四年级数学教学案例word版本
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四年级数学教学案例
四年级数学下册数学广角教学案例
闫大学
教学内容:
人教版义务教育课程标准实验教材四年级(下册)第117---118页例1、例2。
教材简析:
“植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的内容。在本节课里,学生第一次接触到“植树问题”,根据课程标准的精神,学习的主要任务定位在“能将植树问题推广到生活中的其他问题中,学会通过画线段图来分析理解题意。”数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想。
设计思路:
本课教学分四大环节:
一、常识引入:请同学们伸出右手并张开,数一数,5个手指之间有几个空格?在数学上,我们把空格叫做间隔,也就是说5个手指之间有几个间隔?4个间隔是在几个手指之间?
二、引导探究,发现“两端要种”的规律
(一).创设情境,提出问题。
为了保护环境,我们需要种很多树,那种的树之间都有间隔。那么我们现在种8棵树,这中间有几个间隔呢?同学们画画,算算。
接着,通过创设在公路中间绿化带中植树的现实问题情境。
1、同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?
理解题意。
指名读题,从题中你了解到了哪些信息?
理解“两端”是什么意思?
指名说一说,然后师实物演示:指一指哪里是这根小棒的两端?
说明:如果把这根小棒看作是这条绿化带,在绿化带的两端要种就是在绿化带的两头要种。
算一算,一共需要多少棵树苗?
反馈答案。
方法一:100÷5=20(棵)
方法二:100÷5=20(棵) 20 +2=22(棵)
方法三:100÷5=20(棵) 20 +1=21(棵)
师:现在出现了三种答案,而且每种答案都有不少的支持者,到底哪种答案是正确的呢?咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到1000米,数一数,是不是就能知道到底谁的答案是正确的了呢?
①画图实际种一种。
演示:我们用这条线段表示这条绿化带。“两端要种”,我们从绿化带的这头开始,先在头儿上种上一棵,然后隔5米再种一棵,再隔5米再种一棵,再隔5米再种一棵,照这样一棵一棵的种下去……
师:大家看,已经种了多少米?(25米)这么长时间才种了25米,一共要种多少米?(100米)要一棵一棵一棵一直种到100米呀?!同学们,你有什么想法?(太累了,太麻烦了,太浪费时间了)
师:老师也有同感,一棵一棵种到100米确实太麻烦了。其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?这种方法可不是一般的方法。大家听好喽,这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:100米的路太长了,我们可以先在短距离的路上种一种,看一看怎样种?画一画,简单验证,发现规律。
a. 先种10米,还是每隔5米种一棵,画图种一种,看种了多少棵?比一比,看谁画得快种的好。(板书:2段 3棵)
b. 跟上面一样,再种15米看一看,这次你又分了几段,种了几棵?(板书:3段 4棵)
c. 任意选择一段距离再种一种,看这次你又分了几段,种了几棵?从中你发现了什么?
(板书: 2段 3棵;5段 8棵;7段8棵。)
d. 你发现了什么?小结:你们真了不起,发现了植树问题中非常重要的一个规律,那就是:
(板书:两端要种:棵树=段数+1;其实段数也就是间隔数,那么植树棵数=间隔数+1)
应用规律,解决问题。
a. 小黑板出示:前面例题
问:应用这个规律,前面这个问题,能不能解决了?那个答案是正确的?
100÷5=20 这里的20指什么?
200+1=21 为什么还要+1?
师:这个“秘方”好不好?
通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到“两端要种”求棵树,知道该怎么做了吗?
通过按老师要求画,学生对棵树和段数的关系已有了一定的感性认识。然后让学生再任意画一画,种一种,更丰富了学生的感性材料,为学生顺利发现并总结规律打下了基础。
应用规律,解决问题。验证前面例题哪个答案是正确的。
这样一方面巩固刚发现的规律,另一方面使学生认识到植树问题的规律不仅仅能解决植树的问题,还能解决生活中很多类似的问题。
(二)解决实际问题
运动会上,在笔直的跑道的一侧插彩旗,每隔10米插一面(两端要插)。这条跑道长100米,一共要插多少面彩旗?(学生独立完成。)
问:这道题是不是应用植树问题的规律解决的?
师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。
小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,“两端要种”求棵树用段数+1;如果“两端不种”棵树和段数又会有怎样的关系呢?(本环节通过为学生设计困难,让学生想出有复杂问题从简单入手,从学生已有的生活经验出发,让学生自由设计,然后引导学生自主探索、合作交流,得出“两端要栽:棵数=间隔数+1“的关系,体现教学方法的开放性。)
三、合作探究,“两端不种”的规律
1.猜测“两端不种”的规律。
猜测结果是:两端不种:棵树=段数-1
师:到底同学们的猜测是不是正确呢?我们还是用前面学习的方法,举简单的例子画一画,种一种。
要求:每人先独立画一段路种种看;然后4人一组进行交流。你们组发现了什么规律?
2.独立探究,合作交流。
3.展示小组研究成果,发现规律,验证前面的猜测。
小结:同学们太了不起了,通过举简单的例子,自己又发现了“两端不种”的规律:棵树=段数-1。如果“两端不种”求棵树,你会做了吗?
4.做一做。
①在一条长2000米的路的一侧种树,每隔10米种一棵(两端不种)。一共需要多少棵树苗?(学生独立完成)
②师:同学们注意看,这道题发生了什么变化?将“一侧”改为“两侧”
问:“两侧种树”是什么意思?实际要种几行树?会做吗?赶紧做一做。
小结:今天我们研究了植树问题的两种情况。发现了两端要种:棵树=段数
+1;两端不种:棵树=段数—1。以后同学们在做题的时候,一定要注意分清是“两端要种”还是“两端不种”。(探讨“两端不种”的规律,充分放手让学生自己讨论研究,用同样的方法从简单问题入手,让学生获得“两端不种”的规律:棵数=段数-1,学生尝试运用新获得的数学知识解决问题。)
四、回归生活,实际应用