九年级数学全册解题技巧专题圆中辅助线的作法练习
湘教版九年级数学下册解题技巧专题:圆中辅助线的作法
![湘教版九年级数学下册解题技巧专题:圆中辅助线的作法](https://img.taocdn.com/s3/m/415cd459a45177232f60a2ad.png)
解题技巧专题:圆中辅助线的作法——形成精准思维模式,快速解题◆类型一 遇弦过圆心作弦的垂线或连半径1.如图,以点O 为圆心的两个圆中,大圆的弦AB 切小圆于点C ,OA 交小圆于点D ,若OD =2,tan ∠OAB =12,则AB 的长是( ) A .4 B .23 C .8 D .43第1题图 第2题图2.如图,已知⊙O 的半径OD 与弦AB 互相垂直,垂足为点C ,若AB =16cm ,CD =6cm ,⊙O 的半径为________.◆类型二 遇直径添加直径所对的圆周角3.如图,AB 是⊙O 的直径,C ,D ,E 都是⊙O 上的点,则∠ACE +∠BDE 等于( )A .60°B .75°C .90°D .120°第3题图 第4题图4.如图,⊙O 是△ABC 的外接圆,CD 是直径,∠B =40°,则∠ACD 的度数是________.5.如图,△ABC 的顶点均在⊙O 上,AD 为⊙O 的直径,AE ⊥BC 于E.求证:∠BAD =∠EAC.◆类型三 遇切线连接圆心和切点6.已知⊙O 的半径为1,圆心O 到直线l 的距离为2,过l 上任一点A 作⊙O 的切线,切点为B ,则线段AB 长度的最小值为( )A .1B . 2C . 3D .27.如图,从⊙O 外一点A 引圆的切线AB ,切点为B ,连接AO 并延长交圆于点C ,连接BC.若∠A =26°,则∠ACB 的度数为________.8.★如图,AB 为⊙O 的直径,直线CD 切⊙O 于点D ,AM ⊥CD 于点M ,BN ⊥CD 于N.(1)求证:∠ADC =∠ABD ;(2)求证:AD 2=AM·AB ;(3)若AM =185,sin ∠ABD =35,求线段BN 的长.参考答案与解析1.C 2.253cm 3.C 4.50° 5.证明:连接BD .∵AD 是⊙O 的直径,∴∠ABD =90°,∴∠BAD +∠D =90°.∵AE 是△ABC 的高,∴∠AEC =90°,∴∠EAC +∠ACB =90°.∵∠D =∠ACB ,∴∠BAD =∠EAC .6.C 7.32°8.(1)证明:连接OD .∵CD 是⊙O 的切线,∴∠ADC +∠ADO =90°.又∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ADO +∠ODB =90°,∴∠ADC =∠ODB .又∵OD =OB ,∴∠ODB =∠ABD ,∴∠ADC =∠ABD .(2)证明:由(1)得∠ADC =∠ABD ,∠ADB =90°.又∵AM ⊥MN ,∴∠AMN =∠ADB =90°,∴△ADM ∽△ABD ,∴AD AB =AM AD,∴AD 2=AM ·AB . (3)解:由(1)知∠ADC =∠ABD ,∴sin ∠ADC =sin ∠ABD =35,∴AM AD =35.又∵AM =185,∴AD =6,∴AB =AD sin ∠ABD=10.在Rt △ABD 中,由勾股定理得BD =AB 2-AD 2=8.∵∠BND =∠BDA =90°,∴∠BDN +∠MDA =90°,∠BAD +∠ABD =90°,∴∠BDN =∠BAD ,∴△DBN ∽△ABD ,∴BN BD =DB AB ,∴BN =BD 2AB =325.。
人教版数学九上第24章圆——例谈圆中常见作辅助线的方法(word版,含精品例题解析)
![人教版数学九上第24章圆——例谈圆中常见作辅助线的方法(word版,含精品例题解析)](https://img.taocdn.com/s3/m/ffea3c2c0b4c2e3f5627630a.png)
例谈圆中常见作辅助线的方法圆是初中几何部分的重要内容之一,与圆有关的大部分几何题型都需要添加辅助线来解决。
只要添上合适的辅助线,不仅会使问题迎刃而解,而且还会有效地培养学生的解题能力与创造性思维能力。
通过对实践教学中的归纳与总结,发现添加辅助线的方法有很多,本文就圆中常见作辅助线的方法归纳如下:一、作弦心距——在与弦有关的计算或证明题时,常作辅助线的方法是作弦心距例1 如图1,AB 为⊙O的直径,PQ 切⊙O于T ,AC ⊥PQ 于C ,交⊙O于D ,AD=2,TC=3.求⊙O的半径。
解:过点O 作OM ⊥AC 于M ,∴AM=MD=AD/2=1.∵PQ 切⊙O于T ,∴OT ⊥PQ .又∵AC ⊥PQ ,OM ⊥AC , ∴∠OTC=∠ACT=∠OMC=90°, ∴四边形OTCM 为矩形.∴OM=TC=3, ∴在Rt △AOM 中,22312AO OM AM ++.即⊙O的半径为2. 例2 如图2,已知在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C 、D 两点. 求证:AC=BD.证明:过点O 作OE ⊥AB 于E ,则AE=BE ,CE=DE ,∴AE-CE=BE-DE. ∵AC=AE-CE ,BD=BE-DE.∴AC=BD.二、连半径——与半径和弦有关的简单计算、已知圆中有切线的有关计算和证明时,常作辅助线的方法是连半径例3 如图3,⊙O 的直径CD=20cm ,直线l ⊥CO ,垂足为H ,交⊙O 于A 、B 两点,AB=16 cm ,直线l 平移多少厘米时能于⊙O相切? 解:连接OA ,· CD AE BO图2C ·AD图1AB D O M∵l ⊥CO ,∴OC 平分AB ∴AH=8cm.在Rt △AHO 中,OH==-=-2222810AH AO 6cm. ∴CH=4cm ,DH=16 cm.答:直线l 向左平移4cm ,或向右平移16cm 时能于⊙O 相切。
231.九年级新人教版数学上册14.解题技巧专题:圆中辅助线的作法-精品专题
![231.九年级新人教版数学上册14.解题技巧专题:圆中辅助线的作法-精品专题](https://img.taocdn.com/s3/m/08361383ee06eff9aff807a1.png)
解题技巧专题:圆中辅助线的作法——形成思维定式,快速解题◆类型一遇弦加弦心距或半径1.如图,已知⊙O的半径为10,弦AB=12,M是AB上任意一点,则线段OM的长可能是()A.5 B.7 C.9 D.11第1题图第2题图2.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.4 3 B.6 3 C.2 3 D.83.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为________cm.第3题图第4题图4.如图,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是________cm.◆类型二遇直径添加直径所对的圆周角5.(2016·玉林中考)如图,CD是⊙O的直径,已知∠1=30°,则∠2的度数为()A.30°B.45°C.60°D.70°第5题图第6题图6.如图,⊙O是△ABC的外接圆,∠B=60°,AC=8,则⊙O的直径AD的长度为()A.16 B.4 C.833 D.16337.如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若∠B=70°,求DE︵的度数;(3)若BD=2,BE=3,求AC的长.◆类型三遇切线连接圆心和切点8.如图,已知△ABC,AB=BC,以AB为直径的圆交AC于点D,过点D的⊙O的切线交BC于点E.若CD=5,CE=4,则⊙O的半径是()A.3 B.4 C.256 D.258第8题图第9题图9.如图,AB切⊙O于点B,OA=23,∠BAO=60°,弦BC∥OA,则BC︵的长为_________(结果保留π).10.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为_______.答案:初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180 °18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形21 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形22 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形23 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形24 矩形性质定理 1 矩形的四个角都是直角25 矩形性质定理 2 矩形的对角线相等26 矩形判定定理 1 有三个角是直角的四边形是矩形27 矩形判定定理 2 对角线相等的平行四边形是矩形28 菱形性质定理 1 菱形的四条边都相等29 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角30 菱形面积= 对角线乘积的一半,即S= (a×b )÷231 菱形判定定理1 四边都相等的四边形是菱形32 菱形判定定理2 对角线互相垂直的平行四边形是菱形33 正方形性质定理1 正方形的四个角都是直角,四条边都相等34 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角35 定理1 关于中心对称的两个图形是全等的36 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分37 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称38 等腰梯形性质定理等腰梯形在同一底上的两个角相等。
北师大版九年级下册数学解题技巧专题圆中辅助线的作法
![北师大版九年级下册数学解题技巧专题圆中辅助线的作法](https://img.taocdn.com/s3/m/f4cb560dc381e53a580216fc700abb68a982adfa.png)
24.△ABC中,AC=BC,∠ACB=α,点D是平面内不与点A和点B重合 一点,连接DB,将线段DB绕点D顺时针旋转α得到线段DE,连接AE、BE、CD.
(1)如图①,点D与点A在直线BC 两侧,α=60°时, 的值是;直线AE与直线CD相交所成的锐角的度数是度;
(1)求点A,B的坐标;
(2)当CD∥x轴时,求抛物线 函数表达式;
(3)连接BD,当BD最短时,请直接写出抛物线的函数表达式.
8.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线交BC于点M,切点为N,求DM的长.
参考答案与解析
1.B2.10
3.解:连接OA,OC,过点O作OD⊥AC于点D.∵OA=OC,OD⊥AC,∴∠AOD=∠COD= ∠AOC.又∵∠AOC=2∠B,∴∠COD=∠B=60°.在Rt△COD中,OC=4,∠COD=60°,∴CD=OC·sin∠COD=2 ,∴AC=2CD=4 .
A. B. C. D.
7.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为( )
A.(x+1)(x+2)=18B. x2﹣3x+16=0C.(x﹣1)(x﹣2)=18D. x2+3x+16=0
7.115°
8.解:连接OE,OF,ON,OG.∵四边形ABCD是矩形,∴∠A=∠B=90°,CD=AB=4.∵AD,AB,BC分别与⊙O相切于E,F,G三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,OE=OF=OG,∴四边形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2,∴DE=3.∵DM是⊙O的切线,∴DN=DE=3,MN=MG,∴CM=BC-BG-MG=5-2-MN=3-MN.在Rt△DMC中,DM2=CD2+CM2,∴(3+MN)2=42+(3-MN)2,∴MN= ,∴DM=3+ = .
解题技巧专题练习:圆中辅助线的作法
![解题技巧专题练习:圆中辅助线的作法](https://img.taocdn.com/s3/m/dca251ec26fff705cc170ab8.png)
解题技巧专题:圆中辅助线的作法——形成思维模式,快速解题◆类型一 遇弦添加弦心距或半径1.如图,AB 是⊙O 的一条弦,直径CD ⊥AB 于点E.若AB =24,OE =5,则⊙O 的半径为( )A .15B .13C .12D .10第1题图 第2题图2.如图,一个宽为2cm 的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm ),那么该光盘的直径是________cm .3.如图,⊙O 是△ABC 的外接圆,∠B =60°,⊙O 的半径为4,求AC 的长.◆类型二 遇直径添加直径所对的圆周角4.如图,CD 是⊙O 的直径,已知∠1=30°,则∠2的度数为( )A .30°B .45°C .60°D .70°第4题图 第5题图 5.如图,BC 为半圆O 的直径,A ,D 为半圆上两点,AB =3,BC =2,则∠D 的度数为________度.6.如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 交AB 于点D ,交BC 于点E.(1)求证:BE =CE ;(2)若∠B =70°,求DE ︵的度数;(3)若BD =2,BE =3,求AC 的长.◆类型三 遇切线连接圆心和切点7.如图,四边形ABCD 内接于⊙O ,AB 是直径,过C 点的切线与AB 的延长线交于P 点,若∠P =40°,则∠D 的度数为________.8.如图,在矩形ABCD 中,AB =4,AD =5,AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,求DM 的长.参考答案与解析1.B 2.103.解:连接OA ,OC ,过点O 作OD ⊥AC 于点D .∵OA =OC ,OD ⊥AC ,∴∠AOD =∠COD =12∠AOC .又∵∠AOC =2∠B ,∴∠COD =∠B =60°.在Rt △COD 中,OC =4,∠COD =60°,∴CD =OC ·sin ∠COD =23,∴AC =2CD =4 3.4.C 5.1506.(1)证明:连接AE .∵AC 为⊙O 的直径,∴∠AEC =90°,∴AE ⊥BC .∵AB =AC ,∴BE =CE .(2)解:连接OD ,OE .在Rt △ABE 中,∠BAE =90°-∠B =90°-70°=20°,∴∠DOE =2∠DAE =40°,∴DE ︵的度数为40°.(3)解:连接CD .由(1)可知BE =CE ,∴BC =2BE =6.设AB =AC =x ,则AD =AB -BD =x -2.∵AC 为⊙O 的直径,∴∠ADC =90°.在Rt △BCD 中,CD 2=BC 2-BD 2=62-22=32.在Rt △ADC 中,AD 2+CD 2=AC 2,即(x -2)2+32=x 2,解得x =9,即AC 的长为9.7.115°8.解:连接OE ,OF ,ON ,OG .∵四边形ABCD 是矩形,∴∠A =∠B =90°,CD =AB =4.∵AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,∴∠AEO =∠AFO =∠OFB =∠BGO =90°,OE =OF =OG ,∴四边形AFOE ,FBGO 是正方形,∴AF =BF =AE =BG =2,∴DE =3.∵DM 是⊙O 的切线,∴DN =DE =3,MN =MG ,∴CM =BC -BG -MG =5-2-MN=3-MN .在Rt △DMC 中,DM 2=CD 2+CM 2,∴(3+MN )2=42+(3-MN )2,∴MN =43,∴DM =3+43=133.。
人教版数学九年级上册圆中构造辅助线巧解题
![人教版数学九年级上册圆中构造辅助线巧解题](https://img.taocdn.com/s3/m/b8451b9fb9f3f90f76c61b8a.png)
人教版数学九年级上册圆中构造辅助线巧解题 添加辅助线是数学解题有效方法之一.为了印证辅助线的有效性,决定走进圆,做一次辅助线用法大全专访.让我们到圆中看看是如何添加辅助线解题的吧!第一篇:连接篇1.垂直弦,半径连,构造半径为斜边的直角三角形例1 如图1,⊙O 的直径AB 垂直于弦CD ,垂足P 是OB 的中点,CD =6 cm ,求直径AB 的长.分析: 要想求出圆的直径,只要求得圆的半径即可.在求半径时要注意垂径定理的应 用.最终解决问题的根据地是一个半径为斜边,弦的一半为直角边,圆心到弦的距离为直角边的直角三角形.解:连接OC ,因为直径AB 垂直于弦CD ,垂足P ,CD =6,所以∠OPC=90°,PD=PC=21CD=3.因为垂足P 是OB 的中点,所以OC=OB=2OP .所以∠C=30°, 所以cosC=OC PC ,cos30°=OC 3,所以OC=23,所以直径AB=2OC=43( cm) . 点评: 在应用垂径定理时,要注意活用锐角三角函数,使得解题简洁流畅.2.遇直径,把弦连,构造直径上的圆周角例2如图3,半圆O 的直径AB=7,两弦AB 、CD 相交于点E ,弦CD=27, 且BD=5,则DE 等于( ) A.22 B.24 C.35 D.25分析: 要想求出线段的长度,必须找到一个直角三角形,这个直角三角形必须尽自己最大力量,把已知的条件都包容到自己身边,找出这个直角三角形的过程就是解题的过程.如图4所示,连接AD ,因为AB 是圆的直径,所以∠ADC=90°,因为AB=7,BD=5,所以=-=-=2222257BD AB AD 24.因为∠CDE=∠BAE,∠DCE=∠ABE ,所以△DCE ∽△ABE ,所以AE DE AB DC =,所以727=AE DE =21, 设DE=k ,则AE=2k ,在直角三角形ADE 中,2222223)2(k k k ED AE AD =-=-==24,解得k=22,所以DE 的长为22.解:选A .点评: 巧妙构造直角三角形是解题的关键,注意相似三角形的应用是解题的一个重要环节.3.弦和半径同时连,连好帮你顺闯关例3 已知AB 是⊙O 的直径,AP 是⊙O 的切线,A 是切点,BP 与⊙O 交于点C.若D 为AP 的中点,求证:直线CD 是⊙O 的切线.分析: 根据直径,我们可以构造直径上的圆周角,从垂直上作为解题的突破口.其次,就是要灵活把握切线判定时,已知直线过了圆上的点,必须把这条半径连的基本要求,后综合已知的知识,设法证明这条半径与直线是垂直的.解:如图4,连接OC 、AC ,因为 AB 是⊙O 的直径, 所以∠BCA=90°,∠ACP=90°.在Rt △APC 中,D 为AP 的中点,所以CD=21AP=AD ,所以∠DAC =∠DCA.又因为OC=OA ,所以∠OAC=∠OCA. 因为AP 是⊙O 的切线,A 是切点,所以∠OAC +∠DAC=∠BAP=90°,所以∠OCA +∠DCA =∠OCD=90°,所以OC ⊥CD ,所以 直线CD 是⊙O 的切线.点评: 这种先找到两个角的和是90°,利用等量代换的思想转化成所连半径与准切线所成两个角的也是90°, 从而完成垂直的解题方法经常用到,希望同学们能熟练掌握.4.半径,切点半径同时连,同心圆中逞英豪例4 )如图7,以O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,C 为切点,若两圆的半径分别为3cm 和5cm ,则AB 的长为 cm .分析: 大圆的弦,可以构造垂径定理;小圆的切线,可以连接过切点的半径.现在已知两个的半径了,所以还需要把大圆的半径连接起来.解:如图8所示,连接OC,OB ,因为AB 是小圆的切线,所以∠OCB=90°,AC=BC ,因为OC=3, OB=5,所以BC=222235-=-OC OB =4,所以AB=2BC=8(cm ).点评:这条小圆的切线意义重大,只要测出这条弦的长度,我们就可以计算出圆环的面积来,同学们自己试一试吧.5. 遇切点,巧把切点半径连,凸显垂直保安全例5如图9,在Rt△ABC中∠ABC=90°,斜边AC的垂直平分线交BC与D点,交AC与E 点,连接BE,若BE是△DEC的外接圆的切线,求∠C的大小.分析:遇到圆的切线,必须把切点半径连接起来,这是解题的必不或缺的条件,请同学们一定熟记.解:因为 DE 垂直平分AC,所以∠DEC=90°,所以DC 为△DEC外接圆的直径,所以DC的中点 O即为圆心,连结OE又知BE是圆O的切线,所以∠EBO+∠BOE=90°.在Rt△ABC 中, E 为斜边AC 的中点所以BE=EC,所以∠EBC=∠C,又因为∠BOE=2∠C,所以∠C+2∠C=90°,所以∠C=30°.点评:切线的性质是中考的主要考点之一,所以同学们要重视.第二篇作垂篇1.圆中遇到弦,过圆心作弦的垂线,构造垂径定理例6 如图11所示,在圆⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为()A.19 B.16 C.18 D.20分析:在圆中求弦的长度,最常用的方法就是构造垂径定理,后借助勾股定理来实现解题的目标.解:如图12所示,延长AO交BC于点E,过点O作OD⊥BC垂足为D,因为∠A=∠B=60°,所以三角形ABE是等边三角形,所以AB=AE=BE=12,∠AEB=60°,∠EOD=30°.因为AO=8,所以OE=4,所以DE=2,所以BD=12-2=10.根据垂径定理,得BC=2BD=20.所以我们选择D.点评:垂径定理的内涵有三层:一是与弦垂直,为直角三角形的出现奠定基础;一是平分弦,生成弦的中点,便于解题;三是平分弦所对的弧,为证明题提供等角用.这些基本内涵,同学们一定要记清会用.2.证切线点不明,过圆心作垂线可证垂线段等半径例7 如图13,梯形ABCD中,AD∥CB,∠C=90°,且AD+BC=AB,AB为⊙O的直径,求证:⊙O与CD相切.分析:在这里,我们不能再像用定理那样来判定切线,因为这里不知道直线是否经过了圆上的某一点,所以我们解决的思路就是用定义法.证明:如图14所示,过点O作OE⊥CD,垂足为E,因为AD∥CB,∠C=90°,所以AD∥CB∥OE,所以OE是梯形的中位线,所以AD+BC=2OE.因为AD+BC=AB,所以AB=2OE,所以OE是圆的半径,所以⊙O与CD相切.点评:在用定义时,同学们要熟记基本的程序:(1)过圆心向所证直线作垂线;(2)利用已知的条件,证明这条垂线段等于圆的半径;(3)根据d,r法则,确定直线的切线身份.通过这次专访,大S对圆中辅助线添加方法有了深刻的理解,同时更增加了学好圆的有管知识的信心.。
圆中常用辅助线的作法【八大题型】(解析版)-初中数学
![圆中常用辅助线的作法【八大题型】(解析版)-初中数学](https://img.taocdn.com/s3/m/741ba799ab00b52acfc789eb172ded630a1c9863.png)
圆中常用辅助线的作法【八大题型】【题型1遇弦连半径构造三角形】 1【题型2遇弦作弦心距解决有关弦长的问题】 5【题型3遇直径作直径所对的圆周角】 8【题型4遇切线作过切点的半径】 11【题型5遇90°的圆周角连直径】 16【题型6转移线段】 19【题型7构造相似三角形】 23【题型8四点共圆】 30【题型1遇弦连半径构造三角形】1.(2024·陕西渭南·三模)如图,△ABC内接于⊙O,AB为⊙O的直径,点D在⊙O上,连接CD、BD,BD =BC,延长DB到点E,使得BE=BD,连接CE.(1)求证:∠A+∠E=90°;(2)若⊙O的半径为256,BC=5,求CE的长.【答案】(1)见解析(2)6【分析】本题考查了圆综合,其中涉及到了等腰三角形的性质,三角形的中位线定理,勾股定理解三角形,圆周角定理及推论等知识点,熟练掌握这些知识点是解题的关键.(1)利于等边对等角的性质得到∠BCE=∠E,∠BCD=∠D,利用三角形的内角和得到∠BCE+∠E+∠BCD+∠D=180°,即可得到∠E+∠D=90°,再由圆周角的性质等量代换即可;(2)连接OC,由垂径定理推出OB⊥CD,CF=DF,利用勾股定理建立式子运算出BF的长,再利用中位线定理即可推出CE的长.【详解】(1)证明:∵BD=BC,BE=BD,∴BC=BE,∴∠BCE=∠E,∠BCD=∠D,∵∠BCE+∠E+∠BCD+∠D=180°,∴∠E +∠D =12×180°=90°,∵∠A =∠D ,∴∠A +∠E =90°;(2)解:连接OC ,则OC =OB =256,如图所示:∵BC =BD ,∴BC =BD ,∴OB ⊥CD ,CF =DF ,在Rt △OCF 中,CF 2=OC 2-OF 2=2562-256-BF 2,在Rt △BCF 中,CF 2=BC 2-BF 2=52-BF 2,∴256 2-256-BF 2=52-BF 2,解得BF =3,∵BD =BE ,DF =CF ,∴BF 为△DCE 的中位线,∴CE =2BF =6.2.(23-24九年级上·重庆大足·期末)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为点P ,若CD =8,OP =3,则⊙O 的直径为()A.10B.8C.5D.3【答案】A 【分析】连接OC ,由垂径定理可得CP =PD =4,然后再根据勾股定理可得OC ,进而问题可求解.【详解】解:连接OC ,如图所示:∵CD ⊥AB ,CD =8,∴CP =PD =4,∵OP =3,∴在Rt △CPO 中,OC =CP 2+OP 2=5,∴⊙O 的直径为10;故选A .【点睛】本题主要考查垂径定理,熟练掌握垂径定理是解题的关键.3.(2024·贵州黔东南·二模)如图,⊙O 是△ABC 的外接圆,且AC =BC ,过点B 作BE ⊥AC ,垂足为点E ,延长BE 交⊙O 于点D ,连接AD ,CD ,CO ,并延长CO 交BD 于点F .(1)写出图中一个与∠ACD相等的角∶;(2)求证∶CD=CF;(3)若BC=10,BE=6,求⊙O的半径.【答案】(1)∠ACD=∠ABD(答案不唯一)(2)见解析(3)⊙O的半径为5103【分析】本题考查圆周角定理,垂径定理及其推论,相似三角形的判定与性质;(1)根据圆周角可得∠ACD=∠ABD;(2)延长CF交AB于M,根据垂径定理的推论可得∠ACF=∠BCF,CM⊥AB,即可由BE⊥AC得到∠ACF=∠ABD,进而得到∠ACD=∠ABD=∠ACF=∠BCF,由三线合一即可得到CD=CF;(3)连OA,由勾股定理求得CE=8,进而依次得到AE=2,AB=210,AM=1AB=10,再求出CM,最2后在Rt△AOM中利用勾股定理求半径即可.【详解】(1)由圆周角可得:∠ACD=∠ABD,故答案为:∠ABD(答案不唯一);(2)延长CF交AB于M,∵AC=BC,延长CO交BD于点FAB∴∠ACF=∠BCF,CM⊥AB,AM=12∵BE⊥AC,∴∠BEC=∠AMC=90°,∴∠ACF=∠ABD=90°-∠CAB,∴∠ACD=∠ABD=∠ACF=∠BCF,∵BE⊥AC,∴∠CED=∠CEF=90°,∴△CED≌△CEF,∴CD=CF;(3)连OA,∵BC=10,BE=6,∴CE=BC2-CE2=8,AC=BC=10∴AE=AC-CE=2,∴AB=AE2+BE2=210,AB=10∴AM=12∴CM=AC2-AM2=310,∴OM=CM-OA=310-OA222∴310-OA2+102=OA2解得OA=510 3,∴⊙O的半径为5103.4.(2024·陕西咸阳·模拟预测)如图,在Rt△ABC中,∠ACB=90°,BC是⊙O的直径,⊙O与边AB交于点D,E为BD的中点,连接CE,与AB交于点F.(1)求证:AC=AF.(2)当F为AB的中点时,求证:FC=2EF.【答案】(1)见详解(2)见详解【分析】(1)连接EO,交BD于点N,根据E为BD的中点,可得OE⊥BD,即有∠NEF+∠EFN=90°,再根据EO=OC,可得∠OEC=∠OCE,进而可得∠ACF=∠AFC,即可证明;(2)连接EB,在Rt△ABC中,有BF=AF=FC=12AB,即∠ABC=∠FCB,再由E为BD的中点,可得∠EBD=∠FCB,进而可得∠EBD=∠ABC,即可证明△EBF∽△CBA,问题随之得证.【详解】(1)连接EO,交BD于点N,如图,∵E为BD的中点,∴OE⊥BD,∴∠ENF=90°,∴∠NEF+∠EFN=90°,∴∠NEF+∠AFC=90°,∵EO=OC,∴∠OEC=∠OCE,∵∠ACB=90°,∴∠ACF+∠OCE=90°,∴∠ACF+∠OEC=90°,∵∠NEF+∠AFC=90°,∴∠ACF=∠AFC,∴AC=AF;(2)连接EB,如图,∵在Rt△ABC中,F为AB的中点,∴BF=AF=FC=12AB,∵E 为BD 的中点,∴DE =BE ,∴∠EBD =∠FCB ,∴∠EBD =∠ABC ,∵BC 是⊙O 的直径,∴∠BEC =90°,∴∠BEC =∠ACB ,又∵∠EBD =∠ABC ,∴△EBF ∽△CBA ,∴EF AC =BF AB ,即EF AC =BF AB=12,∴2EF =AC ,∵AF =FC ,且在(1)已证明AC =AF ,即FC =2EF .【点睛】本题主要考查了垂径定理,圆周角定理,相似三角形的判定与性质,等角对等边等知识,作出合理的辅助线,掌握垂径定理是解答本题的关键.【题型2遇弦作弦心距解决有关弦长的问题】5.(23-24九年级上·云南昆明·期末)如图,半径为5的⊙O 中,有两条互相垂直的弦AB 、CD ,垂足为点E ,且AB =CD =8,则OE 的长为()A.3B.3C.23D.32【答案】D 【分析】作OM ⊥AB 于M ,ON ⊥CB 于N ,连接OA ,OC ,根据垂径定理得出BM =AM =4,DN =CN =4,根据勾股定理求出OM 和ON 证明四边形OMEN 是正方形,即可解决问题.【详解】解:如图,作OM ⊥AB 于M ,ON ⊥CB 于N ,连接OA ,OC .∴AM =BM =4,CN =DN =4,∵OA =OC =5,∴OM =OA 2-AM 2=52-42=3,ON =OC 2-CN 2=52-42=3∴OM =ON ,∵AB ⊥CD ,∴∠OME =∠ONE =∠MEN =90°,∴四边形OMEN 是矩形,∵OM =ON ,∴四边形OMEN 是正方形,故选:D.【点睛】本题主要考查圆的垂径定理和正方形的判定,关键在于作出辅助线,利用垂径定理得到证明.6.(23-24九年级上·山东潍坊·期末)如图,⊙O的半径是4,点P是弦AB延长线上的一点,连接OP,若OP=6,∠APO=30°,则弦AB的长为()A.27B.7C.5D.52【答案】A【分析】本题主要考查垂径定理,勾股定理,含30°的直角三角形,连接OA,则OA=4,过点O作OD⊥AB交AB于点D,则可计算出OD,利用勾股定理求出AD,进一步利用垂径定理即可求出弦AB的长.【详解】解:连接OA,则OA=4,过点O作OD⊥AB交AB于点D,∵若OP=6,∠APO=30°∴OD=OP÷2=6÷2=3,则AD=OA2-OD2=42-32=7=7∴AB=2AD=27.故选:A.7.(23-24九年级下·上海·阶段练习)如图,⊙O1和⊙O2相交于A和B,过点A作O1O2的平行线交两圆于C、D,已知O1O2=20cm,则CD=cm.【答案】40【分析】本题考查了矩形的性质和判定,垂径定理的应用,作O1E⊥CD于点E,O2F⊥CD于点F,利用垂径定理得到AE=CE,AF=DF,且易得四边形O1O2FE为矩形,进而得到EF=O1O2=20cm,再利用等量代换即可得到CD.E⊥CD于点E,O2F⊥CD于点F,【详解】解:作O∴O1E∥O2F,AE=CE,AF=DF,∵O1O2∥CD,易得四边形O1O2FE为矩形,∵O1O2=20cm,∴EF=O1O2=20cm,∴CD=CE+AE+AF+DF=2AE+AF=2EF=40cm,故答案为:40.8.(23-24九年级上·福建厦门·期末)关于x的一元二次方程2ax2+2cx+2b=0,如果a、b、c满足a2 +b2=c2且c≠0,那么我们把这样的方程称为“勾系方程”,请解决下列问题:(1)求证:关于x的“勾系方程”2ax2+2cx+2b=0必有实数根.(2)如图,已知AB、CD是半径为5的⊙O的两条平行弦,AB=2a,CD=2b,且关于x的方程2ax2+ 10x+2b=0是“勾系方程”.①求∠BDC的度数,②直接写出BD的长:(用含a、b的式子表示).【答案】(1)见解析(2)①∠BDC=45°;②2a+b【分析】(1)根据一元二次方程根的判别式即可判断;(2)①由勾股定理,圆周角定理,垂径定理即可求解.②过点D作AB的垂线,垂足为G,则四边形DGEF是矩形,根据AB∥CD,得出∠GBD=∠BDC=45°,进而勾股定理,即可求解.【详解】(1)证明:∵关于x的一元二次方程2ax2+2cx+2b=0是“勾系方程”,∴a2+b2=c2且c≠0,a≠0,Δ=2c2-4⋅2a⋅2b=4c2-8ab=4a2+b2-8ab=4a2+b2-2ab=4a-b2,∵a-b2≥0,∴Δ≥0,∴方程必有实数根;(2)解:①∠BDC=45°,理由如下:作OE⊥AB于E,延长EO交CD于F,连接OB,OC,∵DC∥AB,∴EF⊥CD,∴AE=BE=a,CF=DF=b,∵BE2+OE2=OB2,∴a2+OE2=52,∵2ax2+10x+2b=0是“勾系方程”,∴a2+b2=52,∴OE=b=CF;∵OB=OC,∴Rt△BOE≌Rt△OCF HL;∴∠FOC=∠OBE,∵∠OBE+∠EOB=90°,∴∠FOC+∠EOB=90°,∴∠COB=90°,∠BOC=45°.∴∠BDC=12②如图所示,过点D作AB的垂线,垂足为G,则四边形DGEF是矩形,∴DG=EF=a+b,∵AB∥CD,则∠GBD=∠BDC=45°∴DB=2DG=2a+b故答案为:2a+b.【点睛】本题考查了“勾系方程”的概念,一元二次方程根的判别式,勾股定理,圆周角定理,垂径定理,三角形全等,解题的关键是明白“勾系方程”的定义.【题型3遇直径作直径所对的圆周角】9.(2024·安徽合肥·一模)如图,AB是⊙O的直径,CD是⊙O的一条弦,AB⊥CD于点M,连接OD.(1)若∠ODB=54°,求∠BAC的度数;(2)AC,DB的延长线相交于点F,CE是⊙O的切线,交BF于点E,若CE⊥DF,求证:AC=CD.【答案】(1)36°(2)见详解【分析】(1)根据等腰三角形的性质得到∠ODB=∠OBD=54°,求得∠DOB=180°-∠OBD-∠ODB=72°,根据垂径定理得到BC=BD,于是得到结论;(2)连接OC,BC,根据切线的性质得到OC⊥CE,根据平行线的性质得到∠ACO=∠F,根据等腰三角形的性质得到∠A=∠ACO,求得AB=BF,根据等腰三角形的性质得到AC=CF,等量代换得到结论.本题考查了切线的性质,等腰三角形的判定和性质,平行线的判定和性质,圆周角定理,正确地作出辅助线是解题的关键.【详解】(1)解:∵OD=OB,∴∠ODB=∠OBD=54°,∴∠DOB=180°-∠OBD-∠ODB=72°,∵AB是⊙O的直径,AB⊥CD,∴BC=BD,∠BOD=36°,∴∠BAC=12故∠BAC的度数为36°;(2)证明:连接OC,BC,∵CE是⊙O的切线,∵CE⊥DF,∴OC∥DF,∴∠ACO=∠F,∵OA=OC,∴∠A=∠ACO,∴∠A=∠F,∴AB=BF,∵AB是⊙O的直径,∴BC⊥AF,∴AC=CF,∵∠A=∠CDB,∴∠CDB=∠F,∴CD=CF,∴AC=CD.10.(2024九年级上·湖北武汉·期中)如图,AB为⊙O的直径,点C为BE的中点,CD⊥AE交直线AE于D点.(1)求证:OC∥AD;(2)若DE=1,CD=2,求⊙O的直径.【答案】(1)见解析(2)5【分析】(1)证明OC⊥EB,AD⊥BE即可得出结论;(2)设BE交OC于点T,证明四边形DETC是矩形,设OB=OC=r,利用勾股定理即可求解.【详解】(1)证明:连接BE,如图,∵AB为⊙O的直径,∴∠AEB=90°,即AD⊥BE,∵点C为BE的中点,∴EC=CB,∴OC⊥EB,∴OC∥AD;(2)解:设BE交OC于点T,如图,∵CD⊥AD,∴∠D=∠DET=∠CTE=90°,∴四边形DETC是矩形,∴CD=ET=2,DE=CT=1,∴BT =TE =2,设OB =OC =r ,则r 2=r -1 2+22,∴r =52,∴AB =2r =5,即⊙O 的直径为5;【点睛】本题考查圆周角定理,垂径定理,矩形的判定和性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题.11.(2024·浙江温州·三模)如图,已知△ABC 中,∠ACB =90°,AB =4,AC =3,点E 是AC 边上的动点,以CE 为直径作⊙F ,连接BE 交⊙F 于点D ,则AD 的最小值为.【答案】43-72【分析】连接DC ,由以CE 为直径作⊙F ,得∠CDE =90°,∠CDB =90°,即可得动点D 在以BC 为直径的圆上运动,当A ,D ,O 在一直线上时,根据AD ≥AO -OD ,即可求解.【详解】解:△ABC 中,∠ACB =90°,AB =4,AC =3,∴BC =AB 2-AC 2=42-32=7连接DC ,由以CE 为直径作⊙F ,BC =4,AC =5,∴∠CDE =90°,∠CDB =90°,∴动点D 在以BC 为直径的圆上运动,O 为圆心,当A ,D ,O 在一直线上时,AO =32+72 2=432∴AD ≥AO -OD =432-72=43-72即AD 的最小值为43-72故答案为:43-72.12.(23-24九年级上·福建莆田·期中)如图,AB 是半圆O 的直径,AB =10,点D 在半圆O 上,AD =6,C是弧BD 上的一个动点,连接AC ,过D 点作DH ⊥AC 于H ,连接BH ,在点C 移动的过程中,BH 的最小值是.【答案】73-3/-3+73【分析】连接BD,取AD的中点E,连接BE,由题意先判断出点H在以点E为圆心,AE为半径的圆上,当B、H、E三点共线时,BH取得最小值,然后利用勾股定理,求出BD的长,再利用勾股定理,求出BE的长,再利用直角三角形中,斜边上的中线等于斜边的一半,求出EH的长,再由BH=BE-EH,即可算出BH的长.【详解】解:如图,连接BD,取AD的中点E,连接BE,∵DH⊥AC,∴点H在以点E为圆心,AE为半径的圆上,当B、H、E三点共线时,BH取得最小值,∵AB是直径,∴∠BDA=90°,在Rt△BDA中,∵AB=10,AD=6,∴由勾股定理得:BD=AB2-AD2=100-36=8,∵E为AD的中点,AD=3,∴DE=12在Rt△BDE中,∵BD=8,DE=3,∴由勾股定理得:BE=DE2+BD2=9+64=73,又∵DH⊥AC,且点E为AD的中点,AD=3,∴EH=12∴BH=BE-EH=73-3.故答案为:73-3.【点睛】本题考查了勾股定理解三角形,直径所对的圆周角为直角,直角三角形斜边上的中线等于斜边的一半,能够判断出动点的运动轨迹是解本题的关键.【题型4遇切线作过切点的半径】13.(2024·贵州·模拟预测)如图,在Rt△ABC中,∠ACB=90°,点P为边BC上一点,连接AP,分别以点A,P为圆心,大于是1AP的长为半径画弧,两弧交于点E,F,EF交AB于点D,再以点D为圆心,DA长2为半径作圆,交AB于点M,BC恰好是⊙D的切线.若∠B=30°,AC=3,则BM的长为()A.233B.33C.34D.3【答案】A【分析】本题考查的是切线的性质、含30°角的直角三角形的性质,相似三角形的判定与性质,掌握圆的切线垂直于经过切点的半径是解题的关键.连接DP ,由线段垂直平分线的性质可得AD =DP ,再由直角三角形性质求得AB =23,根据切线的性质得到∠DPB =90°,再证明△BPD ∽△BCE ,再列出方程求解即可.【详解】解:连接DP ,由题意可得,EF 是AP 的垂直平分线,∴AD =DP ,设AD =DP =r ,∵∠B =30°,AC =3,∴AB =23,∵BC 是⊙O 的切线,∴∠DPB =90°,∵∠ACB =90°,∴∠DPB =∠ACB =90°,∴DP ∥AC ,∴△BPD ∽△BCE ,∴BD AB =DP AC ,∴23-r 23=r 3,∴r =233,∴AD =233,∴AM =433,∴BM =AB -AM =23-433=233,故选:A 14.(2024·辽宁大连·一模)如图,△ABC 内接于⊙O ,AD 是⊙O 的直径与BC 交于点F ,∠CAD =45°,过B 点的切线交AD 的延长线于点E .(1)若∠C=64°,求∠E的度数;(2)⊙O的半径是3,OF=1,求BE的长.【答案】(1)38°(2)BE的长为4【分析】此题考查了切线的性质、勾股定理、圆周角定理等知识.(1)连接OB,由切线的性质得到∠OBE=90°,由圆周角定理得到∠AOB=2∠C,又由∠C=64°得到∠AOB =128°,则∠BOE=180°-128°=52°,利用直角三角形性质即可得到答案;(2)连接OC,OB,由圆周角定理得到∠COD=2∠CAD=2×45°=90°,再证明EF=BE,在Rt△OBE中,根据勾股定理得,OE2=OB2+BE2,设BE=EF=x,得到x+12=32+x2,解方程即可得到答案.【详解】(1)解:连接OB,∵BE是⊙O的切线∴OB⊥BE∴∠OBE=90°∵AB=AB∴∠AOB=2∠C∵∠C=64°∴∠AOB=128°∴∠BOE=180°-128°=52°∴∠E=90°-52°=38°(2)解:连接OC,OB,∵CD=CD∴∠COD=2∠CAD=2×45°=90°∴∠1+∠3=90°∵OC=OB∴∠1=∠2∵∠OBE=90°∴∠2+∠4=90°∴∠3=∠4∵∠3=∠5∴∠4=∠5∴EF=BE在Rt△OBE中,∠OBE=90°,根据勾股定理得,OE2=OB2+BE2设BE=EF=x,由OB=3,OF=1得,x+12=32+x2∴BE 的长为4.15.(2024·福建泉州·模拟预测)已知AB 与⊙O 相切于点B ,直线AO 与⊙O 相交于C ,D 两点(AO >AC ),E 为BD 的中点,连接OE 并延长,交AB 的延长线于点F .(1)如图①,若E 为OF 的中点,求∠A 的大小;(2)如图②,连接BD 与OF 相交于点G ,求证:∠D =∠F .【答案】(1)30°(2)见解答【分析】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了垂径定理和圆周角定理.(1)连接OB ,如图①,先根据切线的性质得到∠OBF =90°,再利用余弦的定义求出∠BOF =60°,接着根据圆心角、弧、弦的关系得到∠DOE =∠BOE =60°,所以∠AOB =60°,然后利用互余得到∠A 的度数;(2)连接OB ,如图②,根据垂径定理得到OE ⊥BD ,再利用等角的余角相等得到∠OBD =∠F ,加上∠OBD =∠D ,从而得到∠D =∠F .【详解】(1)解:连接OB ,如图①,∵AB 与⊙O 相切于点B ,∴OB ⊥AF ,∴∠OBF =90°,∵E 为OF 的中点,∴OE =EF ,∴OF =2OB ,在Rt △OBF 中,∵cos ∠BOF =OB OF =12,∴∠BOF =60°,∵点E 为BD 的中点,∴∠DOE =∠BOE =60°,∴∠AOB =60°,∴∠A =90°-60°=30°;(2)证明:连接OB ,如图②,∵点E 为BD 的中点,∴OE ⊥BD ,∴∠OGB =90°,∵∠OBD +∠BOF =90°,∠BOF +∠F =90°,∴∠OBD =∠F ,∵OB =OD ,∴∠OBD =∠D ,∴∠D =∠F .16.(23-24九年级上·北京西城·期中)如图,AB 为⊙O 的直径,CB ,CD 分别切⊙O 于点B ,D ,CD 交BA的延长线于点E,CO的延长线交⊙O于点G,EF⊥OG于点F.若BC=6,DE=4.(1)求证:∠FEB=∠ECF;(2)求⊙O的半径长.(3)求线段EF的长.【答案】(1)证明见解析(2)3(3)25【分析】(1)根据切线的性质及SAS证得△COD≌△COB,可证∠OCD=∠OCB,再利用角的等量代换即可求证结论;(2)设OD=x,则OB=x,OE=8-x,在Rt△BCE和Rt△OED中,分别利用勾股定理即可求解;(3)在Rt△OED和Rt△OCD中,利用勾股定理得OE=5,OC=35,再利用相似三角形的判定及性质即可求解;【详解】(1)证明:连接OD,∵CB,CD是⊙O的切线,∴CB=CD,∠ODC=∠OBC=90°,在△COD和△COB中,OD=OB∠CDO=∠CBO CD=CB,∴△COD≌△COB(SAS),∴∠OCD=∠OCB,∵EF⊥OG,∴∠OEF+∠EOF=90°,∵∠BOC+∠BCO=90°,∠EOF=∠BOC,∴∠FEB=∠OCB,∴∠FEB=∠ECF.(2)解:由(1)得:CD=CB=6,∵DE=4,∴CE=CD+DE=10,在Rt△BCE中,根据勾股定理得:∴BE=EC2-BC2=102-62=8,在Rt△OED中,设OD=x,则OB=x,OE=8-x,由勾股定理得:DE2+OD2=OE2,即:42+x2=8-x2,解得:x=3,∴OD=3,即⊙O的半径为3.(3)解:在Rt△OED和Rt△OCD中,根据勾股定理得:OE=OD2+DE2=32+42=5,OC=OD2+CD2=32+62=35,∵∠FEO=∠DCO,∠EFO=∠CDO=90°,∴△EOF∽△COD,∴EF CD =OEOC,即:EF6=535,∴EF=25.【点睛】本题考查了切线的性质、全等三角形的判定及性质、勾股定理及相似三角形的判定及性质:作出合适的辅助线是解本题的关键.【题型5遇90°的圆周角连直径】17.(2024·安徽合肥·一模)如图,四边形ABCD内接于⊙O,∠BAD=90°,BC=CD,过点C作CE,使得CD=CE,交AD的延长线于点E.(1)求证:AB=AE.(2)若AD=DE=2,求CD的长.【答案】(1)见解析(2)10【分析】(1)如图,连接AC,根据BC=CD推出∠BAC=∠EAC,再证明BC=CE,∠B=∠E,进而证明△ABC≌△AEC AAS,即可证明AB=AE.(2)先证明BD是⊙O的直径,得到∠BCD=90°.由(1)可得AB=4.在Rt△ABD中求出BD=25;在Rt△BCD中,CD=BC=22BD=10.【详解】(1)证明:如图,连接AC.∵BC=CD,∴BC=CD,∴∠BAC=∠EAC.∵CD=CE,∴∠E=∠CDE,BC=CE.∵∠B+∠ADC=180°,∠CDE+∠ADC=180°,∴∠B=∠CDE,∴∠B=∠E.在△ABC 与△AEC 中,∠BAC =∠EAC ,∠B =∠E ,BC =CE ,∴△ABC ≌△AEC AAS ,∴AB =AE .(2)解:如图,连接BD .∵∠BAD =90°,∴BD 是⊙O 的直径,∴∠BCD =90°.由(1)可得AB =AE .∵AD =DE =2,∴AB =4.在Rt △ABD 中,BD =AB 2+AD 2=25;在Rt △BCD 中,CD =BC =22BD =10.【点睛】本题主要考查了弧,弦,圆周角之间的关系,圆内接四边形的性质,等边对等角,勾股定理,90度圆周角所对的弦是直径,直径所对的圆周角是直角,全等三角形的性质与判定等等,正确作出辅助线构造全等三角形和直角三角形是解题的关键.18.(2024·浙江嘉兴·模拟预测)如图,矩形ABCD 内接于⊙O ,AB =2,BC =23,则AB ⏜的长为()A.13πB.23πC.33πD.233π【答案】B【分析】本题考查了圆的基础知识,如图,连接AC ,BD ,根据内接矩形的性质可得AB ,CD 是直径,根据直角三角形斜边中线等于斜边上的高,可得OA =OB =2,可得△AOB 是等边三角形,再根据弧长的计算方法即可求解,掌握矩形的性质,圆的基础值,弧长计算公式是解题的关键.【详解】解:如图所示,连接AC ,BD ,∵四边形ABCD 是矩形,∴∠BAD =∠ABC =90°,∴AC ,BD 是直径,点O 是线段AC 的中点,∴在Rt △ABC 中,AC =AB 2+BC 2=22+23 2=4,∴OB =12AC =2=OA ,∴OA =OB =AB =2,∴△AOB 是等边三角形,∴∠AOB =60°,∴l AB ⏜=n πr 180=60π×2180=23π故选:B.19.(23-24九年级下·四川成都·开学考试)《墨子·天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD的边长为2.以它的对角线的交点为位似中心,作它的位似图形A B C D ,若A B :AB=2:1,则四边形A B C D 的外接圆半径为.【答案】22【分析】本题考查位似图形的性质,根据正方形ABCD的边长为2和位似比求出A B =4,进而即可求解.解题关键求出正方形的边长.【详解】解:如图,连接A C ,∵正方形ABCD与四边形A B C D 是位似图形,∴四边形A B C D 是正方形,∴∠A B C =90°∴A C 是四边形A B C D 的外接圆直径,∵正方形ABCD的边长为2,A B :AB=2:1∴A B =4∴AC =42+42=42∴四边形A B C D 的外接圆半径为22,故答案为:22.20.(2024·江西景德镇·三模)如图,在平面直角坐标系xOy中,⊙P经过点O,与y轴交于点A0,6,与x轴交于点B8,0,则OP的长为.【答案】5【分析】本题考查了90度圆周角所对的弦为直径,勾股定理,连接AB,通过题意判断出AB为直径,圆心P在AB上,根据勾股定理计算出AB的长,从而得出结果.【详解】解:如图,连接AB,∵∠AOB为直角,且点A,B,O都在圆上,∴AB为直径,圆心P在AB上,∵A 0,6 ,B 8,0 ,∴OA =6,OB =8,∴AB =OA 2+OB 2=10,∴OP =12AB =5,故答案为:5.【题型6转移线段】21.(23-24九年级上·四川泸州·阶段练习)如图,⊙O 的直径AB =8,弦CD =3,且弦CD 在圆上滑动(CD 的长度不变,点C 、D 与点A 、B 不重合),过点C 作CP ⊥AB 于点P ,若M 是CD 的中点,则PM 的最大值是.【答案】4【分析】本题考查垂径定理、三角形中位线定理,延长CP 交⊙O 于点K ,连接DK ,根据垂径定理可得CP =PK ,再根据三角形中位线定理可得PM =12KD ,进而可得当KD 最大时,PM 的值最大,即即当KD 为直径时,KD 的值最大,即可求解.【详解】解:延长CP 交⊙O 于点K ,连接DK ,∵AB ⊥CK ,∴CP =PK ,∵M 是CD 的中点,∴PM 是△CKD 的中位线,∴PM =12KD ,∴当KD 最大时,PM 的值最大,即当KD 为直径时,KD 的值最大,∵⊙O 的直径AB =8,∴PM =12KD =12AB =4,故答案为:4.22.(2024九年级上·浙江台州·期中)如图,在△ABC 中,AB =5,AC =4,BC =3,经过点C 且与边AB 相切的动圆与CA 、CB 分别相交于点P 、Q ,则线段PQ 长度的最小值是.【答案】125/2.4/225【分析】设圆心为点F ,圆F 与AB 的切点为D ,连接FD 、CF 、CD ,则有FD ⊥AB ,由勾股定理的逆定理可得△∠ACB =90°,再由直角三角形的性质可得FC +FD =QP ,又由FC +FD ≥CD ,PQ 为圆F 的直径,可得点F 在直角三角形ABC 的斜边AB 的高CD 上时,PQ =CD 有最小值,即CD 为圆F 的直径,再利用△ABC 的面积即可求解.【详解】解:如图,设圆心为点F ,圆F 与AB 的切点为D ,连接FD 、CF 、CD ,∵圆F 与AB 相切,∴FD ⊥AB ,∵在△ABC 中,32+42=52,即BC 2+AC 2=AB 2,∴△∠ACB =90°,∴CF =12QP ,又∵CF =FD ,∴FC +FD =QP ,∵FC +FD ≥CD ,PQ 为圆F 的直径,∴当点F 在直角三角形ABC 的斜边AB 的高CD 上时,PQ =CD 有最小值,即CD 为圆F 的直径,∵S △ABC =12BC ⋅AC =12AB ⋅CD ,∴12×4×3=12×5×CD ,∴CD =125,故答案为:125.【点睛】本题考查切线的性质、直角三角形的性质、勾股定理的定理、三角形的三边关系及三角形的面积公式,根据题意可知当点F 在直角三角形ABC 的斜边AB 的高CD 上时,PQ =CD 有最小值是解题的关键.23.(2024·江苏徐州·三模)【问题情境】如图1,P 是⊙O 外的一点,直线PO 分别交⊙O 于点A 、B .小明认为线段P A 是点P 到⊙O 上各点的距离中最短的线段,他是这样考虑的:在⊙O 上任意取一个不同于点A 的点C ,连接OC 、CP ,则有OP <OC +PC ,即OP -OC <PC ,由OA =OC 得OP -OA <PC ,即P A <PC ,从而得出线段P A 是点P 到⊙O 上各点的距离中最短的线段.小红认为在图1中,线段PB 是点P 到⊙O 上各点的距离中最长的线段,你认为小红的说法正确吗?请说明理由.【直接运用】如图3,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是CD上的一个动点,连接AP,则AP的最小值是;【构造运用】如图4,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A MN,连接A C,请求出A C长度的最小值.【深度运用】如图5,已知点C在以AB为直径,O为圆心的半圆上,AB=4,以BC为边作等边△BCD,则AD的最大值是.【答案】问题情境:正确,理由见解析;直接运用:5-1;构造运用:7-1;深度运用:23+2【分析】问题情境∶根据三角形的任意两边之和大于第三边即可得解;直接运用∶取半圆的圆心O,连接OA交半圆于点M,则当P与点M重合时,P A最小,由勾股定理得OA= 22+12=5,从而即得解;构造运用:由折叠知A M=AM,进而得点A ,A,D都在以AD为直径的圆上.如图3,以点M为圆心,MA 为半径画⊙M,连接MC.当A C长度取最小值时,点A 在MC上,过点M作MH⊥DC于点F,根据菱形的性质及勾股定理即可得解;深度运用:如图,在AB的上方作等边△ABH,连接DH,取BH的中点G连接DG,证明△ABC≌△HBD,得∠BDH=∠ACB=90°,点D在以BH为直径的半圆上,进而利用勾股定理及三角形的两边之和大于第三边即可得解.【详解】解:问题情境∶小红的说法正确,在圆О上任意取一个不同于点B的点C,连接OC、OP,∵在△POC 中,OP +OC >PC .OB =OC ,∴OP +OB >PC ,即PB >PC .∴线段PB 是点Р到圆О上各点的距离中最长的线段.∴小红的说法正确;直接运用∶取半圆的圆心O ,连接OA 交半圆于点M ,则当P 与点M 重合时,P A 最小,∵∠ACB =90°,AC =BC =2,∴OC =1,OC 2+AC 2=OA 2,∴OA =22+12=5,∴P A 的最小值为OA -AM =5-1故答案为:5-1.构造运用:由折叠知A M =AM ,∵M 是AD 的中点,∴MA =MA =MD ,∴点A ,A ,D 都在以AD 为直径的圆上.如图3,以点M 为圆心,MA 为半径画⊙M ,连接MC .当A C 长度取最小值时,点A 在MC 上,过点M 作MH ⊥DC 于点F ,∵在边长为6的菱形ABCD 中,∠A =60°,M 为AD 中点,∴2MD =AD =CD =2,∠HDM =60°,∴∠HMD =30°,∴HD =12MD =12.∴HM =DM ×cos30°=32,HC =52,∴MC =HM 2+HC 2=7,∴A C =MC -MA =7-1;深度运用:如图,在AB 的上方作等边△ABH ,连接DH ,取BH 的中点G 连接DG ,∵AB 是半圆的直径,∴∠ACB =90°,∵△ABH 和△BCD 都是等边三角形,∴AB =BH =AH =4,BD =BC =DC ,∠ABH =∠CBD =60°即∠ABC +∠CBH =∠CBH +∠HBD ,∴∠ABC =∠HBD ,∴△ABC ≌△HBD ,∴∠BDH =∠ACB =90°,∴点D 在以BH 为直径的半圆上,∵G 是BH 的中点,AB =AH =BH =4,∴AG ⊥BH ,BG =DG =HG =2,∴AG =AB 2-BG 2=42-22=23,∴根据三角形的两边之和大于第三边可得AD 的最大值为AG +DG =23+2,故答案为:23+2.【点睛】本题主要考查了全等三角形的判定,勾股定理,等边三角形的性质,圆周角定理的推论以及三角形的三24.(23-24九年级上·河南开封·阶段练习)如图,以G(0,3)为圆心,半径为6的圆与x轴交于A,B两点,与y轴交于C,D两点,点E为⊙G上一动点,CF⊥AE于F,点E在G的运动过程中,线段FG的长度的最小值为.【答案】33-3/-3+33【分析】本题主要考查垂径定理,圆周角定理,直角三角形30度角的判定和性质,熟练掌握性质定理,构造直角三角形是解题的关键.过点G作GM⊥AC于点F,连接AG.得到点F在MG的延长线上时,FG的长度的最小,最小值=FM-GM,即可得到答案.【详解】解:过点G作GM⊥AC于点F,连接AG,∵GO⊥AB,∴OA=OB,∵G(0,3),∴OG=3,在Rt△AGO中,AG=6,OG=3,∴OA=AG2-GO2=33,∴∠GAO=30°,AB=2AO=63,∴∠AGO=60°,∵GC=GA=6,∴∠GCA=∠GAC,∵∠AGO=∠GCA+∠GAC,∴∠AGO=∠GAC=30°,∴AC=2OA=63,MG=1CG=3,2∵∠AFC=90°,∴点F在以AC为直径的⊙M上,∴MF=AC=33,2点F在MG的延长线上时,FG的长度的最小,最小值=FM-GM=33-3,故答案为:33-3.【题型7构造相似三角形】25.(2024·贵州六盘水·二模)如图,四边形ABCD内接于⊙O,AD为直径,DB平分∠ADC,CA=CD,DB与CA交于点E,延长AB,DC交于点F.(1)直接写出线段AB 与线段BC 的数量关系;(2)求证:△AFC ≌△DEC ;(3)设△ABD 的面积为S 1,△BCD 的面积为S 2,求S 1S 2的值.【答案】(1)AB =BC(2)见解析(3)2【分析】(1)根据等角,等弧,等弦,即可得出结论;(2)根据同弧所对的圆周角相等,利用ASA 证明△AFC ≌△DEC 即可;(3)过点C 作CH ⊥DE ,圆周角定理得到∠ACD =∠ABD =90°,勾股定理得到AD =CA 2+CD 2=2CD ,证明△ABD ∽△CHD ,得到AB CH =AD CD=2,根据同底三角形的面积比等于高线比,即可得出结果.【详解】(1)解:连接OB ,OC ,则:∠AOB =2∠ADB ,∠BOC =2∠CDB ,∵DB 平分∠ADC ,∴∠ADB =∠CDB ,∴∠AOB =∠BOC ,∴AB =BC ,∴AB =BC ;(2)∵AD 为直径,∴∠ACD =90°,∴∠ACF =90°=∠ACD ,又∵∠BAC =∠CDB ,CA =CD ,∴△AFC ≌△DEC ;(3)过点C 作CH ⊥DE ,则∠CHD =90°∵AD 为直径,∴∠ACD =∠ABD =90°,∵CA =CD ,∴AD =CA 2+CD 2=2CD ,∵∠ABD =∠CHD =90°,∠ADB =∠CDB ,∴△ABD ∽△CHD ,∴AB CH =AD CD =2,∴S 1S 2=12AB ⋅BD 12CH ⋅BD =AB CH =2.【点睛】本题考查圆周角定理,弧,弦,角之间的关系,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识点,熟练掌握相关知识点,并灵活运用,是解题的关键.线上.且AD =2.过点A 另一条直线交⊙O 于B 、C .(1)如图1,当AC =5时,研究发现:连接CE 、BD 可以得到△ABD ∽△AEC ,继而可以求AB 长.请写出完整的解答过程.(2)如图2,当B 、C 重合于一点时,AC =.(3)如图3,当OB 平分∠AOC 时,AC =.【答案】(1)AB =165;过程见解析(2)4(3)8105【分析】(1)连接BD 、CE ,证明△ABD ∽△AEC ,得出AD AC =AB AE,求出AB =165.(2)连接OC ,根据当B 、C 重合于一点时,AC 与⊙O 相切于点C ,得出∠ACO =90°,求出AC =AO 2-OC 2=52-32=4.(3)连接BD ,根据角平分线定义得出∠AOB =∠COB =12∠AOC ,证明DB =BC ,△ABD ∽△AOB ,得出AB AO =AD AB =BD OB ,即AB 5=2AB=BD 3,求出AB =10,BD =3105,即可求出结果.【详解】(1)解:连接BD 、CE ,如图所示:∵DE =6,AD =2,∴AE =AD +DE =2+6=8,∵∠ABD +∠CBD =180°,∠CBD +∠E =180°,∴∠ABD =∠E ,∵∠BAD =∠EAC ,∴△ABD ∽△AEC ,∴AD AC =AB AE ,∴25=AB 8,解得:AB =165.(2)解:连接OC ,如图所示:∵当B 、C 重合于一点时,AC 与⊙O 相切于点C ,∴∠ACO =90°,∵DE =6,∴OC =OD =OE =3,∴AO =AD +DO =2+3=5,∴AC =AO 2-OC 2=52-32=4.∵OB 平分∠AOC ,∴∠AOB =∠COB =12∠AOC ,∴DB =BC ,∵OC =OE ,∴∠OCE =∠OEC ,∵∠AOC =∠OCE +∠OEC ,∴∠OCE =∠OEC =12∠AOC ,∴∠DOB =∠OEC ,根据解析(1)可知:∠ABD =∠AEC ,∴∠ABD =∠AOB ,∵∠DAB =∠OAB ,∴△ABD ∽△AOB ,∴AB AO =AD AB =BD OB ,即AB 5=2AB=BD 3,解得:AB =10,BD =3105,∴AC =AB +BC =AB +BD =10+3105=8105.【点睛】本题主要考查了相似三角形的判定和性质,勾股定理,圆内接四边形的性质,等腰三角形的性质,切线的性质,解题的关键是作出辅助线,熟练掌握相关的判定和性质.27.(23-24九年级下·福建厦门·阶段练习)如图,以AB 为直径的⊙O 与AH 相切于点A ,点C 在AB 左侧圆弧上,弦CD ⊥AB 交⊙O 于点D ,连接AC ,AD ,点A 关于CD 的对称点为E ,直线CE 交⊙O 于点F ,交AH 于点G .(1)求证:∠CAG =∠AGC ;(2)当点E 在AB 上,连接AF 交CD 于点P ,若EF CE =25,求DP CP的值;(3)当点E 在射线AB 上,AB =2,四边形ACOF 中有一组对边平行时,求AE 的长.【答案】(1)见解析(2)57(3)2-2或3-52【分析】(1)设AB 与CD 相交于点M ,由⊙O 与AH 相切于点A ,得到∠BAG =90°,由CD ⊥AB ,得到∠AMC =90°,进而得到AG ∥CD ,由平行线的性质推导得,∠CAG =∠ACD ,∠AGC =∠FCD ,最后由点A关于CD 的对称点为E 得到∠FCD =∠ACD 即可证明.(2)过F 点作FK ⊥AB 于点K ,设AB 与CD 交于点N ,连接DF ,证明∠FAD =∠ADC 得到DP =AP ,再证明△CP A ≌△FPD 得到PF =PC ;最后根据△KEF ∽△NEC 及△APN ∽△AFK 得到KE EN =EF CE =25和P A AF =AN AK=512,最后根据平行线分线段成比例求解.(3)分两种情形:当OC ∥AF 时,当AC ∥OF 时,分别求解即可.【详解】(1)证明:如图,设AB 与CD 相交于点M ,∵⊙O 与AH 相切于点A ,∴∠BAG =90°,∵CD ⊥AB ,∴∠AMC =90°,∴AG ∥CD ,∴∠CAG =∠ACD ,∠AGC =∠FCD ,∵点A 关于CD 的对称点为E ,∴∠FCD =∠ACD ,∴∠CAG =∠AGC .(2)解:过F 点作FK ⊥AB 于点K ,设AB 与CD 交于点N ,连接DF ,如下图所示:由同弧所对的圆周角相等可知:∠FCD =∠FAD ,∵AB 为⊙O 的直径,且CD ⊥AB ,由垂径定理得:AC =AD ,∴∠ACD =∠ADC ,∵点A 关于CD 的对称点为E ,∴∠FCD =∠ACD ,∴∠FAD =∠FCD =∠ACD =∠ADC ,即∠FAD =∠ADC ,∴DP =AP ,由同弧所对的圆周角相等得:∠ACP =∠DFP ,且∠CP A =∠FPD ,∴△CP A ≌△FPD ,∴PC =PF ,∵FK ⊥AB ,AB 与CD 交于点N ,∴∠FKE =∠CNE =90°.∵∠KEF =∠NEC ,∠FKE =∠CNE =90°,∴△KEF ∽△NEC ,∴KE EN =EF CE=25,设KE =2x ,EN =5x ,∵点A 关于CD 的对称点为E ,∴AN =EN =5x ,AE =AN +NE =10x ,AK =AE +KE =12x ,又FK ∥PN ,∴△APN ∽△AFK ,∴P A AF =AN AK=5x 12x =512.∵∠FCD =∠CDA ,∴CF ∥AD ,∴DP =AP =AP =5;。
人教版九年级上册数学精品课件 第24章 圆 专题训练11 圆中辅助线的作法
![人教版九年级上册数学精品课件 第24章 圆 专题训练11 圆中辅助线的作法](https://img.taocdn.com/s3/m/4a1a780a0a4c2e3f5727a5e9856a561252d32113.png)
• 13.如图,点O在∠APB的角平分线上,⊙O与PA相切于 点C. • (1)求证:直线PB与⊙O相切; • (2)PO的延长线与⊙O相交于点E,若⊙O的半径为3,PC= 4,求弦CE的长.
(1) 证 明 : 过 点 O 作 OD ⊥ PB 于 点 D , 连 接
OC.∵PA与⊙O相切于点C,∴OC⊥PA.又∵点O在
• 证明:如图,作直径DG,连接BG.∵点E是△ABC的内心, ∴AD平分∠BAC,∴∠BAD=∠DAC.又∵∠G=∠BAD, ∠BDM=∠DAC,∴∠BDM=∠G.∵DG为⊙O的直径, ∴∠GBD=90°,∵∠G+∠BDG=90°,∴∠BDM+∠BDG =90°,即∠MDG=90°,∴直线DM是⊙O的切线.
(2)解:连接AE,∵AD=DE,∠ADE=60°,∴△ADE是等边三角 形,∴AE=DE,∠AED=60°,∴∠EAC=∠AED-∠C=30°,∴∠ EAC=∠C,∴AE=CE=2 3,∴⊙D的半径为2 3.
• 12.如图,点E是△ABC的内心,AE的延长线交BC于点F, 交△ABC的外接圆⊙O于点D,连接BD,过点D作直线DM,使 ∠BDM=∠DAC.求证:直线DM是⊙O的切线.
∠ACB的度数为 •
B
()
• A.50°
• B.55°
• C.60°
• D.65°
• 10.(郴州中考)如图,△ABC内接于 ⊙O,AB是⊙O的直径.直线l与⊙O相切 于点A,在l上取一点D使得DA=DC,线 段DC,AB的延长线交于点E. • (1)求证:直线DC是⊙O的切线; • (2)若BC=2,∠CAB=30°,求图中 阴影部分的面积(结果保留π).
图②
• 类型二 遇直径,常作所对的圆周角 • 4.如图,AD是△ABC的外接圆的直径,若∠BAD=40°, 则∠5A0CB=_____°.
最新沪科版九年级数学下册 解题技巧专题:圆中辅助线的作法
![最新沪科版九年级数学下册 解题技巧专题:圆中辅助线的作法](https://img.taocdn.com/s3/m/654a3ba2ec3a87c24028c46a.png)
解题技巧专题:圆中辅助线的作法——形成解题思维模式,快准解答◆类型一遇弦加弦心距或半径【方法4①】1.如图,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为点E,若OE=3,则AB 的长是()A.4 B.6 C.8 D.10第1题图第2题图2.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB,OC,若∠BAC与∠BOC互补,则弦BC的长为()A.3 3 B.43C.5 3 D.6 33.如图,在⊙O中,AB为⊙O的弦,C、D是直线AB上的两点,且AC=BD,则△OCD 是________三角形.第3题图第4题图4.如图①,小敏利用课余时间制作了一个脸盆架,图②是它的截面图,垂直放置的脸盆与架子的交点为A,B,AB=40cm,脸盆的最低点C到AB的距离为10cm,则该脸盆的半径为________cm.5.(2017·乐山中考)如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,她了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB=CD=0.25米,BD=1.5米,且AB、CD与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是________米.◆类型二遇直径添加直径所对的圆周角【方法4②】6.(2017·毕节中考)如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,则∠BAD 的度数为()A.30°B.50°C.60°D.70°7.如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD .若AC =2,则cos D =________.第7题图 第8题图8.如图,⊙O 的半径OD 垂直于弦AB ,垂足为点C ,连接AO 并延长交⊙O 于点E ,连接EC .若AB =8,CD =2,则EC 的长为________.9.如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 交AB 于点D ,交BC 于点E .(1)求证:BE =CE ;(2)若∠B =70°,求DE ︵的度数;(3)若BD =2,BE =3,求AC 的长.◆类型三 遇切线连接圆心和切点10.(2017·长春中考)如图,点A ,B ,C 在⊙O 上,∠ABC =29°,过点C 作⊙O 的切线交OA 的延长线于点D ,则∠D 的大小为【方法4③】( )A .29°B .32°C .42°D .58°第10题图 第11题图 第12题图11.如图,已知AB 是⊙O 的一条直径,延长AB 至C 点,使得AC =3BC ,CD 与⊙O 相切,切点为D .若CD =3,则线段BC 的长度等于________.【方法4③】12.如图,⊙O 与△ABC 中AB ,AC 的延长线及BC 边相切,切点分别为D ,F ,E ,AB =5,AC =4,BC =3,则⊙O 的半径是________.13.(2017·陕西中考)如图,已知⊙O 的半径为5,P A 是⊙O 的一条切线,切点为A ,连接PO 并延长,交⊙O 于点B ,过点A 作AC ⊥PB 交⊙O 于点C ,交PB 于点D ,连接BC ,其中∠P =30°.(1)求弦AC 的长;(2)求证:BC ∥P A .◆类型四 有交点证切线连接圆心和交点14.(2017·凉山州中考)如图,已知AB 为⊙O 的直径,AD ,BD 是⊙O 的弦,BC 是⊙O 的切线,切点为B ,OC ∥AD ,BA ,CD 的延长线相交于点E .(1)求证:DC 是⊙O 的切线;【方法5①】(2)若AE =1,ED =3,求⊙O 的半径.◆类型五 添加辅助线计算阴影部分的面积【方法7】15.(芜湖期末)如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =23,则阴影部分的面积为( )A .2πB .π C.2π3 D.π3第15题图 第16题图 第17题图16.(阜阳期末)如图,在Rt △ABC 中,∠C =90°,∠ABC =30°,AC =2,将Rt △ABC绕点A 逆时针旋转45°后得到△AB ′C ′,点B 经过的路径为BB ′︵,图中阴影部分面积是( )A .2πB .2C .4πD .417.★(2017·乌鲁木齐中考)用等分圆周的方法,在半径为1的图中画出如图所示图形,则图中阴影部分面积为________.参考答案与解析1.C 2.B 3.等腰4.25 解析:设圆的圆心为O ,连接OA ,OC ,OC 与AB 交于点D .设⊙O 的半径为R cm.由题意可得OC ⊥AB ,∴AD =DB =12AB =20cm.在Rt △AOD 中,OA 2=AD 2+OD 2,即R 2=202+(R -10)2,解得R =25.故该脸盆的半径为25cm.5.2.5 解析:如图,设圆心为O ,切点为F ,连接OA ,AC ,OF ,OF 交AC 于点E .∵BD 是⊙O 的切线,∴OF ⊥BD .由题意可得AC ∥BD ,AC =BD =1.5米,∴OE ⊥AC ,EF =AB=0.25米.设⊙O 的半径为R 米.在Rt △AOE 中,AE =12AC =0.75米,OE =OF -EF =(R -0.25)米,AE 2+OE 2=OA 2,即0.752+(R -0.25)2=R 2,解得R =1.25.故这扇圆弧形门的最高点离地面的距离是1.25×2=2.5(米).6.C 7.138.213 解析:连接BE ,设⊙O 的半径为R .∵OD ⊥AB ,∴AC =BC =12AB =12×8=4.在Rt △AOC 中,OA =R ,OC =R -CD =R -2,OC 2+AC 2=OA 2,∴(R -2)2+42=R 2,解得R =5,∴OC =5-2=3.∵OA =OE ,AC =BC ,∴BE =2OC =6.∵AE 为⊙O 的直径,∴∠ABE =90°.在Rt △BCE 中,CE =BC 2+BE 2=62+42=213.9.(1)证明:连接AE .∵AC 为⊙O 的直径,∴∠AEC =90°,∴AE ⊥BC .∵AB =AC ,∴BE =CE .(2)解:连接OD ,OE .由(1)可知AE ⊥BC ,∴∠AEB =90°,∴∠BAE =90°-∠B =90°-70°=20°,∴∠DOE =2∠DAE =40°,∴DE ︵的度数为40°.(3)解:连接CD .由(1)可知BE =CE ,∴BC =2BE =6.设AB =AC =x ,则AD =x -2.∵AC 为⊙O 的直径,∴∠ADC =90°,∴∠BDC =90°.在Rt △BCD 中,CD 2=BC 2-BD 2=62-22=32.在Rt △ADC 中,AD 2+CD 2=AC 2,即(x -2)2+32=x 2,解得x =9,即AC 的长为9.10.B 11. 312.2 解析:连接OE ,OF .由题意得AD =AF ,BE =BD ,CE =CF ,OF ⊥AF ,OE ⊥BC .∵AB =5,AC =4,BC =3,∴AB 2=AC 2+BC 2,∴∠ACB =90°,∴∠ECF =90°.又∵OE =OF ,∴四边形OECF 是正方形.设OF =r ,则CF =CE =r .∵BC =3,∴BD =BE =BC -CE =3-r .∵AB =5,AC =4,∴AD =AB +BD =5+3-r ,AF =AC +CF =4+r ,∴5+3-r =4+r ,∴r =2,即⊙O 的半径是2.13.(1)解:连接OA .∵P A 是⊙O 的切线,∴∠P AO =90°.∵∠P =30°,∴∠AOD =60°.∵AC ⊥PB ,PB 过圆心O ,∴AD =DC .在Rt △ODA 中,AD =OA ·sin60°=532,∴AC =2AD =5 3.(2)证明:∵AC ⊥PB ,∠P =30°,∴∠P AC =60°.由(1)可知∠AOP =60°,∴∠BOA =120°,∴∠BCA =60°,∴∠P AC =∠BCA ,∴BC ∥P A .14.(1)证明:连接DO .∵AD ∥OC ,∴∠DAO =∠COB ,∠ADO =∠COD .∵OA =OD ,∴∠DAO =∠ADO ,∴∠COD =∠COB .又∵OD =OB ,OC =OC ,∴△COD ≌△COB ,∴∠CDO =∠CBO .∵BC 是⊙O 的切线,∴∠CBO =90°,∴∠CDO =90°.又∵点D 在⊙O 上,∴CD 是⊙O 的切线.(2)解:设⊙O 的半径为R ,则OD =R ,OE =OA +AE =R +1.由(1)可知DC 是⊙O 的切线,∴∠EDO =90°,∴ED 2+OD 2=OE 2,即32+R 2=(R +1)2,解得R =4,∴⊙O 的半径为4.15.C 解析:连接OD .∵CD ⊥AB ,∴∠COB =∠BOD ,CE =DE =12CD =3,∴S △OCE =S △ODE ,∴阴影部分的面积等于扇形BOD 的面积.∵∠CDB =30°,∴∠BOD =∠COB =60°,∴在Rt △ODE 中,OD =DE sin60°=2,∴S 扇形BOD =60π×22360=2π3,即阴影部分的面积为2π3.故选C.16.A 解析:∵在Rt △ABC 中,∠ACB =90°,∠ABC =30°,AC =2,∴AB =2AC =4.根据旋转的性质知△ABC ≌△AB ′C ′,则S △ABC =S △AB ′C ′,∴S 阴影=S 扇形BAB ′+S △ABC -S △AB ′C ′=S 扇形BAB ′=45π×42360=2π.故选A. 17.π-332解析:如图,设AB ︵的中点为P ,连接OA ,OP ,AP ,则∠AOP =60°,∴△AOP 为等边三角形,∴△OAP 的面积是34×12=34,扇形OAP 的面积是S 扇形=60360×π×12=π6,AP 直线和AP 弧围成的弓形面积为π6-34.由题意可得阴影面积为3×2S 弓形=π-332.。
九年级数学(RJ)-11.解题技巧专题:圆中辅助线的作法--精选练习
![九年级数学(RJ)-11.解题技巧专题:圆中辅助线的作法--精选练习](https://img.taocdn.com/s3/m/e2a9a765ba1aa8114431d9e3.png)
解题技巧专题:圆中辅助线的作法——形成思维定式,快速解题◆类型一 遇弦加弦心距或半径1.如图,已知⊙O 的半径为10,弦AB =12,M 是AB 上任意一点,则线段OM 的长可能是( )A .5B .7C .9D .11第1题图 第2题图2.如图,⊙O 是△ABC 的外接圆,∠B =60°,⊙O 的半径为4,则AC 的长等于( ) A .4 3 B .6 3 C .2 3 D .83.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,连接AC .若∠CAB =22.5°,CD =8cm ,则⊙O 的半径为________cm.第3题图 第4题图4.如图,一个宽为2cm 的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是________cm.◆类型二 遇直径添加直径所对的圆周角 5.(2016·玉林中考)如图,CD 是⊙O 的直径,已知∠1=30°,则∠2的度数为( )A .30°B .45°C .60°D .70°第5题图 第6题图6.如图,⊙O 是△ABC 的外接圆,∠B =60°,AC =8,则⊙O 的直径AD 的长度为( )A .16B .4 C.833 D.16337.如图,在△ABC 中,AB =AC ,以AC为直径的⊙O 交AB 于点D ,交BC 于点E .(1)求证:BE =CE ;(2)若∠B =70°,求DE ︵的度数;(3)若BD =2,BE =3,求AC 的长.◆类型三 遇切线连接圆心和切点8.如图,已知△ABC ,AB =BC ,以AB 为直径的圆交AC 于点D ,过点D 的⊙O 的切线交BC 于点E .若CD =5,CE =4,则⊙O 的半径是( )A .3B .4 C.256 D.258第8题图 第9题图 9.如图,AB 切⊙O 于点B ,OA =23,∠BAO =60°,弦BC ∥OA ,则BC ︵的长为_________(结果保留π).10.如图,在矩形ABCD 中,AB =4,AD =5,AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为_______.答案:。
北师大版初中数学九年级下册解题技巧专题:圆中辅助线的作法
![北师大版初中数学九年级下册解题技巧专题:圆中辅助线的作法](https://img.taocdn.com/s3/m/a1558fd7cc17552706220879.png)
北师大初中数学 九年级
重点知识精选
掌握知识点,多做练习题,基础知识很重要! 北师大初中数学 和你一起共同进步学业有成!
TB:小初高题库
北师大初中数学
解题技巧专题:圆中辅助线的作法
——形成思维模式,快速解题 ◆类型一 遇弦添加弦心距或半径 1.如图,AB 是⊙O 的一条弦,直径 CD⊥AB 于点 E.若 AB=24,OE=5,则⊙O 的 半径为( ) A.15 B.13 C.12 D.10
◆类型二 遇直径添加直径所对的圆周角 4.如图,CD 是⊙O 的直径,已知∠1=30°,则∠2 的度数为( ) A.30° B.45° C.60° D.70°
第 4 题图
第 5 题图
5.如图,BC 为半圆 O 的直径,A,D 为半圆上两点,AB= 3,BC=2,则∠D 的度
数为________度.
2,∴DE=3.∵DM 是⊙O 的切线,∴DN=DE=3,MN=MG,∴CM=BC-BG-MG=5
- 2- MN= 3- MN.在 Rt△DMC 中 , DM2= CD2+ CM2, ∴(3+ MN)2= 42+ (3- MN)2,
4
4 பைடு நூலகம்3
∴MN= ,∴DM=3+ = .
3
33
TB:小初高题库
北师大初中数学
=2∠DAE=40°,∴D︵E的度数为 40°.
(3)解:连接 CD.由(1)可知 BE=CE,∴BC=2BE=6.设 AB=AC=x,则 AD=AB-BD
=x-2.∵AC 为⊙O 的直径,∴∠ADC=90°.在 Rt△BCD 中,CD2=BC2-BD2=62-22=
32.在 Rt△ADC 中,AD2+CD2=AC2,即(x-2)2+32=x2,解得 x=9,即 AC 的长为 9.
中考数学答题技巧:圆与圆位置关系中常见辅助线的作法
![中考数学答题技巧:圆与圆位置关系中常见辅助线的作法](https://img.taocdn.com/s3/m/73637f2c0812a21614791711cc7931b765ce7b48.png)
中考数学答题技巧:圆与圆位置关系中常见辅助线的作法中考数学答题技巧:圆与圆位置关系中常见辅助线的作法圆与圆位置关系是初中几何的一个重要内容,也是学习中的难点,本文介绍圆与圆的位置关系中常见的五种辅助线的作法。
1. 作相交两圆的公共弦利用圆内接四边形的性质或公共圆周角,沟通两圆的角的关系。
例1. 如图1,⊙O1和⊙O2相交于A、B两点,过A、B分别作直线C D、EF,且CD//EF,与两圆相交于C、D、E、F。
求证:CE=DF。
图1分析:CE和DF分别是⊙O1和⊙O2的两条弦,难以直截了当证明它们相等,但通过连结AB,则可得圆内接四边形ABEC和ABFD,利用圆内接四边形的性质,则易证明。
证明:连结AB因为又因此即CE//DF又CD//EF因此四边形CEFD为平行四边形即CE=DF2. 作两相交圆的连心线利用过交点的半径、公共弦、圆心距构造直角三角形,解决有关的运算问题。
例2. ⊙O1和⊙O2相交于A、B两点,两圆的半径分别为和,公共弦长为12。
求的度数。
图2分析:公共弦AB可位于圆心O1、O2同侧或异侧,要求的度数,可利用角的和或差来求解。
解:当AB位于O1、O2异侧时,如图2。
连结O1、O2,交AB于C,则。
分别在和中,利用锐角三角函数可求得故当AB位于O1、O2同侧时,如图3图3则综上可知或3. 两圆相切,作过切点的公切线利用弦切角定理沟通两圆中角的关系例3. 如图4,⊙O1和⊙O2外切于点P,A是⊙O1上的一点,直线A C切⊙O2于C,交⊙O1于B,直线AP交⊙O2于D。
求证PC平分。
图4分析:要证PC平分,即证而的边分布在两个圆中,难以直截了当证明。
若过P作两圆的公切线PT,与AC交于T易知由弦切角定理,得又是的一个外角因此又从而有即PC平分4. 两圆相切,作连心线利用连心线通过切点的性质,解决有关运算问题。
例4. 如图5,⊙O1与半径为4的⊙O2内切于点A,⊙O1通过圆心O 2,作⊙O2的直径BC,交⊙O1于点D,EF为过点A的公切线,若,求的度数。
圆中常用的作辅助线的八种方法
![圆中常用的作辅助线的八种方法](https://img.taocdn.com/s3/m/c76de89c65ce05087632133a.png)
解:CD与⊙O相切,理由如下: 如图,作直径CE,连接AE. ∵CE是直径,∴∠EAC=90°. ∴∠E+∠ACE=90°. ∵CA=CB,∴∠B=∠CAB. ∵AB∥CD, ∴∠ACD=∠CAB. ∴∠B=∠ACD. 又∵∠B=∠E,∴∠ACD=∠E. ∴∠ACE+∠ACD=90°,即OC⊥DC. 又OC为⊙O的半径,∴CD与⊙O相切
证明:如图,连接AD,BD. ︵
∵∠DAC、∠DBC是DC所对的圆周角.
∴∠DAC=∠DBC.
∵CD平分∠ACM,DP⊥AC,DH⊥CM,
∴DP=DH.
在△ADP和△BDH中,ìïïïïíïïïïî
行DAP= 行DPA= DP=DH
DBH, DHB=90?, .
∴△ADP≌△BDH. ∴AP=BH.
∴R=
26 .
2
∵∠EAD=90°,OF⊥AD,
∴OF∥EA.
又∵O为中点,
∴OF= 1 AE= 1 BC= 1 .
2
2
2
即点O到AD的距离为 1 . 2
本题作出直径DE,利用“直径所对的圆周 角是直角”构造了两个直角三角形,给解题带 来了方便.
方法 4 证切线时辅助线作法的应用
4.如图,△ABC内接于⊙O,CA=CB,CD∥AB且 与OA的延长线交于点D. 判断CD与⊙O的位置关 系,并说明理由.
方法 8 巧添辅助线计算阴影部分的面积
9.【中考·自贡】如图所示,点B,C,D都在⊙O上, 过点C作AC∥BD交OB的延长线于点A,连接CD, 且∠CDB=∠OBD=30°,DB=6 3 cm.
(1)求证:AC是⊙O的切线;
证明:(1)如图,连接CO,交DB于点E, ∴∠O=2∠CDB=60°. 又∵∠OBE=30°, ∴∠BEO=180°-60°-30°=90°. ∵AC∥BD,∴∠ACO=∠BEO=90°. 即OC⊥AC. 又∵点C在⊙O上, ∴AC是⊙O的切线.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解题技巧专题:圆中辅助线的作法
——形成思维定式,快速解题
◆类型一遇弦加弦心距或半径
1.如图,已知⊙O的半径为10,弦AB =12,M是AB上任意一点,则线段OM的长可能是()
A.5 B.7 C.9 D.11
第1题图第2题图
2.如图,⊙O是△ABC的外接圆,∠B =60°,⊙O的半径为4,则AC的长等于()
A.4 3 B.6 3 C.2 3 D.8
3.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD =8cm,则⊙O的半径为________cm.
第3题图第4题图
4.如图,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是________cm.
◆类型二遇直径添加直径所对的圆周角
5.(2016·玉林中考)如图,CD是⊙O 的直径,已知∠1=30°,则∠2的度数为()
A.30° B.45° C.60° D.70°
第5题图第6题图
6.如图,⊙O是△ABC的外接圆,∠B =60°,AC=8,则⊙O的直径AD的长度为()
A.16 B.4 C.
83
3
D.
163
3
7.如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.
(1)求证:BE=CE;
(2)若∠B=70°,求DE
︵
的度数;
(3)若BD=2,BE=3,求AC的长.
◆类型三 遇切线连接圆心和切点 8.如图,已知△ABC ,AB =BC ,以
AB 为直径的圆交AC 于点D ,过点D 的⊙O
的切线交BC 于点E .若CD =5,CE =4,则⊙O 的半径是( )
A .3
B .4
C.256
D.25
8
第8题图 第9题图 9.如图,AB 切⊙O 于点B ,OA =23,∠BAO =60°,弦BC ∥OA ,则BC ︵
的长为_________(结果保留π).
10.如图,在矩形ABCD 中,AB =4,
AD =5,AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,过点D 作⊙O 的切线交BC 于
点M ,切点为N ,则DM 的长为_______.
答案:。