高等数学微分中值定理与导数的应用题库

合集下载

高等数学 第三章中值定理与导数的应用习题课

高等数学 第三章中值定理与导数的应用习题课

(5) (1 + x )α = 1 + αx +
α (α − 1)
2!
x2 + L+
α (α − 1)L (α − n + 1)
n!
x n + o( x n )
Ⅲ 导数的应用
一、函数的极值与单调性
1.函数极值的定义 . x ∈ U ( x0 , δ ), f ( x ) ≤ f ( x0 ), f ( x0 )为极大值. 为极大值.
0 ∞ 其它型: 其它型: ⋅ ∞ , ∞ − ∞ , 0 , 1 , ∞ , 转化为 “ ”型或“ ” 型 0 型或“ 型或 0 ∞
0 ∞ 0
二、泰勒公式
1.泰勒公式 .
如果函数在含有一点的开区间内具有直到(n+1)阶导数 阶导数 如果函数在含有一点的开区间内具有直到 f ′′( x0 ) f ( n) ( x0 ) 2 f ( x) = f ( x0 ) + f ′( x0 )( x − x0 ) + ( x − x0 ) + L+ ( x − x0 )n + Rn ( x) 2! n! ( n +1) f (ξ ) Rn ( x ) = ( x − x0 ) n+1 拉格朗日型余项 ( n + 1)!
x ∈ U ( x 0 , δ ), f ( x ) ≥ f ( x0 ), f ( x0 )为极小值 .
o

2.函数的驻点 .
f ′( x 0 ) = 0 则 x 0为 f ( x ) 的驻点。 的驻点。
3.函数的单调区间的判别 .
函数在[a,b]上连续 在(a,b)内可导 上连续,在 内可导. 函数在 上连续 内可导

微分中值定理与导数的应用习题

微分中值定理与导数的应用习题

第四章 微分中值定理与导数的应用习题§4.1 微分中值定理1. 填空题(1)函数x x f arctan )(=在]1 ,0[上使拉格朗日中值定理结论成立的ξ是ππ-4.(2)设)5)(3)(2)(1()(----=x x x x x f ,则0)(='x f 有 3 个实根,分别位于区间)5,3(),3,2(),2,1(中.2. 选择题(1)罗尔定理中的三个条件:)(x f 在],[b a 上连续,在),(b a 内可导,且)()(b f a f =,是)(x f 在),(b a 内至少存在一点ξ,使0)(='ξf 成立的( B ).A . 必要条件B .充分条件C . 充要条件D . 既非充分也非必要条件(2)下列函数在]1 ,1[-上满足罗尔定理条件的是( C ).A . x e x f =)( B. ||)(x x f = C. 21)(x x f -= D. ⎪⎩⎪⎨⎧=≠=0,00 ,1sin )(x x x x x f (3)若)(x f 在),(b a 内可导,且21x x 、是),(b a 内任意两点,则至少存在一点ξ,使下式成立( B ).A . ),()()()()(2112b a f x x x f x f ∈'-=-ξξB . ξξ)()()()(2121f x x x f x f '-=-在12,x x 之间C . 211221)()()()(x x f x x x f x f <<'-=-ξξ D . 211212)()()()(x x f x x x f x f <<'-=-ξξ3.证明恒等式:)(2cot arctan ∞<<-∞=+x x arc x π.证明: 令x arc x x f cot arctan )(+=,则01111)(22=+-+='x x x f ,所以)(x f 为一常数. 设c x f =)(,又因为(1)2f π=, 故 )(2cot arctan ∞<<-∞=+x x arc x π.4.若函数)(x f 在),(b a 内具有二阶导数,且)()()(321x f x f x f ==,其中12a x x << 3x b <<,证明:在),(31x x 内至少有一点ξ,使得0)(=''ξf .证明:由于)(x f 在],[21x x 上连续,在),(21x x 可导,且)()(21x f x f =,根据罗尔定理知,存在),(211x x ∈ξ, 使0)(1='ξf . 同理存在),(322x x ∈ξ,使0)(2='ξf . 又)(x f '在],[21ξξ上 符合罗尔定理的条件,故有),(31x x ∈ξ,使得0)(=''ξf .5. 证明方程062132=+++x x x 有且仅有一个实根. 证明:设621)(32x x x x f +++=, 则031)2(,01)0(<-=->=f f ,根据零点存在定理至少存在一个)0,2(-∈ξ, 使得0)(=ξf .另一方面,假设有),(,21+∞-∞∈x x ,且21x x <,使0)()(21==x f x f ,根据罗尔定理,存在),(21x x ∈η使0)(='ηf ,即02112=++ηη,这与02112>++ηη矛盾.故方程062132=+++x x x 只有一个实根.6. 设函数)(x f 的导函数)(x f '在],[b a 上连续,且0)(,0)(,0)(<><b f c f a f ,其中c 是介于b a ,之间的一个实数. 证明: 存在),(b a ∈ξ, 使0)(='ξf 成立.证明: 由于)(x f 在],[b a 内可导,从而)(x f 在闭区间],[b a 内连续,在开区间(,)a b 内可导.又因为()0,()0f a f c <>,根据零点存在定理,必存在点1(,)a c ξ∈,使得0)(1=ξf . 同理,存在点2(,)c b ξ∈,使得0)(2=ξf .因此()f x 在[]21,ξξ上满足罗尔定理的条件,故存在),(b a ∈ξ, 使0)(='ξf 成立.7. 设函数)(x f 在]1,0[上连续, 在)1,0(内可导. 试证:至少存在一点(0,1)ξ∈, 使()2[(1)(0)].f f f ξξ'=-证明: 只需令2)(x x g =,利用柯西中值定理即可证明.8.证明下列不等式 (1)当π<<x 0时,x xx cos sin >. 证明: 设t t t t f cos sin )(-=,函数)(t f 在区间],0[x 上满足拉格朗日中值定理的条件,且t t t f sin )(=', 故'()(0)()(0), 0f x f f x x ξξ-=-<<, 即0sin cos sin >=-ξξx x x x (π<<x 0)因此, 当π<<x 0时,x xx cos sin >. (2)当 0>>b a 时,bb a b a a b a -<<-ln . 证明:设x x f ln )(=,则函数在区间[,]b a 上满足拉格朗日中值定理得条件,有'()()()(),f a f b f a b b a ξξ-=-<< 因为'1()f x x=,所以1ln ()a a b b ξ=-,又因为b a ξ<<,所以111a b ξ<<,从而 b b a b a a b a -<<-ln .。

第三章 微分中值定理与导数的应用

第三章 微分中值定理与导数的应用

微分中值定理例3.1 证明方程322x x +=-有且仅有一实根.例3.2 设()f x 在[]0,a 上连续,在()0,a 内可导,且()0f a =,证明:存在一点()0,a ξ∈,使得()()0f f ξξξ'+=. 例3.4 证明当0>x 时,x x xx <+<+)1ln(1.习题3.11.选择题(1)函数()f x =).(A) []0,1 (B) [1,1]- (C) [2,2]- (D)34,55⎡⎤-⎢⎥⎣⎦ (2)下列函数在给定的区间上,满足拉格朗日中值定理条件的是( ) (A)()f x x =[]1,1- (B) ()cos f x x = []1,1-(C)1()f x x=[]1,1- (D)21,0()1,x x f x x x +≤⎧=⎨+>⎩ []1,1-(3)设()f x 连续可导,且()0f x =有5个不等实根,则()0f x '=至少有( )个实根. (A)5 (B) 1 (C)4 (D)3(4)设()f x 在[],a b 连续,在(),a b 内三阶可导,且()0f x =在(),a b 内有5个不等实根,则()0f x '''=至少有( )个实根.(A)0 (B) 1 (C)2 (D)3 2.填空题(1)设()(1)(2)(3)(4)f x x x x x x =----,则()0f x '=有 个实根. (2)对函数xy e =在[]0,1上应用拉格朗日中值定理,得到的ξ= .3.证明方程5321x x x ++=有且仅有一个正实根.4.证明多项式()33f x x x a =-+在[]0,1上至多有一个零点.5.设函数()f x 在闭区间[]0,1上可导,对[]0,1上的任意x 都有0()1f x <<,且对任意()0,1x ∈都有()1f x '≠,证明:在()0,1内有且仅有一个x 使得()f x x =.洛必达法则例3.8 求xx x x x tan tan lim2-→.例3.10 求极限0lim ln x x x +→⋅例3.11 求极限011lim tan x xx →⎛⎫-⎪⎝⎭例3.12 求极限 0lim xx x +→习题3.21.求下列极限 (1)0tan limsin x x x x x→-- (2)2arcsin limsin x x x x x→-(3)011lim ln(1)x x x →⎡⎤-⎢⎥+⎣⎦(4)lim nx x xe →+∞(其中n 是正整数)(5)sin sin limx ax ax a→-- (6)()111155lim0x ax a a x a→-≠-(7)02limsin x xx e exx x-→---(8)011lim sin x xx →⎛⎫-⎪⎝⎭(9)()tan21lim 2xx x π→- (10)()0lim sin xx x +→函数单调性与极值以及曲线凹凸性例3.19讨论22ln y x x =-的单调区间,并求极值例 3.20 设()()()()121,,f x x x x '=-+∈-∞+∞,在1,12⎛⎫⎪⎝⎭内讨论()f x 的单调性和曲线()y f x =凹凸性例3.21设()f x 有二阶连续导数,()0(0)0,lim1x f x f x→'''==,则( )(A ) (0)f 不是)(x f 的极值点,()0,(0)f 也不是曲线()y f x =的拐点;(B ) (0)f 是)(x f 的极值点,()0,(0)f 也是曲线()y f x =的拐点; (C ) ()0,(0)f 是曲线()y f x =的拐点;(D )(0)f 是)(x f 的极小值点.例3.24 当0x >时,证明不等式3sin 6xx x -<.习题3.41.选择题(1)下面说法正确的是( )(A)如果可导函数()f x 在(),a b 内单调增加,那么()0f x '>;(B)如果可导函数()f x 在0x 处有水平切线,那么()f x 在0x 处取得极值; (C)如果可导函数在(),a b 内只有唯一的驻点,那么该驻点一定是极值点; (D)如果可导函数()f x 在0x 处取得极值,那么()0f x '=.(2)函数()f x 在点0x x =处连续且取得极小值,则()f x 在0x 处必有( ). (A)0()0f x '=且0()0f x ''>; (B)0()0f x '=; (C)0()0f x '=或不存在; (D)0()0f x ''>. (4)曲线arctan y x x =的图形( )(A)在(),-∞+∞内是凹的; (B)在(),-∞+∞内是凸的; (C)在(),0-∞内是凸的,在()0,+∞内是凹的; (D)在(),0-∞内是凹的,在()0,+∞内是凸的. (5)函数21x y e +=的单调增区间为( )(A )(),-∞+∞ (B ) [)0,+∞ (C ) [)1,+∞ (D ) (],0-∞(6)设0a <,则当满足条件( )时函数 32()38f x ax ax =++为增函数.(A)2x <-; (B)20x -<<; (C)0x >; (D)2x <-或0x >. (7)设函数()f x 及()g x 都在0x x =处取得极大值,()()()F x f x g x =,则()F x 在0x x = 处( )(A)必取得极小值; (B)必取得极大值;(C)必不取得极值; (D)是否取得极值不能确定. 2.填空题(1) 函数331y x x =-+的单调减区间为 ; 曲线331y x x =-+的凹区间为 . (2)函数32()31f x x x =++在区间[]3,1-上的最小值为 . (3)设()f x 在[]15,x x 上有连续导数,且()f x '则()f x 在()15,x x 内的极小值点为(4)函数3()1f x x ax =-+在点1x =处取极小值,则a = . (5)方程3310x x -+=,有 个实根. 3.确定下列函数的单调区间.(1)223y x x =-+ (2)()cos 02y x x xπ=+≤≤(3)x y x e -=+ (4)y =4.讨论下列函数确定的曲线的凹凸性和拐点. (1)3223124y x x x =+-+ (2)()523539y x x =+-5.证明下列不等式:(1).证明:当1x >时,x e ex >.(2)证明:当01x <<时,22ln 1x x ->. (3)证明:当0x >时,()2ln 12xx x -<+.(4)证明:当02x π<<时,sin cos x x x >.(7)证明:当0x >时,13x≥-.6.求函数()32()11f x x =-+的极值. 7.求函数y x =在闭区间[]5,1-上的最大值和最小值.9.已知32()f x x ax bx =++在1x =处有极小值2-,求a 和b .10.当a 为何值时,函数1()sin sin 33f x a x x =+在3x π=处必有极值,它是极大值还是极小值,并求此极值.13.求内接于半径为R 的球圆柱体的体积的最大值.14.在半径为R 的圆内作一个内接矩形,试将矩形的面积的最大值.15. 设有一块边长为a 的正方形铁皮,现将它的四角剪去边长相等的小正方形后,制作一个无盖盒子,问小正方形边长为多少时盒子的容积最大?.16.抛物线22(0)y px p =>和直线x a =(0)a >的内接矩形(一边在x a =上)的宽E F 为多少时,其面积最大?。

高等数学微分中值定理与导数应用习题

高等数学微分中值定理与导数应用习题

微分中值定理与导数应用一、选择题1. 设函数()sin f x x =在[0,]π上满足罗尔中值定理的条件,则罗尔中值定理的结论中的=ξ【 】 A. π B. 2π C. 3πD. 4π2. 下列函数中在闭区间],1[e 上满足拉格朗日中值定理条件的是【 】A. x lnB.x ln ln C.xln 1 D.)2ln(x -3. 设函数)3)(2)(1()(---=x x x x f ,则方程0)('=x f 有【 】A. 一个实根B. 二个实根C. 三个实根D. 无实根4. 下列命题正确的是【 】A. 若0()0f x '=,则0x 是()f x 的极值点B. 若0x 是()f x 的极值点,则0()0f x '=C. 若0()0f x ''=,则()()00x f x ,是()f x 的拐点D. ()0,3是43()23f x x x =++的拐点5. 若在区间I 上,()0,()0,f x f x '''>≤, 则曲线f (x ) 在I 上【 】A. 单调减少且为凹弧B. 单调减少且为凸弧C. 单调增加且为凹弧D. 单调增加且为凸弧 6. 下列命题正确的是【 】A. 若0()0f x '=,则0x 是()f x 的极值点B. 若0x 是()f x 的极值点,则0()0f x '=C. 若0()0f x ''=,则()()00x f x ,是()f x 的拐点D. ()0,3是43()23f x x x =++的拐点7. 若在区间I 上,()0,()0,f x f x '''<≥, 则曲线f (x ) 在I 上【 】A. 单调减少且为凹弧B. 单调减少且为凸弧C. 单调增加且为凹弧D. 单调增加且为凸弧 8. 下列命题正确的是【 】A. 若0()0f x '=,则0x 是()f x 的极值点B. 若0x 是()f x 的极值点,则0()0f x '=C. 若0()0f x ''=,则()()00x f x ,是()f x 的拐点D. ()0,3是43()23f x x x =++的拐点9. 若在区间I 上,()0,()0,f x f x '''>≥, 则曲线f (x ) 在I 上【 】A. 单调减少且为凹弧B. 单调减少且为凸弧C. 单调增加且为凹弧D. 单调增加且为凸弧 10.函数256, y x x =-+在闭区间 [2,3]上满足罗尔定理,则ξ=【 】A. 0B. 12C. 52D. 2 11.函数22y x x =--在闭区间[1,2]-上满足罗尔定理,则ξ=【 】A. 0B. 12C. 1D. 212.函数y =在闭区间[2,2]-上满足罗尔定理,则ξ=【 】A. 0B. 12C. 1D. 2 13.方程410x x --=至少有一个根的区间是【 】A.(0,1/2)B.(1/2,1)C. (2,3)D.(1,2) 14.函数(1)y x x =+.在闭区间[]1,0-上满足罗尔定理的条件,由罗尔定理确定的=ξ 【 】A. 0B. 12-C. 1D.1215.已知函数()32=+f x x x 在闭区间[0,1]上连续,在开区间(0,1)内可导,则拉格朗日定理成立的ξ是【 】 A.± B. C. D. 13±16.设273+=x y ,那么在区间)3,(-∞和),1(+∞内分别为【 】 A.单调增加,单调增加 B.单调增加,单调减小 C.单调减小,单调增加 D.单调减小,单调减小二、填空题1. 曲线53)(23+-=x x x f 的拐点为_____________.2. 曲线x xe x f 2)(=的凹区间为_____________。

第03章微分中值定理与导数的应用习题详解

第03章微分中值定理与导数的应用习题详解

M 12丿」I 2丿第三章 微分中值定理与导数的应用习题3-11.解:(1)虽然 f(x)在[—1,1]上连续,f(—1) = f(1),且 f(x)在(—1,1)内可导。

可见,f(x)在[_1,1]上满足罗尔中值定理的条件,因此,必存在一点 匕€(-1,1),使得f 牡)=0,即:f(X)=cosx, F(X)=1 — sin X 且对任一 x 乏0,—】,F'(X)H 0, ”■. f (x),F (x)满足柯西 I 2丿中值定理条件。

—12©宀2=0,满足、; (2)虽然f(x)在[—1,1]上连续,f(_1)= f (1),但 f (x)在(—1,1)内 x = 0点不可导。

可 见,f (x)在[ —1,1]上不满足罗尔中值定理的条件,因此未必存在一点 £ £ (_1,1),使得 f 徉)=0. 2.因为函数是一初等函数,易验证满足条件 3 3 .解:令 y = 3arccos x - arccos(3x - 4x 3), y ‘ = 一 23 —12x 2厂工®®3)2,化简得 y'=0,「. y =c ( C 为常数),又 y(0.5)=兀,故当-0.5<x<0.5,有 y(x)=兀。

「兀f f 兀、 4 .证明:显然f(x), F(x)都满足在'|0,二I 上连续,在10,二 内可导L 2」 I 2丿 c oxsn ——x、、2丿F Q-F(O)12丿兀--1 2F( x) -1 sixn_c O 弓-x厂(X )_F(x) ZL"2 /兀 X ,,即 tan I - -- U--1,此时l 4 2丿 2f JI「兀X = 2 I — -arctan l — -1L 4l 2显然萨〔0,-〕,即丿」 I 2丿5.解:因为f(0) = f (1)= f (2) = f (3) =0,又因为f(x)在任一区间内都连续而且可导, 所以f (X)在任一区间 0,1 ], 1,2], [2,3]内满足罗尔中值定理的条件, 所以由罗尔定理,得:3" -(0,1), "^(1,2), ©-(2,3),使得:f 徉1 )= 0 r =) &:◎(=), 30 因为6.证明:设f(x) =0的n+1个相异实根为X o V X 1 <X 2 <H( <X n则由罗尔中值定理知:存在J (i =1,2,川n):X0 <:勺1cj ■<X2 vill <-1^Xn ,使得再由罗尔中值定理至少存在So =1,2,川n-1):上11 C 巴21 V ©2 吒 W ©3 V i 11 < J n d W G n ,使得7.解:反证法,倘若 p(X)=0有两个实根,设为X^X 2,由于多项式函数 p(x)在[X 1,X 2]上连续且可导,故由罗尔中值定理存在一点E€(X I ,X 2),使得P 徉)=0,而这与所设p'(x)=0没有实根相矛盾,命题得证。

同济大学数学系《高等数学》(第7版)(上册)-课后习题详解-第三章 微分中值定理与导数的应用【圣才出

同济大学数学系《高等数学》(第7版)(上册)-课后习题详解-第三章 微分中值定理与导数的应用【圣才出

有且仅有三个实根,它们分别位于区间(1,2),(2,3),(3,4)
3 / 91
圣才电子书

十万种考研考证电子书、题库视频学习平 台
6.证明恒等式: 证:取函数 f(x)=arcsinx+arccosx,x∈[-1,1].因
所以 f(x)≡C.取 x=0,得
.因此
7.若方程 正根 x=x0,证明方程

,所以
(2)取函数
,因为函数 f(t)在[1,x]上连续,在(1,x)内可导,则由
拉格朗日中值定理知,至少存在一点 ξ∈(1,x),使
6 / 91
圣才电子书
十万种考研考证电子书、题库视频学习平



.又 1<ξ<x,所以 eξ>e,因此

ex>x·e.
12.证明方程 x5+x-1=0 只有一个正根. 证:取函数 f(x)=x5+x-1,f(x)在[0,1]上连续,
的正根. 证:取函
有一个 必有一个小于 x0

.f(x)在[0,x0]
上连续,在(0,x0)内可导,且 f(0)=f(x0)=0,由罗尔定理知至少存在一点
ξ∈(0,x0),使
,即方程
正根.
必有一个小于 x0 的
8.若函数 f(x)在(a,b)内具有二阶导数,且 f(x1)=f(x2)=f(x3),其中
4 / 91
圣才电子书
十万种考研考证电子书、题库视频学习平


a<x1<x2<x3<b.证明:在(x1,x3)内至少有一点 ξ,使得

证:根据题意知函数 f(x)在[x1,x2],[x2,x3]上连续,在(x1,x2),(x2,x3)内可导

,所以由罗尔定理知至少存在点 ξ1∈(x1,x2),

第三章 微分中值定理与导数的应用

第三章 微分中值定理与导数的应用

《高等数学》(上)题库 第三章 微分中值定理与导数的应用判断题第一节.微分中值定理1、可导函数的极值点一定是函数的驻点。

( )2、曲线上有水平切线的地方,函数不一定取得极值。

( )3、方程015=-+x x 只有一个正根。

( ) 第二节.洛必达法则4、洛必达法则只能用于计算00,∞∞型未定式。

( ) 5、不是未定式,也可以使用洛必达法则。

( ) 6、洛必达法则的条件不满足时,极限一定不存在。

( ) 第三节.泰勒公式7、在泰勒公式中取00=x 既得麦克劳林公式。

( )8、佩亚诺余项可以用于误差估计。

( )9、泰勒中值定理是拉格朗日定理的推广。

( )10、()nnx n x x x x ο++++=!!21sin 2。

( )第四节.函数的单调性与曲线的凹凸性11、如果在()b a ,内0)(<x f ',那么函数在[]b a ,上单调减少。

( )12、二阶导数为零的点一定是拐点。

( )第五节.函数的极值与最大值最小值13、单调函数一定存在最大值最小值。

( ) 14、0)(0='x f 是函数取得极值的充分条件。

( )第六节.函数图形的描绘15、若()0lim =+∞→x f x ,则0=y 是()x f 的一条水平渐近线。

( ) 16、若()-∞=-→x f x 3lim ,则3-=x 是()x f 的一条铅直渐近线。

( ) 注:难度系数(1-10)依次为3,4,8;3,4,4;2,4,4,4;2,3;2,4;3,3。

填空题第一节.微分中值定理1、如果函数)(x f 在区间I 上的导数恒为零,那么)(x f 在区间I 上是 。

2、设函数)(x f 在0x 处可导,且在0x 处取得极值,那么)(0x f '= 。

第二节.洛必达法则3、如果当a x →时,两个函数)(x f 与)(x F 都趋于零,那么极限)()(lim x F x f ax →可能存在、可能不存在,通常把这种极限叫做 。

微分中值定理与导数的应用习题课(一)

微分中值定理与导数的应用习题课(一)

【例3】设 f ( x)在[0, a]上连续, 在 (0, a)内可导, 且 f (a) 0 . 证明存在一点 (0, a), 使 f ( ) f ( ) 0. 分析 从结论 f ( ) f ( ) 0 看等价于方程 x f ( x) f ( x) 0 有实根,但若利用零点定理,无法验证 f (0) f (a) 0,所以
证明: 设 F ( x) a0 x n a1 x n1 an1 x, 易知多项式函数F ( x)在[0, x0 ] 上连续且可导,由题设
F ( x0 ) 0 F (0).
由罗尔定理,存在 (0, x0 ), 使 F ( ) 0, 即 a0n n1 a1 (n 1) n2 an1 0, 这说明 就是方程 a0nx n1 a1 (n 1) x n2 an1 0 的一个小于 x 0的正根.
2
x 1)
分析 证明函数恒等式,主要是利用拉格朗日定理的推论:
如果函数 f ( x)在区间 I上的导数恒为零,那么 f ( x)在区间 I上是一个常数.
证明:设 f ( x) arcsin x arccos x,(1 x 1)
因 f ( x) 1 1 0,(1 x 1) 1 x2 1 x2
试证在(a,
b)内至少存在一点 ,
使 f (b)
f (a)
f ( ) ln b
a
成立.
分析
将所证等式变形为
f (b)
f (a)
f ( ) 或
ln b ln a 1
f (b) f (a) ln b ln a
f ( x)
ln x
,
x
可见,应对 f ( x)与 ln
x 在[a,
b]上应用
ln b ln a 1

(完整版)中值定理与导数的应用导数、微分习题及答案

(完整版)中值定理与导数的应用导数、微分习题及答案

第三章 中值定理与导数的应用(A)1.在下列四个函数中,在[]1,1-上满足罗尔定理条件的函数是( ) A .18+=x y B .142+=x y C .21xy = D .x y sin = 2.函数()xx f 1=满足拉格朗日中值定理条件的区间是 ( ) A .[]2,2- B . []0,2- C .[]2,1 D .[]1,0 3.方程0155=+-x x 在()1,1-内根的个数是 ( ) A .没有实根 B .有且仅有一个实根 C .有两个相异的实根 D .有五个实根 4.若对任意()b a x ,∈,有()()x g x f '=',则 ( ) A .对任意()b a x ,∈,有()()x g x f = B .存在()b a x ,0∈,使()()00x g x f =C .对任意()b a x ,∈,有()()0C x g x f +=(0C 是某个常数)D .对任意()b a x ,∈,有()()C x g x f +=(C 是任意常数) 5.函数()3553x x x f -=在R 上有 ( )A .四个极值点;B .三个极值点C .二个极值点D . 一个极值点 6.函数()7186223+--=x x x x f 的极大值是 ( ) A .17 B .11 C .10 D .97.设()x f 在闭区间[]1,1-上连续,在开区间()1,1-上可导,且()M x f ≤',()00=f ,则必有 ( )A .()M x f ≥B .()M x f >C .()M x f ≤D .()M x f < 8.若函数()x f 在[]b a ,上连续,在()b a ,可导,则 ( ) A .存在()1,0∈θ,有()()()()()a b a b f a f b f --'=-θ B .存在()1,0∈θ,有()()()()()a b a b a f b f a f --+'=-θC .存在()b a ,∈θ,有()()()()b a f b f a f -'=-θD .存在()b a ,∈θ,有()()()()b a f a f b f -'=-θ9.若032<-b a ,则方程()023=+++=c bx ax x x f ( )A .无实根B .有唯一的实根C .有三个实根D .有重实根10.求极限xx x x sin 1sinlim20→时,下列各种解法正确的是 ( )A .用洛必塔法则后,求得极限为0B .因为xx 1lim0→不存在,所以上述极限不存在 C .原式01sin sin lim 0=⋅=→x x x x xD .因为不能用洛必塔法则,故极限不存在 11.设函数212x xy +=,在 ( ) A .()+∞∞-,单调增加 B .()+∞∞-,单调减少 C .()1,1-单调增加,其余区间单调减少 D .()1,1-单调减少,其余区间单调增加12.曲线xe y x+=1 ( )A .有一个拐点B .有二个拐点C .有三个拐点D . 无拐点 13.指出曲线23x xy -=的渐近线 ( ) A .没有水平渐近线,也没有斜渐近线 B .3=x 为其垂直渐近线,但无水平渐近线 C .即有垂直渐近线,又有水平渐近线 D . 只有水平渐近线14.函数()()312321--=x x x f 在区间()2,0上最小值为 ( )A .4729B .0C .1D .无最小值 15.求()201ln lim x x x x +-→16.求()⎪⎪⎭⎫⎝⎛-+→x x x 11ln 1lim 0 17.求x xx 3cos sin 21lim6-→π18.求()xx x1201lim +→19.求xx arctgx ln 12lim ⎪⎭⎫⎝⎛-+∞→π20.求函数149323+--=x x x y 的单调区间。

《高等数学一》第四章-微分中值定理和导数的应用-课后习题汇总(含答案解析)

《高等数学一》第四章-微分中值定理和导数的应用-课后习题汇总(含答案解析)

第四章微分中值定理和导数的应用[单选题]1、曲线的渐近线为()。

A、仅有铅直渐近线B、仅有水平渐近线C、既有水平渐近线又有铅直渐近线D、无渐近线【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】本题考察渐近线计算.因为,所以y存在水平渐近线,且无铅直渐近线。

[单选题]2、在区间[0,2]上使罗尔定理成立有中值为ξ为()A、4B、2C、3D、1【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】,罗尔定理是满足等式f′(ξ)=0,从而2ξ-2=0,ξ=1. [单选题]3、,则待定型的类型是().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】由于当x趋于1时,lnx趋于0,ln(1-x)趋于无穷,所以是型. [单选题]4、下列极限不能使用洛必达法则的是().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】由于当x趋于无穷时,cosx的极限不存在,所以不能用洛必达法则.[单选题]5、在区间[1,e]上使拉格朗日定理成立的中值为ξ=().A、1B、2C、eD、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】本题考察中值定理的应用。

[单选题]6、如果在内,且在连续,则在上().A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】在内,说明为单调递增函数,由于在连续,所以在上f(a)<f(x)<f(b).[单选题]7、的单调增加区间是().A、(0,+∞)B、(-1,+∞)C、(-∞,+∞)D、(1,+∞)【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】,若求单调增加区间就是求的区间,也就是2x-2>0,从而x>1. [单选题]8、().A、-1B、0C、1D、∞【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】[单选题]9、设,则().A、是的最大值或最小值B、是的极值C、不是的极值D、可能是的极值【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】由,我们不能判断f(0)是极值点,所以选D. [单选题]10、的凹区间是().A、(0,+∞)B、(-1,+∞)C、(-∞,+∞)D、(1,+∞)【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】若求凹区间则就是求的区间,即6x+6>0,即x>-1.[单选题]11、的水平渐近线是().A、x=1,x=-2B、x=-1C、y=2D、y=-1【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】水平渐近线就是当x趋于无穷时,y的值就是水平渐近线,x趋于无穷时,y的值是2,所以y=2是水平渐近线;当y趋于无穷时,x的值就是垂直渐近线,本题中由于分母可以分解为(x+1)(x-1),所以当x趋于1或-1时y的值趋于无穷.即x=1,x=-1都是垂直渐近线.[单选题]12、设某商品的需求量Q对价格P的函数关系为,则P=4时的边际需求为().A、-8B、7C、8D、-7【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】,当P=4时,Q=-8.[单选题]13、设某商品的需求函数为,其中表示商品的价格,Q为需求量,a,b为正常数,则需求量对价格的弹性().A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】由弹性定义可知,[单选题]14、设函数在a处可导,,则().A、B、5C、2D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】因为f(x)可导,可用洛必达法则,用导数定义计算.所以[单选题]15、已知函数(其中a为常数)在点处取得极值,则a=().A、1B、2C、0D、3【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】在点处取得极值,[单选题]16、某商店每周购进一批商品,进价为6元/件,若零售价定位10元/件,可售出120件;当售价降低0.5元/件时,销量增加20件,问售价p定为多少时利润最大?().A、9.5B、9C、8.5D、7【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】设销量为Q,则Q=120+20(10-P)·2=520-40P利润此时即取得最大值.[单选题]17、若在(a,b)上,则函数y=f(x)在区间(a,b)上是()A、增加且凹的B、减少且凹的C、增加且凸的D、减少且凸的【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】[单选题]18、求极限=().A、2B、C、0D、1【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】[单选题]19、函数在区间上的极大值点=().A、0B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】令,当时,当时,当时,函数有极大值.[单选题]20、设某商品的供给函数为,其中p为商品价格,S为供给量,a,b为正常数,则该商品的供给价格弹性().A、B、C、D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】[单选题]21、某产品产量为q时总成本C(q)=1100+,则q=1200时的边际成本为() A、0B、C、1D、2【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】,q=1200时的边际成本为2.[单选题]22、已知函数f(x)=ax2-4x+1在x=2处取得极值,则常数a=()A、0B、1C、2D、3【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】,得到a=1.[单选题]23、极限=()A、-B、0C、D、1【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】首先利用洛必达法则,分子分母分别求导,.[单选题]24、曲线y=x3的拐点为().A、(0,0)B、(0,1)C、(1,0)D、(1,1)【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】y"=6x,当y"=0时,x=0,将x=0代入原函数得y=0,所以选择A.参见教材P108~109.(2015年4月真题)[单选题]25、曲线的水平渐近线为().A、y=0B、y=1C、y=2D、y=3【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题因为,所以直线y=1为曲线的水平渐近线.参见教材P110~111.(2015年4月真题)[单选题]26、函数y=x3-3x+5的单调减少区间为().A、(-∞,-1)B、(-1,1)C、(1,+∞)D、(-∞,+∞)【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】y'=3x2-3y'=0时,x=±1.在(-∞,-1)上,y'>0,为增函数;在(-1,1)上,y'<0,为减函数;在(1,+∞)上,y'>0,为增函数.因此选B.参见教材P100~101.(2015年4月真题)[单选题]27、已知函数(其中a为常数)在处取得极值,则a=().A、0B、1C、2D、3【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】∵在处,取得极值点,∴参见教材P102~104。

第三章 微分中值定理和导数的应用习题66道

第三章 微分中值定理和导数的应用习题66道

第三章 微分中值定理和导数的应用3.1 验证罗尔定理对函数21x y -=在区间]1,1[-上的正确性。

3.2 验证罗尔定理对函数x y sin ln =在区间⎥⎦⎤⎢⎣⎡65,6ππ上的正确性。

3.3 不用求函数)4)(3)(2)(1()(----=x x x x x f 的导数,说明0)(/=x f 有几个实根,并指出它们所在的区间。

3.4 试证明对函数r qx px y ++=2应用拉格朗日中值定理时所求得的点ξ总是位于区间的正中间。

3.5 验证担格朗日定理对于函数x x f arctan )(=在区间[0,1]上的正确性。

3.6 对函数3)(x x f =及1)(2+=x x g 在区间[1,2]上验证柯西中值定理的正确性。

3.7 对函数x x f sin )(=,x x g cos )(=在区间⎥⎦⎤⎢⎣⎡2,0π验证柯西中值定理的正确性。

3.8 对函数2)(x x f =,x x g =)(在区间[1,4]上验证柯西中值定理的正确性。

3.9 试证当⎪⎭⎫ ⎝⎛-∈2,2ππx 时,|tan |||x x ≤(等号只有在0=x 时成立)。

3.10 证明下列不等式:(1)b a b a -≤-arctan arctan ;(2)y x y x -≤-sin sin ;(3))()(11y x nx y x y x ny n n n n -<-<--- (y x n >>,1);(4)如果20παβ<≤<,试证:αβαβαββα22cos tan tan cos -≤-≤-; (5)设0>n ,试证:1111arctan 1arctan 1)1(122+<+-<++n n n n 。

3.11 试证:21arctan arcsin xx x -= (11<<-x )。

3.12 若k x f =)(/,k 为常数,试证:b kx x f +=)(。

高等数学第三章微分中值定理与导数的应用试题库(附带答案)

高等数学第三章微分中值定理与导数的应用试题库(附带答案)

>第三章 微分中值定理与导数的应用一、选择题1、则,且存在,,设 ,1)x (f )x (f )x (f 0)x (f 0)x (f 00000-=+''''='>( )是否为极值点不能断定的极值点 不是 的极小值点是的极大值点 是0000x )D ()x (f x )C ( )x (f x )B ()x (f x )A (2、处必有在则处连续且取得极大值,在点函数 x )x (f x x )x (f y 00==( )0)x (f )B ( 0)x ('f )A (00<''= 或不存在 且 0)x (f )D (0)x (f 0)x (f )C (0'00=<''=3、的凸区间是 x e y x -=( )) , 2( (D) ) , (2 (C) 2) , ( (B) 2) , ( (A)∞+-∞+--∞-∞,4、在区间 [-1,1] 上满足罗尔定理条件的函数是 ( )(A)xx sin )x (f = (B)2)1x ()x (f += (C) 3 2x )x (f = (D)1x )x (f 2+=5、设f (x) 和g (x) 都在x=a 处取得极大值,F (x)=f (x)g (x),则F(x)在x=a 处( ) (A) 必取得极大值 (B)必取得极小值 (C)不取极值 (D)不能确定是否取得极值6、满足罗尔定理的区间是使函数 )x 1(x y 322-=( )(A) [-1,1] (B) [0,1] (C) [-2,2] (D) ]5 4, 5 3[- 7、x 2 e x y -=的凹区间是( )(A))2,(-∞ (B) )2,(--∞ (C) ) 1(∞+, (D) ) 1(∞+-,&8、函数)x (f 在0x x = 处连续,若0x 为)x (f 的极值点,则必有( ) .(A)0)(0='x f (B)0)(0≠'x f (C)0)(0='x f 或)(0x f '不存在 (D))(0x f '不存在 9、当a= ( ) 时,处取到极值在 3x 3sin3x asinx f(x)π=+=( ) (A) 1 (B) 2 (C)3 π(D) 010、间是适合罗尔定理条件的区使函数 )x 1(x )x (f 322-=( )]5 4, 5 3[)D ( ]2,2[)C ( ]1,1[)B ( ]1,0[)A (--- 11、(),则上的凹弧与凸弧分界点为连续曲线,若 )x (f y )x (f x 00=( )的极值必定不是的极值点为必定为曲线的驻点, 必为曲线的拐点, )x (f x )D ( )x (f x )C ( ))x (f x ( )B ( ))x (f x ( )A (000000、二、填空题 1、__________________e y82x的凸区间是曲线-=.2、______________ 2 x y x 的极小值点是函数=.3、的凸区间为曲线x 3 e y x+=_____________________ . 4、函数f (x )=x x 3-在[0,3]上满足罗尔定理的条件,由罗尔定理确定的罗尔中值点ξ= . 5、设曲线y =a 23bx x +以点(1,3)为拐点,则数组(a ,b )= . 6、函数1x 3x y 3+-=在区间 [-2,0] 上的最大值为 ,最小值为 . 7、函数 x sin ln y =在 [65, 6 ππ] 上的罗尔中值点ξ= . …8、1 x y +=在区间 [ 1,3 ] 的拉格朗日中值点ξ = _______________. 9、______________ 2 x y x 的极小值点是函数=. 10、______________ 2x y x 的极小值点是函数⋅=。

高数(1)第四章微分中值定理和导数的应用

高数(1)第四章微分中值定理和导数的应用

第四章微分中值定理和导数的应用【字体:大中小】【打印】4.1 微分中值定理费马引理:设函数y=f(x)在点的一个邻域上有定义,并在可导,如果(或)则一、罗尔(Rolle)定理1.罗尔(Rolle)定理如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且在区间端点的函数值相等,即f(a)=f(b),那么在(a,b)内至少有一点,使得函数f(x)在该点的导数等于零,即。

2.几何解释:在曲线弧AB上至少有一点C,在该点处的切线是水平的。

例1.判断函数,在[-1,3]上是否满足罗尔定理条件,若满足,求出它的驻点。

【答疑编号11040101:针对该题提问】解满足在[-1,3]上连续,在(-1,3)上可导,且f(-1)=f(3)=0,∵,取例2.设f(x)=(x+1)(x-2)(x-3)(x-5),判断有几个实根,并指出这些根所在的区间。

【答疑编号11040102:针对该题提问】二、拉格朗日(Lagrange)中值定理1.拉格朗日(Lagrange)中值定理如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么在(a,b)内至少有一点,使等式成立。

注意:与罗尔定理相比条件中去掉了f(a)=f(b)结论亦可写成。

2.几何解释:在曲线弧AB上至少有一点C,在该点处的切线平行于弦AB。

拉格朗日中值定理又称微分中值定理例3(教材162页习题4.1,3题(2)题)、判断f(x)=sinx在上是否满足拉格朗日中值定理。

【答疑编号11040103:针对该题提问】推论1 如果函数f(x)在区间I上的导数恒为零,那么f(x)在区间I上是一个常数。

例4(教材162页习题4.1,4题)、证明【答疑编号11040104:针对该题提问】证设又,即,推论2 假设在区间I上两个函数f(x)和g(x)的导数处处相等,则f(x)与g(x)至多相差一个常数。

4.2 洛必达法则一、型及型未定式解法:洛必达法则1、定义如果当x→a(或x→∞)时,两个函数f(x)与F(x)都趋于零或都趋于无穷大,那么极限称为或型未定式。

《高等数学》第三章-微分中值定理与导数的应用的习题库(201511)

《高等数学》第三章-微分中值定理与导数的应用的习题库(201511)

第三章 微分中值定理与导数的应用一、判断题1. 若()f x 定义在[,]a b 上,在(a,b)内可导,则必存在(a,b)ξ∈使'()0f ξ=。

( )2. 若()f x 在[,]a b 上连续且()()f a f b =,则必存在(a,b)ξ∈使'()0f ξ=。

( )3. 若函数()f x 在[,]a b 内可导且lim ()lim ()x a x b f x f x →+→-=,则必存在(a,b)ξ∈使'()0f ξ=。

( ) 4. 若()f x 在[,]a b 内可导,则必存在(a,b)ξ∈,使'()(a)()()f b f f b a ξ-=-。

( ) 5. 因为函数()f x x =在[1,1]-上连续,且(1)(1)f f -=,所以至少存在一点()1,1ξ∈-使'()0f ξ=。

( ) 6. 若对任意(,)x a b ∈,都有'()0f x =,则在(,)a b 内()f x 恒为常数。

( ) 7. 若对任意(,)x a b ∈,都有''()()f x g x =,则在(,)a b 内()()f x g x =。

( ) 8. arcsin arccos ,[1,1]2x x x π+=∈-。

( ) 9. arctan arctan ,(,)2x x x π+=∈-∞+∞。

( ) 10. 若()(1)(2)(3)f x x x x x =---,则导函数'()f x 有3个不同的实根。

( ) 11. 若22()(1)(4)f x x x =--,则导函数'()f x 有3个不同的实根。

( ) 12. ''222(2)lim lim21(21)x x x x x x →→=--( )13. 22'0011limlim()sin sin x x x x e e x x→→--= ( ) 14. 若'()0f x >则()0f x >。

高等教育自学考试高等数学(一)第 四 章 微分中值定理和导数的应用

高等教育自学考试高等数学(一)第 四 章 微分中值定理和导数的应用

第四章微分中值定理和导数的应用一、考核要求Ⅰ 知道罗尔定理成立的条件和结论,知道拉格朗日中值定理成立的条件和结论。

Ⅱ 能识别各种类型的未定式,并会用洛必达法则求它们的极限。

Ⅲ 会判别函数的单调性,会用单调性求函数的单调区间,并会利用函数的单调性证明简单的不等式。

Ⅳ 会求函数的极值。

Ⅴ 会求出数在闭区间上的最值,并会求简单应用问题的最值。

Ⅵ 会判断曲线的凹凸性,会求曲线的凹凸区间和拐点。

Ⅶ 会求曲线的水平渐近线和垂直渐近线。

二、基本概念、主要定理和公式、典型例题Ⅰ 微分中值定理今后,如果函数f(x)在某一点x0处的导数值=0,就说这一点是驻点,因此罗尔中值定理的结论也可以说f(x)在(a,b)内至少有一个驻点。

从y=f(x)的几何图形(见下图)可以看出,若y=f(x)满足罗尔中值的条件,则它在(a,b)内至少有一点,其切线是水平的,根据导数的几何意义知道,该点的斜率=k=0。

从函数y= f(x)的图形看(见下图),连接y= f(x)在[a,b]上的图形的端点A与B,则线段AB的斜率为:将AB平行移动至某处,当AB的平行线与曲线y=f(x)相切时,若切点为x=c,则根据导数的几何意义知:或写作故从几何图形看,拉格朗日定理是成立的。

典型例题例一:(单选)下列函数在相应区间上满足罗尔中值定理的条件的函数是()① ,[-1,1];② ,[-1,1];③ ,[1, 2];④ ,[-1,1]。

解:①在[-1,1]上处处有意义,没有无意义的点,因为他没有分母,所以在b区间[-1,1]上处处连续满足第一个条件。

又f(-1)=1,f(1)=1,所以在端点上函数值相等,满足第三个条件因此这函数在开间内不是处处可导,只少在0这一点不可导的,因此不满足第二个条件。

② 在x=o处不可导,∴也不满足第二个条件。

③ f(1)=1,f(2)=4,∴在[1,2]上满足第三个条件。

④ ,处处可导且处处连续,f(-1)=1, f(1)=1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 微分中值定理与导数的应用一、选择题1、则,且存在,,设 ,1)x (f )x (f )x (f 0)x (f 0)x (f 00000-=+''''='>( )是否为极值点不能断定的极值点 不是 的极小值点是的极大值点 是0000x )D ()x (f x )C ( )x (f x )B ()x (f x )A (2、处必有在则处连续且取得极大值,在点函数 x )x (f x x )x (f y 00==( )0)x (f )B ( 0)x ('f )A (00<''= 或不存在 且 0)x (f )D (0)x (f 0)x (f )C (0'00=<''=3、的凸区间是 x e y x -=( )) , 2( (D) ) , (2 (C) 2) , ( (B) 2) , ( (A)∞+-∞+--∞-∞4、在区间 [-1,1] 上满足罗尔定理条件的函数是 ( )(A)x x sin )x (f = (B)2)1x ()x (f += (C) 3 2x )x (f = (D)1x )x (f 2+=5、设f (x) 和g (x) 都在x=a 处取得极大值,F (x)=f (x)g (x),则F(x)在x=a 处( ) (A) 必取得极大值 (B)必取得极小值 (C)不取极值 (D)不能确定是否取得极值6、满足罗尔定理的区间是使函数 )x 1(x y 322-=( )(A) [-1,1] (B) [0,1] (C) [-2,2] (D) ]5 4, 5 3[- 7、x 2 e x y -=的凹区间是( )(A))2,(-∞ (B) )2,(--∞ (C) ) 1(∞+, (D) ) 1(∞+-,8、函数)x (f 在0x x = 处连续,若0x 为)x (f 的极值点,则必有( ) . (A)0)(0='x f (B)0)(0≠'x f (C)0)(0='x f 或)(0x f '不存在 (D))(0x f '不存在 9、当a= ( ) 时,处取到极值在 3x 3sin3x asinx f(x)π=+=( ) (A) 1 (B) 2 (C)3 π(D) 010、间是适合罗尔定理条件的区使函数 )x 1(x )x (f 322-=( )]5 4, 5 3[)D ( ]2,2[)C ( ]1,1[)B ( ]1,0[)A (--- 11、(),则上的凹弧与凸弧分界点为连续曲线,若 )x (f y )x (f x 00=( )的极值必定不是的极值点为必定为曲线的驻点, 必为曲线的拐点, )x (f x )D ( )x (f x )C ( ))x (f x ( )B ( ))x (f x ( )A (000000二、填空题 1、__________________ey 82x的凸区间是曲线-=.2、______________ 2 x y x 的极小值点是函数=.3、的凸区间为曲线x 3 e y x+=_____________________ .4、函数f (x )=x x 3-在[0,3]上满足罗尔定理的条件,由罗尔定理确定的罗尔中值点ξ= .5、设曲线y =a 23bx x +以点(1,3)为拐点,则数组(a ,b )= .6、函数1x 3x y 3+-=在区间 [-2,0] 上的最大值为 ,最小值为 .7、函数 x sin ln y =在 [65, 6 ππ] 上的罗尔中值点ξ= . 8、1 x y +=在区间 [ 1,3 ] 的拉格朗日中值点ξ = _______________. 9、______________ 2 x y x 的极小值点是函数=. 10、______________ 2x y x 的极小值点是函数⋅=。

11、y =x + x 1 - ,-51x ≤≤ 的最小值为 . 12、x x y -= 的单调减区间是 . 13、x arctan x y -= 在且仅在区间______________上单调増. 14、函数f(x)=x +2cosx 在区间 [ 0 ,2 π] 上的最大值为 . 15、函数y =3x 4x x 223+-+ 的单调减少区间是 .16、已知点(1,3)是曲线 23bx ax y += 的拐点,则a= ,b= . 17、的单调递减区间为 e e 2)x (f x x -+= . 三、计算题1、的极值和单调区间求函数 4x 9x 6x y 23-+-=。

2、求极限 )1x xx ln 1(lim 1x --→. 3、求函数y =23x 4x x 23+-+的单调区间、凹凸区间、拐点. 4、设常数0k >,试判别函数()ln xf x x k e=-+在()0,+∞内零点的个数. 5、求函数 10x 6x 23x y 23+--= 的单调区间和极值.。

6.)1 - e 1x 1(lim x 0x -→. 7.[]上的最大值与最小值在求函数 1 , 1 x 45 y --=. 8.求曲线xxy ln =的单调区间和凹凸区间.. 9. 求曲线34223+-+=x x x y 的单调区间和凹凸区间. 10.求函数 x x e y -= 图形的凹凸区间及拐点.11、的拐点求曲线 3{ 32tt y t x +==. 12、求函数 4x 9x 6x y 23-+-= 的单调区间、极值、凹凸区间和拐点.13、[]上的最大值、最小值,在求函数 41 27x 18x 6x 2y 23+--=. 14、的单调性和凹凸性讨论函数 )x (1ln f(x ) 2+= 15、讨论函数xx ln )x (f =的单调性和凹凸性.16、 求曲线 )1ln(2x y +=的凹凸区间和拐点.17. 求函数2824+-=x x y 在区间]3,1[-上的最大值与最小值. 18. 求函数 133+-=x xy 在区间 [-2,0]上的最大值和最小值.19. 试确定常数a 、b 、c 的值,使曲线 c bx ax x y 23+++= 在x= 2处取到极值,且与直线 3x 3y +-= 相切于点(1 ,0).四. 综合题(第1-2题每题6分,第3题8分,总计20分)1.证明:当x )2,0(π∈时,(sin )(cos )x x x > .2、 x 1 ) x 1 x ( ln x 1 0x 22+>+++>时,当.3、证明: 2cot arctan π=+x arc x .4、设 )x ( ϕ 在 [0,1] 上可导,f(x)=(x -1))x ( ϕ,求证:存在x 0∈(0,1),使)0( )x ( f 0ϕ=’. 5、 试用拉格朗日中值定理证明:当 0b a >> 时,bba b a ln a b a -<<- . 6、 证明:当0>x 时,xxx +>+1arctan )1ln(.7、 x )x 1ln(x1 x, 0 x <+<+>时证明:当. 8、证明:当x>0时,有 1+x 1 x2 1+> . 9、证明当x sin 6x x 0x 3≤-≥时,.10、 证明:若 0 x >,则x1 x)x 1 (n l +>+ . 11、)1ln(21 2x x x x +<->时,证明:当 12、证明:多项式13)(3+-=x x x f 在 [ 0,1 ] 内不可能有两个零点.13、证明当x 13 x 2 1x ->>时,. 14、x cos x sin x 2x 0 >π<<时证明:当答案: 一、选择1、A2、D3、A4、D5、D6、B7、A8、C9、B 10、A 11、A 二、填空 1、[2,2]- 2、1ln 2x =-3、()(),33,2-∞-⋃--4、25、39,22⎛⎫- ⎪⎝⎭6、2,17、2π8、1 9、1ln 2-10、1ln 2-11、5- 12、1x 4< 13、-14 14、36+π15、)上单调递减,在(321-16、29,23-17、)2ln 21-∞-,( 三、计算题1、解:令231293(3)(1)0,y x x x x '=-+=--=可得驻点:121,3x x == ……2分 列表可得函数的单调递增区间为(,1)(3,)-∞+∞U ,单调递减区间为(1,3) ……5分 极大值为1|0,x y ==极小值3|4x y ==- ……7分2、解:原式 =1111ln ln ln 1limlim lim 1(1)ln ln 12ln 1x x x x x x x x x x x x x x x→→→----===--+-+-……6分3、解:令26242(32)(1)0,y x x x x '=+-=-+=可得驻点:1221,3x x =-= ……2分 列表可得函数的单调递增区间为2(,1)(,)3-∞-+∞U ,单调递减区间为2(1,)3- ……4分又令1220y x ''=+=得316x =-. ……5分*所以凸区间为1(,)6-∞-,凹区间为1(,)6-+∞.拐点为119(,3)627-. ……7分4、解: 11()f x x e'=- ……1分当(0,)x e ∈时,()0f x '>,所以()f x 在[0,]e 上单调增加; ……2分 又()0f e k =>,x 充分接近于0时, ()0f e <, ……3分 故()f x 在(0,)e 内有且仅有一个零点. ……4分 同理, ()f x 在(,)e +∞内也有且仅有一个零点. ……6分5、解:解23363(2)(1)0,y x x x x '=--=-+=可得驻点:121,2x x =-= ……2分 列表可得函数的单调递增区间为(,1)(2,)-∞-+∞U ,单调递减区间为(1,2)- ……5分 极大值为127|,2x y =-=极小值2|0x y == ……7分6、解: 原式=01lim x x x e x xe x →--- ……2分=01lim 1x x x x e xe e →-+- ……4分=01lim 22x x x x e xe e →=+ ……6分7、解 : 当x 单调增加时,函数()54g x x =-单调减少,所以函数()y x = ……2分在区间[1,1]-函数()y x =所以当1x =-时,函数取得最大值max 3y y ==; ……4分 所以当1x =时,函数取得最小值min 1y y ==。

相关文档
最新文档