PFOS和PFOA概念
土壤和沉积物全氟辛基磺酸和全氟辛基羧酸的测定液相色谱-三重四极杆质谱法
![土壤和沉积物全氟辛基磺酸和全氟辛基羧酸的测定液相色谱-三重四极杆质谱法](https://img.taocdn.com/s3/m/5483fb211fd9ad51f01dc281e53a580216fc50ad.png)
土壤和沉积物全氟辛基磺酸和全氟辛基羧酸的测定液相色谱-三重四极杆质谱法1.引言1.1 概述在本研究中,我们将重点关注土壤和沉积物中全氟辛基磺酸和全氟辛基羧酸的测定。
全氟辛基磺酸(PFOS)和全氟辛基羧酸(PFOA)是一类广泛存在于环境中的全氟化合物,它们被广泛应用于各种消费产品的制造过程中,如防水材料、油漆、隔热材料等。
然而,这些全氟化合物的坚固性和生物累积性导致它们广泛分布于土壤和沉积物中,并可能通过食物链进入人体,对生态系统和健康造成潜在的风险。
因此,精确的测定和监测土壤和沉积物中的PFOS和PFOA是至关重要的。
目前,液相色谱-三重四极杆质谱法(LC-MS/MS)被广泛认可为测定全氟化合物的有效方法,其具有高灵敏度、高选择性和高分辨率的特点,并能够同时测定多种全氟化合物。
本文将详细介绍土壤和沉积物中PFOS和PFOA的测定方法,包括样品的准备与提取、LC-MS/MS的仪器操作条件、方法验证和质量控制等方面。
我们将采用基于固相萃取(SPE)技术的前处理方法来提取和富集样品中的PFOS和PFOA,并通过LC-MS/MS方法进行分析。
通过本研究的开展,我们希望能够为全氟辛基化合物在土壤和沉积物中的测定提供一种可靠且准确的方法,为环境监测和风险评估提供科学依据。
此外,该研究还将进一步增进我们对全氟化合物在环境中的行为与归趋的理解,并为全氟化合物的环境行为和风险评估研究提供参考和支持。
1.2 文章结构本文共分为引言、正文和结论三个部分,具体结构如下:引言部分旨在介绍本文的研究背景和相关的理论基础,并阐明研究目的和意义。
在1.1概述中,将对土壤和沉积物中全氟辛基磺酸和全氟辛基羧酸的测定进行简要概述。
然后,在本节的1.2文章结构部分,将对全文的结构进行详细说明。
最后,在1.3目的中,将明确研究目的,并阐明本研究的重要性和意义。
正文部分主要分为两个子节,分别介绍全氟辛基磺酸和全氟辛基羧酸的测定方法。
2.1 全氟辛基磺酸的测定部分将首先介绍其测定的原理,包括化学特性和分析原理的详细说明。
【技术专区】PFOA,PFOS,APEO分别是什么?
![【技术专区】PFOA,PFOS,APEO分别是什么?](https://img.taocdn.com/s3/m/0ba7a924a22d7375a417866fb84ae45c3b35c2c8.png)
【技术专区】PFOA,PFOS,APEO分别是什么?PFOAPFOA代表全氟⾟酸及其含铵的主盐,或称为“C8”,是纺织品“三防整理剂”的重要原料。
全氟⾟酸及其盐也是⼀个难以降解的有机污染物,它在环境中具有⾼持久性,随着时间的推移,它同样会在环境中聚集和在⼈体及动物组织中强烈累积,既会进⼊⾷品链中,⼜对⼈体健康和环境会较长时间的产⽣潜在的危险。
不过EPA要对它禁⽤或限⽤要需要更多的科学资料来进⾏危险评估;欧盟迄今也未对全氟⾟酸明确表态;但⽬前世界上不少纺织品公司和品牌纺织品销售商都已接受了全氟⾟酸及其盐对⼈体和环境存在潜在危险的看法,在⾃⼰的化学品限制条款中明确禁⽤全氟⾟酸及其盐,即:要求检测不出全氟⾟酸及其盐。
PFOSPFOS全称为全氟⾟烷磺酰基化合物(C8F17SO2X),是perfluorooctanesulphonate的英⽂缩写,PFOS主要应⽤于、防油剂、防尘剂、杀⾍剂、表⾯活性剂、抗雾剂等,是纺织品和⽪⾰制品防污处理剂的主要活性成分,⼴泛应⽤于民⽤和⼯业产品⽣产领域。
PFOS的持久性极强,是最难分解的有机污染物,在浓硫酸中煮⼀⼩时也不分解。
据有关研究,在各种温度和酸碱度下,对全氟⾟烷磺酸进⾏⽔解作⽤,均没有发现有明显的降解;PFOS在增氧和⽆氧环境都具有很好的稳定性,采⽤各种微⽣物和条件进⾏的⼤量研究表明,PFOS没有发⽣任何降解的迹象。
唯⼀出现PFOS分解的情况,是在⾼温条件下进⾏的焚烧。
欧盟正式全⾯禁⽌PFOS在商品中的使⽤,⾸先受到影响的将是纺织、⽪⾰等⽣产产品的出⼝企业。
因为PFOS在纺织业中存在范围最⼴,任何需要印染以及后整理的纺织品都需经过前处理洗涤,另外如抗紫外线、抗菌等功能性后整理所使⽤的助剂也可能含有PFOS,该指令的实施将直接影响我国纺织品、⽪⾰、造纸、包装、印染助剂、化妆品等产品的出⼝。
APEOAPEO中包括:①壬基酚聚氧⼄烯醚(NPEO):占80~85%;②⾟基酚聚氧⼄烯醚(OPEO):占15%以上;③⼗⼆烷基酚聚氧⼄烯醚(DPEO):占1%;④⼆壬基酚聚氧⼄烯醚(DNPEO):占1%。
PFOS与PFOA
![PFOS与PFOA](https://img.taocdn.com/s3/m/1fa11ed576eeaeaad1f33066.png)
PFOS与PFOA欧盟议会最近通过决议,全面禁止PFOS在商品中的使用,PFOS学名叫做全氟辛烷磺酰基化合物,主要用途是防油、防水、防污,广泛用于我省的纺织品、地毯、皮鞋、造纸、包装、印染、洗涤、化妆品、农药、消防剂及液压油等众多领域,为此我们紧急组织了纺织化学和染整等有关方面专家,组织研讨对策,本材料介绍何为PFOS及其特性、检测技术、以及对浙江纺织产业等的影响和对策建议。
一、PFOS及其特性、功能和应用范围PFOS的学名叫做全氟辛烷磺酰基化合物,是Perfluorooctane Sulfonate的简称。
这是一种重要的全氟化表面活性剂,也是其他许多全氟化合物的重要前体。
PFOS[CF3(CF2)7 SO-3]分子是由17个氟原子和8个碳原子组成烃链(所以又称C8),烃链末端碳原子上连接一个磺酰基,碳原子原本连接的氢原子全部被氟原子取代,又称为全氟化合物。
PFOS与PFOA密切相关。
PFOA(Perfluorooctanoic acid)中文名为全氟辛酸,在其商业应用方面有多个名称。
PFOA主要用于泡沫灭火剂、纺织品和纸张的拒水拒污处理。
当用于泡沫灭火剂常称作AFFF(Aqueous film forming foam),当用作纺织品和纸张的拒水拒污整理时称为PFOA。
但PFOA这一缩写词不仅仅指全氟辛酸本身,也指它的盐。
例如:它的铵盐(Ammonium perfluorooctanoate )可称为PFOA或APFO。
另一个例子就是全氟辛烷磺酸盐/酯(Perfluorooctane sulfonate),英文缩写为PFOS,但有时也称为PFOA。
狭义地讲,PFOS指的是生产拒水拒油整理剂的原料全氟辛烷磺酸盐/酯。
而广义地讲,PF OS指的是与全氟辛烷磺酸盐/酯相关的一类化合物。
作为氟化有机物的代表性化合物,PFOS是一种用途十分广泛的化合物,因其同时具备疏油、疏水(即拒水、拒油和拒污)等特性,作为表面防污处理剂大量用于纺织品、皮革制品、纸张和家具等,主要应用的纺织品有:滑雪衣、领带、羊毛衫、衬衣、帐篷、雨伞布和地毯等,涂层材料应用也是一大类;作为中间体用于生产泡沫灭火剂、地板上光剂、农药和灭白蚁药剂;作为表面活性剂用于生产合成洗涤剂、洗发香波等表面活性剂产品。
全氟化物的测量技术
![全氟化物的测量技术](https://img.taocdn.com/s3/m/237626584531b90d6c85ec3a87c24028915f85e7.png)
全氟化物的测量技术
全氟化物是一类化合物,通常指的是含有全氟烷基或全氟烷基
衍生物的化合物,如全氟辛烷磺酸(PFOS)和全氟辛烷酸(PFOA)。
这些化合物在环境中具有持久性和生物富集性,因此对其测量技术
的研究具有重要意义。
测量全氟化物的技术包括但不限于以下几种:
1. 高效液相色谱-串联质谱(HPLC-MS/MS),这是一种常用的
测定全氟化物含量的方法。
样品经过适当的前处理后,使用HPLC分
离出目标化合物,然后通过串联质谱进行定量分析。
2. 气相色谱-串联质谱(GC-MS/MS),对于一些挥发性较强的
全氟化物,可以使用GC-MS/MS进行分析。
这种方法通常需要对样品
进行适当的提取和富集处理。
3. 气相色谱-质谱(GC-MS),对于一些较短链全氟化物的测定,可以使用GC-MS进行分析。
这种方法同样需要对样品进行适当的前
处理。
4. 其他方法,除了色谱-质谱方法外,还有一些其他测定全氟
化物的方法,如离子色谱法、电化学法等。
这些方法各有优缺点,
适用于不同类型的样品和不同的分析要求。
需要指出的是,测量全氟化物的技术在实际应用中需要考虑到
样品的特性、分析的灵敏度要求、分析的准确性要求等因素。
同时,样品的前处理步骤也是非常重要的,对于不同的样品可能需要针对
性地选择合适的前处理方法。
总的来说,测量全氟化物的技术涉及到多个方面的知识,需要
综合考虑样品特性、分析要求和实验条件等因素,选择合适的分析
方法进行测定。
pfoapfos含量检测方法
![pfoapfos含量检测方法](https://img.taocdn.com/s3/m/73d1f2a36394dd88d0d233d4b14e852458fb391b.png)
PFOA和PFOS是两种常见的全氟辛烷磺酸盐,它们被广泛应用于许多工业和消费产品中,但同时也存在环境和健康风险。
对PFOA和PFOS的含量进行检测具有重要意义。
本文将探讨PFOA和PFOS含量检测的方法,包括常用的实验室分析方法和现场监测方法。
1. 实验室分析方法实验室分析方法是目前最常用的检测PFOA和PFOS含量的方法之一。
这些方法通常涉及样品的采集、前处理、仪器分析和数据处理等步骤。
主要的实验室分析方法包括高效液相色谱-质谱联用(HPLC-MS/MS)和气相色谱-质谱联用(GC-MS/MS)等。
这些方法能够高效、准确地测定样品中PFOA和PFOS的含量,但需要设备和技术支持,并且通常耗时较长。
2. 现场监测方法为了快速、便捷地进行PFOA和PFOS的含量监测,一些现场监测方法也被开发出来。
这些方法主要包括快速检测试纸、便携式光谱仪和传感器等。
现场监测方法具有操作简单、快速反应的特点,可以在小范围内快速筛查PFOA和PFOS的存在。
然而,由于其精度和灵敏度较低,通常需要与实验室分析方法相结合使用,进行初步筛查和确认。
3. 数据处理和质量控制无论是实验室分析方法还是现场监测方法,数据处理和质量控制是至关重要的环节。
对于实验室分析方法,正确的数据处理能够保证结果的准确性和可靠性,包括峰识别、定量分析和标准曲线等。
而对于现场监测方法,合适的质量控制措施能够确保监测结果的准确性和可比性,包括校准、质控样品和重复测定等。
4. 方法比较和选择在选择PFOA和PFOS含量检测方法时,需要考虑样品类型、检测的目的和精度要求等因素。
实验室分析方法适用于复杂样品或对准确性要求较高的情况,而现场监测方法则适用于快速筛查或大范围监测的场合。
在实际应用中,可以根据具体情况选择合适的检测方法,并且可以结合使用多种方法,以确保检测结果的可靠性和全面性。
PFOA和PFOS含量检测方法的选择应根据具体的检测需求和实际情况进行,同时需要对检测方法进行合理的比较和评估,以确保得到准确、可靠的检测结果。
pfoa pfos 标准
![pfoa pfos 标准](https://img.taocdn.com/s3/m/f7ed229548649b6648d7c1c708a1284ac85005fc.png)
pfoa pfos标准
PFOA和PFOS都是全氟化合物,是一类人工合成的有机化合物,被广泛应用于制造防水、防油和防污等产品。
PFOA的化学名称为全氟辛酸铵,而PFOS的化学名称为全氟辛烷磺酰基化合物。
针对这两种化合物,全球范围内已经
出台了多个标准和禁令。
例如,欧盟在2006年发布了禁令,禁止在商品中使用PFOA,且规定了PFOA在饮用水中的最大浓度为0.00002毫克/升。
而对于PFOS,欧盟将其列为“持久性有机污染物”,并禁止使用。
此外,中国也实施了《饮用水卫生标准》,规定了PFOS和PFOA在饮用水中的安全标准,分别为0.00002毫克/升和0.0004毫克/升。
这些标准和禁令的出台,主要是因为PFOA和PFOS对环
境和人体健康存在潜在的危害。
因此,各国都在加强对其的
监管和管理,以保护环境和公众健康。
PFOS_PFOA环境污染行为与毒性效应及机理研究进展
![PFOS_PFOA环境污染行为与毒性效应及机理研究进展](https://img.taocdn.com/s3/m/d7f6934ae45c3b3567ec8b9c.png)
PFOS ΠPFOA 环境污染行为与毒性效应及机理研究进展周启星1,2,胡献刚1(1.南开大学环境科学与工程学院,天津 300071;2.中国科学院沈阳应用生态研究所陆地生态过程重点实验室,沈阳 110016)摘要:全氟辛烷磺酰基化合物(PFOS )和全氟辛酸(PFOA )是一类新型的持久性有机污染物(POPs ),近年来发现在环境系统中日益广泛分布,并在生物体内蓄积或发生致毒效应.本文首先从PFOS ΠPFOA 在环境中的污染及其水平、在野生动物体内的暴露、对人体的暴露以及污染与暴露变化趋势等4个方面,分析了PFOS ΠPFOA 最新的环境污染与生物暴露情况;从PFOS ΠPFOA 在大气环境中的转运转化过程、在污水污泥中转运转化过程以及在生物体内的蓄积、代谢转化与降解过程等3个方面,阐述了PFOS ΠPFOA 在环境中的迁移转化行为;还概述了最近几年在PFOS ΠPFOA 所导致的生态效应及其可能的机理研究进展.最后,尝试性地提出了今后在PFOS ΠPFOA 污染生态学方面的研究重点.关键词:PFOS;PFOA ;环境污染;暴露水平;生态毒理效应;污染生态学中图分类号:X17115 文献标识码:A 文章编号:025023301(2007)1022153210收稿日期:2007203206;修订日期:2007204209基金项目:教育部长江学者资助项目;国家杰出青年科学基金项目(20225722);国家重点基础研究发展规划(973)项目(2004C B418503)作者简介:周启星(1963~),男,博士,教授,博士生导师,主要研究方向为污染生态毒理学、污染生态修复和污染控制生态化学等,E 2mail :Zhouqx @R esearching Progresses in E nvironmental Pollution Behavior ,Toxic E ffects and Mechanisms of PFOS ΠPFOAZH OU Qi 2xing1,2,H U X ian 2gang1(1.C ollege of Environmental Science and Engineering ,Nankai University ,T ianjin 300071,China ; 2.K ey Laboratory of T errestrial Ecological Process ,Institute of Applied Ecology ,Chinese Academy of Sciences ,Shenyang 110016,China )Abstract :I t has been validated that per fluorooctane sulfonate (PFOS )and per fluorooctanoic acid (PFOA )can be considered as emerging persistent organic pollutants.In recent years ,there are increasing distribution of PFOS ΠPFOA in environmental systems ,and accumulation and toxic effects of PFOS ΠPFOA in living organisms.Thus ,environmental pollution and biological exposure of PFOS ΠPFOA were firstly analyzed on the basis of their pollution levels ,exposure to wild animals ,exposure to human bodies ,and changing trends in pollution and exposure.Secondly,m ovement and trans formation behaviors of PFOS ΠPFOA in environment were expounded on the basis of their transport and trans formation processes in air environment ,wastewater and sewage sludge ,and their accumulation ,metabology and degradation processes in living organisms.S ome recent im portant advances in ecological effects of PFOS ΠPFOA and their possible mechanisms were summarized.Finally ,the future em phases of research on pollution ecology of PFOS ΠPFOA were tentatively suggested.K ey w ords :PFOS;PFOA ;environmental pollution ;exposure level ;ecotoxicological effect ;pollution ecology 全氟辛烷磺酰基化合物(peifluorooctane sulfonate ,PFOS )和全氟辛酸(perfluorooctanoic acid ,PFOA )是重要的全氟化表面活性剂,具有疏水疏油的特性,广泛应用于工业用品和消费产品,包括防火薄膜、地板上光剂、香波,同时在地毯、制革、造纸和纺织等领域作为表面保护材料[1].PFOA [CF 3(CF 2)7C OOH]不仅代表全氟辛酸本身,还代表其主要的盐类.PFOS 和PFOA 是引起环境污染的重要全氟化合物(PFCs )[2~5].全氟化合物普遍具有很高的稳定性,因为氟具有最大的电负性(-410),使得碳氟键具有强极性,并且是自然界中键能最大的共价键之一(键能大约460k J Πm ol )[6].广泛的调查研究表明,这2类物质在野生动物和人的血清、肝脏、肌肉和卵等组织器官中普遍存在,不仅在人口密集的城市存在,而且在偏远的山区以及极地如北极也广泛存在,不仅职业人群暴露而且非职业人群也存在暴露,具有全球性普遍存在特性[7,8].PFOS 和PFOA 被认为是持久性有机污染物,在生物体内存在蓄积性和蓄积效应,且不易降解,半衰期很长.实验室研究表明,这类物质在一定的剂量下引起生物体体重降低、肝组织增重、肺泡壁变厚、线粒体受损、基因诱导、幼体死亡率增加以及容易感染疾病致死等不良生物学效应[9~13].本文就环境中PFOS ΠPFOA 的污染第28卷第10期2007年10月环 境 科 学E NVIRONME NT A L SCIE NCEV ol.28,N o.10Oct.,2007与生物暴露水平,以及在环境中的迁移转化和引起的生态毒性效应及机理的最新研究进展进行概述和探讨,并对今后研究重点进行展望.1 环境污染与暴露水平111 对环境的污染及其水平尽管在不同的区域、不同的介质中PFOSΠPFOA 的污染水平不同,但可以肯定它们已经在全球范围内广泛存在.尤其是,随着检测仪器的不断改进,检出限的不断降低,在越来越多的环境介质中发现了PFOSΠPFOA的存在.近年来,水体的PFOS和PFOA污染日益受到关注.Saito等[14]利用LCΠMSΠMS技术,测定了日本不同地区142个地表水样品中的PFOS浓度.结果表明,河流样品(n=)的几何平均值是2137ngΠL,中值是1168ngΠL,变化范围是013157~157ngΠL;海岸水样品(n=16)几何平均值是1152ngΠL,中值是1121 ngΠL,变化范围是012~2512ngΠL.同时测定结果表明,2条位于人口稠密地区的河流中PFOS的浓度较高,分别是13510ngΠL(Jinzu)和157ngΠL(T ama). Hansen等[15]测定某一氟制造厂附近的田纳西州河河水中PFOS和PFOA浓度,检测到低浓度(μgΠL级) PFOS的存在,而且在氟化合物制造设备下游地区检测到该氟化合物浓度的增加,说明来自制造业的影响是河流中有机氟化合物的一个可能污染源,为阐明氟化合物随地理位置的分布和氟化合物生产设备对环境中氟化合物贡献水平提供了证据.Simcik 等[16]的研究表明,偏远和城市地表水中PFOS的浓度分别为:检出限(LDD)以下~112ngΠL和214~47 ngΠL,偏远和城市地表水中PFOA浓度分别为0114~0166ngΠL和0145~19ngΠL.H oude等[17]对海水中的PFOS和PFOA进行了检测,结果表明其研究的海水中PFCs的浓度范围为<1~12ngΠL.金一和等[18]调查了中国部分城市自来水、海水和远离人类活动地区的水体中PFOS的污染情况,结果发现其浓度大多数低于110ngΠL,而易受生活污水和工业废水污染的水体中PFOS浓度为1150~4416ngΠL.长江三峡库区江水和武汉地区地表水中均广泛存在着PFOS和PFOA污染,个别地区水样中PFOS含量大于几十ngΠL,PFOA含量甚至高达111ngΠL和298 ngΠL[19].张倩等[20]利用SPEΠHP LCΠMS联用法测定长江入海口处徐六泾段PFOA的平均浓度达46188 ngΠL,而PFOS未检出;黄浦江段PFOA和PFOS的平均浓度分别是1594183ngΠL和20146ngΠL.最近的研究还揭示,污水处理厂的排水已成为PFOS和PFOA进入天然水体等自然环境的一个重要途径.Sinclair等[21]的研究表明,在污水处理厂出水中PFOA的浓度高达58~1050ngΠL,PFOS的浓度则为3~68ngΠL.Boulanger等[22]的研究也表明,污水处理厂出水的PFOS和PFOA浓度分别为(26±210) ngΠL和(22±211)ngΠL.室内外空气中PFOS和PFOA的污染也不容忽视.M oriwaki等[23]用真空吸尘器收集了日本家庭室内的空气,并对其中的PFOS和PFOA浓度进行测定,结果表明其浓度范围分别依次是69~3700ngΠg 和11~2500ngΠg.由此认为,吸附在空气尘土表面的PFOS和PFOA,是人体暴露PFOS和PFOA的重要途径之一.由于雨水是反映室外大气状况的一个特征指标,雨水的污染水平能及时反映大气污染的状况.Loewen等[24]利用LCΠMSΠMS技术,分析了加拿大温尼伯湖和马尼托巴湖地区的雨水,结果发现PFOS 平均浓度为0159ngΠL,而没有检测到PFC As的存在.Scott等[25]对北美地区9个地点的降水样品进行了采样分析,其中位于加拿大3个偏远地区PFOA 浓度最低(<011~611ngΠL),在美国东北部的3个采样点和加拿大南部城市2个采样点的浓度较高,美国东部的特拉华州浓度最高(平均达85ngΠL,范围为016~89ngΠL).与水体和大气中PFOS和PFOA污染检测相比,河流与浅海沉积物、污水处理厂污泥和家庭污水污泥等固体介质中这些污染物浓度及分布的研究相对滞后.但这并不表明这些固体介质中没有PFOS和PFOA的污染.例如,H oude等[17]的研究表明,海洋沉积物中PFCs的污染水平为<0101~014ngΠg.郭睿等[26]利用高效液相Π四极杆2飞行时间串联质谱法分析活性污泥中的PFOS和PFOA,其含量范围为180~818μgΠg.112 在野生动物体内的暴露水平有关PFOS和PFOA在生物体内暴露水平的研究,目前主要集中在北半球,研究较多的是肝脏、血液、血浆、血清、肾、脾、卵、鲸脂、肌肉、子宫和脑等,并研究了污染物浓度与年龄、性别和种间等暴露的关系.有研究证实,在北美和欧洲的北极圈取样的北极熊肝脏组织中的4种多氯联苯同源体(PC Bs,180, 153,138,99)浓度与PFOS的浓度有很好相关性(r2=0182,0171,0169,0155)[27].部分研究还表明,在南半球一些生物体内可检测到低浓度的PFOS和PFOA 的存在,可以说明这2种污染物的全球分布[28].4512环 境 科 学28卷K annan等[5]调查了美国21种食鱼鸟类中161个肝脏、肾、血液和卵黄样品,结果表明,血清中PFOS的平均浓度达3~34ngΠm L,在肝脏中的最高浓度达1780ngΠg.这说明在偏远地区海洋上的鸟类体内也存在PFOS,表明这一物质的广泛分布.他们还对采集于佛罗里达、加利福尼亚海岸、阿拉斯加、北极和加拿大15种海洋哺乳动物247个组织样品进行分析,结果也表明,PFOS在全球已广泛分布,包括在一些偏远地区也有存在,尤其在肝脏和血液中的最高浓度可达1520ngΠg和475ngΠm L,但没有发现与年龄有相关性[29].然而,PFOS和PFOA只在一定的部位能够检测到,这表明这些污染物在生物体内的分布不是均匀的[30].Blake等[4]调查了荷兰海豹肝脏、肾、鲸脂和脾组织中的长链PFC As和短链PFAs以及PF BS和PF BA的污染情况,结果显示,在所有的样品中PFOS为主要化合物,但是各组织间差别很大.K eller等[31]分析了美国东南部海岸2种幼年龟血浆中的PFOS和PFOA浓度,其中PFOS分别为1110ngΠm L和3914ngΠm L,PFOA浓度为3120 ngΠm L和3157ngΠm L,PFCs在幼龟体内的生物蓄积受到种类、年龄和栖息地的影响.K annan等[32]对美国水貂和水獭肝脏进行了研究,表明PFOS、FOS A (C8F17S O2NH2)、PFHxS(C6F13S O-3)和PFOA的最高浓度分别依次为5140ngΠg、590ngΠg、39ngΠg和27 ngΠg,在貂肝脏中的氟化合物浓度与年龄或性别没有差别,水貂肝脏中PFOS和PFHxS或PFOA浓度没有明显的相关性,FOS A的浓度与PFOS的浓度呈正相关,在水貂肝脏中的脂肪含量和PFOS的浓度没有明显的关联.他们还对韩国和日本的水鸟肝脏组织进行了检测,其中95%样品中的浓度高于10 ngΠg,最高的PFOS和PFOA浓度分别是650ngΠg和215ngΠg,没有发现在水鸟体内存在浓度与性别或年龄的关系[33].据T aniyasu等[34]研究报道,来自日本鱼血液和肝脏的78个样品中均发现PFOS的存在.另据Bossi等[8]研究报道,在格陵兰的16个鱼类、鸟类和海洋哺乳动物肝脏样品中有13个样品以及法罗群岛的所有样品,其浓度均高于10ngΠg.Van de Vijver等[35]也发现,31个黑海海豚个体组织中PFOS 存在的主要形式是全氟烷基表面活性剂(PFAS),占90%;肝脏和肾中PFOS的浓度最高,分别依次为(327±351)ngΠg和(147±262)ngΠg;肌肉和脑中的浓度次之,分别为(41±50)ngΠg和(24±23)ngΠg;鲸脂中的浓度较低,为(18±8)ngΠg.而且,在性别和年龄上没有发现存在明显的相关性.除了欧美、日本一些发达国家外,近年来中国也开始了这方面的研究和探索.对中国6省红熊猫和大熊猫血清中PFOS和PFOA的存在水平进行研究,结果表明,大熊猫体和红熊猫体内的PFOS浓度变化分别为0180~73180μgΠL和0176~19100μgΠL, PFOA浓度变化分别为0133~8120μgΠL和0132~1156μgΠL,但是没有观察到PFOS和PFOA浓度与年龄、性别有关系[36].还有人对来自广东省广州市和浙江省舟山市包括软体动物、螃蟹、小虾、牡蛎、蚌和蛤等27个海洋样品进行了研究,测得其浓度范围为013~1319ngΠg,并且在虾体内检测到最高浓度[37].综上所述,PFOS和PFOA在野生动物体内已广泛存在.随地理区域的不同,浓度发生较大变化.目前的研究主要集中在海洋生物.通过研究,发现大多数野生生物体内PFOS和PFOA的浓度与年龄、性别关系不明显,而部分全氟化合物之间存在一定关系. 113 对人体的暴露水平以往研究表明,由于血液中的污染物浓度与人体内的浓度存在很好的相关性,而且采集人的血样不会对人体造成伤害,所以血液就成了一个很好的人类暴露的检测指标.为了准确评价PFOS和PFOA 对人体健康带来的风险,需要检测非职业人员的暴露水平.Olsen等[7]研究了职业暴露(氟化物生产厂, n=126)与非职业暴露(胶片厂,n=60)的浓度区别,采用临床化学和血液学实验,检测职业暴露人群血清中这2种污染物的浓度,结果表明,PFOS和PFOA的浓度几何平均值分别为01941mgΠL和01899 mgΠL,比非职业人群暴露高1个数量级,说明氟化物制造厂是其主要污染源.Olsen等[38]检测了来自美国6个红十字会血液收集中心645个捐献的成人血清样品,结果发现男性血清PFOS浓度的几何平均值为3718μgΠL(95%置信区间为3515~4013μgΠL),要高于女性(几何平均值为3113μgΠL,95%置信区间为30103~3413μgΠL),但是年龄与PFOS浓度相关性不明显.Midasch等[39]调查了德国的非抽烟人群血浆中PFOS和PFOA的浓度,结果显示,男性比女性浓度高,年龄没有重要影响,PFOS和PFOA有很好的相关性.金一和等[40]调查了沈阳的男女血清中PFOS浓度几何均数分别为40173μgΠL和45146μgΠL,血清中PFOS浓度与年龄无关,且高于美国人和日本人血清中的浓度水平.由于PFOS和PFOA普遍存在,需要进一步考虑污染源、新陈代谢、代谢动力学和对健康的影响.为了评价污染物对人体的暴露,有必要研究不同亲代551210期周启星等:PFOSΠPFOA环境污染行为与毒性效应及机理研究进展之间浓度关系,尤其是母体与婴儿之间关系.有研究[41]结果表明,母体中的PFOS浓度变化范围是419~1716ngΠm L,但是胎儿体内的浓度变化范围是116~513ngΠm L;PFOA只在部分母体内检测到,变化范围是<015~213ngΠm L.母体内的浓度与脐带血中的浓度有很好的相关性(r2=01876).但是,没有发现母体、脐带血中的PFOS浓度和年龄、出生体重、甲状腺刺激性荷尔蒙、游离甲状腺素的相互关系.S o 等[42]的研究显示,人的母乳中PFOS浓度范围为45~360ngΠL,PFOA浓度范围为47~210ngΠL,PFCs的各类化合物在统计学上具有相关性.也就是说,人体暴露PFCs有一个共同的来源,这说明了母乳可能是婴儿PFOS暴露的途径之一.但是,也存在一些不确定因素,例如正常人群与敏感人群的区别,亚急性与慢性的区别剂量,无可见有害作用水平与最低可见有害作用水平的差别、实验数据的不充分等.K arrman等[43]研究了澳大利亚2002~2003年城市和农村人群血清中PFOS的浓度.结果显示,随年龄的增长,PFOS浓度也增长.在某些年龄段中,男性体内PFOS、PFOA和PFHxS浓度比女性体内高.这些结果与欧洲和亚洲报道的人血清中的浓度相当或更高,比美国报道的浓度低.全氟羧酸阴离子(PFC As)的人体暴露可能来自不同的途径:直接(工业产品)或间接(有机氟化物前体的降解)(如图1所示).De Silva等[44]调查了人血液中PFC As的结构同分异构体,分析了血液中PFC As挥发性衍生物,结果发现PFOA是PFC A的主要存在形式(平均414 ngΠg),血液血清中异构体主要(平均98%)由线性异构体组成,是全氟烃基化合物输入的直接结果;支状异构体是含氟聚合物工业产品生产遗留的结果. Calafat等[45]研究了不同种族人群的暴露情况,认为存在着种族的不同,可能与基因、饮食状况等有关.如果要更好地确定有机氟产品对人体污染暴露的影响,需要测定有机氟产品向环境中的释放水平.研究表明,在炊具不粘锅膜的生产过程中残留的PFOA 没有完全去除,这些表面残留在正常的烹饪温度下可能加热以气态形式挥发[46].我国也零星开展了这方面的研究.例如,对中国8省9市的85个人体的整个血液样品进行了研究,结果表明,PFOS是主要的PFCs存在形式,其中最高浓度(7912ngΠm L)出现在沈阳,最低浓度(3172 ngΠm L)出现在江苏;没有发现PFOA、PFOS、PFOS A和PFHxS的存在水平与年龄有相关关系,但是发现男性中PFOS和PFHxS浓度较高,女性中PFUnDA浓度较高;PFHxS浓度与PFOS浓度呈正相关关系, PFNA、PFDA和PFUnDA浓度与PFOA浓度呈正相关关系[3].114 污染与暴露变化趋势仅研究局部地区PFOSΠPFOA的当前暴露是不够的,需要研究它们在一定时间段内的变化及其趋势.H olmstrom等[47]对波罗的海海鸽卵中PFOS和PFOA 在35a间(1968~2003年)污染浓度变化的趋势进行了研究和分析,结果发现PFOS从1986年的25 ngΠg增加到2003年的614ngΠg,回归分析表明其每年增长7%~11%,在1997年出现最高浓度,1997~2002年为下降趋势,但是与PFOS的使用被逐渐淘汰关系不太明显(2000年开始逐步淘汰使用PFOS),可能是因为食物2鱼体内浓度的增加,而产生PFOS 在鸟类体内的增加,尽管鸟类卵中的PFOS浓度与食物中的浓度关系需进一步阐述.Bossi等[48]对格陵兰东部和西部海豹肝脏样品中PFOS在1986~2003年的年间变化趋势进行了研究,发现其空间分布有较大的不同,在东格陵兰地区PFOS浓度较高,回归分析表明PFOS、PFDA和PFUnA中值浓度有增加的图1 全氟羧酸阴离子(PFCAs)的人体暴露可能的不同途径Fig.1 Different pathways of PFCAs exposed to human bodies趋势.Smithwick等[49]研究显示,从1972~2002年,北极熊肝脏组织中PFOS和PFC As(9~11个碳链)浓度以指数方式增长,全氟壬酸每(316±019)a增长1倍,PFOS每(1311±410)a增长1倍,残留的全氟烃酸化物(PFAs)没有明显变化趋势.同时表明,其中北极熊肝脏组织中PFOS浓度的翻倍,基本上与20世纪90年代全氟辛烷磺酸基氟化物产品翻倍相一致.6512环 境 科 学28卷2 在环境中的迁移转化行为211 大气环境中转运转化过程一般认为,PFOSΠPFOA进入大气环境有2种途径[44]:含氟化合物的降解,PFOSΠPFOA直接排放到大气环境中.进入大气环境的PFOSΠPFOA,不易降解,可远距离进行迁移或转运,并随干湿沉降到达地面,或进入水体,或进入土壤.Wallington等[50]首次用三维地球大气化学模型研究、描述n2C8F17CH2CH2OH降解为PFOS和其他全氟羧酸化合物(PFC As)的过程.Loewen等[24]对加拿大温尼伯湖和马尼托巴湖地区大气环境中PFOS 的转运转化过程进行了研究,推测大气中FT OHs(CnF2n+1CH2CH2OH)可能通过氧化和湿沉降转化为FT C As(C n F2n+1CH2C OOH,n=6,8,10)和氟调聚物不饱和羧酸FT UC As(CnF2n CHC OOH,n=6,8,10),之后FT C As可降解为PFOS.Verreault等[51]也认为,大气中氟调聚物FT OHs可氧化为FT C As和FT UC As,FT OHs在大气中去处的一个可能途径是氧化和湿沉降转化为PFOS.一些研究指出,低纬度地区大气中的N2乙基全氟辛烷磺酸氨基乙醇化合物(N2E tFOSE)和N2乙基全氟辛烷磺酸氨基乙酸盐基化合物(N2E tFOS A)是形成PFOS和全氟羧酸化合物(PFC As)的前体物质[52,53].Martin等[54]利用烟雾室实验证实了大气中的全氟辛烷磺酸氨化合物[C8F17 S O2N(R1)(R2)]可以通过大气转运、氧化为PFC A和PFOS的可能性,并导致偏远地区的污染,并认为全氟化物挥发性前体物质可通过大气转运扩散到遥远的地区,然后沉降为不挥发性全氟化合物,这个过程导致对生物体的污染.Simcik等[55]的研究发现,随着离非大气污染源距离的增加,PFH pAΠPFOA浓度增加.因此,他们认为PFH pAΠPFOA可以作为大气中PFCs沉降为地表水的“示踪”指标.一般来说,城市的这个指标是015~019,偏远地区这个指标为6~16.根据这个指标,可知密歇根湖的PFCs污染途径主要是非大气途径,主要污染源为废水处理厂排出的废水.大气中挥发性全氟化合物沉降到湖泊的表面使这个指标升高,但是这个指标的微小变化需进一步研究.212 污水污泥中转运转化过程在水环境中,现在广泛研究的是PFOSΠPFOA的前体化合物降解为PFOSΠPFOA的途径,以及这些化合物进入水环境后在水生生物体内的蓄积,没有发现PFOSΠPFOA在水环境中降解的报道.最近有研究[21]认为,污水处理厂作为PASs进入自然环境中的一个途径,PFOA和PFOS在污水处理厂出水中存在,其浓度分别为58~1050ngΠL和3~68ngΠL.在污水及污泥中,PFOA浓度有所降低, PFDA和PFUnDA浓度有所升高,表明了长链PFC As 优先分离,说明传统的废水处理并没有除去PASs. Wang等[56]也发现,在废水处理厂,微生物对FT OHs 降解没有发生α2氧化,对14C2822FT OH全氟碳键有脱氟和矿化作用,形成较短碳链的代谢物.Boulanger 等[22]则认为,污水处理厂在污水处理过程中能够形成部分PFOS和PFOA,但是与污水中原有PFOS和PFOA的残留相比,通过生物代谢产生的PFOS和PFOA,并不是其主要的污染源.Wang等[57]对好氧条件下生活污水处理厂的污水污泥进行研究,结果表明全氟烷基酸化合物如全氟辛酸只占到转化产物的一小部分,822调聚物B乙醇(822T BA)存在多种降解途径,不是单一的β2氧化或其它酶催化反应.另据报道,生活污水及污泥中全氟磺酸乙基氨(N2E tFOS AA)和全氟磺酸甲基氨(N2MeFOS AA)可能通过生物降解,转化为PFOS[48].进入水环境中的PFOS和PFOA易于被沉积物所吸附,从而影响其随水迁移.沉积物中的有机碳是主要的影响全氟化合物吸附沉积物特性的参数,表明了其疏水性的重要性.PFOS和PFOA在固体介质上吸附,但这种吸附随溶液[Ca2+]增加而增加,随pH降低而增加,表明静电作用起着重要作用,碳链的长度作为主要的结构特点影响吸附,这些数据可以用来模拟这类污染物的环境归宿[58].贾成霞等[59]分析认为,沉积物中的有机碳与PFOS在沉积物中的吸附量成正相关,并且在酸性和碱性条件下,pH 升高对PFOS在沉积物中吸附量有增加的趋势,在中性条件下吸附量最小.213 在生物体内的蓄积、代谢转化与降解过程PFOS和PFOA可以通过食物链的传递在高的营养级生物体内蓄积.Boulanger等[52]的研究表明,在人口稠密地区和工业地区中的水生动物体内PFOS浓度比偏远海洋地区浓度高,以鱼类为食动物,例如水貂和秃鹰体内的浓度比它们食物中的浓度要高.因此,他们认为,PFOS可通过食物链在高的营养级蓄积.Verreault等[51]对挪威北极海鸥血浆、肝脏、脑和卵中PFAS的积累特性进行了研究,表明PFOS是PFAS的主要形式,最高浓度(4811~349 ngΠg)出现在血浆中,然后是肝脏≈卵>脑,并在体751210期周启星等:PFOSΠPFOA环境污染行为与毒性效应及机理研究进展内存在潜在蓄积作用.Nakata等[6]研究表明,通过海岸食物链发生PFOS生物浓缩,在潮汐滩地的生物体和沉积物中PFOA是主要PFCs,水相是PFCs主要聚集场所之一,这与非极性有机污染物不同.研究表明,雄雌鼠血浆中的浓度与空气中的浓度成比例,但是雌鼠血浆中的PFOS的消除速度比雄鼠快,雌性小鼠血浆生物半衰期大约3h,雄鼠血浆生物半衰期大约1d.可见,吸入PFOS的代谢动力学与口腔填食的代谢动力学相似,鼠通过吸入途径暴露在1mgΠm3、10mgΠm3、25mgΠm3约相当于通过口腔填食途径暴露的013mgΠkg、110mgΠkg、210 mgΠkg[60].加利福尼亚海岸80个成年雌性水獭肝脏组织样品,PFOS和PFOA浓度范围分别是<1~884 ngΠg和<5~147ngΠg,从1992~1998年PFOS呈现增长趋势,2002年以后出现降低趋势[61].3~5周的年龄段的小鼠,随年龄增长体内浓度减少,但是在30d以后这种趋势发生变化[62].全氟辛烷磺酸氨的氮被取代后降解为PFOS,会导致PFOS在环境中积累.N2乙基2N2(22羟乙基化)全氟辛烷磺酸氨(N2E tFOSE)是PFOS的主要前体,存在几种假定的生物代谢途径,包括肝脏微粒体、胞液和肝脏薄片的代谢,微粒体加强NADPH催化N2 E tFOSE,进行氮上的脱乙基化,产生N2(22羟乙)基化全氟辛烷磺酸氨,再通过N2脱烷基化降解转化为FOS A,FOS A在肝脏薄片中生物转化为PFOS,雄鼠的P4502C11和P4503A2以及人的P4502C19和3A4Π5催化N2脱烷基化反应[63].检测大西洋海豚血浆中8种PFAs,PFOS是主要的组成部分,在海豚血浆中检测到FT UC As(氟调物不饱和羧酸),怀疑能降解为FC As[64].T omy等[65]对彩虹鳟鱼孵卵期肝脏微粒体中N2E tPFOS A的生物转化进行了研究,结果表明,染毒后的彩虹鳟鱼肝脏中PFOS和PFOS A量随着孵卵期而增加,N2E tPFOS A转换为PFOS可能有3种途径:①伴随砜基转化为磺酸盐的脱乙基氨化作用,N2E tPFOS A直接转化为PFOS;②通过脱乙基化作用,E tPFOS A转化为PFOS A,然后脱氨基形成PFOS;③N2E tPFOS A的直接水解.3 生态效应及其可能的机理311 PFOSPFOS可引起生物各个层次的效应,包括动物繁殖与生育能力的降低,影响胎儿的晚期发育,基因表达的改变,酶活性的干扰、影响线粒体功能、细胞膜结构的破坏、肝组织受损、甲状腺功能的改变、肝的增大和死亡率增加等.Luebker等[13]通过每天018mgΠkg的PFOS和更高剂量PFOS的污染暴露,结果表明小鼠分娩时间缩短,每天116mgΠkg和210mgΠkg PFOS污染暴露剂量组下生育能力降低,新生体成活率的降低与脂质、葡萄糖利用、甲状腺激素降低的关系不明显,分娩时间的长短与生育能力的降低有很好的相关性,表明子宫暴露PFOS影响胎儿的晚期发育以及死亡率.他们还认为,小鼠子宫暴露PFOS导致了出生后幼崽死亡率增加,出生前后添加的PFOS与观察到的幼体毒性效应(睁眼时间推迟、下平面翻正、空中翻正、羽毛展开出现不同程度的延迟)有关[66].范铁欧等[67]研究表明,PFOS对大鼠精子形成和成熟过程有损伤作用,PFOS染毒使大鼠体重和睾丸重量下降,乳酸脱氢酶同工酶(LDHX)、山梨醇脱氢酶(S DH)的活性显著降低,精子畸形率升高,丙二醛(MDA)含量升高,精子活动率降低.李莹等[68]研究表明PFOS可以引起大鼠中枢神经系统中谷氨酸含量的升高.G rasty等[12]利用基因组U34A基因芯片确定受PFOS感染的小鼠肝组织瘤细胞产生的基因表达的改变,诱导的基因主要为脂肪、酸代谢酶、细胞色素P450s及荷尔蒙调节基因.由于PFOS与内生的脂肪酸结构相似,可以认为基因表达的改变是由PFOS 过氧化物酶体对脂肪酸蛋白的氧化作用所致. K arrman等[43]采用DNA序列的微阵列技术对PFOS 污染暴露肺部进行组织学鉴定,结果显示肺泡壁变厚,小气道增加,磷脂浓度和分子光谱学受到影响,地塞米松(肺表面活性剂)或视黄基脂与PFOS联合给药没有产生肺泡分化作用,表明小鼠因PFOS的污染暴露所导致的呼吸困难和死亡不是由于肺的不成熟造成的.王昕等[69]认为,随着PFOS浓度的增高,大鼠脑血管内皮细胞形态发生变化,细胞变圆、部分细胞不再贴壁、细胞骨架微管解聚细胞形态变圆,微管逐渐向细胞核周围聚集,表明高浓度PFOS 可导致大鼠脑损伤,出现偏瘫的体症.小鼠亚慢性毒性实验则表明,其血清中葡萄糖浓度降低,雄性小鼠肝脏的棕榈酰氧化酶活性和雌性小鼠的丙胺酸转氨酶活性的提高,血清中胆固醇浓度的降低,肝重量的增加,尿氮增加.T ao等[28]对北美洲山齿鹑和野鸭的PFOS急性和慢性暴露危害进行了观测与评估,评价的毒物学终点包括致死、生长、食物消耗和组织病理学变化,生殖终点包括卵产生、生育能力、孵化能力以及幼体8512环 境 科 学28卷。
欧标测试面料含氟标准
![欧标测试面料含氟标准](https://img.taocdn.com/s3/m/2d863b1f3a3567ec102de2bd960590c69fc3d841.png)
欧标测试面料含氟标准欧洲标准是指在欧洲国家制定的一系列标准,用于评估和监管不同产品的质量和安全性。
在面料行业中,欧洲标准对含氟面料的使用和质量有严格要求。
含氟面料是一种在面料表面涂覆氟素化合物的技术,它可以使面料具有防水、防油、防尘和耐污染的功能。
这种面料通常被广泛应用于户外装备、运动服装和医疗用品等领域。
然而,由于含氟面料中所使用的氟素化合物具有潜在的环境和健康风险,欧洲标准对其使用进行了严格的规范。
欧洲标准对含氟面料进行了多个方面的测试和评估,以确保其在使用过程中不会对环境和人体造成危害。
以下是一些常见的欧标测试面料含氟标准:1. REACH法规:REACH法规是欧洲化学品监管的基本法规,该法规要求对含氟面料中的化学物质进行注册、评估和授权。
该法规旨在保护人类健康和环境,并且含有一系列严格的测试要求和限制。
2. PFOS和PFOA:PFOS和PFOA是两种常见的氟素化合物,在含氟面料中使用较为普遍。
欧洲标准对含氟面料中PFOS和PFOA的含量进行了限制,要求其不得超过一定的临界值。
3.挥发性有机化合物(VOC):含氟面料中可能含有某些挥发性有机化合物,这些化合物会在使用过程中释放出来,对人体和环境造成潜在的危害。
欧洲标准对含氟面料中VOC的含量进行了限制,要求其不得超过一定的临界值。
4.雾化测试:这种测试方法用于评估含氟面料的防水性能。
测试方法会将特定液体(如水)雾化到面料上,通过观察其在面料上的滴落情况和渗透性能来评估面料的防水性能。
5.摩擦测试:这种测试方法用于评估含氟面料的耐磨性能。
测试方法会用特定的摩擦器摩擦面料,通过观察面料表面的磨损情况来评估其耐磨性能。
以上仅是一些常见的欧标测试面料含氟标准,实际上还有其他许多具体的测试要求。
这些测试要求的目的是确保含氟面料的质量和安全性,以保护人类健康和环境。
值得注意的是,虽然含氟面料可以提供一定的功能性和性能,但由于其中所使用的氟素化合物具有潜在的环境和健康风险,人们在使用含氟面料时仍应谨慎对待。
环境化学全氟化合物10
![环境化学全氟化合物10](https://img.taocdn.com/s3/m/a302dd6de418964bcf84b9d528ea81c759f52e50.png)
PFOS
全氟辛烷磺酸(Perfluoroodane Sulfonate,PFOS),曾 被广泛用于灭火剂、感光材料表面处理剂、纺织品和皮 革的整理剂、纸张的表面防污涂层、航空液压油、半导 体行业的光阻剂和电镀行业的铬雾抑制剂等与人类生产 和生活密切相关的产品中。作为3M公司的畅销产品思高 洁防污涂层喷剂的关键组分,PFOS被发现广泛存在于 全球的环境介质和动物乃至人体体内,对生态环境和人 体健康构成了极大的潜在威胁。
激素合成、运输、新陈代谢等生理活动都需要甲状腺激素的 调节,许多研究表明PFOS和PFOA损害甲状腺激素在动物体内的分 泌平衡,研究结果表明PFOS和PFOA对甲状腺激素的影响是多方面 的,由于物种多样性和调控机制存在差异,由PFOS和PFOA造成啮 齿动物甲状腺功能的影响外推到对人体甲状腺功能的影响,其变 化是极其复杂的。与在动物体内的半衰期(PF0s在大鼠血清中半 衰期为100d左右)相比,PFOS和PFOA在人体中有极长的半衰期。 PF0s和PFOA对人类健康的潜在风险应该引起重视。
PFCs的特点
很高的稳定性,受很 强的热,光照,化学 作用而难分解
在环境中长距离迁移
受微生物和高等脊椎动 物的代谢作用而难降解
随食物链传递在生物 体内富集到很高浓度
二 PFOS/PFOA分布、毒理效应与迁移转化
环境中存在的全氟化合物主要有全氟羧酸 类、全氟磺酸类、全氟酰胺类及全氟调聚醇等, 其中全氟辛烷磺酸(PFOS) 和全氟辛酸(PFOA) 是环境中出现的最典型的两种全氟化合物,而 且这两种化合物是多种PFCs在环境中的最终转 化产物 。
生殖毒理学研究表明,PFOS和PFOA能够造成雌性鹤鹑产蛋率显 著下降,产蛋时间推迟,受精率和孵化率显著性下降而幼患大量死 亡,且出生后畸形率升高。
PFOA和PFOS替代品的环境污染及毒性研究进展
![PFOA和PFOS替代品的环境污染及毒性研究进展](https://img.taocdn.com/s3/m/c268cd8a370cba1aa8114431b90d6c85ec3a8828.png)
PFOA和PFOS替代品的环境污染及毒性研究进展目录一、内容简述 (2)1.1 背景介绍 (2)1.2 研究意义 (4)二、PFOA和PFOS的基本性质与用途 (5)2.1 PFOA的基本性质与用途 (6)2.2 PFOS的基本性质与用途 (6)三、PFOA和PFOS的环境污染现状 (7)3.1 全球范围内PFOA和PFOS的排放情况 (9)3.2 地区性环境污染现状 (10)3.3 工业生产与废弃物处理中的PFOA和PFOS排放 (12)四、PFOA和PFOS替代品的研发与应用 (13)4.1 替代品的种类与特性 (15)4.2 替代品的研发动态 (16)4.3 替代品在实际应用中的效果与挑战 (17)五、PFOA和PFOS替代品的环境污染及毒性研究 (18)5.1 替代品的环境行为研究 (20)5.2 替代品的生物有效性研究 (21)5.3 替代品对生态系统和人类健康的影响研究 (22)5.4 毒性评价与生态风险评估 (24)六、政策法规与监管 (25)6.1 国际政策与法规 (26)6.2 国内政策与法规 (28)6.3 监管机构的角色与作用 (29)七、结论与展望 (30)7.1 研究成果总结 (31)7.2 存在的问题与挑战 (33)7.3 未来研究方向与展望 (34)一、内容简述本篇论文综述了PFOA(全氟辛酸)和PFOS(全氟辛烷磺酸)替代品的环境污染及毒性研究进展。
PFOA和PFOS是一类持久性有机污染物,因其生物累积性和潜在的健康风险而受到广泛关注。
随着这些物质的限制使用或禁止使用,研究者们开始探索其替代品的环保性和安全性。
在环境污染方面,替代品的生物降解性、持久性和生物富集性等特性成为了研究的热点。
一些新型化合物和添加剂逐渐成为替代品,它们在环境中的行为和生态影响尚需深入研究。
在毒性研究方面,替代品对人类和野生动植物的潜在影响是研究的重点。
实验室和现场研究揭示了一些替代品具有较低的生物毒性,但仍需长期研究和监测以确保其安全性。
pops法规对于pfos和pfoa的要求
![pops法规对于pfos和pfoa的要求](https://img.taocdn.com/s3/m/4ee364760a4c2e3f5727a5e9856a561253d3216c.png)
pops法规对于pfos和pfoa的要求
全球的pops法规对于pfos(全氟辛烷磺酸盐)和pfoa(全氟辛酸)的要求日
益严格。
Pops是指持久性有机污染物,它们对人类健康和环境产生潜在危害。
PFOS和PFOA是其中两种常见的Pops。
根据国际环境协定,如斯德哥尔摩公约和巴塞尔公约,全球各国都对PFOS和PFOA实施了法规措施,以减少或消除它们在环境中的存在。
首先,针对PFOS和PFOA的生产和使用,pops法规要求严格控制这些化学物
质的生产量和使用范围。
一些国家已经完全禁止了这两种化学物质的生产和使用,而其他国家则限制其使用在特定领域和特定用途中。
其次,针对PFOS和PFOA的排放和释放,pops法规要求企业和工厂必须采取
有效措施来减少或防止这些化学物质进入水体、大气和土壤。
这可能包括使用先进的处理技术来处理含有PFOS和PFOA的废水和废气,确保它们的排放符合严格的
标准。
另外,pops法规还要求对PFOS和PFOA的储存、处理和处置采取相应的措施。
这些措施旨在确保这些化学物质不会对环境和人类健康造成长期的污染和危害。
此外,pops法规还强调信息共享和合作,各国之间需要密切合作,在科学研究、风险评估和监测方面进行信息交流和共享。
这有助于更好地了解PFOS和PFOA的
影响,并采取适当的措施来应对风险。
总之,全球的pops法规对于PFOS和PFOA的要求包括限制生产和使用、控制排放和释放、储存和处理等方面的措施。
这些法规旨在保护人类健康和环境,并减少这些持久性有机污染物的使用和存在。
pfos和pfoa标准
![pfos和pfoa标准](https://img.taocdn.com/s3/m/f5513ddb18e8b8f67c1cfad6195f312b3069eb59.png)
pfos和pfoa标准PFOS和PFOA标准PFOS和PFOA是两种常见的化学物质,它们被广泛应用于许多工业和消费品中。
然而,这些化学物质已被证明对人类健康和环境造成了潜在的危害。
因此,许多国家和地区已经制定了PFOS和PFOA 的标准,以保护公众健康和环境。
PFOS和PFOA是一种类似于氟利昂的化学物质,它们具有防水、防油和防污染的特性,因此被广泛应用于许多消费品中,如防水衣物、沙发、地毯、食品包装等。
然而,这些化学物质在生物体内难以分解,会在环境中长期存在,并逐渐积累到人体内,对人类健康和环境造成潜在的危害。
PFOS和PFOA的危害主要表现在以下几个方面:1. 对人类健康的影响:PFOS和PFOA被认为是潜在的致癌物质,可以导致肝脏、胰腺、卵巢和睾丸等器官的损伤。
此外,这些化学物质还会影响人类的免疫系统、生殖系统和神经系统,导致不育、早产、胎儿畸形等问题。
2. 对环境的影响:PFOS和PFOA在环境中长期存在,会对水体、土壤和空气造成污染,影响生态系统的平衡。
这些化学物质还会对野生动物和植物造成危害,导致生物多样性的丧失。
为了保护公众健康和环境,许多国家和地区已经制定了PFOS和PFOA的标准。
例如,美国环保署已经将PFOS和PFOA的安全标准降低到70 ppt(每升70个纳克),而欧盟已经将PFOS和PFOA列为“优先关注物质”,并制定了相应的限制措施。
许多企业也已经采取了措施,减少或淘汰PFOS和PFOA的使用。
例如,宜家已经承诺在2020年之前淘汰所有含有PFOS和PFOA的产品,而戴尔公司也已经停止使用这些化学物质。
PFOS和PFOA是一种潜在的危险化学物质,对人类健康和环境造成潜在的危害。
为了保护公众健康和环境,许多国家和地区已经制定了相应的标准和限制措施,企业也应该采取措施减少或淘汰这些化学物质的使用。
PFOS_PFOA检测
![PFOS_PFOA检测](https://img.taocdn.com/s3/m/e8552f8bb4daa58da1114a1f.png)
PFOS,PFOA1.PFOS(全氟辛烷磺酸)检测介绍全氟辛烷磺酸(Perfluorooctane sulfonates-PFOS)以阴离子形式存在于盐、衍生体和聚合体中,因其防油和防水性而作为原料被广泛用于纺织品、地毯、纸、涂料、消防泡沫、影像材料、航空液压油等产品中。
2006年10月30日欧洲议会通过了《关于限制全氟辛烷磺酸销售及使用的指令》(2006/122/EC),同年12月27日该指令正式公布并同时生效,欧盟将严格限制PFOS (全氟辛烷磺酸)的使用2.PFOS的应用:PFOS相关化学品现在用于不同的产品,主要包含了三个应用领域:1) 用于表面处理的PFOS相关化学品可保证个人衣服、家庭装饰、汽车内部的防污、防油和防水。
2) 用于纸张保护的PFOS相关化学品,作为浆料成形的一部分,可保证纸张和纸板的防油和防水。
3) 性能化学品种类中的PFOS相关化学品广泛用于专门工业、商业和消费领域。
该种类包括各种作为最终产品被商品化的PFOS盐。
3. PFOS的危害:全氟化学品积聚在活有机体的脂肪组织中,对于人体和野生动物都是有害的。
有依据证明接触包括PFOS和PFOA的全氟化学品可能导致出生婴儿缺陷,对免疫系统产生不利影响,还会破坏甲状腺功能,这样在怀孕期间,会导致许多发育问题。
3.PFOS限值分类浓度最高限制值产品成分配方0.005%50ppm半成品或零件0.1%1000ppm纺织品或涂层 1 μg/m24. PFOA(全氟辛酸及盐类)同样,欧州议会也已经对PFOA以及PFOA盐提出了欧盟限制要求,它们也被怀疑带有与PFOS相同的危险性。
PFOA及其衍生产品的应用包括家用产品表面处理(如不沾锅炊具)、方便食品包装等,已经要求欧洲委员会重新审查存在危险的事件、寻找更安全的替代方法,并定义出危险减少措施,PFOA在所有年龄阶段人群中的潜在毒性、广泛发生率、以及持续性,已经引起了美国公众和监督局的高度重视。
14章1-PFOS-PFOA的环境毒理学
![14章1-PFOS-PFOA的环境毒理学](https://img.taocdn.com/s3/m/bdecf5fc31b765ce04081487.png)
二、PFOS/PFOA的暴露水平
Olsen等检测了来自美国6个红十字会 血液收集中心的645个捐献的成人血清 样品,结果发现男性血清PFOS浓度的 几何平均值为37.8μg/L(95%置信区间 35.5~40.3μg/L),要高于女性(几何平 均值为31.3μg/L,95%置信区间30.03~ 34.3μg/L),但是年龄与PFOS浓度相关 性不明显。
路漫漫其修远兮, 吾将上下而求索
一、前言
2009 年5 月4 日召开的 《关于持久性有机污染物 的斯德哥尔摩公约》 第四次缔约方大会,将包括全 氟辛烷磺酸(PFOS)、其盐类和全氟辛基磺酰氟 (PFOSF)在内的9类物质列入公约持久性有机污染 物 (POPs)受控名单,决定修正《斯德哥尔摩公约 》 附件B(限制类)的第一部分,列入全氟辛烷磺酸 、 其盐类和全氟辛基磺酰氟,列明特定豁免和可接 受用途,其中可接受用途包括:灭火泡沫(部分全 氟辛烷磺酸盐类是成膜型泡沫灭火剂配方中的常用 组分) 、 航空液压油、 光阻半导体、 照片成像、 硬金属电镀等。
2.在野生动物中的暴露水平
有关PFOS和PFOA在生物体内暴露水 平的研究,目前主要集中在北半球,研 究较多的是肝脏、血液、血浆、血清、 肾、脾、卵、鲸脂、肌肉、子宫和脑等 部分研究还表明,在南半球一些生物体 内可检测到低浓度的PFOS和PFOA的存 在,可以说明这2种污染物的全球分布 。
路漫漫其修远兮, 吾将上下而求索
路漫漫其修远兮, 吾将上下而求索
一、前言
路漫漫其修远兮, 吾将上下而求索
一、前言
PFOA[CF3(CF2)7COOH]不仅代表全氟 辛酸本身,还代表其主要的盐类,为一种人 工合成的化学品,具有很高的化学稳定性和 热稳定性。因具有存在地域广泛、分布介质 多样、疏水疏脂、易与血浆蛋白结合并在高 等动物体内积聚等特性,而成为当前倍受关 注的持久性有机污染物之一。
新疆典型水环境中PFOS和PFOA的污染水平及归趋分析
![新疆典型水环境中PFOS和PFOA的污染水平及归趋分析](https://img.taocdn.com/s3/m/716bececdc3383c4bb4cf7ec4afe04a1b071b01d.png)
新疆典型水环境中PFOS和PFOA的污染水平及归趋分析新疆典型水环境中PFOS和PFOA的污染水平及归趋分析摘要:全球范围内,长链全氟烷磺酸盐(PFOS)和全氟辛酸(PFOA)被广泛使用,由于其持久性、生物蓄积性和毒性等特性,已被列入国内外优先控制的环境污染物。
本研究以新疆典型水环境为研究对象,通过采集水样和测定分析,探讨了PFOS和PFOA在该地区的污染水平及归趋,为进一步了解和防控该类污染物提供了重要参考。
引言:PFOS和PFOA是一类具有极强稳定性的全氟化合物,在世界范围内的工业生产和日常生活中被广泛使用。
然而,它们也具有潜在的环境和健康危害性。
已有研究表明,PFOS和PFOA的存在可以对生态系统、水体和人体健康造成潜在风险。
因此,对于PFOS和PFOA在水环境中的污染水平及归趋的研究具有重要意义。
方法:本研究选择了新疆地区的典型水体,采集了包括河流、湖泊和地下水在内的不同类型水样。
采样地点涵盖了城市、工业区和农田等不同环境。
通过高效液相色谱-串联质谱(HPLC-MS/MS)技术对水样中的PFOS和PFOA进行了测定分析,并采用统计学方法对数据进行处理和分析。
结果:研究结果显示,新疆典型水环境中的PFOS和PFOA存在一定程度的污染。
不同类型水体中,PFOS和PFOA的浓度差异明显。
相对而言,城市地表水中的PFOS和PFOA浓度较高,其中PFOS的平均浓度为XX ng/L,PFOA的平均浓度为XXng/L。
工业区水体中PFOS和PFOA的平均浓度分别为XX ng/L和XX ng/L,而农田水体中的PFOS和PFOA平均浓度较低,分别为XX ng/L和XX ng/L。
此外,地下水中PFOS和PFOA的浓度相对较低,可忽略不计。
讨论:水体中PFOS和PFOA的污染水平受周边环境的影响较大。
城市地表水中PFOS和PFOA的浓度较高,可能由于市区内的工业废水排放和日常生活污水的影响。
工业区水体中的PFOS和PFOA浓度相对较高,可能与工业生产和化工过程中的排放有关。
PFOA跟PFOS指的是什麼
![PFOA跟PFOS指的是什麼](https://img.taocdn.com/s3/m/a85c268a02d276a200292e7f.png)
PFOA跟PFOS指的是什麼?PFOS (perfluorooctane sulfonates)指全氟辛烷磺酸,是全氟辛烷磺酰基化合物的簡稱,屬高氟化合物。
市場上常見的種類有C8F17SO2X,其中X可以是羥基、金屬鹽、鹵化物、氨基或其他聚合物的衍生物基團。
由於PFOS同時具備疏油、疏水且化學性質非常穩定等特性,被廣泛應用於各個領域。
2006年12月27日,歐洲議會和部長理事會聯合發佈《關於限制全氟辛烷磺酸銷售及使用的指令(2006/122/EC),嚴格限制PFOS的使用。
有依據證明接觸包括PFOS和PFOA的全氟化學品可能導致出生嬰兒缺陷,對免疫系統產生不利影響,也會破壞甲狀腺功能,這樣在懷孕期間,會導致許多發育問題。
更重要的是,美國環境保護局認為可致癌的PFOS和PFOA以及職業接觸的PFOS都與膀胱癌發生率的增加有關。
PFOS的應用PFOS相關化學品現在用於不同的產品,主要包含了三個應用領域。
1.用於表面處理的PFOS相關化學品可保證個人衣服、家庭裝飾、汽車內部的防污、防油和防水性。
2.用於紙張保護的PFOS相關化學品,作為漿料成形的一部分,可保證紙張和紙板的防油和防水性。
(台灣紙漿市場可能)3.性能化學品種類中的PFOS相關化學品廣泛用於專門工業、商業和消費領域。
該種類包括各種作為最終產品被商品化的PFOS鹽。
PFOS濃度上限值◎產品成分配方中,如果含有大於總重0.005%(50ppm) 的PFOS,不得於歐盟市場上銷售。
◎半成品或零件中含有PFOS的部份,如果PFOS濃度大於此部份總重的0.1%(1000ppm);或者是紡織品或塗層材料上的PFOS濃度大於1 ug/m2,則不得於歐盟市場上銷售。
PFOA (Perfluorooctanoic acid),又稱C8,是一種人工合成的而非天然的工業原料。
PFOA這個縮寫並不僅指全氟辛酸,還包括它的鹽類,其中應用最廣和最受關注的就是它的銨鹽—全氟辛酸銨(Ammonium Perfluorooctanoate),PFOA是製造氟聚合物高性能材料的一種基本加工助劑。
PFOS及PFOA-测试说明
![PFOS及PFOA-测试说明](https://img.taocdn.com/s3/m/a30a7a93680203d8cf2f240d.png)
12
欧盟指令提议(Con’t)
用于制造照相平版印刷防反光涂层的物质及制剂,以及覆盖于胶片 、纸张或印板表面的感光涂层等,可含有较大量的全氟辛磺酸化合
物、非装饰性硬铬所含的抑制剂、航空用液压液体亦然;
豁免灭火泡沫的建议被欧洲议会否决。因此,所有新推出的灭火泡 沫必须不含碳氟化合物;在指令生效前12个月推出市场的灭火泡
Non-stick coating in cookware eg Teflon
√
Leachable in Olive oil, acetic acid or n-heptane
19
测试流程
Extractable or Residual Value
称取剪碎的样品
置于索氏萃取用的滤 筒中
索氏萃取16小时
在蜡制品、光亮剂、油漆、清漆、清洁剂、金属表面中也 有应用;
还广泛地被使用在合成洗涤剂、洗发香波及其他表面活性 剂产品中。
9
PFOS/PFOA的健康危害
危害特性及评估:
难降解性 (i.e. 抗微生物降解) 生物积聚 (i.e. 积聚在生物体内) 经济合作与发展组织(OECD)2002年的一项危险评估认为PFOS 对 哺乳类动物具有毒性 (i.e. 本身具毒) PFOS是目前世界上发现的最难降解的有机污染物之一,具有很高的 生物蓄积性和多种毒性,动物实验表明每公斤2毫克的“PFOS”含量 即可导致死亡。 美国EPA 2006年也发布了一项评估认为PFOA可能具有致癌性
沫,可于指令生效后最多54个月内使用;
PFOA可能具有与PFOS类似的危害,因此,需持续对其进行风险 评估、寻找相关替代品并考虑制定降低其危害的措施。
13
对工业的 影响
全氟及多氟烷基物质
![全氟及多氟烷基物质](https://img.taocdn.com/s3/m/85acf0ff77a20029bd64783e0912a21614797f0a.png)
全氟及多氟烷基物质全氟及多氟烷基物质是一类包括多氟聚烷(PFOA)、全氟聚乙烯(PVDF)和多氟芬(PFOS)等在内的有机物质。
这一类物质的分子结构中包含有氟元素,被广泛应用于工业生产和生活中,是对环境和人体健康所构成的重大危害。
一、氟及多氟烷基物质的特性1、理性质:全氟及多氟烷基物质是无色透明液体,具有极低的粘度,质量较轻,在空气中较容易挥发。
耐热性良好,抗腐蚀性能较强。
2、学特性:全氟及多氟烷基物质具有高度的溶解性,耐酸碱性能较强,能够快速被水分解,而无法被生物降解。
二、氟及多氟烷基物质的用途1、业用途:全氟及多氟烷基物质的特殊性质,使其在工业生产中有很大的应用价值,如作为消防用液体、用于冶金业轴承材料、用于高温工具电镀油和润滑油、用于柔性橡胶制品的橡胶固化剂、玻纤用化学品及汽车和农业机械的润滑油等均使用全氟及多氟烷基物质。
2、活用途:全氟及多氟烷基物质还被广泛用于家居产品如壁纸、家具和地板涂料中,用作防水剂、抗菌剂、杀虫剂和抗霉剂等。
三、氟及多氟烷基物质的危害全氟及多氟烷基物质毒性大,它们的破坏性很强,而且不易生物降解,对环境和人体健康构成重大威胁。
它们不仅对鱼类、水生动物生命构成威胁,而且还会对人体健康产生副作用,会损害肝、肾、脾等机体器官,还会诱发癌症等。
所以人们必须严格控制全氟及多氟烷基物质的排放量,防止环境污染,降低全氟及多氟烷基物质对人体健康的危害。
四、氟及多氟烷基物质的控制1、府立法:政府部门必须制定有关法规,严格监管和限制全氟及多氟烷基物质的生产、使用、排放和存量控制,保护环境和人体健康,确保社会的安全。
2、进的技术:企业应采用先进的技术,如废气处理技术、污水处理技术、生物质脱氟技术等。
在生产过程中,预防排放,提高低排放水平;在生活中,可以采取措施减少使用全氟及多氟烷基物质产品。
综上所述,全氟及多氟烷基物质是一类具有重要用途但又非常危险的有机物质,其对环境和人体健康构成的重大威胁必须引起足够的重视。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PFOS和PFOA概念全氟辛烷磺酰基化合物(PFOS)和全氟辛酸(PFOA)是重要的全氟化表面活性剂,具有疏水疏油的特性,广泛应用于工业用品和消费产品,包括防火薄膜、地板上光剂、香波,同时在地毯、制革、造纸和纺织等领域作为表面保护材料。
PFOS是全氟有机化合物家族中的代表性化合物之一,也是含氟系列产品经过化学或 生物降解的最终产物,以阴离子形式存在于盐、衍生体和聚合体中。
PFOS性质稳定,不易降解,目前已成为一种全球性的新型环境污染物。
经调查发现,全球生态系统各类环境介质、野生动物、职业性暴露人群和非职业性暴露人群体内均普 遍存在PFOS污染。
PFOA[CF3(CF2)7COOH]不仅代表全氟辛酸本身,还代表其主要的盐类,为一种人工合成的化学品,具有很高的化学稳定性和热稳定性。
因具有存在地域广泛、分布介质多样、疏水疏脂、易与血浆蛋白结合并在高等动物体内积聚等特性,而成为当前倍受关注的持久性有机污染物之一。
PFOS和PFOA被认为是持久性有机污染物,在生物体内存在蓄积性和蓄积效应,且不易降解,半衰期很长。
实验室研究表明,这类物质在一定的剂量下引起生物体体重降低、肝组织增重、肺泡壁变厚、线粒体受损、基因诱导、幼体死亡率增加以及容易感染疾病致死等不良生物学效应。
PFOS/PFOA是目前世界上发现的最难降解的有机污染物之一,具有持久性、生物累积性、远距离环境迁移的可能性,对人类健康和生存环境造成影响。
PFOS/PFOA具有遗传毒性,雄性生殖毒性,神经毒性,干扰甲状腺功能,肝脏毒性,发育毒性和内分泌干扰作用等多种毒性,因此PFOS和PFOA被认为是一类具有全身多脏器毒性的持久性有机污染物。
PFOA是什么?PFOA全氟辛酸铵(Perfluorooctanoic Acid 缩写为PFOA),PFOA 是全氟辛酸铵的简称。
PFOA代表全氟辛酸及其含铵的主盐,或称为“C8”,为一种人工合成的化学品,通常是用于生产高效能氟聚合物时所不可或缺的加工助剂。
这些高效能氟聚合物可被广泛应用于航空科技、运输、电子行业,以及厨具等民生用品。
当PFOA分解后会在环境或人体中释放出来。
对环境和人体造成毒性危害,相关产品中对PFOA提出限制要求。
欧洲情况在美国的影响下,根据欧盟2004/1935/EC 指令下的一般安全标准(与食品接触的材料和物质的决议),PFOA 也被禁止使用。
在德国,联邦风险评估协会BfR 制订了指引条例BfR section LI—针对油炸、烹饪和烘烤器具的耐温聚合物涂层系统。
全氟正辛酸及其含全氟-烯基-羟苯磺酸钠铵盐的最大迁移限量为0.005 mg/dm2。
PFOA - 全氟辛酸铵化学药品编定注册登记编号: 335-67-1PFOA具有于其他持久性污染物不同的特性。
首先是它的Kow不能被测定,其次它是富集在血液里,另外它不是芳香族的化合物,没有苯环。
这类物质有极性的官能团,可以较好的溶于水。
但同时它还具有一个长长的全氟烷基的碳链,碳链上的氢原子都被氟原子所取代。
由于氟原子的吸电子作用,其碳链的氟原子对(水)环境是呈负电(partial charge)。
所以在水中PFOA呈现的是一个大负电的结构,这不仅来源于其极性官能团水中的离解,还来自于其(partial)负电的全氟烷基碳链。
PFOA 危害全氟化学品积聚在活有机体的脂肪组织中,对于人体和野生动物都是有害的。
有依据证明接触包括PFOA的全氟化学品可能导致出生婴儿缺陷,对免疫系统产生不利影响,还会破坏甲状腺功能,这样在怀孕期间,会导致许多发育问题。
另一种全氟化学品PFOA另一种常见的全氟化学品是全氟辛酸(PFOA)以及其盐,应用包括家用产品表面处理(如不沾锅炊具)、方便食品包装等,它们也被怀疑带有与PFOS相同的危险性。
欧州议会已经对PFOA以及PFOA盐提出了限制要求,要求重新审查存在危险的事件、寻找更安全的替代方法,并定义出危险减少措施。
PFOA的危害也已引起了美国公众和监督局的高度重视,因而被列入加州65提案致癌物质。
2013年6月28日,挪威修订了《挪威产品法》第2-32节,宣布了一项消费品中PFOA及其盐类和酯类的禁令。
限制令适用于固体和液体产品,也包括纺织品。
REACH里面包含PFOA项目吗2016年10月6日,欧盟委员会向WTO提交通报,拟对欧盟REACH法规附件XVII进行修订。
根据通报提案,欧盟将全面禁止全氟辛酸(PFOA)及其盐的生产和上市,任何物质、混合物或物品中PFOA及其盐的含量不得超过25 ppb,并且所含的PFOA相关物质的含量不得超过1000 ppb。
新规的意见征求将于2016年12月截止,预计2017年上半年生效。
全氟辛酸应用广泛,涉及纺织品、皮革、食品包装材料和油漆油墨等多个行业,而新法规拟定的限值非常严格,预计实施后将使广大企业面临严峻挑战。
全氟辛酸管控渐成业界焦点PFOA类物质具有优良的热稳定性、化学稳定性、高表面活性、疏水和疏油等性能, 广泛应用于纺织服装、表面活性剂、化妆品、含氟聚合物、表面涂料乃至灭火泡沫等领域。
但是,PFOA及其关联物质不易降解,可通过吸入、皮肤接触以及食物链等被人体吸收,是一种持久性、生物累积性和毒性物质,对神经、免疫和生殖系统等均有不同程度的损害。
早在2012年,绿色和平组织就声称在市场随机抽取的14个服装样品中均发现了全氟辛酸,该物质也成为除了壬基酚之外,另一类备受关注的有害化学助剂。
壬基酚已于今年2月被REACH法规实施了禁令,而自2010年以来,加拿大、美国、挪威、瑞典等国已相继出台了针对全氟辛酸的管控和行业消除计划。
2013年6月,欧盟将PFOA确认为持久性生物积累和毒性物质,并将PFOA纳入REACH法规的高关注物质候选清单。
2014年10月,德国和挪威正式向欧盟提交限制PFOA生产和上市的卷宗,提议的限量为PFOA含量不得超过2ppb。
2015年9月和12月,欧盟风险评估委员会和社会经济分析委员会相继同意采纳对PFOA的限制提案。
但考虑到目前可替代物较少、PFOA的意外污染风险较高以及新规将造成企业成本负担等因素,委员会提议将过渡期调整为三年,并将PFOA限量设定为25ppb,但同时将管制范围扩大到PFOA关联物质。
行业应用难回避 应对压力凸显从新规草案来看,即便是技术成熟的欧盟,也对短期内实现PFOA的消除持谨慎态度,尽管德国和挪威提出的卷宗提议设定18个月的过渡期,欧盟社会经济分析委员会最终提议将过渡期延长为三年,并特意对二手商品、医疗设备、半导体等商品提供豁免条款。
而从全球行业来看,PFOA被禁用后,企业将面临替代物选择空间有限的严峻困境,特别是与PFOA性质相近的同类全氟化合物目前也面临被逐步禁用的情况,如全氟壬酸已于2015年12月被欧盟化学品管理局纳入了高关注物质清单。
而具有行业导向地位的国际环保纺织协会(OEKO-TEX)近年来对全氟化合物的管控要求更是持续收紧,如 2014版OEKO-TEX Standard 100标准对不同级别的纺织品的全氟辛酸含量限量在50微克/千克到500微克/千克不等。
2015版标准就将所有类别纺织品的全氟辛酸限量统一降至<1.0微克/平方米。
2016版进一步将全氟庚酸、全氟壬酸和全氟癸酸全部纳入限用清单。
去毒行动成趋势 转型升级需持续推进随着全球环保意识的强化,控制有毒有害化学品的使用已经成为纺织服装等产业的共识。
近年来,欧盟、美国对全氟化合物、壬基酚等化学品的绿色壁垒也日趋严苛,去毒行动已成行业趋势,企业务必要提高风险意识,及早布局,加快转型升级。
欧盟是我国纺织服装等消费品的重要海外市场,随着欧美等发达国家对壬基酚、全氟辛酸等化学品的监管持续收紧,企业将被迫进行设备升级、助剂更换等应对措施。
同时,除了针对单项PFOA的检测外,新规实施后大量产品还需进行PFOA 关联物质的检测,测试成本将大幅增加,在整体微利的背景下,行业性压力势必不断增大,需引起足够重视。
检验检疫部门就此提醒出口企业,一是密切关注欧美的技术性贸易措施信息,特别是近年来REACH法规对消费品中的有害化学物质管控密集更新,企业需提前做好应对准备;二是要完善产品质量管理体系,由于PFOA等物质应用广泛,在各类化工助剂和塑胶、纺织等材质的配件中风险较大,企业务必要强化原辅料的风险控制、并改进生产设备和加工工艺,避免产品出现全氟辛酸污染等隐患;三是要做好出口前的质量把关,委托有资质的检测机构进行PFOA及关联物质的检测,确保产品合格,有效防范后续风险。
PFOS是什么PFOS全氟辛烷磺酸盐。
是一种持久性有机污染物(POPs),是目前最难降解的有机污染物之一。
主要用于服装生产,具有生物累积性、内分泌干扰性、致癌、致畸、致突变,被认为是一类具有全身多器脏毒性的环境污染物。
全氟辛烷磺酸及其盐分子式C8F17SO2X (X=氢氧、金属盐、卤化物、氨基化合物、包括聚合物的其他派生物)我们国家是服装生产大国,在出口贸易中有时会被检出PFOS而影响出口。
欧盟:2006年12月27日,欧洲议会和部长理事会联合发布《关于限制全氟辛烷磺酸销售及使用的指令》(2006/122/EC)。
2006年10月30日,欧洲议会以632票比10票通过了该草案,2006年12月12日指令草案最终获得部长理事会批准,2006年12月27日指令正式公布并同时成效。
PFOS检测通常采用的是EPA3540C的检测方法,一般用的仪器是LC-MS ROHS的指令是2002/95/EC目前这个指令里面包括了6个检测项目,金属材料的话只需要做四个项目。
到2013年的6月份,新的指令2011/65/EC这个指令号会代替2002/95/EC。
唯一变化的是增加了4个项目,分别是邻苯3P 和HBCCD,也就是通常说的ROHS2.0,限制要求:ROHS6项除CD镉是100PPM之外,其他都是1000PPM.而2006/122/EC规定,以PFOS作为配制品成分的,其浓度或质量等于或超过0.005%的不得销售;对于纺织品或其他涂层材料,如果涂层材料中PFOS 的量等于或超过1μg/m2,禁止销售。
如果在半成品中使用PFOS浓度或质量等于或超过0.1%的,则半成品及部件也被列入禁售范围;指令限制范围包括有意添加PFOS的所有产品,包括用于特定的零部件中及产品的图层表面,例如纺织品。
但限制仅针对新产品,对于已经使用中的以及二手市场上的产品不限制。
电子制造业中有可能存在PFOS的物品·液体 例:洗涤剂、清洗液、蚀刻液、各类处理剂、绝缘油·涂料以及喷涂物 例:PC钢板、粉体喷涂、颜料、染料·油墨以及印刷物 例:电极、电阻·表面处理剂以及表面处理物 例:电镀品、电镀材料、防反射材、保护膜·成型品以及成型材料 例:印刷电路基板、陶瓷基板、树脂、滑动材、垫片·焊锡相关 例:焊剂、焊膏·工序用副资材 例:润滑脂、分型材、密封材、润滑油、粘结剂PFOS的有害影响有哪些持久性:全氟辛烷磺酸的持久性极强,是最难分解的有机污染物,在浓硫酸中煮一小时也不分解。