 (8)(10)(7)2240(8)去皮豆 粕 (10) : (7) (10)2475(10) 带皮与去皮豆粕氨基酸组成比较 带皮豆粕去皮豆粕; 精氨酸 赖氨酸 蛋氨酸 {胱氨酸 色氨酸 组氨酸 [ 亮氨酸 异亮氨酸 ( 苯丙氨酸 苏氨酸 2 总价值

蛋白酶的种类

蛋白酶的论述 摘要:蛋白酶(英语:Protease)是生物体内的一类酵素(酶),它们能够分解蛋白质。分解方法是打断那些将氨基酸连结成多肽链的肽键。抑制蛋白酶活性的小分子化合物被称蛋白酶抑制剂。许多病毒蛋白酶的抑制剂是很有效的抗病毒药。 1.木瓜蛋白酶 1.1木瓜蛋白酶简介 木瓜蛋白酶,是一种蛋白水解酶,可将抗体分子水解为3个片段。是番木瓜中含有的一种低特异性蛋白水解酶,活性中心含半胱氨酸,属巯基蛋白酶,应用于啤酒及食品工业。 1.2木瓜蛋白酶的特点 木瓜蛋白酶(Papain)简称木瓜酶,又称为木瓜酵素。是利用未成熟的番木瓜(Carica papaya)果实中的乳汁,采用现代生物工程技术提炼而成的纯天然生物酶制品。它是一种含巯基(-SH)肽链内切酶,具有蛋白酶和酯酶的活性,有较广泛的特异性,对动植物蛋白、多肽、酯、酰胺等有较强的水解能力,同时,还具有合成功能,能把蛋白水解物合成为类蛋白质。溶于水和甘油,水溶液无色或淡黄色,有时呈乳白色;几乎不溶于乙醇、氯仿和乙醚等有机溶剂。最适合PH值6~7(一般3~9.5皆可),在中性或偏酸性时亦有作用,等电点(pI)为8.75;最适合温度55~65℃(一般10~85℃皆可),耐热性强,在90℃时也不会完全失活;受氧化剂抑制,还原性物质激活。木瓜蛋白酶由212个氨基酸残基组成,当用氨基肽酶从N末端水解掉分子中的2/3肽链后,剩下的1/3肽链仍保持99%的活性,说明木瓜蛋白酶的生物活性集中表现在C末端的少数氨基酸残基及其所构成的空间结构区域。 木瓜蛋白酶papain属巯基蛋白酶,具有较宽的底物特异性,作用于蛋白质中L-精氨酸、L-赖氨酸、甘氨酸和L-瓜氨酸残基羧基参与形成的肽键。此酶属内肽酶,能切开全蛋蛋白质分子内部肽链—CO—NH—生成分子量较小的多肽类。存在于木瓜胚乳中的蛋白酶。EC3.4.22.2。作为植物来源的蛋白酶来说,此酶研究进展的最快。此酶主要是以内肽酶的形态起作用。活性的产生,而半胱氨酸残基是不可缺少的,所以是硫基蛋白酶的一种,底物的特异性不太严格,分子量为23400,氨基酸残基数212。 木瓜蛋白酶是一种在酸性、中性、碱性环境下均能分解蛋白质的蛋白酶。它的外观为白色至浅黄色的粉末,微有吸湿性。 酪蛋白被木瓜蛋白酶降解生成的酪氨酸在紫外光区 275nm 处有吸收峰。1.3木瓜蛋白酶物理化学性质 本品为乳白色至微黄色粉末,具有木瓜特有的气味,稍具有吸湿性。水解蛋白质能力强,但几乎不能分解蛋白胨,易溶于水,甘油,不溶于一般的有机溶剂,耐热性强。由木瓜制得的商品酶制剂中,含有如下三种酶:(1)木瓜蛋白酶,分

蛋白酶的种类

蛋白酶的种类 1.木瓜蛋白酶 木瓜蛋白酶,是一种蛋白水解酶,可将抗体分子水解为3个片段。是番木瓜中含有的一种低特异性蛋白水解酶,活性中心含半胱氨酸,属巯基蛋白酶,应用于啤酒及食品工业。 木瓜蛋白酶papain属巯基蛋白酶,具有较宽的底物特异性,作用于蛋白质中L-精氨酸、L-赖氨酸、甘氨酸和L-瓜氨酸残基羧基参与形成的肽键。此酶属内肽酶,能切开全蛋蛋白质分子内部肽链—CO—NH—生成分子量较小的多肽类。 木瓜蛋白酶是一种在酸性、中性、碱性环境下均能分解蛋白质的蛋白酶。它的外观为白色至浅黄色的粉末,微有吸湿性。 木瓜蛋白酶(Papain)简称木瓜酶,又称为木瓜酵素。是利用未成熟的番木瓜(Carica papaya)果实中的乳汁,采用现代生物工程技术提炼而成的纯天然生物酶制品。它是一种含疏基(-SH)肽链内切酶,具有蛋白酶和酯酶的活性,有较广泛的特异性,对动植物蛋白、多肽、酯、酰胺等有较强的水解能力,同时,还具有合成功能,能把蛋白水解物合成为类蛋白质。溶于水和甘油,水溶液无色或淡黄色,有时呈乳白色;几乎不溶于乙醇、氯仿和乙醚等有机溶剂。最适合PH值6~7(一般3~9.5皆可),在中性或偏酸性时亦有作用,等电点(pI)为8.75;最适合温度55~65℃(一般10~85℃皆可),耐热性强,在90℃时也不会完全失活;受氧化剂抑制,还原性物质激活。

2.胃蛋白酶 胃蛋白酶(英文名称:Pepsin)是一种消化性蛋白酶,由胃部中的胃粘膜主细胞所分泌,功能是将食物中的蛋白质分解为小的肽片段。胃蛋白酶原由胃底主细胞分泌,在pH1.5~5.0条件下,被活化成胃蛋白酶,将蛋白质分解为胨,而且一部分被分解为酪氨酸、苯丙氨酸等氨基酸。可分解蛋白质中苯丙氨酸或酪氨酸与其他氨基酸形成的肽键,产物为蛋白胨及少量的多肽和氨基酸,该酶的最适pH为2左右。 3.中性蛋白酶 中性蛋白酶是由枯草芽孢杆菌经发酵提取而得的,属于一种内切酶,可用于各种蛋白质水解处理。在一定温度、PH值下,本品能将大分子蛋白质水解为氨基酸等产物。可广泛应用于动植物蛋白的水解,制取生产高级调味品和食品营养强化剂的HAP和HVP,此外还可用于皮革脱毛、软化、羊毛丝绸脱胶等加工。 利用中性蛋白酶的酶促反应,可把动植物的大分子蛋白质水解成小分子肽或氨基酸,以利于蛋白质的有效吸收和利用,其水解液AN%高,水解度高,风味佳,已广泛用于生产高级调味品和食品营养强化剂,各种动物来源性抽提物生产功能性骨、肉提取物(骨素)、水产提取物、蛋白胨、肽等及研究开发一些高附加值的功能食品。

尿常规的临床意义

尿常规的临床意义 健力宝发表于2010年05月27日 19:47 阅读(4) 评论(0) 分类:个人日记 举报 尿液成分 体检的尿液成分 爱迪氏计数[ Back Top ] 英文名称:Addis Count 化验介绍:计算病人12小时尿液沉淀中细胞(包括上皮细胞)、红细胞、管型的数量,用于帮助临床诊断观察治疗效果。参考值:红细胞<50万/12h(小时) 白细胞<100万/12h(小时) 临床意义: (1)各种类型的肾炎病人尿液中细胞和管型数量,可以轻度、中度或显著增高。 (2)肾盂肾炎、下尿路感染、前列腺炎病人,尿液中白细胞增高更显著。 (3)某些肾盂肾炎病人,尿常规检查阴性,但爱迪氏计数白细胞增高。 本-周氏蛋白 [ Back Top ] 英文名称:B-JprO 化验介绍:浆细胞病如多发性骨髓瘤、巨球蛋白血症时,尿液中出现一种蛋白质,40~60℃时可以发生凝固,90~100℃时又可以溶解,称为本-周氏蛋白或凝溶蛋白。参考值:对甲苯磺酸法、免疫学法:阴性临床意义:正常人尿液中无本-周氏蛋白。约50%的多发性骨髓瘤病人尿B-J蛋白出现阳性反应;约20%的巨球蛋白症病人尿中出现B-J蛋白。 酚红排泄试验 [ Back Top ] 英文名称:化验介绍:酚红是一种对人无害的染料,静脉注射后,20%为肝脏清除,80%由肾脏排出。酚红排泄试验是检查近曲小管分泌功能的指标。但有些因素如心功不全、休克、水肿都可使酚红排出减少。参考值:临床上以15分钟排泌量在25%以上;2小时总排泌量在55%以上作为成人的正常界限。总排出量为63%~84%(平均70%)。儿童排泌量较成人稍高,老年人稍低。临床意义: (1)降低:见于慢性肾盂肾炎、慢性肾炎、肾动脉硬化等,并与病变发展程度平行。尿毒症晚期酚红排泌可降到0。尿路梗阻或膀胱功能障碍时,因排尿困难,酚红排出减慢,可出现1~2小时酚红排泌量反高于15分钟排泌量的现象。 (2)增高:肝胆病变时,肝脏排泄酚红障碍,尿中排泄量增多。甲亢病人血液循环加快,排泄量增加。 生肌酐清除率 [ Back Top ] 英文名称:CCr 化验介绍:生肌酐为体肌酸代产生,血中浓度很稳定。肾脏在一定时间,把若干毫升血浆中的生肌酐全部清除出去,称为生肌酐清除率(CCr)。它反映了肾小球滤过功能。参考值:80~100ml/min(分) 临床意义: (1)作为早期判断肾小球滤过功能的指标。当肾小球功能轻度损害时,血肌酐、尿素氮可

相关文档
最新文档