盘式制动器结构分解图
盘式制动器PPT课件
(2)牵引电动机缓速 对于采用电传动系的汽车,可以对电 动驱动轮中的牵引电动机停止供电,使之受驱动轮驱动而 成为发电机,将汽车的部分动能转变成电能,再使之通过 电阻转变为热能而耗散。这时电动机对驱动轮的阻力矩即 是制动力矩。
1.制动盘;2.活塞; 3.摩擦块; 4.进油口;5.制动钳 体; 6.车桥部;
定钳盘式制动器的应用
定钳盘式制动பைடு நூலகம்的缺点
液压缸较多,使制动钳结构复杂; 液压缸分置于制动器的两侧,必须用跨越
制动盘的钳内油道或外部油管来连接; 热负荷大时,液压缸内的油管的制动液容
易汽化; 若要兼用驻车制动时,必须加装一个机械
二、液力缓速式辅助制动系
原上海SH380型汽车采用液力缓速式辅助制动系。 其中的液力缓速器(图23—94)安装在液力机械变 速器的后端。其结构类似于两个并联的液力耦合 器,不过其每一对叶轮中只有一个能转动(即转子 10),而另一个是固定不动的(即带叶片的壳体l和 盖9)。
缓速器壳体用螺钉固定在机械变速器壳体8的后壁 上。转子与其轴6借花键连接,而轴6又用花键套 5与变速器第一轴(输入轴)4相连。
(5) 空气动力缓速 空气动力缓速是采用使车身的 某些活动表面板件伸展,以加大作用于汽车的空 气阻力的办法来起缓速作用。这种方法目前只用 于竞赛汽车。
一、排气缓速式辅助制动系
排气缓速主要用于柴油车,原因是柴油机压缩比较 汽油机压缩比大,作为空压机,其缓速效果优于 汽油机,而且,很容易做到在施行排气缓速时先 切断燃油供给。对汽油机,则需要通过较复杂的 装置方能做到这一点。
《盘式制动器》课件
随着物流运输业的快速发展,盘式制动器在 商用车领域的应用也逐渐增多,提高了车辆 的制动安全性和稳定性。
环境友好性
总结词
随着环保意识的提高,盘式制动 器在环保方面也表现出良好的性
能,成为绿色出行的选择。
低噪音
盘式制动器在制动过程中产生的噪 音较低,对周围环境的影响较小。
节能减排
采用新型高强度材料和结构设计, 提高了制动器的能效和可靠性,有 助于减少能源消耗和排放污染物。
盘式制动器的优点
相比鼓式制动器,盘式制动器具有更好的散热性 能和更快的响应速度,更适合于高速行驶和高负 荷制动。
盘式制动器的结构与工作原理
详细介绍了盘式制动器的组成部件,如制动盘、 制动钳、摩擦片和液压系统等,以及其工作原理 。
摩托车制动系统
摩托车盘式制动器概述
01
摩托车盘式制动器是现代摩托车的重要安全装置,具有轻量化
刹车盘状况
检查刹车盘表面是否光滑 ,有无裂纹或损伤,如有 需要应及时修复或更换。
制动液水平
检查制动液液面高度,确 保制动液充足,无泄漏现 象。
更换摩擦片
摩擦片磨损
摩擦片是制动器中的易损件,随着使用次数 的增加,摩擦片会逐渐磨损,当磨损到一定 程度时,制动力会下降,影响制动效果。
更换时机
当摩擦片磨损到一定程度时,应及时更换。 一般来说,当摩擦片厚度小于原厚度的1/3时 ,应考虑更换。
、高响应和良好的抗热衰退性能。
摩托车盘式制动器的特点
02
相比传统的鼓式制动器,摩托车盘式制动器具有更好的制动力
分配和更短的制动距离,提高了驾驶安全性。
摩托车盘式制动器的安装与调整
03
提供了关于如何正确安装和调整摩托车盘式制动器的详细指南
制动系详解(有图)ppt课件
操纵杆 调整螺母 传动杆
套使蹄鼓间隙为0.3—
0.35mm。 使用中,可拧动调 整螺母或改变传动杆的 长度进行调整。
棘爪
摇臂 齿板
调整杆 弹簧
调整螺套
调整螺栓
复 习 思 考 题
1、CA1091采用什么型式的行车制动器?全面调整包括哪 些内容?调整部位在什么地方?如何调整? 2、BJ2021和EQ1141G各采用什么型式的行车制动器?为 什么它们的后轮行车制动器属于不平衡式?
热膨胀小;
易实现间隙自动调整; 维护修理方便;
制动效能较低;
轮缸回位能力较差 用于驻车时,传动装置较复杂,且在后轮上应用受到限制。
第二节 人力制动系
液压式 型式: 机械式、
一、机械式: 主要用于驻车制动 注意:
BJ2021、奥迪100、桑塔纳、 EQ1141G、丰田—王冠驻车制 动器与后轮行车制动器共用; BJ2020N、CA1091、 EQ1090及CA7560专设中 央制动器,用于驻车制 动器。
滚轮轴 滚轮 支承销 衬套 支承销
心的力臂为一定值,与凸
轮转角无关;
制动凸轮 制动蹄 回位弹簧
*制动底板刚度较大,支承销采用跨置式支承; *支承销不是偏心的,省了一个调整部位; *后轮行车制动器兼充驻车制动器。
二、盘式制动器
定钳盘式 类型
钳盘式
浮钳盘式 全盘式
1.定钳盘式制动器 结构特点:
制动钳体既不能旋转, 也不能沿制动盘轴线方向 移动; 两个活塞位于制动盘 的两侧。
3、浮盘式制动器是怎样实现制动的?浮盘式制动器中的
橡胶密封圈有何作用? 4、盘式制动器与鼓式制动器相比有何特点?
5、汽车驻车制动系为什么广泛采用机械传动?中央驻车
盘形制动器的工作原理
盘形制动器的工作原理盘形制动器蝶形弹簧产生制动力,靠油压松闸。
制动状态时,闸瓦压向制动盘的正压力的大小决定于液压缸内工作油压力。
如图所示,活塞同时受弹簧的作用力F2,压力油产生的力F1,综合阻力F3(包括空行)程压缩弹簧的力)作用,制动状态时F3的作用方向与F2相反。
故压向制动盘的正压力为:N=F2-F1-F3当改变油压力时,正压力N相应变化,盘形工作原理示意图油压值P=0时,即F1=0,正压力达最大值N max,N max=F2-F3,此时为全制动状态。
在松闸过程中,F3作用方向与F1相反,此时力平衡方程为:N=F2+F3-F1。
在P=P max时,F1>F2,活塞压缩蝶弹簧,是全松闸状态,N=0,即F1=F2+F3。
如图所示为正压力N相对于油压P的实验曲线。
由图中可以看出:1.正压力随油压P的增加而减少,其变化过程可以近似地看成线性关系。
2.松闸过程和制动过程所得曲线不重合,这是因为在松闸和制动过程活塞所需克服的摩擦力方向不同所致,松闸时,液压缸壁及密封圈对活塞的阻力与蝶形弹簧力的方向一致,所以在相同油压情况下(与制动过程相比)制动盘的正压力较低。
3.松闸和制动的不可控区(两条曲线不重合度)较小,说明有较高的控制灵敏性。
制动器在制动盘上产生的制动力矩,取决于正压力N的数值。
M Z=2NµR m n式中M2—制动力矩,单位为N·m;µ—闸瓦对制动盘的摩擦系数,µ=0.35~0.4;n=提升机制动器副数。
同时,制动力矩Mz应满足3倍静力矩Mj的要求,所以,N(单位为N)值可由下式确定:M Z=2NµR m n=3M j=3F C D/2 即:N=3DFc/(4R mµn)式中D—滚筒名义直径,单位为m; F—提升机最大静张力差,单位为N。
C。
气压盘式制动工作原理与构造PPT幻灯片
浙江隆中气压盘式制动器工作原理
从调整套间隙槽的下侧面(相对视图)转向上侧面,当拨销 21与调整套间隙槽的上侧面线接触时,此时恰好设计的 正常间隙C消除为零,并开始制动。 2、过量间隙Ce:
在每次制动中,当制动盘和制动块磨损后,而产生 过量间隙 Ce。因此,就会使凸轮22继续下压并带动拨销 21转动,从而拨销21会通过调整套间隙槽的上侧面拨动 调整套13旋转(此时由线接触变成点接触),使得单向 离合器10、内套11一起转动,经过摩擦离合器8、离合器 盖7传递给主螺管6;当主螺管6顺时针转动时,两个螺杆 17就会同步伸出,从而产生间隙自调功能,使得过量间 隙Ce逐渐减少,此时,凸轮22也在不断地转动下压以再 次消除过量间隙Ce。 3、弹性变形E:
11
浙江万安气压 盘式制动器结构
4
浙江隆中气压盘式制动器工作原理
二、自调机构工作原理
5
浙江隆中气压盘式制动器工作原理
图2 自调机构工作原理图
6
浙江隆中气压盘式制动器工作原理
1、副螺管 2、固定轴 3、内半圆轴承 4、固定销 5、外半圆轴承 6、主螺管 7、离合器盖 8、摩擦离合器 9、推力轴承 10、 单向离合器 11、内套 12、预紧弹簧 13、调整套 14、支架 15、传动齿轮 16、螺杆密封圈总成 17、螺杆 18、回位弹簧 19、端盖 20、推板 21、拨销 22、凸轮
目录
前言 浙江隆中气压盘式制动器工作原理 浙江万安气压盘式制动器构造
1
前言
盘式制动器主要用于轿车领域,随着 技术的进步和市场的需求,现在国内部 分商用车已逐渐使用。 公司已开始试装盘式制动器的车辆, 为了提高对盘式制动器的认识,编制以 下资料供各位பைடு நூலகம்习。
图解盘式制动器.
图解盘式制动器1.盘式制动器概述盘式制动器摩擦副中的旋转元件是以端面工作的金属圆盘,被称为制动盘。
其固定元件则有着多种结构型式,大体上可分为两类。
一类是工作面积不大的摩擦块与其金属背板组成的制动块,每个制动器中有2~4个。
这些制动块及其促动装置都装在横跨制动盘两侧的夹钳形支架中,总称为制动钳。
这种由制动盘和制动钳组成的制动器称为钳盘式制动器。
另一类固定元件的金属背板和摩擦片也呈圆盘形,制动盘的全部工作面可同时与摩擦片接触,这种制动器称为全盘式制动器。
钳盘式制动器过去只用作中央制动器,但目前则愈来愈多地被各级轿车和货车用作车轮制动器。
全盘式制动器只有少数汽车(主要是重型汽车)采用为车轮制动器。
这里只介绍钳盘式制动器。
钳盘式制动器又可分为定钳盘式和浮钳盘式两类。
盘式制动器结构图如下图所示2.定钳盘式制动器跨置在制动盘1上的制动钳体5固定安装在车桥6上,它不能旋转也不能沿制动盘轴线方向移动,其内的两个活塞2分别位于制动盘1的两侧。
制动时,制动油液由制动总泵(制动主缸)经进油口4进入钳体中两个相通的液压腔中,将两侧的制动块3压向与车轮固定连接的制动盘1,从而产生制动。
这种制动器存在着以下缺点:油缸较多,使制动钳结构复杂;油缸分置于制动盘两侧,必须用跨越制动盘的钳内油道或外部油管来连通,这使得制动钳的尺寸过大,难以安装在现代化轿车的轮辋内;热负荷大时,油缸和跨越制动盘的油管或油道中的制动液容易受热汽化;若要兼用于驻车制动,则必须加装一个机械促动的驻车制动钳。
定钳盘式制动器示意图1.制动盘2.活塞3.摩擦块4.进油口5.制动钳体6.车桥部3.浮钳盘式制动器制动钳体2通过导向销6与车桥7相连,可以相对于制动盘1轴向移动。
制动钳体只在制动盘的内侧设置油缸,而外侧的制动块则附装在钳体上。
制动时,液压油通过进油口5进入制动油缸,推动活塞4及其上的摩擦块向右移动,并压到制动盘上,并使得油缸连同制动钳体整体沿销钉向左移动,直到制动盘右侧的摩擦块也压到制动盘上夹住制动盘并使其制动。
盘式制动器设计
盘式制动器设计(总20页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--目录绪论 (2)一、设计任务书 (2)二、盘式制动器结构形式简介 ........................................ 错误!未定义书签。
、盘式制动器的分类.................................................. 错误!未定义书签。
、盘式制动器的优缺点.............................................. 错误!未定义书签。
、该车制动器结构的最终选择 .................................. 错误!未定义书签。
三、制动器的参数和设计 ................................................ 错误!未定义书签。
、制动盘直径 ............................................................. 错误!未定义书签。
、制动盘厚度 ............................................................. 错误!未定义书签。
、摩擦衬块的内半径和外半径 .................................. 错误!未定义书签。
、摩擦衬块面积 ......................................................... 错误!未定义书签。
、制动轮缸压强 ......................................................... 错误!未定义书签。
、摩擦力的计算和摩擦系数的验算 .......................... 错误!未定义书签。
盘式制动器结构、工作原理盘式制动器图示前桥驱动桥盘式制动器结构
一、盘式制动器结构、工作原理1、盘式制动器图示:前桥驱动桥2、盘式制动器结构1、副钳体2、左摩擦块3、右摩擦块4、自调机构5、气室6、主钳体7、制动盘8、托架9、滑销3、工作原理:制动时,气室(5)推动自调机构(4)向左压出,使右摩擦块(3)与制动盘(7)右侧制动,由于制动盘(7)的轴向移动受限制,因此在反作用力的作用下,主副钳体向右移动,使左摩擦块(2)与制动盘(7)左侧制动,最后将旋转的制动盘(7)刹住。
二、盘式制动器使用、保养1、日常检查制动器钳体密封体:①检查副钳体端2个滑销密封盖,如出现松脱或者遗失及时给予更换或安装;②检查主钳体端2个滑销端盖,如出现松脱或者遗失及时给予更换或安装;③检查主钳体上密封帽,如存在裂纹、损伤或者遗失及时给予更换或安装;④推动主、副钳体滑动检查4个滑销密封圈,如存在裂纹和损伤及时给予更换。
2、定期检查内容:3、制动盘失效判定标准:①尺寸检查:如图:A=制动盘厚度45mm(新),B=制动盘厚度37mm(极限);②裂纹检查:如图所示:检查制动盘上的裂纹和磨损划痕;A1=小裂纹在表面上延伸,此情况允许。
B1=小于0.75a长、1.5mm宽和深的裂纹径向延伸,此情况允许。
C1=小于1.5mm深的环形槽,此情况允许。
D1=径向贯通裂纹是不允许的,制动盘必须更换。
4、摩擦片更换及间隙调整:4.1、摩擦块拆卸4.1.1拨出传感器线束的插座,拿出摩擦块压板总成和摩擦块。
4.1.2一字槽螺钉旋具将弧形弹簧拆卸;用平口螺丝刀将传感器线束的内、外感应头撬出。
取下摩擦块。
注意:撬内、外感应头应避免将绕在感应头上的线束伤断!4.2、摩擦块安装将摩擦块安装在托架内,再用压棒将传感器感应头预先压入摩擦块的U形槽中。
注意:摩擦块安装在托架内后,必须保证摩擦材料与制动盘对应,防止摩擦片装反后出现制动故障;传感器感应头按图示方向装入U形槽,不得装反以及压坏线束。
线束插头按箭头方向拔出内感应头外感应头三、常见故障排查方法:压棒U型槽。
图解汽车(12) 汽车制动系统结构解析
图解汽车(12)汽车制动系统结构解析● 制动系统的组成作为制动系统,作用当然就是让行驶中的汽车按我们的意愿进行减速甚至停车。
工作原理就是将汽车的动能通过摩擦转换成热能。
汽车制动系统主要由供能装置、控制装置、传动装置和制动器等部分组成,常见的制动器主要有鼓式制动器和盘式制动器。
● 鼓式制动器鼓式制动器主要包括制动轮缸、制动蹄、制动鼓、摩擦片、回位弹簧等部分。
主要是通过液压装置是摩擦片与岁车轮转动的制动鼓内侧面发生摩擦,从而起到制动的效果。
在踩下刹车踏板时,推动刹车总泵的活塞运动,进而在油路中产生压力,制动液将压力传递到车轮的制动分泵推动活塞,活塞推动制动蹄向外运动,进而使得摩擦片与刹车鼓发生摩擦,从而产生制动力。
从结构中可以看出,鼓式制动器是工作在一个相对封闭的环境,制动过程中产生的热量不易散出,频繁制动影响制动效果。
不过鼓式制动器可提供很高的制动力,广泛应用于重型车上。
●盘式制动器盘式制动器也叫碟式制动器,主要由制动盘、制动钳、摩擦片、分泵、油管等部分构成。
盘式制动器通过液压系统把压力施加到制动钳上,使制动摩擦片与随车轮转动的制动盘发生摩擦,从而达到制动的目的。
与封闭式的鼓式制动器不同的是,盘式制动器是敞开式的。
制动过程中产生的热量可以很快散去,拥有很好的制动效能,现在已广泛应用于轿车上。
● 通风制动盘制动过程实际上是摩擦力将动能转化为热能的过程,如制动器的热量不能及时散出,将会影响其制动效果。
为了进一步提升制动效能,通风制动盘应运而生。
通风刹车盘内部是中空的或在制动盘打很多小孔,冷空气可以从中间穿过进行降温。
从外表看,它在圆周上有许多通向圆心的洞空,它利用汽车在行驶当中产生的离心力能使空气对流,达到散热的目的,因此比普通实心盘式散热效果要好许多。
●陶瓷制动盘陶瓷制动盘相对于一般的刹车盘具有重量轻、耐高温耐磨等特性。
普通的刹车盘在全力制动下容易高热而产生热衰退,制动性能会大打折扣,而陶瓷刹车盘有很好的抗热衰退性能,其耐热性能要比普通制动盘高出许多倍。
盘式制动器
2.制动盘厚度
制动盘厚度对制动盘质量和工作时的温升有影响。为使质量小些,制动盘厚度不宜取得很大;为了降低温度, 制动盘厚度又不宜取得过小。制动盘可以做成实心的,或者为了散热通风的需要在制动盘中间铸出通风孔道。一 般实心制动盘厚度可取为10—20mm,通风式制动盘厚度取为20~50mm,采用较多的是20—30mm。在高速运动下 紧急制动,制动盘会形成热变形,产生颤抖。为提高制动盘摩擦面的散热性能,大多把制动盘做成中间空洞的通风 式制动盘,这样可使制动盘温度降低20 %~30%。
谢谢观看
盘式制动器沿制动盘向施力,制动轴不受弯矩,径向尺寸小。
用途
盘式制动器已广泛应用于轿车,现在大部分轿车用于全部车轮,少数轿车只用作前轮制动器,与后轮的鼓式 制动器配合,以使汽车有较高的制动时的方向稳定性。在商用车中,目前盘式制动器在新车型及高端车型中逐渐 被采用。
主要组成
制动盘
摩擦衬块
1.制动盘直径
制动力疲软,不总的原因有:(a)制动器漏油;(b)制动油路中有空气;(c)轮毂油封破损,钳盘上有油污; (d)制动严重磨损,摩擦面烧损;(e)气路气压调整过低。
解决方法: 1、改变制动衬块材料 可换用稍软的制动衬块材料,使摩擦系数相对得到提高,制动力变大。 2、清除制动衬块排屑槽中的异物 如果制动衬块的排屑槽被异物覆盖,制动时将失却排出尘土、刮去水分的作用,使制动力降低。 制动后跑偏 跑偏的直接原因是两侧车轮的制动力矩不等所致,常见的故障原因:(a)制动钳盘油污严重,摩擦系统数严 重下降,造成制动力矩不平衡,此时应清除制动钳盘上的油污;(b)分泵活塞卡滞不能工作。静车踩制动,观察 分泵工作情况,视情拆检。
图解盘式制动器
图解盘式制动器1.盘式制动器概述盘式制动器摩擦副中的旋转元件是以端面工作的金属圆盘,被称为制动盘。
其固定元件则有着多种结构型式,大体上可分为两类。
一类是工作面积不大的摩擦块与其金属背板组成的制动块,每个制动器中有2~4个。
这些制动块及其促动装置都装在横跨制动盘两侧的夹钳形支架中,总称为制动钳。
这种由制动盘和制动钳组成的制动器称为钳盘式制动器。
另一类固定元件的金属背板和摩擦片也呈圆盘形,制动盘的全部工作面可同时与摩擦片接触,这种制动器称为全盘式制动器。
钳盘式制动器过去只用作中央制动器,但目前则愈来愈多地被各级轿车和货车用作车轮制动器。
全盘式制动器只有少数汽车(主要是重型汽车)采用为车轮制动器。
这里只介绍钳盘式制动器。
钳盘式制动器又可分为定钳盘式和浮钳盘式两类。
盘式制动器结构图如下图所示2.定钳盘式制动器跨置在制动盘1上的制动钳体5固定安装在车桥6上,它不能旋转也不能沿制动盘轴线方向移动,其内的两个活塞2分别位于制动盘1的两侧。
制动时,制动油液由制动总泵(制动主缸)经进油口4进入钳体中两个相通的液压腔中,将两侧的制动块3压向与车轮固定连接的制动盘1,从而产生制动。
这种制动器存在着以下缺点:油缸较多,使制动钳结构复杂;油缸分置于制动盘两侧,必须用跨越制动盘的钳内油道或外部油管来连通,这使得制动钳的尺寸过大,难以安装在现代化轿车的轮辋内;热负荷大时,油缸和跨越制动盘的油管或油道中的制动液容易受热汽化;若要兼用于驻车制动,则必须加装一个机械促动的驻车制动钳。
定钳盘式制动器示意图1.制动盘2.活塞3.摩擦块4.进油口5.制动钳体6.车桥部3.浮钳盘式制动器制动钳体2通过导向销6与车桥7相连,可以相对于制动盘1轴向移动。
制动钳体只在制动盘的内侧设置油缸,而外侧的制动块则附装在钳体上。
制动时,液压油通过进油口5进入制动油缸,推动活塞4及其上的摩擦块向右移动,并压到制动盘上,并使得油缸连同制动钳体整体沿销钉向左移动,直到制动盘右侧的摩擦块也压到制动盘上夹住制动盘并使其制动。
液压制动系统与盘式制动器_图文
固定钳盘式制动器工作原理
•1.制动盘 2.活塞 3. 摩擦块 •4.进油口 5.制动钳 体 6.车桥 部
制动间隙的调整
活塞密封圈的 工作情况
a)制动时 b) 解除制动时
l-活塞 2-矩形 橡胶密封囵 3一轮活塞
1-螺栓 2-导向销 3-定位销和塑料套 4-放气螺钉 5-防尘套 6-制动钳 7活塞密封圈
盘式车轮制动器
盘式车轮制动器中旋转元件是以端面工作的金属圆盘,制动块及其促 动装置都装在横跨在制动盘两侧的夹钳形支架中,总称为制动钳,
如下图:
固定钳式制动器结构
固定钳盘式 制动器结构 1-片簧 2导向它承销 3、3′一制
动块 4、4′-防尘 罩 5、5′一 活塞 6、6′ 一密封圈 7-制动盘 8-制动钳
• 踩下制动踏板4,制动主缸5将制动液压入制动 轮缸6和制动钳2,将制动块推向制动鼓和制动 盘。在制动器间隙消失并开始产生制动力矩时 ,液压与踏板力方能继续增长直到完全制动。 此过程中,由于在液压作用下,油管的弹性膨 胀变形和摩擦元件的弹性压缩变形,踏板和轮 缸活塞都可以继续移动一段距离。放开踏板, 制动蹄和轮缸活塞在回位弹簧作用下回位,将 制动液压回主缸。
• 在浮钳盘式制动器上,还要检查内外 摩擦衬块的磨损是否均匀。若内侧的磨损 比外侧严重,则应检修制动钳体;若外侧 的磨损严重,则滑动元件可能粘滞、弯曲 或损坏。在任何情况下,制动器摩擦衬块 的不均匀磨损是制动器需要维修的重要标 志。
• 如果制动器发出高频尖叫声,是发出 声响的制动传感器警告信号,表明系统需 要维修。电子报警灯亮和出现制动踏板脉 动的感觉,同样是制动摩擦衬块磨损超过 规定值的信号。
液压制动系统与盘式制动器_图文.ppt
• 一.液压传动装置 • 目前,轿车的行车制动系统都采用了液压传动
制动系-盘式制动器工作原理 ppt课件
PPT课件
1
第一节 制动系概述
PPT课件
2
汽车底盘与车身构造
PPT课件
3
汽车底盘与车身构造
分类方 法
按功能 分
按制动 能源分
类型
特点
行车制动 使行驶中汽车减速或停车
驻车制动 使汽车停在各种路面驻留原地不动
应急制动 在行车制动失效后使用的制动系
辅助制动
增设的制动装置,以适应山区行驶及 特殊车辆需要
(4)若要兼用于驻车制动,则必须加装一 个机械促动的驻车制动钳。
PPT课件
16
2、 结构:
浮
活塞
钳 进油口 盘
式
导向销
制
车桥
动
器
PPT课件
制动钳
制动块 制动盘
17
浮
钳
盘
式
制
动
器
工
作
演
示
PPT课件
18
2)特点:
与定钳盘式制动器相比,浮钳盘式制动器轴向和径向
尺寸小,制动液受热汽化的机会较少;此外,在兼做驻车 制动器的情况下,不用加设驻车制动钳,只须在行车制动 钳液压缸附近加装一些推动液压缸活塞的驻车制动机械传 动零件即可。
面间的附着作用,车轮对路面作用一个向前制动力即
周缘力F,同时,路面也对车轮作用于一个向后的反作
用力,即制动力FB。制动力FB由车轮经车桥和悬架传
给车架及车身,迫使汽作减速或停车。
PPT课件
返回 9
第二节 盘式制动器
PPT课件
10
Байду номын сангаас 盘式制动器
PPT课件
11
1、结构:
制动钳导向销 活塞
浮钳盘式制动器结构分析
floating caliper disc brake braking process simulation and the brake disc and thermal
structure coupling analysis of lining the first one puts forward one method to simulate
IV
第3章制动盘与摩擦片热结构耦合分析………………………………………………..32 3.1热结构耦合分析的理论基础…………………………………………………….32 3.1.1摩擦热的产生机理………………………………………………………一32 3.1.2热传导理论……………………………………………………………….33 3.1.3热结构耦合方法…………………………………………………………..35 3.2热结构耦合模拟制动过程……………………………………………………….35 3.2。1单元类型的选取…………………………………………………………一35 3.2.2材料属性的定义…………………………………………………………..36 3.2.3有限元模型……………………………………………………………….36 3.2.4载荷及边界条件…………………………………………………………..37 3.3制动盘温度场分析………………………………………………………………38 3.3.1制动盘制动过程的温度场分布…………………………………………一38 3.3.2制动盘温度场分析………………………………………………………..41 3.4制动盘应力场分析………………………………………………………………46 3.4.1非热结构耦合下的制动盘应力场………………………………………..47 3.4.2热结构耦合下的制动盘应力场…………………………………………。51 3.5摩擦片温度场分析………………………………………………………………58 3.6摩擦片应力场分析………………………………………………………………6l 3.7本章小结…………………………………………………………………………63