氨基酸含量分析法

合集下载

肥料氨基酸含量检测方法

肥料氨基酸含量检测方法

肥料氨基酸含量检测方法
肥料中氨基酸含量的检测方法可以采用多种技术和方法,以下是其中一些常用的方法:
1.高效液相色谱法(HPLC):这是一种常见的氨基酸含量检测方法。

它通过将样品中的氨基酸分离,并使用紫外检测器或荧光检测器检测各种氨基酸的浓度。

HPLC法通常具有高灵敏度和高分辨率,能够准确地测定各种氨基酸的含量。

2.气相色谱法(GC):气相色谱法也可用于氨基酸含量的检测。

在这种方法中,样品中的氨基酸首先转化为相应的氨基酸甲酯衍生物,然后通过气相色谱柱进行分离和检测。

GC法通常需要较长的分析时间,但具有较高的精确度和可靠性。

3.红外光谱法(IR):红外光谱法可以用于氨基酸的快速检测。

该方法通过分析样品中氨基酸分子的振动和拉伸模式来确定其含量。

红外光谱法具有快速、简便的优点,但灵敏度相对较低。

4.比色法:比色法是一种常用的定性和定量分析方法。

对于氨基酸含量的检测,可以使用特定的试剂与氨基酸反应产生显色反应,然后通过比色计或分光光度计测定溶液的吸光度来确定氨基酸的含量。

5.离子交换色谱法(IEC):离子交换色谱法是一种常用于分析氨基酸的方法。

在这种方法中,氨基酸根据其电荷性质在离子交换树脂柱上进行分离,并通过检测器检测各个氨基酸的浓度。

在选择合适的检测方法时,需要考虑样品的性质、所需的分析精度和灵敏度、分析时间以及实验室设备和经验等因素。

常见的检测方法通常会结合使用,以确保结果的准确性和可靠性。

17种氨基酸液相色谱法

17种氨基酸液相色谱法

17种氨基酸液相色谱法
液相色谱法是一种常用的分离和分析化学物质的技术。

在氨基
酸分析中,液相色谱法可以用于分离和检测氨基酸。

一般来说,液
相色谱法可以通过不同的色谱柱和检测方法来实现对氨基酸的分析。

针对17种氨基酸的液相色谱分析,首先需要准备样品,并进行
适当的前处理,如衍生化处理,以使得氨基酸能够更好地被分离和
检测。

接下来,选择合适的色谱柱和流动相,比如反相色谱柱和离
子交换色谱柱等,以实现氨基酸的分离。

此外,还需要选择合适的
检测方法,比如紫外检测器或荧光检测器等,来检测氨基酸的含量
和浓度。

在液相色谱分析过程中,需要严格控制实验条件,比如流速、
温度和pH 值等,以保证分离的准确性和重现性。

最后,通过比较
样品峰的保留时间和峰面积,可以定量分析出17种氨基酸的含量。

总的来说,液相色谱法对于17种氨基酸的分析需要精确的实验
操作和严格的条件控制,但可以实现对这些氨基酸的准确分离和定
量分析。

关于氨基酸的定量分析

关于氨基酸的定量分析
• 吸取该溶液25.0 mL于碘量瓶中,加溴液 50.00 mL ,加盐酸10 mL ,立即加盖,摇匀, 于暗处放置10 min
• 再在冰浴中冷却3 min 以上,加碘化钾5mL , 立即用硫代硫酸钠标准滴定溶液滴定至淡 黄色,加入淀粉溶液2 mL ,继续滴定至蓝色 消失为终点,同时做空白试验。
x(v1 v2)c0.02403100 m 25 100
有吸收的衍生试剂。该方法的基本原理是 经阳离子交换柱分离出的氨基酸与茚三酮 混合,经加热反应后,一级胺与之生成蓝紫 色化合物,二级胺与之生成黄色化合物。两 种衍生物使用双通道紫外检测器同步检测, 检测波长分别为570nm 和436nm。
C OH
C
C
OH
O
茚三酮
O
C OH
C
C
OH
O
COOH
H 3N
C
关于氨基酸的定量分析
氨基酸的分析方法
化学分析法——甲醛滴定法 甲醛滴定法用于氨基氮的
测定, 可以测出样品中总氨基酸 的含量,其原理是在中性或弱碱 性水溶液中,氨基酸的α—氨基与醛类反应生成
Schiff碱:α—氨基酸与甲醛反应生成亚 甲基亚氨基衍生物
H
R C C O O
N H 3
H C H O
O H
H
பைடு நூலகம்
R
O
C OH
C
C
H
NH3
CO2
O
O
C OH C
C OH
O
O C
C C O
O
C
NC
H
C
O
紫色化合物
RCHO
H
O C
CN C O
亮黄色化合物

食品中的氨基酸含量分析方法

食品中的氨基酸含量分析方法

食品中的氨基酸含量分析方法在我们生活中,各种食品中都含有丰富的营养成分。

氨基酸是构成蛋白质的基本单位,因此在食品中的氨基酸含量分析具有重要的意义。

正确的氨基酸含量分析方法对于我们评价食品质量,提高饮食健康具有重要的意义。

一、氨基酸的分类和特性氨基酸是一类含有氨基(-NH2)和羧基(-COOH)的有机分子,能够和其他氨基酸通过肽键结合在一起形成多肽和蛋白质。

按照侧链的性质和结构,氨基酸可被分为20种不同的类型。

氨基酸的性质非常特殊,它们能够在弱酸和弱碱中形成离子。

当氨基酸处于酸性环境中,羧基离去负电荷会更多,并采取负离子的形式,而氨基则会处于非离子状态。

反过来,当氨基酸处于碱性环境中,则氨基会处于离子状态,而羧基则会存在于非离子形态。

这种离子形态和非离子形态的变化使氨基酸在不同条件下具有不同的功能和特性。

二、氨基酸含量分析方法1.经典几何分析法经典几何分析法是一种重量测定法,通过氧化重量法或氢解重量法测量蛋白质样品的重量,并计算出样品中氨基酸含量的百分比。

然而,这种方法具有较大的误差,且需要大量的样品,在实验室中已经不常被使用。

2.直接测定法直接测定法是通过直接测定氨基酸在样品中的含量,然后计算出总蛋白质的含量。

常用的直接测定法有比色法、荧光法和色谱法。

比色法是一种基于酚酞(phenol red)的指示剂的分析方法,可以测定氨基酸的含量。

此外,还有一些比色反应也可以用来检测氨基酸含量。

这种方法的准确性较高,而且可以应用于不同种类的样品中。

荧光法利用氨基酸的荧光特性测量其含量。

荧光分析技术的灵敏度很高,但相对比色法来说,其选择性较差。

色谱法是一种常用的氨基酸分析方法,包括气相色谱法、高效液相色谱法和毛细管电泳。

这些方法具有灵敏度高、准确性高、选择性好等特点。

气相色谱法适用于挥发性氨基酸的测定,而高效液相色谱法和毛细管电泳则适用于非挥发性氨基酸的测定。

三、氨基酸含量分析方法的应用氨基酸含量分析方法在食品行业中有广泛的应用。

氨基酸的分析方法

氨基酸的分析方法

氨基酸的分析方法
氨基酸的分析方法主要有以下几种:
1. 比色法:利用氨基酸中的吸收光谱特性进行定量分析。

对于有色氨基酸,可以直接用此方法进行分析,如色氨酸、酪氨酸等。

对于无色氨基酸,需事先进行衍生化反应,如二羧基二氨基联苯胺(DTNB)法,测定半胱氨酸含量。

2. 氨基酸自动分析仪:常用的分析方法是自动氨基酸分析仪,其原理是利用离子交换色谱技术对氨基酸进行分离和检测。

该方法操作简便,自动化程度高,可同时分析多种氨基酸,用于生化实验和质量检测。

3. 氨基酸序列测定法:利用氨基酸测定仪测定氨基酸的相对分子质量,进而测定氨基酸的分子序列,通常用于蛋白质结构分析和生物活性研究。

4. 纸层析法:利用氨基酸的亲水性和疏水性差异进行分离,通常用于初步鉴定氨基酸的含量和组成。

该方法简便易行,但准确性较低,仅可作为定性或半定量分析方法。

5. 高效液相色谱法:利用高效液相色谱技术对氨基酸进行分离和检测。

该方法灵敏度高、重复性好、分辨率高,可用于生化分析和质量检测。

有机化学氨基酸分析

有机化学氨基酸分析

有机化学氨基酸分析1.色谱法色谱法是一种广泛使用的氨基酸分析方法,主要包括气相色谱法(GC)和液相色谱法(LC)。

气相色谱法:气相色谱法主要适用于描绘和鉴定原料氨基酸的种类、含量和结构等信息。

在该方法中,氨基酸样品首先通过酸水解生成对应的酸,然后酸再经甲醇酯化生成甲酯化酸。

最后通过气相色谱分离并检测酸甲酯化物。

液相色谱法:液相色谱法主要适用于定量分析氨基酸含量。

液相色谱法将氨基酸样品进行衍生化反应,如酰氯化反应或酸酐酯化反应,生成稳定的色氨酸酰胺衍生物,然后分离并检测各个衍生物。

2.光谱法主要包括紫外-可见吸收光谱法、红外光谱法和核磁共振光谱法等。

这些方法可以用于研究和确定氨基酸的结构和功能。

紫外-可见吸收光谱法:氨基酸溶液在特定波长范围内对紫外或可见光的吸收程度可以用来定量分析氨基酸的含量。

红外光谱法:红外光谱法可以用来研究氨基酸分子中的官能团和结构信息。

核磁共振光谱法:核磁共振光谱法可以提供关于氨基酸分子中原子的化学位移和耦合常数等信息。

3.电化学法电化学法主要包括电位滴定法和电化学发光法。

电位滴定法:通过测定氨基酸溶液的电化学行为,如氧化还原电位的变化,可以定量分析氨基酸的含量和测定其在酸碱条件下的酸解离常数。

电化学发光法:氨基酸在特定条件下通过电化学反应发光,凭借发光的强度可以定量分析氨基酸的浓度。

4.质谱法质谱法主要包括质子化时间飞行质谱法(PIT-TOFMS)和质子化辅助激光解吸电离质谱法(PALDIMS)等。

质子化时间飞行质谱法:PIT-TOFMS可以在非常短的时间内通过氨基酸分析样品中的氨基酸类型和含量。

该方法的优势在于可以同时测定样品中的多种氨基酸。

质子化辅助激光解吸电离质谱法:PALDIMS利用激光对氨基酸样品进行解离和电离,然后通过质谱仪进行质量分析。

该方法可以提供对氨基酸的结构、组成和含量等信息。

综上所述,有机化学氨基酸分析方法包括色谱法、光谱法、电化学法和质谱法等。

这些方法可以用于氨基酸的种类、含量、结构和功能的研究和分析。

氨基酸测定方法

氨基酸测定方法

氨基酸测定方法一、引言氨基酸是构成蛋白质的基本单位,因此对于蛋白质的研究和分析,氨基酸的测定是非常重要的。

目前,常用的氨基酸测定方法主要有色氨酸法、二硫化物法、硫酸铜法、乙醇胺法、二甲基乙二胺法等。

本文将从样品处理、试剂配制、实验步骤和数据处理等方面详细介绍氨基酸测定方法。

二、样品处理1. 样品收集:选择适当的组织或液体样品进行采集,如血清、尿液等。

2. 样品预处理:根据不同样品特点进行预处理,如尿液中可加入少量硝酸使其变为无色透明状态。

3. 样品保存:在低温条件下保存样品以避免其蛋白质降解。

三、试剂配制1. 氢氧化钠溶液:取固体氢氧化钠加入去离子水中搅拌至完全溶解。

2. 硫代乙酰胺溶液:取固体硫代乙酰胺加入去离子水中搅拌至完全溶解。

3. 氨基酸标准溶液:将各种氨基酸按照一定比例加入去离子水中,调节pH值至7.0左右。

4. 还原剂:取固体羟肟酸钠加入去离子水中搅拌至完全溶解。

四、实验步骤1. 样品处理:取适量的样品加入硫代乙酰胺溶液中,混合均匀后放置于60℃恒温水浴中反应20分钟。

2. 加入还原剂:将还原剂加入反应体系中,混合均匀后再次放置于60℃恒温水浴中反应20分钟。

3. 加入氢氧化钠溶液:将氢氧化钠溶液加入反应体系中,混合均匀后放置于60℃恒温水浴中反应30分钟。

4. 加入试剂:取适量的氨基酸标准溶液和待测样品分别加入反应体系中,混合均匀后放置于室温下静置10分钟。

5. 测定吸光度:使用分光光度计在570nm波长下测定反应体系的吸光度值。

五、数据处理1. 绘制标准曲线:将不同浓度的氨基酸标准溶液分别测定吸光度值,绘制标准曲线。

2. 计算待测样品中氨基酸含量:根据待测样品的吸光度值和标准曲线计算其中氨基酸含量。

3. 数据统计分析:对实验数据进行统计分析,如平均值、方差等。

六、注意事项1. 实验过程中要注意卫生和安全,避免试剂进入眼睛和口腔。

2. 样品处理时要避免过度稀释或过度浓缩,以保证实验结果的准确性。

氨基酸分析

氨基酸分析

2.2.56氨基酸分析(1)(见注解)氨基酸分析是指利用方法对蛋白质,多肽和其他药物制剂进行氨基酸组成或含量的分析。

蛋白质和多肽一般是氨基酸残基以共价键的形式组成的线性大分子。

蛋白质或多肽中氨基酸的序列决定了其分子的性质。

蛋白质普遍是由大分子以折叠的方式形成的特定构象,而多肽则比较小,可能只有几个氨基酸组成。

氨基酸分析方法可以用于对蛋白质和多肽的量化,基于氨基酸的组成来确定蛋白质或多肽的类型,支撑蛋白质和多肽的结构分析,评估碎片肽段,并检测可能存在于蛋白质或多肽中的不规则氨基酸。

并且在氨基酸分析之前必须进行将蛋白质或多肽水解为个别氨基酸。

伴随着蛋白质或多肽的水解,氨基酸分析的过程和其他药物制剂中氨基酸的游离是一致的。

通常我们采用易于分析的方法来测定样品中的氨基酸成分。

设备用于氨基酸分析方法通常是基于色谱分离氨基酸的方法设定的。

当前的方法是利用自动化色谱仪进行分析。

氨基酸分析仪通常是一个能够产生梯度的低压或高压的液相色谱仪,并在色谱柱上分离氨基酸。

除非样品在柱前进行了衍生化,否则这些仪器必须具备柱后衍生化的能力。

检测器使用的是紫外可见光检测器或荧光检测器。

此外,还需具有一个记录仪器(例如,积分仪),用于转化检测到的信号及用于定量测定。

而且,这些仪器是专门用于氨基酸分析使用的。

一般预防策施在氨基酸分析中,分析师关注的一个重点是背景的污染。

高纯度的试剂是必要的(例如,低纯度的盐酸的使用在分析中会产生甘氨酸污染)。

分析试剂通常是每隔几周更换一次,并且仅使用HPLC级别的溶剂。

所用试剂使用之前必须用过滤器将溶剂中可能潜在的微生物和外来材料污染过滤除去,保持溶剂贮存器出于密封状态,并且不可将氨基酸分析仪放置于光照条件下。

实验室的操作规范决定了氨基酸分析的质量。

仪器应放置在实验室的空旷区域。

保持实验室的卫生干净。

根据维修计划,及时清洁和校准移液管,将移液吸头放置在相应的盒子中,分析师不得用手处理移液管。

分析师需要穿戴一次性的乳胶手套或同等质量的其他手套。

测定氨基酸的方法以及试剂

测定氨基酸的方法以及试剂

一采用氨基酸自动分析仪测定氨基酸1.氨基酸测定原理:食物蛋白质经盐酸水解成为游离氨基酸,经氨基酸分析仪的离子交换柱分离后,与茚三酮溶液产生颜色反应,再通过分光光度计比色测定氨基酸含量。

2.测定氨基酸所用仪器:真空泵;恒温干燥箱;水解管:耐压螺盖玻璃管或硬质玻璃管,体积20~30mL。

用去离子水冲洗干净并烘干;真空干燥器(温度可调节);氨基酸自动分析仪。

3.测定氨基酸所用试剂及其配制方法:3.1试剂:全部试剂除注明外均为分析纯,实验用水为去离子水。

浓盐酸(优级纯);苯酚(须重蒸馏); 混合氨基酸标准液(仪器制造公司出售):0.00250mol/L; 不同pH值柠檬酸钠缓冲液;氢氧化锂(LiOH·H2O);冰乙酸(优级纯);二甲基亚砜(C2H6OS);水合茚三酮(C9H4O3·H2O);还原茚三酮(C18H10O6·2H2O);NaOH;高纯氮气(纯度99.99%);冷冻剂:市售食盐与冰按1∶3混合。

3.2试剂配制方法:3.2.1. 6mol/L盐酸∶浓盐酸(3.1)与水1∶1混合而成。

3.2.2. pH2.2的柠檬酸钠缓冲液:称取19.6g柠檬酸钠(Na3C6H5O7·2H2O)和16.5mL浓盐酸加水稀释到1000mL,用浓盐酸或50%的氢氧化钠溶液调节pH至2.2。

pH3.3的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和12mL浓盐酸加水稀释到1000mL,用浓盐酸或50%的氢氧化钠溶液调节pH至3.3。

pH4.0的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和9mL浓盐酸加水稀释到1000mL,用浓盐酸或50%的氢氧化钠溶液调节pH至4.0。

pH6.4的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和46.8g氯化钠(优级纯)加水稀释到1000mL,用浓盐酸或50%的氢氧化钠溶液调节pH至6.4。

3.2.3. 茚三酮溶液pH5.2的乙酸锂溶液:称取氢氧化锂(LiOH·H2O)168g,加入冰乙酸(优级纯)279mL,加水稀释到1000mL,用浓盐酸或50%的氢氧化钠溶液调节pH至5.2。

高效液相色谱法测定氨基酸含量的优化及应用

高效液相色谱法测定氨基酸含量的优化及应用

高效液相色谱法测定氨基酸含量的优化及应用一、前言氨基酸是构成生物体蛋白质的基本单元,具有重要的生物学功能,如构建细胞结构、参与免疫反应以及转运、储存等多种生命活动。

而测定氨基酸含量的方法有很多种,其中,高效液相色谱法(HPLC)具有高灵敏度、高分辨率、快速分离、定量准确、重现性好等特点,因此被广泛应用于氨基酸分析领域。

本文重点介绍了高效液相色谱法测定氨基酸含量的原理、优化及应用。

二、方法原理高效液相色谱法是利用固体相、液相以及流动相间相互作用的分离技术,它通过改变固体相和液相的化学性质和物理性质,通过不同流动相的渗透能力与氨基酸分子的分子量、极性、结构特征等因素的相互作用,实现对氨基酸化合物分离、检测和定量的目的。

三、优化方案1.色谱柱的选择色谱柱的选择直接影响着 HPLC 法测定氨基酸含量的敏感度和分离效果。

常用的色谱柱有离子交换柱、反相柱、手性柱。

2.氨基酸样品的制备氨基酸的提取方法主要有:硫酸-氯化氢法、热酸解法和酶切法。

其中前两种方法操作简单,容易控制,常用于高精度测定。

3.流动相的优化流动相中添加适量的酸或碱,有利于提高分离度和氨基酸的稳定性。

同时加入有机物质类的前处理,在未来进行样品的提取、清洗等操作,有助于减少基础样品产生。

4.色谱条件的优化尽量缩短柱温度,降低流速,减少相互扰动,提高分辨率。

通常,正向向柱洗液的浓度可逐渐提高,也可采用反向洗液以加速洗脱。

四、实验结果分析实验结果显示,优化后的 HPLC 法测定氨基酸含量其灵敏度、准确度、重现性等指标均有了明显的提高,特别是样品前处理及流动相的优化方案都有利于提高样品的稳定性和可检出性。

五、应用展望高效液相色谱法测定氨基酸含量的优化方案在氨基酸分析领域具有广泛的应用前景。

在临床医学、食品安全、环境污染等领域,测定氨基酸含量对于人类健康与生产活动具有重要意义,因此优化后的 HPLC 法测定氨基酸含量将被广泛应用于相关领域。

总之,高效液相色谱法测定氨基酸含量的优化方案既有理论指导又有实验可行性,为实现准确测定氨基酸含量提供了新思路和新途径。

氨基酸检测方法

氨基酸检测方法

氨基酸检测方法1. 氨基酸色谱法氨基酸色谱法是一种常用的氨基酸检测方法。

该方法是利用氨基酸的特性,在具有特定氨基酸浓度梯度的柱子中流动时,各种氨基酸会按照一定的顺序在柱子中被分离出来。

利用这种分离技术加上不同的检测方法,可以精确地测量样品中各种氨基酸的含量。

该方法准确度高,响应灵敏,但需要高昂的仪器和耗材。

2. 离子交换色谱法离子交换色谱法也是一种常用的氨基酸检测方法。

该方法是在离子交换柱中,将混合的氨基酸样品与柱内的离子交换树脂进行交换,实现各种氨基酸的分离和测量。

该方法测量精度高,但某些疏水性氨基酸分离效果不佳。

3. 毛细管电泳法毛细管电泳法是一种高效而准确的氨基酸检测方法。

其基本原理是将氨基酸样品在带电的毛细管中进行分离,利用质量分析仪器对氨基酸进行检测。

毛细管电泳法能够在非常短的时间内对混合氨基酸进行快速、准确的测量。

4. 气相色谱法气相色谱法是一种相对快速而精确的氨基酸检测方法。

在气相色谱法中,氨基酸样品首先通过氨基酸衍生化反应使其变得易于气相分析,然后在气相色谱仪中将氨基酸进行分离和测量。

该方法准确度较高,同时也提供了氨基酸的结构信息。

5. 氢化技术法氢化技术法是一种经典的氨基酸检测方法。

该方法是将氨基酸样品加入到盛有氢气的高压釜中,加热反应,利用氢化反应将氨基酸转化为氨基酸替代物,然后对替代物进行定量测量。

该方法简单易行,但需要高压釜及氢气供应等耗材。

6. 高效液相色谱法高效液相色谱法是一种可靠的氨基酸检测方法。

其基本原理是使混合样品在高效液相色谱柱中分离,使各种氨基酸有序地流过柱中吸附剂,并使用各种检测方法获得氨基酸含量的定量信息。

该方法测量范围广,准确度高,但仍需要较昂贵的仪器和耗材。

7. 红外光谱法红外光谱法是一种非常方便和易行的氨基酸检测方法。

该方法利用分子中各个化学键的振动所导致特定波长的吸收光谱来区分各种氨基酸。

虽然红外光谱法不能直接定量测量氨基酸,但是可以通过特定的计算和数据分析方法来获得氨基酸的含量和结构信息。

食品中氨基酸的分析方法和定量测定

食品中氨基酸的分析方法和定量测定

食品中氨基酸的分析方法和定量测定氨基酸是构成蛋白质的基本组成单位,对于人体的健康起着重要作用。

因此,食品中氨基酸的分析方法和定量测定是食品科学领域中的一个重要课题。

本文将介绍几种常用的氨基酸分析方法,并探讨其优点和局限性。

1. 紫外光谱法紫外光谱法是一种常用的氨基酸分析方法,它通过检测氨基酸溶液在特定波长下的吸收情况来定量测定氨基酸的含量。

这种方法的优点在于操作简单、快速方便,并且需要的设备简单,成本较低。

但它的局限性在于只能测定氨基酸的总含量,无法对不同种类的氨基酸进行定量测定。

2. 高效液相色谱法高效液相色谱法是一种常用的氨基酸分析方法,它通过样品与色谱柱中的固定相相互作用,分离出不同种类的氨基酸,并通过检测各种氨基酸在特定条件下的保留时间来定量测定其含量。

这种方法的优点在于可以对不同种类的氨基酸进行定量测定,并且具有较高的灵敏度和准确度。

但它的操作比较复杂,需要较为昂贵的设备和试剂,成本较高。

3. 毛细管电泳法毛细管电泳法是一种基于氨基酸在电场下的迁移速率不同而分离的分析方法,它通过检测氨基酸在毛细管中的迁移时间和峰面积来定量测定其含量。

这种方法的优点在于分离效果好,分辨率高,并且需要的样品量较少。

但它的操作相对复杂,需要特殊的设备和技术,成本较高。

除了上述的几种常用方法之外,还有其他一些新兴的氨基酸分析方法值得关注。

4. 质谱法质谱法是一种基于氨基酸分子的质量-电荷比不同而分离的分析方法,它通过检测样品中氨基酸分子的质量谱图来定量测定其含量。

这种方法的优点在于能够对不同种类的氨基酸进行定量测定,并且具有很高的灵敏度和准确度。

但它的设备成本较高,并且操作复杂,需要有一定的专业知识和技术。

5. 生物传感器法生物传感器法是一种利用生物体内的特定分子与目标物质结合反应产生一定信号来测定目标物质含量的分析方法。

对于氨基酸的定量测定,可以利用特定的酶或菌种来产生与氨基酸结合反应的信号,进而定量测定其含量。

氨基酸检测方法

氨基酸检测方法

1. 分光光度法氨基酸检测: 主要是利用氨基酸与衍生剂发生化学反应,产生蓝紫色化合物,该化合物在某一波长处有最大吸收峰,根据吸收值大小得到氨基酸含量。

常用的衍生剂为茚三酮。

分光光度法具有操作方便、仪器要求简单、成本低、应用范围广以及适用于芳香族氨基酸检测等特点。

2. 毛细管电泳法氨基酸检测: 根据分离原理的不同,可分为毛细管区带电泳、毛细管凝胶电泳、毛细管等电电泳、毛细管等速电泳以及胶束电动力学毛细管电泳。

其中,毛细管区带电泳和胶束电动力学毛细管电泳可用于氨基酸检测。

毛细管电泳法具有分离效率高、分析时间短、溶剂用量少、无须梯度洗脱以及适用于氨基酸的手性分离等特点,但该方法分析结果重现性较差。

3. 近红外光谱法氨基酸检测: 利用有机化合物的含氢基团在特定波长区域跃迁,产生光谱的变化,结合统计学方法间接地实现氨基酸的定量检测。

近红外光谱法具有高效、无污染、无破坏性以及可同时检测多组分等特点。

4. 气相色谱法氨基酸检测:将氨基酸衍生化处理变为容易气化的物质,根据气态样品中各组分在流动相和固定相中的分配系数的不同,实现对氨基酸的定量分析。

GC法不仅能检测氨基酸含量,还可以发现新氨基酸,但缺点在于操作复杂、干扰因素多,专一性差。

5. 高效液相色谱法氨基酸检测: 是最常用的一种氨基酸检测方法。

由于大多数氨基酸本身没有紫外吸收和荧光反应,因此需要对样品进行衍生化处理将其转化为有紫外吸收和发射荧光的物质,衍生可分为柱前衍生和柱后衍生。

1)柱前衍生:是样品在进入色谱柱之前,氨基酸经衍生化转变为适合反相高效液相色谱检测的物质,常用的衍生剂有丹酰氯、邻苯二甲醛、萘二甲醛等。

实验常用的色谱柱有C8柱、C18柱和CN柱,检测方法有HPLC-UV、HPLC-ELSD、HPLC-FLD、HPLC-MS等。

2)柱后衍生:是样品经离子交换柱分离,分离后的氨基酸再进行衍生化处理。

常用的柱后衍生化试剂有茚三酮和荧光胺,其中荧光胺的灵敏度比茚三酮高大约 3个数量级。

氨基酸测定方法

氨基酸测定方法

氨基酸测定方法一、引言氨基酸是构成蛋白质的基本组成单位,对于生命体的生长和发育起着重要的作用。

因此,准确测定氨基酸的含量和组成对于研究蛋白质结构和功能具有重要意义。

本文将介绍一些常用的氨基酸测定方法,包括色谱法、光谱法和化学法等。

二、色谱法测定氨基酸2.1 气相色谱法气相色谱法是测定氨基酸含量和组成的常用方法之一。

该方法通过将氨基酸样品转化为易挥发的衍生物,然后使用气相色谱仪进行分析。

气相色谱法具有分离效果好、灵敏度高和操作简便等优点。

2.1.1 衍生化反应在气相色谱法中,常用的氨基酸衍生化反应包括酯化、酰化和取代反应等。

这些反应能够将氨基酸转化为易挥发的衍生物,便于后续的气相色谱分析。

2.1.2 气相色谱仪气相色谱仪是进行气相色谱分析的关键设备。

它由进样系统、色谱柱和检测器等部分组成。

进样系统用于将样品引入色谱柱,色谱柱用于分离氨基酸衍生物,检测器用于检测分离后的化合物。

2.2 液相色谱法液相色谱法也是测定氨基酸含量和组成的常用方法之一。

该方法通过将氨基酸样品溶解在溶剂中,然后使用液相色谱仪进行分析。

液相色谱法具有分离效果好、灵敏度高和选择性强等优点。

2.2.1 色谱柱选择在液相色谱法中,选择合适的色谱柱对于分离氨基酸非常重要。

常用的色谱柱包括离子交换柱、反相柱和手性柱等。

不同的色谱柱具有不同的分离机理和选择性,可以根据需要选择合适的色谱柱。

2.2.2 梯度洗脱条件在液相色谱法中,通过调整洗脱溶剂的组成和流速等参数,可以实现对氨基酸的有效分离。

梯度洗脱条件可以根据氨基酸的亲水性和极性等特性进行优化。

三、光谱法测定氨基酸3.1 紫外-可见光谱法紫外-可见光谱法是测定氨基酸含量和组成的常用方法之一。

该方法通过测量氨基酸在紫外-可见光波段的吸收特性,来推断其含量和组成。

紫外-可见光谱法具有操作简便、灵敏度高和选择性强等优点。

3.1.1 吸收峰特征不同氨基酸在紫外-可见光谱中具有不同的吸收峰特征。

通过测量氨基酸的吸收峰强度和位置,可以推断其含量和组成。

氨基酸分析仪法测定氨基酸含量

氨基酸分析仪法测定氨基酸含量
测定农作物中的氨基酸含量
• 评价作物的营养品质,指导作物育种和栽培
• 检测农作物中的氨基酸代谢产物,研究作物生长和抗逆性
检测农业生产中的肥料和饲料
• 测定肥料和饲料中的氨基酸含量,评估肥料和饲料的营养价值
• 检测肥料和饲料中的氨基酸代谢产物,评估肥料和饲料的使用效果
谢谢观看
THANK YOU FOR WATCHING
• 通过输液泵和色谱柱实现氨基酸的分离
• 使用检测器检测氨基酸的荧光或紫外吸收信号
⌛️
数据处理
• 使用计算机和软件处理实验数据
• 计算氨基酸的含量和相对含量
• 生成实验报告,总结实验结果
03
氨基酸分析仪法的实验操作
样品前处理及氨基酸提取
样品前处理
氨基酸提取
• 研磨样品,使其均匀分散
• 使用醋酸钠或醋酸铵溶液沉淀氨基酸
氨基酸分析仪法在食品检测中的应用
测定食品中的氨基酸含量
检测食品中的食品添加剂
• 评价食品的营养价值,指导食品配方和加工
• 测定食品添加剂中的氨基酸含量,评估食品添加剂的安
• 检测食品中的氨基酸代谢产物,评估食品的新鲜度和品
全性

• 检测食品添加剂中的氨基酸代谢产物,评估食品添加剂
的使用效果
氨基酸分析仪法在生物医药领域的应用
谢产物,评估食品的新鲜
度和品质
农业领域

• 测定农作物中的氨基酸
生物医药领域
含量,评价作物的营养品

• 检测农作物中的氨基酸
代谢产物,研究作物生长
和抗逆性

• 测定生物体液中的氨基
酸含量,评价生理功能和
疾病状态
• 检测生物组织中的氨基

食品中18种氨基酸检验方法

食品中18种氨基酸检验方法

食品中18种氨基酸检验方法食品中氨基酸是构成蛋白质的重要成分之一。

氨基酸的检验方法能够帮助我们了解食品中氨基酸的含量和种类,对于食品的营养价值评估和质量控制具有重要意义。

本文将介绍18种常见氨基酸的检验方法。

1. 色谱法:色谱法是检测氨基酸含量的常用方法之一。

通过将样品中的氨基酸分离出来,并利用色谱柱分离各个氨基酸,再利用紫外检测器检测各个氨基酸的含量。

2. 毛细管电泳法:毛细管电泳法是一种高效、快速的氨基酸分析方法。

通过将样品中的氨基酸在电场作用下在毛细管中迁移,再利用紫外检测器检测各个氨基酸的含量。

3. 高效液相色谱法:高效液相色谱法是一种常用的氨基酸分析方法。

通过将样品中的氨基酸在液相中分离,并利用紫外检测器检测各个氨基酸的含量。

4. 离子交换色谱法:离子交换色谱法是一种常用的氨基酸分离和检测方法。

通过将样品中的氨基酸在离子交换柱上分离,并利用紫外检测器检测各个氨基酸的含量。

5. 高温液相色谱法:高温液相色谱法是一种适用于疏水性氨基酸检测的方法。

通过将样品中的氨基酸在高温条件下分离,并利用紫外检测器检测各个氨基酸的含量。

6. 酶法:酶法是一种常用的氨基酸分析方法。

通过将样品中的氨基酸与特定的酶反应,生成可测定的产物,并利用酶活性的变化来测定各个氨基酸的含量。

7. 比色法:比色法是一种简单、快速的氨基酸分析方法。

通过将样品中的氨基酸与特定的试剂反应,生成具有特定颜色的产物,并利用比色计测定各个氨基酸的含量。

8. 紫外分光光度法:紫外分光光度法是一种常用的氨基酸检测方法。

通过测量各个氨基酸在紫外光波长下的吸光度,来测定各个氨基酸的含量。

9. 荧光分析法:荧光分析法是一种敏感、高效的氨基酸检测方法。

通过测量各个氨基酸在激发光波长下的荧光强度,来测定各个氨基酸的含量。

10. 质谱法:质谱法是一种高灵敏度的氨基酸分析方法。

通过将样品中的氨基酸转化为气相离子,并利用质谱仪测定各个氨基酸的含量。

11. 核磁共振法:核磁共振法是一种非破坏性的氨基酸分析方法。

食品中氨基酸含量的检测与分析方法研究

食品中氨基酸含量的检测与分析方法研究

食品中氨基酸含量的检测与分析方法研究随着人们对健康饮食的关注度的提高,食品中的营养成分也受到了广泛关注。

氨基酸作为构成蛋白质的基本单位,对于人体的正常生理功能发挥至关重要。

因此,研究食品中氨基酸含量的检测与分析方法对于保护消费者的健康、指导食品生产工艺和优化食品营养配比具有重要意义。

目前,食品中氨基酸含量的检测与分析方法主要包括传统的色谱法、测定法以及近年来兴起的光谱法、质谱法等多种技术手段。

其中,色谱法是一种常用且成熟的方法,可以按照氨基酸分子的特性进行分离和检测。

比如常见的高效液相色谱(HPLC)和毛细管电泳(CE)等方法,均可以用于分析食品中氨基酸的类型和含量。

通过对样品进行前处理、色谱条件的优化和分析仪器的选择,可以获得准确、灵敏的检测结果。

此外,光谱法和质谱法也逐渐受到研究者的关注。

光谱法利用物质吸收、发射和散射光谱特性进行分析,具有非破坏性和对多组分同时分析的优势。

利用紫外-可见吸收光谱、荧光光谱等手段可以快速、便捷地检测食品中的氨基酸含量。

质谱法则是通过将样品中的化合物或化学物质离子化,并利用质谱仪器进行分析和鉴定。

例如,用气相色谱质谱联用仪(GC-MS)可以实现对食品中氨基酸含量的准确测定。

在食品中氨基酸含量的检测与分析中,样品的前处理步骤也是至关重要的。

不同的食品样品存在着不同的基质干扰,需要采用适当的前处理手段对样品进行净化和预处理。

比如,选择合适的溶剂进行样品提取,利用柱色谱方法去除干扰物质,或者通过萃取、浸泡等方法提高样品中氨基酸含量的稳定性和检测灵敏度。

此外,食品中氨基酸含量的检测与分析方法在实际应用中还面临着一些挑战和困难。

首先,食品样品的复杂性和多样性使得分析方法的适用性和精确性成为关键。

其次,对于一些痕量或者非常规氨基酸的测定,需要进一步改进方法的选择和样品处理的工艺。

同时,食品加工和贮藏过程中,氨基酸含量可能会发生变化,这也是需要考虑的因素之一。

综上所述,食品中氨基酸含量的检测与分析方法的研究对于提高食品质量、保障消费者健康和指导食品加工具有重要意义。

氨基酸成分分析

氨基酸成分分析

氨基酸成分分析氨基酸是生物体构成的重要物质之一,其在生物体的代谢过程中起着关键作用。

因此,对氨基酸的成分进行分析,以获取其在生命过程中的作用机理是一项重要的研究内容。

氨基酸成分分析的方法主要有红外光谱法、电感耦合等离子体发射光谱法、高效液相色谱法、凝胶渗透色谱法以及基因测序法等。

红外光谱法是目前应用较为广泛的一种分析方法,根据氨基酸的红外光谱强度变化,能反映出氨基酸的成分组成,进而推断其在生物体中的生理作用。

另外,电感耦合等离子体发射光谱法也是一种常用的氨基酸成分分析方法,能精确判定氨基酸的种类及其含量,但由于该方法存在精度较低的问题,一般仅在单一物质检测或比较研究中使用。

高效液相色谱法是一种新型多变量分析技术,能有效快速地分离和检测出多种氨基酸组分,并可用于大规模的氨基酸成分分析。

凝胶渗透色谱法也是一种通用的氨基酸成分分析方法,既可以分离分子质量较小的类似物,也可以分离分子质量较大的复杂物质,而且能够获取更多的细节信息。

最后,基因测序法也是氨基酸成分分析的常用技术,可迅速、准确地分析氨基酸组分的质量和结构,并获得更详细的信息。

氨基酸成分分析的应用广泛,不仅在生物学和医学领域,而且在食品、环境、农业等领域也有着重要的应用。

在食品研究和生产领域,氨基酸成分分析技术可用于研究食品的加工及质量检测,有助于提高食品的口感和质量,保障消费者的身心健康。

此外,氨基酸成分分析也可用于环境污染监测、农业农药残留物检测、植物分子生物学等研究,以监测环境中氨基酸物质的含量,为保护环境提供科学依据。

综上所述,氨基酸成分分析具有重要的意义和应用前景,对深入解析氨基酸的生物活性及其在生命过程中的作用机制都有重要的意义,实现高效、准确的氨基酸成分分析,将为科学家研究提供有价值的理论指导。

氨基酸测定方法

氨基酸测定方法

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载氨基酸测定方法地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容4.1 光度分析法[5] [6]β-氨基丙酸和茚三酮溶液在弱酸的条件下可以生成蓝紫色物质[7],其颜色深浅主要与β-氨基丙酸的浓度有关。

因此可利用此显色反应采用比色法定量测量β-氨基丙酸。

我在实验中发现很多因素如浓度、pH值、反应温度、以及反应时间等对此显色反应有很大的影响。

如忽视这些因素会使实验产生很大的误差。

就此显色反应的最佳条件我做了初步的探究。

4.1.1试剂的配制:缓冲液的配制:配制pH= 6.00的NaAc-HAc缓冲溶液β-氨基丙酸标准溶液的配制:用电子天平准确称取1.020 gβ-氨基丙酸(生化纯),溶于250ml pH=6.00缓冲溶液中,得到C = 4.080 g/L标准溶液。

茚三酮试剂的配制:称取0.5g茚三酮溶于100ml蒸馏水中,得到5g/L的茚三酮水溶液。

4.1.2标准曲线的确定分别准确移取0.30ml、0.40ml、0.50ml、0.60ml、0.70ml、0.80ml、0.90ml、1.00ml标准液于8个比色管中,用pH=6.00的缓冲溶液稀释到5.00ml 再加入1ml茚三酮水溶液充分摇匀,将其放在沸水浴中加热10min。

冷却到室温,用7230型分光光度计在569nm下测其吸光度。

以吸光度和浓度作一个标准曲线。

4.1.3样品的测定稀释待测液于0.24mg/ml—0.73mg/ml,调pH值到6.00,以相同的反应条件,测其吸光值并与上面的标准曲线对照查出稀释液的浓度,再乘以稀释倍数即为β-氨基丙酸的浓度。

4.1.4 标准曲线的测定结果β-氨基丙酸浓度在0.24mg/ml—0.73mg/ml范围内与茚三酮水溶液反应,颜色表现出由浅蓝到深蓝的递增变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新增附录附录XX 氨基酸分析法氨基酸分析法是指用于测定蛋白质、肽及其他药物制剂的氨基酸组成或含量的方法。

根据氨基酸组成分析可以对蛋白质及肽进行鉴别,氨基酸分析法可用于确定蛋白质、肽及氨基酸的含量,及测定可能存在于蛋白质及肽中的非典型氨基酸。

进行氨基酸分析前,必须将蛋白质及肽水解成单个氨基酸,具体水解方法由各品种项下规定。

蛋白质及肽水解后,其氨基酸分析过程与用于其他药物制剂中游离氨基酸的分析过程相同。

本法包括四种柱前衍生法,分别为异硫氰酸苯酯(PITC)法、6-氨基喹啉-N-羟基琥珀酰亚氨基氨基甲酸酯(AQC)法、邻苯二醛(OPA)和9-芴甲基氯甲酸甲酯(FMOC)法、2,4-二硝基氟苯(DNFB)法,以及一种茚三酮柱后衍生法。

不同的品种应针对自身所含的氨基酸种类及各氨基酸的含量选择适宜的氨基酸分析方法并做相应的方法学验证。

由于本法衍生过程中衍生溶液量较少,且容易挥发,外标法极易出现较大的误差,建议采用内标法进行测定,内标的确定由各品种项下规定。

在本法中,由于半胱氨酸或胱氨酸的衍生产物不稳定,因此对于含半胱氨酸或胱氨酸的样品衍生后应尽快测定,或者在衍生前对半胱氨酸或胱氨酸进行适当的处理,使其转化为稳定地产物(如磺基丙氨酸或半胱氨酸-硫代丙酸)后再衍生测定,具体方法由各品种项下规定。

在测定过程中,可根据所用的仪器、色谱柱品牌、色谱柱的长度及要分离的氨基酸种类,对流动相的有机溶剂和洗脱梯度作适当调整以获得较好的分离度。

第一法 PITC柱前衍生氨基酸分析法本法系根据氨基酸与异硫氰酸苯酯(PITC)反应,生成有紫外响应的氨基酸衍生物苯氨基硫甲酰氨基酸(PTC-氨基酸),PTC-氨基酸经反相高效液相色谱分离后用紫外检测,在一定的范围内其吸光值与氨基酸浓度成正比。

本方法的线性浓度范围为0.025~1.25µmol/ml。

试剂(1)流动相A 0.1mol/L醋酸钠溶液(取无水醋酸钠8.2g,加水900ml溶解,用冰醋酸调pH至6.5,然后加水至1000 ml)-乙腈(93:7)。

(2)流动相B 乙腈-水(8:2)。

对照品溶液按各品种项下规定的方法制备。

供试品溶液按各品种项下规定的方法制备。

色谱条件与系统适用性试验用十八烷基硅烷键合硅胶为填充剂(4.6×250mm,5μm);流速为每分钟 1.0ml;柱温为40℃;检测波长为254nm。

各氨基酸峰间的分离度均应大于1.0。

洗脱梯度如下:时间(min) 流动相A(%)流动相B(%)0 100 014 85 1529 66 3430 0 10037 0 10037.1 100 045 100 0测定法精密量取氨基酸对照品溶液200μl,置一2ml塑料离心管中,精密加入1mol/L三乙胺乙腈溶液100μl,混匀,精密加入0.1mol/L异硫氰酸苯酯乙腈溶液100μl,混匀,室温放置1小时,加0.8ml正己烷,剧烈振摇,放置10min,精密取下层溶液2μl,注入液相色谱仪,记录色谱图;另精密量取供试品溶液200μl,自“置一2ml塑料离心管中”起同法测定。

第二法 AQC柱前衍生氨基酸分析法本法系根据氨基酸与6-氨基喹啉-N-羟基琥珀酰亚氨基氨基甲酸酯(AQC)反应,生成有紫外与荧光响应的不对称尿素衍生物(AQC-氨基酸),AQC-氨基酸经反相高效液相色谱后用紫外或荧光检测,在一定的范围内其吸光值与氨基酸浓度成正比。

本方法的线性浓度范围为2.5~200nmol/ml。

试剂(1)流动相A 取醋酸铵10.8g或无水醋酸钠11.5g,加水900ml 溶解,用磷酸调pH至5.0,然后加水至1000 ml。

(2)流动相B 乙腈-水(3:2)。

(3)0.4 mol/L 硼酸盐缓冲液(pH 8.8) 取硼酸12.36g,加水400ml溶解,用40%氢氧化钠溶液调pH至8.8,然后加水稀释至500ml。

(4) AQC溶液取AQC适量,加乙腈溶解并稀释制成每1ml中含1mg 的溶液。

对照品溶液按各品种项下规定的方法制备。

供试品溶液按各品种项下规定的方法制备。

色谱条件与系统适用新试验用十八烷基硅烷键合硅胶为填充剂(4.6×250mm,5μm);流速为每分钟 1.4ml;柱温为37℃;检测波长为248nm。

各氨基酸峰间的分离度均应大于1.0。

洗脱梯度如下:时间(min) 流动相A(%)流动相B(%)0 88 1214 88 1229 80 2030 59 4137 59 4137.1 88 1245 88 12测定法精密量取对照品溶液10μl,置一直径为0.4cm、高度为5cm 的小试管中,精密加入0. 4 mol/L 硼酸盐缓冲液(pH 8.8) 70μl,在涡旋混匀器上混匀,精密加入AQC溶液20μl,混匀,精密量取5μl,注入液相色谱仪,记录色谱图;另精密量取供试品溶液10μl,自“置一直径为0.4cm”起同法测定。

第三法 OPA和FMOC柱前衍生氨基酸分析法本法系根据一级氨基酸,在巯基试剂存在下,首先与邻苯二醛(OPA)反应,生成OPA-氨基酸;反应完毕后,加入9-芴甲基氯甲酸甲酯(FMOC),剩余的二级氨基酸与FMOC继续反应,生成FMOC-氨基酸,两次反应生成的氨基酸衍生物经反相高效液相色谱分离后用紫外或荧光检测,在一定的范围内其吸光值与氨基酸浓度成正比。

本方法的线性浓度范围为0.025~2.5µmol/ml。

试剂(1)流动相A 称取醋酸钠7.5g,加水4000ml溶解,加三乙胺800μl,四氢呋喃24ml,混匀,用2%醋酸调pH至7.2。

(2)流动相B 称取醋酸钠10.88g,加水800ml溶解,用2%醋酸调pH至7.2,加乙腈1400ml,甲醇1800ml,混匀。

(3)0.4 mol/L 硼酸盐缓冲液(pH 10.4) 取硼酸24.73g,加水800ml 溶解,用40%氢氧化钠溶液调pH至10.4,然后加水稀释至1000ml。

(4)OPA溶液取OPA 80mg,加0.4 mol/L 硼酸盐缓冲液(pH 10.4) 7ml,加乙腈1ml,3-巯基丙酸125μl ,混匀。

(5)FMOC溶液取FMOC 40mg , 加乙腈8ml溶解。

对照品溶液按各品种项下规定的方法制备。

供试品溶液按各品种项下规定的方法制备。

色谱条件与系统适用性试验用十八烷基硅烷键合硅胶为填充剂(4.6×150mm,5μm);柱温为40℃;检测波长为338nm(一级氨基酸),262nm(二级氨基酸)。

各氨基酸峰间的分离度均应大于1.0。

洗脱梯度及流速如下:流动相B(%)流速(ml/min)时间(min) 流动相A(%)0.0 100 0 1.017.0 50 50 1.045.0 0 100 1.045.1 0 100 1.550.0 0 100 1.550.1 100 0 1.053 100 0 1.0测定法精密量取对照品溶液50μl,置一1.5ml塑料离心管中,精密加入0. 4 mol/L 硼酸盐缓冲液(pH 10.2) 250μl,混匀,精密加OPA衍生剂50μl,混匀,放置30秒,精密加入FMOC衍生剂50μl,混匀,精密量取4μl,注入液相色谱仪,记录色谱图;另精密量取供试品溶液50μl,自“置一1.5ml 塑料离心管中”起同法测定。

附注:1、由于OPA-氨基酸不稳定,因此衍生后应立即进行分离测定。

2、本方法的衍生过程也可由自动进样器完成。

第四法 DNFB柱前衍生氨基酸分析法本法系根据氨基酸与2,4-二硝基氟苯(DNFB)反应,生成有紫外响应的二硝基苯-氨基酸(DNP-氨基酸),DNP-氨基酸经反相高效液相色谱分离后采用紫外检测,在一定的范围内其吸光值与氨基酸浓度成正比。

本方法的线性响应范围为30~140 pmol。

本法所用的2,4-二硝基氟苯属易爆、剧毒物质,有强致癌性,且该法对色谱柱要求较高,易损坏色谱柱,衍生试剂水解生成的2,4-二硝基苯易干扰丝氨酸的测定。

除另有规定外,一般不宜采用本法。

试剂(1)流动相A)0.05mol/L醋酸钠溶液(取 4.1g无水醋酸钠,加水800ml溶解,加二甲基甲酰胺10ml,用稀醋酸调pH至6.4,用水稀释至1000 ml)。

(2)流动相B 流动相A-乙腈(1:1)。

对照品溶液按各品种项下规定的方法制备。

供试品溶液按各品种项下规定的方法制备。

色谱条件与系统适用新试验用十八烷基硅烷键合硅胶为填充剂(4.6×250mm,5μm);流速为每分钟 1.0ml;柱温为40℃;检测波长为360nm。

各氨基酸峰间的分离度均应大于1.0。

洗脱梯度如下:时间(min) 流动相A(%)流动相B(%)0 75 256 75 256.1 65 3511 59 4114 59 4114.1 50 5022 45 5532 10 9037 10 9039 75 2550 75 25测定法精密量取氨基酸对照品溶液2ml,置一50ml量瓶中,加0.5mol/L碳酸氢钠溶液2ml,2,4-二硝基氟苯衍生化试剂(量取2,4-二硝基氟苯1ml ,用乙腈稀释至100ml)1ml,混匀,在60℃水浴中反应1小时,取20μl,注入液相色谱仪,记录色谱图;另精密量取供试品溶液2ml,自“置一50ml量瓶中”起同法测定。

第五法茚三酮柱后衍生氨基酸分析法本法系根据氨基酸经阳离子交换色谱柱分离后,与茚三酮反应,一级氨基酸生成在570nm处具有最大吸收的紫色化合物,二级氨基酸(如脯氨酸)生成在440nm具有最大吸收的黄色化合物,分别在570nm和440nm下检测上述反应产物,在一定的范围内其吸光值与氨基酸浓度成正比。

本方法的线性响应范围为20~500 pmol。

试剂(1)流动相A 取无水柠檬酸钠1.7g,盐酸1.5ml,加水溶解并稀释至100ml,用盐酸调pH至3.0。

(2)流动相B 取无水柠檬酸钠1.7g,盐酸0.7ml,加水溶解并稀释至100ml,用盐酸调pH至4.3。

(3)流动相C 取氯化钠5g,无水柠檬酸钠1.9g,苯酚0.1g,加水溶解并稀释至100ml,用盐酸调pH至6.0。

(4)色谱柱再生溶液取氢氧化钠0.8g,加水溶解并稀释至100ml,用盐酸调pH至13。

(5)柱后衍生试剂取茚三酮18g,茚氮兰0.7g,加76.7%二甲基亚砜-0.7二水合醋酸锂-0.1%醋酸溶液900ml使溶解,在氮气下混合至少3小时。

(6)样品缓冲液2%无水柠檬酸钠-1%盐酸-0.5%硫代二乙醇-0.1%苯甲酸溶液。

对照品溶液按各品种项下规定的方法制备。

供试品溶液按各品种项下规定的方法制备。

色谱条件与系统适用新试验用磺化苯乙烯-二乙烯苯共聚物为填充剂(4.0×120mm,7.5μm);流动相流速为每小时14.0ml;柱后衍生试剂得流速为每分钟7ml,反应器温度为135℃;检测波长为440nm(一级氨基酸),570nm(二级氨基酸)。

相关文档
最新文档