2007年福建高考数学试卷(文科)
2007年普通高等学校招生全国统一考试文科数学试卷及答案-全国1
2007年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么球的表面积公式 ()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)kkn kn n P k C p p n n -=-= ,,,,一、选择题(1)设{}210S x x =+>,{}350T x x =-<,则S T = ( ) A.∅B.12x x ⎧⎫<-⎨⎬⎩⎭C.53x x ⎧⎫>⎨⎬⎩⎭D.1523x x ⎧⎫-<<⎨⎬⎩⎭(2)α是第四象限角,12cos 13α=,sin α=( )A.513B.513-C.512D.512-(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A.垂直B.不垂直也不平行C.平行且同向D.平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( )A.221412xy-= B.221124xy-= C.221106xy-= D.221610xy-=(5)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( ) A.36种B.48种C.96种D.192种(6)下面给出四个点中,位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A.(02),B.(20)-, C.(02)-, D.(20),(7)如图,正四棱柱1111ABC D A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( ) A.15B.25C.35D.45(8)设1a >,函数()lo g a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( )A.B.2C.D.4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A.充要条件B.充分而不必要的条件 C.必要而不充分的条件D.既不充分也不必要的条件(10)函数22cos y x =的一个单调增区间是( )A.ππ44⎛⎫-⎪⎝⎭,B.π02⎛⎫⎪⎝⎭,C.π3π44⎛⎫⎪⎝⎭,D.ππ2⎛⎫⎪⎝⎭, (11)曲线313y x x =+在点413⎛⎫⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( ) A.19B.29C.13D.23(12)抛物线24y x =的焦点为F ,准线为l ,经过F的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则A K F △的面积是( ) A.4B.C.D.81A1D1C 1BD BCA第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ): 492 496 494 495 498 497 501 502 504 496497 503 506 508 507 492 496 500 501 499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g ~501.5g 之间的概率约为_____.(14)函数()y f x =的图像与函数3lo g (0)y xx =>的图像关于直线y x =对称,则()f x =____________.(15)正四棱锥S A B C D -,点S ,A ,B ,C ,D 都在同一个球面上,则该球的体积为_________.(16)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为______.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分)设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)若a =5c =,求b .(18)(本小题满分12分)某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率; (Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率. (19)(本小题满分12分)四棱锥S A B C D -中,底面ABCD 为平行四边形,侧面SB C ⊥底面ABCD ,已知45A B C ∠=︒,2A B =,BC =SA SB == (Ⅰ)证明:SA B C ⊥;(Ⅱ)求直线SD 与平面SBC 所成角的大小.SCDB(20)(本小题满分12分)设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.(Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围.(21)(本小题满分12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=(Ⅰ)求{}n a ,{}n b 的通项公式; (Ⅱ)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S .(22)(本小题满分12分) 已知椭圆22132xy+=的左、右焦点分别为1F ,2F ,过1F 的直线交椭圆于B ,D 两点,过2F 的直线交椭圆于A ,C 两点,且A C B D ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<;(Ⅱ)求四边形ABCD 的面积的最小值.2007年普通高等学校招生全国统一考试文科数学试题(必修+选修1)参考答案一、选择题1.D 2.B 3.A 4.A 5.C 6.C 7.D 8.D 9.B 10.D 11.A 12.C 二、填空题13.0.25 14.3()x x ∈R 15.4π316.13三、解答题 17.解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =,由A B C △为锐角三角形得π6B =.(Ⅱ)根据余弦定理,得2222cos b a c ac B =+-272545=+-7=.所以,b =.18.解:(Ⅰ)记A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无人采用一次性付款”.2()(10.6)0.064P A =-=,()1()10.0640.936P A P A =-=-=.(Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”.1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则01B B B =+.30()0.60.216P B ==,1213()0.60.40.432P B C =⨯⨯=.01()()P B P B B =+ 01()()P B P B =+ 0.2160.432=+ 0.648=.19.解法一:(1)作S O B C ⊥,垂足为O ,连结A O ,由侧面SB C ⊥底面A B C D ,得SO ⊥底面A B C D .因为SA SB =,所以AO BO =,又45ABC =∠,故A O B △为等腰直角三角形,A O B O ⊥,由三垂线定理,得SA B C ⊥. (Ⅱ)由(Ⅰ)知SA B C ⊥, 依题设A D B C ∥,故SA A D ⊥,由AD BC ==SA =SD ==又sin 45AO AB ==D E B C ⊥,垂足为E ,则D E ⊥平面S B C ,连结SE .E SD ∠为直线S D 与平面S B C 所成的角.sin 11E D A O E SD SDSD====∠所以,直线S D 与平面S B C所成的角为arcsin 11.解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结A O ,由侧面SB C ⊥底面A B C D ,得SO ⊥平面A B C D .因为SA SB =,所以AO BO =.又45ABC = ∠,AO B △为等腰直角三角形,A O O B ⊥. 如图,以O 为坐标原点,O A 为x 轴正向,建立直角坐标系O xyz -,因为2AO BO AB ===1SO ==,又BC =0)A ,,(0B,(0C -,.(001)S ,,,1)SA =-,(0C B =,0SA CB = ,所以SA B C ⊥.(Ⅱ)1)SD SA AD SA C B =+=-=--,0)O A =,. O A 与SD 的夹角记为α,S D 与平面ABC 所成的角记为β,因为O A为平面S B C 的法向量,所以α与β互余.DBCASO Ecos 11O A SD O A SDα==,sin 11β=, 所以,直线S D 与平面S B C所成的角为arcsin 11.20.解:(Ⅰ)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=⎧⎨++=⎩,.解得3a =-,4b =.(Ⅱ)由(Ⅰ)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--.当(01)x ∈,时,()0f x '>; 当(12)x ∈,时,()0f x '<; 当(23)x ∈,时,()0f x '>.所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+.则当[]03x ∈,时,()f x 的最大值为(3)98f c =+. 因为对于任意的[]03x ∈,,有2()f x c <恒成立, 所以 298c c +<, 解得 1c <-或9c >,因此c 的取值范围为(1)(9)-∞-+∞ ,,. 21.解:(Ⅰ)设{}n a 的公差为d ,{}n b 的公比为q ,则依题意有0q >且4212211413d q d q ⎧++=⎪⎨++=⎪⎩,,解得2d =,2q =.所以1(1)21n a n d n =+-=-,112n n n b q--==.(Ⅱ)1212n n n a n b --=.122135232112222n n n n n S ----=+++++ ,① 3252321223222n n n n n S ----=+++++,②②-①得22122221222222n n n n S ---=+++++- ,221111212212222n n n ---⎛⎫=+⨯++++- ⎪⎝⎭1111212221212n n n ----=+⨯--12362n n -+=-.22.证明(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200001132222x y x y ++=<≤.(Ⅱ)(ⅰ)当B D 的斜率k 存在且0k ≠时,B D 的方程为(1)y k x =+,代入椭圆方程22132xy+=,并化简得2222(32)6360k x k x k +++-=.设11()B x y ,,22()D x y ,,则2122632kx x k +=-+,21223632k x x k -=+,1232BD x x k =-==+ ;因为A C 与B C 相交于点p ,且A C 的斜率为1k-.所以,221112332k AC k k⎫+⎪⎝⎭==+⨯+. 四边形A B C D 的面积 222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥.当21k =时,上式取等号.(ⅱ)当B D 的斜率0k =或斜率不存在时,四边形A B C D 的面积4S =. 综上,四边形A B C D 的面积的最小值为9625.。
2007年全国高考文科数学试卷及答案-全国2-推荐下载
设等比数列{an}的公比 q 1 ,前 n 项和为 Sn .已知 a3 2,S4 5S2 ,求{an}的通项公
式. 18.(本小题满分 12 分)
在 △ABC 中,已知内角 A ,边 BC 2 3 .设内角 B x ,周长为 y .
(1)求函数 y f (x) 的解析式和定义域;
C. 5
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2007年全国统一高考数学试卷(文科)(全国卷一)及答案
2007年全国统一高考数学试卷(文科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设S={x|2x+1>0},T={x|3x﹣5<0},则S∩T=()A.∅B.C.D.2.(5分)α是第四象限角,cosα=,则sinα=()A.B.C.D.3.(5分)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向4.(5分)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.5.(5分)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有()A.36种B.48种C.96种D.192种6.(5分)下面给出的四个点中,位于表示的平面区域内的点是()A.(0,2) B.(﹣2,0)C.(0,﹣2)D.(2,0)7.(5分)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.8.(5分)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.49.(5分)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件10.(5分)函数y=2cos2x的一个单调增区间是()A.B.C.D.11.(5分)曲线在点处的切线与坐标轴围成的三角形面积为()A.B.C.D.12.(5分)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.8二、填空题(共4小题,每小题5分,满分20分)13.(5分)从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为.14.(5分)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=.15.(5分)正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的体积为.16.(5分)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.三、解答题(共6小题,满分80分)17.(10分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA (Ⅰ)求B的大小;(Ⅱ)若,c=5,求b.18.(12分)某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获的利润不超过650元的概率.19.(12分)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.20.(12分)设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.21.(12分)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.22.(12分)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P (Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.2007年全国统一高考数学试卷(文科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2007•全国卷Ⅰ)设S={x|2x+1>0},T={x|3x﹣5<0},则S∩T=()A.∅B.C.D.【分析】集合S、T是一次不等式的解集,分别求出再求交集.【解答】解:S={x|2x+1>0}={x|x>﹣},T={x|3x﹣5<0}={x|x<},则S∩T=,故选D.2.(5分)(2007•全国卷Ⅰ)α是第四象限角,cosα=,则sinα=()A.B.C.D.【分析】根据同角的三角函数之间的关系sin2+cos2α=1,得到余弦的值,又由角在第四象限,确定符号.【解答】解:∵α是第四象限角,∴sinα=,故选B.3.(5分)(2007•全国卷Ⅰ)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向【分析】根据向量平行垂直坐标公式运算即得.【解答】解:∵向量,,得,∴⊥,故选A.4.(5分)(2007•全国卷Ⅰ)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.【分析】根据焦点坐标求得c,再根据离心率求得a,最后根据b=求得b,双曲线方程可得.【解答】解.已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则c=4,a=2,b2=12,双曲线方程为,故选A.5.(5分)(2007•全国卷Ⅰ)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有()A.36种B.48种C.96种D.192种【分析】根据题意,先分析甲,有C42种,再分析乙、丙,有C43•C43种,进而由乘法原理计算可得答案.【解答】解;根据题意,甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,有C42种,乙、丙各选修3门,有C43•C43种,则不同的选修方案共有C42•C43•C43=96种,故选C.6.(5分)(2007•全国卷Ⅰ)下面给出的四个点中,位于表示的平面区域内的点是()A.(0,2) B.(﹣2,0)C.(0,﹣2)D.(2,0)【分析】本题考查的是不等式所表示的平面区域内点所满足的条件的问题,解决此问题只需将点代入验证即可【解答】解:将四个点的坐标分别代入不等式组,解可得,满足条件的是(0,﹣2),故选C.7.(5分)(2007•全国卷Ⅰ)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.【分析】先通过平移将两条异面直线平移到同一个起点B,得到的锐角∠A1BC1就是异面直线所成的角,在三角形中A1BC1用余弦定理求解即可.【解答】解.如图,连接BC1,A1C1,∠A1BC1是异面直线A1B与AD1所成的角,设AB=a,AA1=2a,∴A1B=C1B=a,A1C1=a,∠A1BC1的余弦值为,故选D.8.(5分)(2007•全国卷Ⅰ)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.4【分析】因为a>1,函数f(x)=log a x是单调递增函数,最大值与最小值之分别为log a2a、log a a=1,所以log a2a﹣log a a=,即可得答案.【解答】解.∵a>1,∴函数f(x)=log a x在区间[a,2a]上的最大值与最小值之分别为log a2a,log a a,∴log a2a﹣log a a=,∴,a=4,故选D9.(5分)(2008•上海)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g (x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件【分析】本题主要是抽象函数奇偶性的判断,只能根据定义,而要否定奇偶性,一般用特值.【解答】解.若“f(x),g(x)均为偶函数”,则有f(﹣x)=f(x),g(﹣x)=g (x),∴h(﹣x)=f(﹣x)+g(﹣x)=f(x)+g(x)=h(x),∴“h(x)为偶函数”,而反之取f(x)=x2+x,g(x)=2﹣x,h(x)=x2+2是偶函数,而f(x),g(x)均不是偶函数”,故选B10.(5分)(2007•全国卷Ⅰ)函数y=2cos2x的一个单调增区间是()A.B.C.D.【分析】要进行有关三角函数性质的运算,必须把三角函数式变为y=Asin(ωx+φ)的形式,要先把函数式降幂,降幂用二倍角公式.【解答】解:函数y=2cos2x=1+cos2x,由﹣π+2kπ≤2x≤2kπ,解得﹣π+kπ≤x≤kπ,k为整数,∴k=1即有它的一个单调增区是,故选D.11.(5分)(2007•全国卷Ⅰ)曲线在点处的切线与坐标轴围成的三角形面积为()A.B.C.D.【分析】(1)首先利用导数的几何意义,求出曲线在P(x0,y0)处的切线斜率,进而得到切线方程;(2)利用切线方程与坐标轴直线方程求出交点坐标(3)利用面积公式求出面积.【解答】解:若y=x3+x,则y′|x=1=2,即曲线在点处的切线方程是,它与坐标轴的交点是(,0),(0,﹣),围成的三角形面积为,故选A.12.(5分)(2007•全国卷Ⅰ)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.8【分析】先根据抛物线方程求出焦点坐标和准线方程,进而可得到过F且斜率为的直线方程然后与抛物线联立可求得A的坐标,再由AK⊥l,垂足为K,可求得K的坐标,根据三角形面积公式可得到答案.【解答】解:∵抛物线y2=4x的焦点F(1,0),准线为l:x=﹣1,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A(3,2),AK⊥l,垂足为K(﹣1,2),∴△AKF的面积是4故选C.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2007•全国卷Ⅰ)从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为0.25.【分析】由题意知本题是一个统计问题,需要用样本的概率估计总体中位于这个范围的概率,试验发生包含的事件数时20,袋装食盐质量在497.5g~501.5g之间的可以数出有5,利用概率公式,得到结果.【解答】解:从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为P==0.25.故答案为:0.2514.(5分)(2007•全国卷Ⅰ)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=3x(x∈R).【分析】由题意推出f(x)与函数y=log3x(x>0)互为反函数,求解即可.【解答】解.函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x 对称,则f(x)与函数y=log3x(x>0)互为反函数,f(x)=3x(x∈R)故答案为:3x(x∈R)15.(5分)(2007•全国卷Ⅰ)正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的体积为.【分析】先确定球心位置,再求球的半径,然后可求球的体积.【解答】解:正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的球心恰好是底面ABCD的中心,球的半径是1,体积为.故答案为:16.(5分)(2007•全国卷Ⅰ)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.【分析】先根据等差中项可知4S2=S1+3S3,利用等比数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.【解答】解:∵等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,∴a n=a1q n﹣1,又4S2=S1+3S3,即4(a1+a1q)=a1+3(a1+a1q+a1q2),解.故答案为三、解答题(共6小题,满分80分)17.(10分)(2007•全国卷Ⅰ)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)若,c=5,求b.【分析】(1)根据正弦定理将边的关系化为角的关系,然后即可求出角B的正弦值,再由△ABC为锐角三角形可得答案.(2)根据(1)中所求角B的值,和余弦定理直接可求b的值.【解答】解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由△ABC为锐角三角形得.(Ⅱ)根据余弦定理,得b2=a2+c2﹣2accosB=27+25﹣45=7.所以,.18.(12分)(2007•全国卷Ⅰ)某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获的利润不超过650元的概率.【分析】(1)3位购买该商品的顾客中至少有1位采用一次性付款的对立事件是3位顾客中无人采用一次性付款,根据独立重复试验公式得到3位顾客中无人采用一次性付款的概率,再根据对立事件的公式得到结论.(2)3位顾客每人购买1件该商品,顾客的付款方式为一次性付款和分期付款,且购买该商品的3位顾客中有1位采用分期付款,根据互斥事件的公式得到结果.【解答】解:(Ⅰ)记A表示事件:“3位顾客中至少1位采用一次性付款”,则表示事件:“3位顾客中无人采用一次性付款”.P()=(1﹣0.6)3=0.064,.(Ⅱ)记B表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.B0表示事件:“购买该商品的3位顾客中无人采用分期付款”.B1表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则B=B0+B1.P(B0)=0.63=0.216,P(B1)=C31×0.62×0.4=0.432.P(B)=P(B0+B1)=P(B0)+P(B1)=0.216+0.432=0.648.19.(12分)(2007•全国卷Ⅰ)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.【分析】解法一:(1)作SO⊥BC,垂足为O,连接AO,说明SO⊥底面ABCD.利用三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,设AD∥BC,连接SE.说明∠ESD为直线SD与平面SBC所成的角,通过,求出直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,通过证明,推出SA⊥BC.(Ⅱ).与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC 的法向量,利用α与β互余.通过,,推出直线SD与平面SBC所成的角为.【解答】解法一:(1)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥底面ABCD.因为SA=SB,所以AO=BO,又∠ABC=45°,故△AOB为等腰直角三角形,AO⊥BO,由三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,依题设AD∥BC,故SA⊥AD,由,,.又,作DE⊥BC,垂足为E,则DE⊥平面SBC,连接SE.∠ESD为直线SD与平面SBC所成的角.所以,直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥平面ABCD.因为SA=SB,所以AO=BO.又∠ABC=45°,△AOB为等腰直角三角形,AO⊥OB.如图,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,因为,,又,所以,,.S(0,0,1),,,,所以SA⊥BC.(Ⅱ),.与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,所以α与β互余.,,所以,直线SD与平面SBC所成的角为.20.(12分)(2007•全国卷Ⅰ)设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.【分析】(1)依题意有,f'(1)=0,f'(2)=0.求解即可.(2)若对任意的x∈[0,3],都有f(x)<c2成立⇔f(x)max<c2在区间[0,3]上成立,根据导数求出函数在[0,3]上的最大值,进一步求c的取值范围.【解答】解:(Ⅰ)f'(x)=6x2+6ax+3b,因为函数f(x)在x=1及x=2取得极值,则有f'(1)=0,f'(2)=0.即解得a=﹣3,b=4.(Ⅱ)由(Ⅰ)可知,f(x)=2x3﹣9x2+12x+8c,f'(x)=6x2﹣18x+12=6(x﹣1)(x﹣2).当x∈(0,1)时,f'(x)>0;当x∈(1,2)时,f'(x)<0;当x∈(2,3)时,f'(x)>0.所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c.因为对于任意的x∈[0,3],有f(x)<c2恒成立,所以9+8c<c2,解得c<﹣1或c>9,因此c的取值范围为(﹣∞,﹣1)∪(9,+∞).21.(12分)(2007•全国卷Ⅰ)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.【分析】(Ⅰ)设{a n}的公差为d,{b n}的公比为q,根据等比数列和等差数列的通项公式,联立方程求得d和q,进而可得{a n}、{b n}的通项公式.(Ⅱ)数列的通项公式由等差和等比数列构成,进而可用错位相减法求得前n项和S n.【解答】解:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,则依题意有q>0且解得d=2,q=2.所以a n=1+(n﹣1)d=2n﹣1,b n=q n﹣1=2n﹣1.(Ⅱ),,①S n=,②①﹣②得S n=1+2(++…+)﹣,则===.22.(12分)(2007•全国卷Ⅰ)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.【分析】(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,由此可以证出.(Ⅱ)设BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),由题意知|BD|=再求出|AC|=,由此可以求出四边形ABCD的面积的最小值.【解答】证明:(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,所以,.(Ⅱ)(ⅰ)当BD的斜率k存在且k≠0时,BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),则,|BD|=;因为AC与BD相交于点P,且AC的斜率为,所以,|AC|=.四边形ABCD的面积•|BD||AC|=.当k2=1时,上式取等号.(ⅱ)当BD的斜率k=0或斜率不存在时,四边形ABCD的面积S=4.综上,四边形ABCD的面积的最小值为.。
2007年福建高考数学试卷(文科) .doc
关于2015-2016学年第2学期学籍遗留问题处理的通知
教务处[2016]23号
各学院:
本学期学生注册工作已基本完成,现将学籍注册中发现的至今悬而未决的遗留问题进行反馈,请各学院在规定限期内组织相关人员认真核查落实(名单见附件),将处理结果或有关材料于4月14日(周四)前报教务处学籍管理科。
学籍管理工作是高校教学管理的重要部分,关系到学生和学校双方的利益。
各学院要充分重视和加强学生的学籍管理工作,加强日常学籍管理的规范性、严肃性。
对于需要进行学籍处理的学生一定要严格按照学籍管理相关规定及时、准确进行处理,坚决杜绝在学籍管理工作中的弄虚作假、拖沓延误行为。
附件:2015-2016学年第2学期学籍遗留问题学生名单
教务处
2016年4月7日。
2007年福建高考数学试卷(文科)
2007年福建高考数学试卷(文科)一、选择题1.已知全集{1,2,3,4,5,}U =,且{2,3,4}A =,{1,2}B =,则()U AC B 等于………( )A .{2}B .{5}C .{3,4}D .{2,3,4,5} 2.等比数列{}n a 中,44a =,则26a a ⋅等于………( ) A .4 B .8 C .16 D .32 3.0sin15cos75cos15sin105+等于…………( )A .0B .12 CD .1 4.“2x <”是“260x x --<”的什么条件……( )A .充分而不必要B .必要而不充分C .充要D .既不充分也不必要 5.函数sin(2)3y x π=+的图像………( )A .关于点(,0)3π对称 B .关于直线4x π=对称 C .关于点(,0)4π对称 D .关于直线3x π=对称6.如图在正方体1111ABCD A B C D -中,E 、F 、G 、H 分别是1111...AA AB BB B C 的中点,则异面直线EF 与GH 所成的角等于( )A .45B .60C .90D .1207.已知()f x 是R 上的减函数,则满足1()(1)f f x>的实数x 的取值范围是( )A .(,1)-∞B .(1,)+∞C .(,0)(0,1)-∞ D .(,0)(1,)-∞+∞8.对于向量..a b c 和实数λ,下列命题中真命题是…( )A .若0a b ⋅=,则0a =或0b =B .若0a λ=,则0λ=或0a =C .若22a b =,则a b =或a b =- D .若a b a c ⋅=⋅,则b c =9.已知m 、n 是两条不同的直线,.αβ为两个不同的平面,则下列命题中正确命题是( ) A .,,m n m αββαβ⊂⊂⇒ B .,,m n m n αβαβ⊂⊂⇒C .,m n n αβα⊥⊥⇒D .,m n n m αα⊥⇒⊥ABC 1B D1A 1C 1D E FGH10.以双曲线222x y -=的右焦点为圆心,且以其右准线相切的圆的方程是…( ) A .22430x y x +--= B .22430x y x +-+= C .22450x y x ++-= D .22450x y x +++=11.已知对任意实数x ,有()(),()()f x f x g x g x -=--=,且x>0时'()0,'()0f x g x >>,则x<0时()A .'()0,'()0f x g x >>B .'()0,'()0f x g x ><C .'()0,'()0f x g x <>D .'()0,'()0f x g x <<12.某通信公司推出一组手机卡号码,卡号的前7位数字固定,从“×××××××0000”到“×××××××9999”共10000个号码,公司规定:凡卡号的后4位带有数字“4”或“7”的一律作为“优惠卡”,则这组号码中“优惠卡”的个数为( ) A .2000 B .4096 C .5904 D .8320 二、填空题 13.261()x x+的展开式中常数项是_________(用数字作答) 14.已知实数x,y 满足⎪⎩⎪⎨⎧≤≤≤-≥+,30,2,2y y x y x ,则2z x y =-的取值范围是_________15.已知长方形ABCD ,AB=4,BC=3,则以A 、B 为焦点,且过C 、D 两点的椭圆的离心率为_____16.中学数学中存在许多关系,比如“相等关系”“平行关系”等等,如果集合A 中元素之间的一个关系“~”满足以下三个条件:(1)自反性:对于任意,都有a~a ;(2)对称性:对于,若a~b ,则有b~a ;(3)传递性:对于,若a~b,b~c ,则有a~c 。
2007年高考文科数学试题及参考答案(福建卷)
解决问题教学中教师的困惑:
1、到底怎样的情境创设才是最合理最 有效的? 2、情景图的设计是否能够真正提高学 生们的分析问题和解决问题的能力? 3、解决问题融入情景图中,既不讲概 念,也不讲数量关系,教师应如何把握? 4、如何处理好既培养学生的解题能力, 又要符合新课改的理念和要求呢? 5、应用题的结构还用不用训练,一些分析
应用题具备三个基本的要素:
题、情境性和数量关系
题——一种具体的学习内容,可以用数学方式(主要 是运算方式)解答。 情境性——应用题必然有情境。情境可以是现实生 活的,也可以是学科性的;情境的呈现既可以是 语言文字形态,也可以是图画表格等方式。 数量关系——作为题,必定有数据形态的条件与问 题,并且这些已知量与未知量之间通过情境和学 科术语的融合具备了运算意义上的逻辑关系,即 数量关系。
(2)突破运用转化策略的关键,把 新问题转化为熟悉的、能够解决的 问题。
假设
课标人教版六上
运用此策略时要注意: (1)根据题目的已知条件或结 论作出合理的假设。 (2)要弄清由于假设而引起的 数量上出现的矛盾并作适当调整。 (3)根据一个单位相差多少与 总数共差多少之间的数量关系解 决问题。
变式
您思考过下列问题吗?
5、为什么解决问题教学特别强调在具体的情景中解决问题? 6、课改后应用题不在成为独立单元,是否弱化了应用题教 学? 7、应用题和计算放在一起进行学习,有无主次之分?如何 整体把握?
8、新课改后,您认为解决问题的教学着力点应该在哪?
课改前对应用题的认识:
(1)、由沈百英、梁镜清编著的《小学数学 教学法》中认为:“应用题是根据生产或生 活中的实际问题,用语言或文字表示数量关 系的题目。 (2)、周玉仁教授主编的《小学数学教学论》 中也指出:“应用题是根据日常生活和生产 中的实际问题,用语言或文字表示数量关系 并求解的题目。
2007年高考文科数学试题及参考答案(福建卷)
海尔冰箱中国农村市场营销策划方案2000年底海尔集团冰箱事业部面对国内城市冰箱市场日益激烈的竞争,决定实施对国内冰箱市场的战略转移,将目光转向具有良好销售前景的农村市场。
对此,顾问公司根据海尔冰箱农村市场营销战略的需要,对农村冰箱市场的需求特征、竞争状态、消费者行为、网络渠道、促销方式、广告宣传、村镇消费习惯、区域消费文化等涉及制定营销策略的信息进行随机抽样问卷调查、整村整队分群问卷调查和电话跟踪调查等调查方式,在一年多的时间里共进行4次营销调研。
调研对全国不同省份地区采用入户调查,4次共发放问卷88105分,共回收问卷73797份,有效问卷共65845份。
并采用SPSS软件对调查数据进行处理和分析,建立了海尔农村冰箱市场营销数据库。
在充分调查的基础上,经过不断的市场推广试验总结,最后制定了海尔冰箱的“一对一”中国农村市场营销策略。
一对一策略就是根据农村各地区不同的收入和消费行为特征,分别采取直接入户销售、直接对村队的销售促进和对乡镇的销售推广的三个层次的营销手段。
一、市场分析和目标目前我国大中城市的家庭拥有冰箱率已超过95%,在个别城市已达到99%,而调查显示的农村冰箱拥有率是22.7%,说明在城市冰箱市场已趋成熟时,农村市场仍处于导入阶段,两者普及的程度相差10多年。
以西门子、伊莱克斯为代表的外资品牌在近两年强劲的崛起,迅速占据了国内约20%的冰箱市场份额。
在城市冰箱市场中,以海尔、容声、新飞和美菱等为主的第一阵营与伊莱克斯、西门子等为主的第二阵营之间的品牌之战势不可挡。
同时,冰箱市场处于供大于求的状况,竞争趋于白热化。
在激烈的市场竞争状况下,海尔认识到:只有抢先占有农村市场,才能占得市场先机。
同时,有两个重要的外部原因也促进农村冰箱需求增长。
市场的宏观环境渐趋有利。
中央把增加农民收入视为扩大内需的重点,改造农村电网,改善农村交通、通信设施等,都成为培育农村冰箱市场的有利因素。
农村购买力的提高。
2007年普通高等学校招生全国统一考试文科数学试卷及答案-全国1
2007年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k k n kn n P k C p p n n -=-= ,,,, 一、选择题(1)设{}210S x x =+>,{}350T x x =-<,则S T = ( )A.∅B.12x x ⎧⎫<-⎨⎬⎩⎭C.53x x ⎧⎫>⎨⎬⎩⎭D.1523x x ⎧⎫-<<⎨⎬⎩⎭(2)α是第四象限角,12cos 13α=,sin α=( ) A.513B.513-C.512 D.512-(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A.垂直B.不垂直也不平行C.平行且同向D.平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( )A.221412x y -= B.221124x y -= C.221106x y -= D.221610x y -= (5)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( ) A.36种 B.48种 C.96种 D.192种 (6)下面给出四个点中,位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A.(02),B.(20)-,C.(02)-,D.(20),(7)如图,正四棱柱1111ABCD A BC D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A.15B.25C.35D.45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) B.2C.D.4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A.充要条件 B.充分而不必要的条件 C.必要而不充分的条件D.既不充分也不必要的条件(10)函数22cos y x =的一个单调增区间是( ) A.ππ44⎛⎫- ⎪⎝⎭,B.π02⎛⎫ ⎪⎝⎭,C.π3π44⎛⎫ ⎪⎝⎭,D.ππ2⎛⎫ ⎪⎝⎭,(11)曲线313y x x =+在点413⎛⎫⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( ) A.19B.29C.13D.23(12)抛物线24y x =的焦点为F ,准线为l ,经过F x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( )1A1D1C 1BDC A。
2007年高考数学卷(福建.文)含答案
2007年普通高等学校招生全国统一考试(福建文)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}12345U =,,,,,且{}234A =,,,{}12B =,,则()U A B 等于( )A.{}2B.{}5C.{}34,D.{}2345,,,2.等比数列{}n a 中,44a =,则26a a 等于( ) A.4B.8C.16D.323.sin15cos75cos15sin105+等于( ) A.0B.12C.2D.14.“2x <”是“260x x --<”的( ) A.充分而不必要条件B.必要而不充分条件 C.充要条件D.既不充分也不必要条件5.函数πsin 23y x ⎛⎫=+⎪⎝⎭的图象( ) A.关于点π03⎛⎫ ⎪⎝⎭,对称B.关于直线π4x =对称 C.关于点π04⎛⎫ ⎪⎝⎭,对称D.关于直线π3x =对称 6.如图,在正方体1111ABCD A B C D -中,E F G H ,,,分别为1AA ,AB ,1BB ,11B C 的中点,则异面直线EF 与GH 所成的角等于( ) A.45B.60C.90D.1207.已知()f x 为R 上的减函数,则满足1(1)f f x ⎛⎫>⎪⎝⎭的实数x 的取值范围是( ) A.(1)-∞, B.(1)+∞, C.(0)(01)-∞,, D.(0)(1)-∞+∞,,8.对于向量a ,b ,c 和实数λ,下列命题中真命题是( )A FDBGE 1BH1C1D1AA.若0=a b ,则0=a 或0=b B.若0λ=a ,则0λ=或0=a C.若22=a b ,则=a b 或=-a bD.若=a b a c ,则=b c9.已知m n ,为两条不同的直线,αβ,为两个不同的平面,则下列命题中正确的是( ) A.m α⊂,n α⊂,m β∥,n βαβ⇒∥∥ B.αβ∥,m α⊂,n m n β⊂⇒∥ C.m α⊥,m n n α⇒⊥∥ D.n m ∥,n m αα⇒⊥⊥10.以双曲线222x y -=的右焦点为圆心,且与其右准线相切的圆的方程是( ) A.22430x y x +--= B.22430x y x +-+= C.22450x y x ++-=D.22450x y x +++=11.已知对任意实数x ,有()()f x f x -=-,()()g x g x -=,且0x >时,()0f x '>,()0g x '>,则0x <时( )A.()0f x '>,()0g x '> B.()0f x '>,()0g x '< C.()0f x '<,()0g x '>D.()0f x '<,()0g x '<12.某通讯公司推出一组手机卡号码,卡号的前七位数字固定,从“0000⨯⨯⨯⨯⨯⨯⨯”到“9999⨯⨯⨯⨯⨯⨯⨯”共10000个号码.公司规定:凡卡号的后四位带有数字“4”或“7”的一律作为“优惠卡”,则这组号码中“优惠卡”的个数为( ) A.2000 B.4096 C.5904 D.8320第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.13.621x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是_____.(用数字作答)14.已知实数x y ,满足2203x y x y y +⎧⎪-⎨⎪⎩≥,≤,≤≤,则2z x y =-的取值范围是________.15.已知长方形ABCD ,4AB =,3BC =,则以A B ,为焦点,且过C D ,两点的椭圆的离心率为______.16.中学数学中存在许多关系,比如“相等关系”、“平行关系”等等.如果集合A 中元素之间的一个关系“~”满足以下三个条件: (1)自反性:对于任意a A ∈,都有a ~a ;(2)对称性:对于a b A ∈,,若a ~b ,则有b ~a ;(3)传递性:对于a b c A ∈,,,若a ~b ,b ~c ,则有a ~c . 则称“~”是集合A 的一个等价关系.例如:“数的相等”是等价关系,而“直线的平行”不是等价关系(自反性不成立).请你再列出两个等价关系:______.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 在ABC △中,1tan 4A =,3tan 5B =. (Ⅰ)求角C 的大小;(Ⅱ)若AB,求BC 边的长. 18.(本小题满分12分)甲、乙两名跳高运动员一次试跳2米高度成功的概率分别是0.7,0.6,且每次试跳成功与否相互之间没有影响,求:(Ⅰ)甲试跳三次,第三次才成功的概率;(Ⅱ)甲、乙两人在第一次试跳中至少有一人成功的概率;(Ⅲ)甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率. 19.(本小题满分12分) 如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B--的大小. 20.(本小题满分12分)设函数22()21(0)f x tx t x t x t =++-∈>R ,. (Ⅰ)求()f x 的最小值()h t ;(Ⅱ)若()2h t t m <-+对(02)t ∈,恒成立,求实数m 的取值范围. 21.(本小题满分12分)数列{}n a 的前n 项和为n S ,11a =,*12()n n a S n +=∈N .(Ⅰ)求数列{}n a 的通项n a ; (Ⅱ)求数列{}n na 的前n 项和n T . 22.(本小题满分14分)如图,已知(10)F ,,直线:1l x =-,P 为平面上的动点,过点P 作l 的垂线,垂足为点Q ,且QP QF FP FQ =. (Ⅰ)求动点P 的轨迹C 的方程;A BD1A1C1BC(Ⅱ)过点F 的直线交轨迹C 于A B ,两点,交直线l 于点M . (1)已知1MA AF λ=,2MB BF λ=,求12λλ+的值; (2)求MA MB 的最小值.2007年普通高等学校招生全国统一考试(福建文)参考答案一、选择题:本大题考查基本概念和基本运算,每小题5分,满分60分. 1.C 2.C 3.D 4.A 5.A 6.B 7.D 8.B 9.D 10.B 11.B 12.C二、填空题:本大题考查基础知识和基本运算.每小题4分,满分16分. 13.1514.[]57-,15.1216.答案不唯一,如“图形的全等”、“图形的相似”、“非零向量的共线”、“命题的充要条件”等等.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.本小题主要考查两角和差公式,用同角三角函数关系等解斜三角形的基本知识以及推理和运算能力.满分12分. 解:(Ⅰ)π()C A B =-+,1345tan tan()113145C A B +∴=-+=-=--. 又0πC <<,3π4C ∴=.(Ⅱ)由22sin 1tan cos 4sin cos 1A A A A A ⎧==⎪⎨⎪+=⎩,,且π02A ⎛⎫∈ ⎪⎝⎭,,得sin A =sin sin AB BC C A =,sin 2sin ABC AB C∴==18.本小题主要考查概率的基础知识,运用数学知识解决问题的能力,以及推理与运算能力.满分12分.解:记“甲第i 次试跳成功”为事件i A ,“乙第i 次试跳成功”为事件i B ,依题意得()0.7i P A =,()0.6i P B =,且i A ,i B (123i =,,)相互独立.(Ⅰ)“甲第三次试跳才成功”为事件123A A A ,且三次试跳相互独立,123123()()()()0.30.30.70.063P A A A P A P A P A ∴==⨯⨯=.答:甲第三次试跳才成功的概率为0.063. (Ⅱ)“甲、乙两人在第一次试跳中至少有一人成功”为事件C . 解法一:111111C A B A B A B =++,且11A B ,11A B ,11A B 彼此互斥,111111()()()()P C P A B P A B P A B ∴=++ 111111()()()()()()P A P B P A P B P A P B =++ 0.70.40.30.60.70.6=⨯+⨯+⨯ 0.88=.解法二:11()1()()10.30.40.88P C P A P B =-=-⨯=. 答:甲、乙两人在第一次试跳中至少有一人成功的概率为0.88.(Ⅲ)设“甲在两次试跳中成功i 次”为事件(012)i M i =,,, “乙在两次试跳中成功i 次”为事件(012)i N i =,,, 事件“甲、乙各试跳两次,甲比乙的成功次数恰好多一次”可表示为1021M N M N +,且10M N ,21M N 为互斥事件,∴所求的概率为10211021()()()P M N M N P M N P M N +=+1021()()()()P M P N P M P N =+1221220.70.30.40.70.60.4C C =⨯⨯⨯+⨯⨯⨯0.06720.2352=+ 0.3024=答:甲、乙每人试跳两次,甲比乙的成功次数恰好多一次的概率为0.3024.19.本小题主要考查直线与平面的位置关系,二面角的大小等知识,考查空间想象能力、逻辑思维能力和运算能力.满分12分. 解法一:(Ⅰ)取BC 中点O ,连结AO . ABC △为正三角形,AO BC ∴⊥.正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AO ∴⊥平面11BCC B . 连结1B O ,在正方形11BB C C 中,O D ,分别为1BC CC ,的中点, 1B O BD ∴⊥,AC1A FG1AB BD ∴⊥.在正方形11ABB A 中,11AB A B ⊥,1AB ∴⊥平面1A BD .(Ⅱ)设1AB 与1A B 交于点G ,在平面1A BD 中,作1GF A D ⊥于F ,连结AF ,由(Ⅰ)得1AB ⊥平面1A BD .1AF A D ∴⊥,AFG ∴∠为二面角1A A D B --的平面角.在1AA D △中,由等面积法可求得AF =又112AG AB ==sin 4AG AFG AF ∴===∠. 所以二面角1A A DB --的大小为arcsin 4解法二:(Ⅰ)取BC 中点O ,连结AO . ABC △为正三角形,AO BC ∴⊥. 在正三棱柱111ABC A B C -中, 平面ABC ⊥平面11BCC B ,AO ∴⊥平面11BCC B .取11B C 中点1O ,以O 为原点,OB ,1OO ,OA 的方向为x y z ,,轴的正方向建立空间直角坐标系,则(100)B ,,,(110)D -,,,1(02A ,(00A ,1(120)B ,,, 1(12AB ∴=,,(210)BD =-,,,1(12BA =-.12200AB BD =-++=,111430AB BA =-+-=, 1AB BD ∴⊥,11AB BA ⊥.1AB ∴⊥平面1A BD .(Ⅱ)设平面1A AD 的法向量为()x y z =,,n .(11AD =-,,,1(020)AA =,,.AD ⊥n ,1AA ⊥n ,100AD AA ⎧=⎪∴⎨=⎪⎩,,nn 020x y y ⎧-+-=⎪∴⎨=⎪⎩,,0y x =⎧⎪∴⎨=⎪⎩,. 令1z =得(1)=,n 为平面1A AD 的一个法向量. 由(Ⅰ)知1AB ⊥平面1A BD ,1AB ∴为平面1A BD 的法向量.cos <n,11133222AB AB AB -->===n n .∴二面角1A A D B --的大小为arccos420.本题主要考查函数的单调性、极值以及函数导数的应用,考查运用数学知识分析问题解决问题的能力.满分12分. 解:(Ⅰ)23()()1(0)f x t x t t t x t =+-+-∈>R ,,∴当x t =-时,()f x 取最小值3()1f t t t -=-+-,即3()1h t t t =-+-.(Ⅱ)令3()()(2)31g t h t t m t t m =--+=-+--, 由2()330g t t '=-+=得1t =,1t =-(不合题意,舍去). 当t 变化时()g t ',()g t 的变化情况如下表:()g t ∴在(02),内有最大值(1)1g m =-.()2h t t m <-+在(02),内恒成立等价于()0g t <在(02),内恒成立,即等价于10m -<,所以m 的取值范围为1m >.21.本小题考查数列的基本知识,考查等比数列的概念、通项公式及数列的求和,考查分类讨论及化归的数学思想方法,以及推理和运算能力.满分12分. 解:(Ⅰ)12n n a S +=,12n n n S S S +∴-=,13n nS S +∴=. 又111S a ==,∴数列{}n S 是首项为1,公比为3的等比数列,1*3()n n S n -=∈N .当2n ≥时,21223(2)n n n a S n --==≥,21132n n n a n -=⎧∴=⎨2⎩, ,,≥. (Ⅱ)12323n n T a a a na =++++,当1n =时,11T =;当2n ≥时,0121436323n n T n -=++++,…………①12133436323n n T n -=++++,………………………②-①②得:12212242(333)23n n n T n ---=-+++++-213(13)222313n n n ---=+--11(12)3n n -=-+-.1113(2)22n n T n n -⎛⎫∴=+- ⎪⎝⎭≥. 又111T a ==也满足上式,1*113()22n n T n n -⎛⎫∴=+-∈ ⎪⎝⎭N .22.本小题主要考查直线、抛物线、向量等基础知识,考查轨迹方程的求法以及研究曲线几何特征的基本方法,考查运算能力和综合解题能力.满分14分. 解法一:(Ⅰ)设点()P x y ,,则(1)Q y -,,由QP QF FP FQ =得:(10)(2)(1)(2)x y x y y +-=--,,,,,化简得2:4C y x =.(Ⅱ)(1)设直线AB 的方程为:1(0)x my m =+≠.设11()A x y ,,22()B x y ,,又21M m ⎛⎫-- ⎪⎝⎭,, 联立方程组241y x x my ⎧=⎨=+⎩,,,消去x 得:2440y my --=,2(4)120m ∆=-+>,121244y y m y y +=⎧⎨=-⎩,.由1MA AF λ=,2MB BF λ=得:1112y y m λ+=-,2222y y mλ+=-1121my λ=--,2221my λ=--, 12122112m y y λλ⎛⎫∴+=--+ ⎪⎝⎭121222y y m y y +=--2424mm =---0=.解法二:(Ⅰ)由QP QF FP FQ =得:()0FQ PQ PF +=,()()0PQ PF PQ PF ∴-+=,220PQ PF ∴-=,PQ PF ∴=.所以点P 的轨迹C 是抛物线,由题意,轨迹C 的方程为:24y x =.(Ⅱ)(1)由已知1MA AF λ=,2MB BF λ=,得120λλ<. 则:12MA AF MBBFλλ=-.…………①过点A B ,分别作准线l 的垂线,垂足分别为1A ,1B , 则有:11MA AA AF MBBB BF==.…………②由①②得:12AF AF BF BFλλ-=,即120λλ+=. (Ⅱ)(2)解:由解法一,(2121M M MA MB y y y y =--221212(1)()M Mm y y y y y y =+-++ 2224(1)44m m m m=+-+⨯+ 224(1)4m m ⎛⎫=++ ⎪⎝⎭22214(2)4216m m m ⎛=+++= ⎪ ⎪⎝⎭≥. 当且仅当221m m =,即1m =±时等号成立,所以MA MB 最小值为16.。
2007年高考文科数学试题及参考答案(福建卷)
2008年普通高等学校招生全国统一考试(福建卷)文科数学第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|0A x x x =-<,{}|03B x x =<<,则A B 等于( ) A.{}|01x x << B.{}|03x x << C.{}|13x x << D.∅2.a=1”是“直线0x y +=和直线0x ay -=互相垂直”的( )条件A.充分不必要 B.必要不充分 C.冲要 D.既不充分也不必要3.设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项和为( )A.128 B.80 C.64 D.564.函数3()sin 1()f x x x x R =++∈,若()2f a =,则()f a -的值为( )A.3 B.0 C.-1 D.-25.某一批花生种子,如果每一粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是( ) A.12125 B.16125 C.48125 D.961256.如图,在长方体1111ABCD A BC D -中,2AB BC ==分别为11AA =,则1AC 与平面1111A B C D 所成的角的正弦值等于( )A.3 B.23 C.4 D.137.函数cos ()y x x R =∈的图像向左平移2π个单位后,得到()y g x =的图像,则()g x 的解析式为( )A.sin x - B.sin x C.cos x - D.cos x8.在中,角A,B,C 的对应边分别为a,b,c,若222a c b +-=,则角B 的值为( ) A.6π B.3π C.6π或56π D.3π或23π 9.某班级要从4名男生和2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方法有( )A.14 B.24 C.28 D.4810.若实数x,y 满足 02x y x y -+≤>≤,则y x的取值范围是( ) A.(0,2) B.(0,2] C.(2,)+∞D.[2,)+∞ 11.如果函数()y f x =的图像如右图,那么导函数,()y f x =的图像可能是( )12.双曲线22221(0,0)x y a b a b+=>>的两个焦点为12,F F ,若P 为其上的一点,且12||2||PF PF =,则双曲线离心率的取值范围为( )A.(1,3) B.(1,3] C.(3,)+∞ D.[3,)+∞第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置. 13. 91()x x +展开式中3x 的系数是 (用数字作答) 14.若直线340x y m ++=与圆222440x y x y +-++=没有公共点,则实数m 的取值范围是15.,则其外接球的表面积是16.设P 是一个数集,且至少含有两个数,若对任意,a b P ∈,都有,,,a a b a b ab P b+-∈(除数0b ≠),则称P 是一个数域。
2007年(全国卷II)(含答案)高考文科数学
2007年普通高等学校招生全国统一考试(2全国Ⅱ卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分) 1.cos330= ( )A .12B .12-C .32D .32-2.设集合{1234}{12}{24}U A B ===,,,,,,,,则()U A B = ð( ) A .{2}B .{3}C .{124},,D .{14},3.函数sin y x =的一个单调增区间是( )A .ππ⎛⎫- ⎪44⎝⎭,B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π ⎪2⎝⎭,4.下列四个数中最大的是( ) A .2(ln 2) B .ln(ln 2)C .ln 2D .ln 25.不等式203x x ->+的解集是( ) A .(32)-, B .(2)+∞, C .(3)(2)-∞-+∞ ,, D .(2)(3)-∞-+∞ ,,6.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( )A .23B .13C .13-D .23-7.已知三棱锥的侧棱长的底面边长的2倍,则侧棱与底面所成角的余弦值等于( ) A .36B .34C .22D .328.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( )A .1B .2C .3D .49.把函数e x y =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =( ) A .e 2x +B .e 2x -C .2e x -D .2e x +10.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( ) A .10种B .20种C .25种D .32种11.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .13B .33C .12D .3212.设12F F ,分别是双曲线2219y x +=的左、右焦点.若点P 在双曲线上,且120PF PF =,则12PF PF += ( )A .10B .210C .5D .25二、填空题:本大题共4小题,每小题5分,共20分.13.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .14.已知数列的通项52n a n =-+,则其前n 项和n S = .15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2.16.821(12)1x x ⎛⎫++ ⎪⎝⎭的展开式中常数项为 .(用数字作答)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)设等比数列{}n a 的公比1q <,前n 项和为n S .已知34225a S S ==,,求{}n a 的通项公式.18.(本小题满分12分)在ABC△中,已知内角Aπ=3,边23BC=.设内角B x=,周长为y.(1)求函数()y f x=的解析式和定义域;(2)求y的最大值.19.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率()0.96P A=.(1)求从该批产品中任取1件是二等品的概率p;(2)若该批产品共100件,从中任意抽取2件,求事件B:“取出的2件产品中至少有一件二等品”的概率()P B.20.(本小题满分12分)如图,在四棱锥S ABCD-中,底面ABCD为正方形,侧棱SD⊥底面ABCD E F,,分别为AB SC,的中点.(1)证明EF∥平面SAD;(2)设2SD DC=,求二面角A EF D--的大小.A EB CF SD21.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线:43=-y x 相切 (1)求圆O 的方程(2)圆O 与x 轴相交于A 、B 两点,圆内的动点P 使|P A |、|PO |、|PB |成等比数列,求PA PB ∙的取值范围。
2007年全国高考文科数学试卷及答案
2007年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式 如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径一、选择题(1)设{}210S x x =+>,{}350T x x =-<,则S T =( )A.∅B.12x x ⎧⎫<-⎨⎬⎩⎭C.53x x ⎧⎫>⎨⎬⎩⎭D.1523x x ⎧⎫-<<⎨⎬⎩⎭(2)α是第四象限角,12cos 13α=,sin α=( ) A.513B.513-C.512 D.512-(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A.垂直B.不垂直也不平行C.平行且同向D.平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( ) A.221412x y -= B.221124x y -= C.221106x y -= D.221610x y -= (5)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( ) A.36种 B.48种 C.96种 D.192种(6)下面给出四个点中,位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A.(02),B.(20)-,C.(02)-,D.(20),(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( ) A.15B.25C.35D.45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) B.2C.D.4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A.充要条件 B.充分而不必要的条件 C.必要而不充分的条件D.既不充分也不必要的条件(10)函数22cos y x =的一个单调增区间是( ) A.ππ44⎛⎫- ⎪⎝⎭,B.π02⎛⎫ ⎪⎝⎭,C.π3π44⎛⎫ ⎪⎝⎭,D.ππ2⎛⎫ ⎪⎝⎭,(11)曲线313y x x =+在点413⎛⎫⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( ) A.19B.29C.13D.23(12)抛物线24y x =的焦点为F ,准线为l ,经过F 的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( ) A.4B.C.D.8第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ): 492 496 494 495 498 497 501 502 504 496497 503 506 508 507 492 496 500 501 499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g ~501.5g 之间的概率约为_____.(14)函数()y f x =的图像与函数3log (0)y xx =>的图像关于直线y x =对称,则()f x =____________.(15)正四棱锥S ABCD -,点S ,A ,B ,C ,D 都在同一个球面上,则该球的体积为_________.(16)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为______.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分)设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)若a =,5c =,求b .(18)(本小题满分12分)某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率. (19)(本小题满分12分)四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD ,已知45ABC ∠=︒,2AB =,BC =SA SB == (Ⅰ)证明:SA BC ⊥;(Ⅱ)求直线SD 与平面SBC 所成角的大小. (20)(本小题满分12分)设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.(Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围. (21)(本小题满分12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,SCDAB5313a b +=(Ⅰ)求{}n a ,{}n b 的通项公式; (Ⅱ)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S . (22)(本小题满分12分)已知椭圆22132x y +=的左、右焦点分别为1F ,2F ,过1F 的直线交椭圆于B ,D 两点,过2F 的直线交椭圆于A ,C 两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值.2007年普通高等学校招生全国统一考试文科数学试题(必修+选修1)参考答案一、选择题1.D 2.B 3.A 4.A 5.C 6.C 7.D 8.D 9.B 10.D 11.A 12.C 二、填空题13.0.25 14.3()xx ∈R 15.4π3 16.13三、解答题 17.解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)根据余弦定理,得2222cos b a c ac B =+-272545=+-7=.所以,b =18.解:(Ⅰ)记A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无人采用一次性付款”.2()(10.6)0.064P A =-=,()1()10.0640.936P A P A =-=-=.(Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”.1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则01B B B =+.30()0.60.216P B ==,1213()0.60.40.432P B C =⨯⨯=.0.648=.19.解法一:(1)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥. (Ⅱ)由(Ⅰ)知SA BC ⊥, 依题设AD BC ∥,故SA AD ⊥,由AD BC ==SA =SD又sin 452AO AB ==DE BC ⊥,垂足为E ,则DE ⊥平面SBC ,连结SE .ESD ∠为直线SD 与平面SBC 所成的角. 所以,直线SD 与平面SBC所成的角为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系O xyz -,因为2AO BO AB ===1SO =,DBCASE又BC =0)A ,,(0B,(0C ,. (001)S ,,,(21)SA =-,,, (0CB =,0SA CB =,所以SA BC ⊥.(Ⅱ)(21)SD SA AD SA CB =+=-=--,,(20)OA =,,. OA 与SD 的夹角记为α,SD 与平面ABC 所成的角记为β,因为OA 为平面SBC 的法向量,所以α与β互余.22cos 11OA SD OASDα==,sin 11β=,所以,直线SD 与平面SBC 所成的角为. 20.解:(Ⅰ)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=⎧⎨++=⎩,.解得3a =-,4b =.(Ⅱ)由(Ⅰ)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--.当(01)x ∈,时,()0f x '>;当(12)x ∈,时,()0f x '<; 当(23)x ∈,时,()0f x '>. 所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+. 则当[]03x ∈,时,()f x 的最大值为(3)98f c =+. 因为对于任意的[]03x ∈,,有2()f x c <恒成立,所以 298c c +<, 解得 1c <-或9c >, 因此c 的取值范围为(1)(9)-∞-+∞,,.21.解:(Ⅰ)设{}n a 的公差为d ,{}n b 的公比为q ,则依题意有0q >且4212211413d q d q ⎧++=⎪⎨++=⎪⎩,,解得2d =,2q =.所以1(1)21n a n d n =+-=-,112n n n b q --==.(Ⅱ)1212n n n a n b --=. 122135232112222n n n n n S ----=+++++,① 3252321223222n n n n n S ----=+++++,②②-①得22122221222222n n n n S ---=+++++-,12362n n -+=-.22.证明(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200001132222x y x y ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+,2221222121)(1)()432k BD x xk x x x x k +⎡=-=++-=⎣+;因为AC 与BC 相交于点p ,且AC 的斜率为1k-. 所以,2222111)12332k k AC k k⎫+⎪+⎝⎭==+⨯+. 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥.当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =. 综上,四边形ABCD 的面积的最小值为9625.。
2007年福建省高考数学试卷(文科)及解析
2007年福建省⾼考数学试卷(⽂科)及解析2007年福建省⾼考数学试卷(⽂科)⼀、选择题(共12⼩题,每⼩题5分,满分60分)1.(5分)(2007?福建)已知全集U=|1,2,3,4,5|,且A={2,3,4},B={1,2},则A∩(?∪B)等于()A.{2} B.{5} C.{3,4} D.{2,3,4,5}2.(5分)(2007?福建)等⽐数列{a n}中,a4=4,则a2?a6等于()A.4 B.8 C.16 D.323.(5分)(2007?福建)sin15°cos75°+cos15°sin105°等于()A.0 B.C.D.14.(5分)(2007?福建)“|x|<2”是“x2﹣x﹣6<0”的()A.充分⽽不必要条件 B.必要⽽不充分条件C.充要条件 D.既不充分也不必要条件5.(5分)(2007?福建)函数y=sin(2x+)的图象()A.关于点(,0)对称B.关于直线x=对称C.关于点(,0)对称D.关于直线x=对称6.(5分)(2007?福建)如图,在正⽅体ABCD﹣A1B1C1D1中,E、F、G、H分别为AA1、AB、BB1、B1C1的中点,则异⾯直线EF与GH所成的⾓等于()A.45°B.60°C.90°D.120°7.(5分)(2007?福建)已知f(x)为R上的减函数,则满⾜的实数x的取值范围是()A.(﹣∞,1)B.(1,+∞)C.(﹣∞,0)∪(0,1)D.(﹣∞,0)∪(1,+∞)8.(5分)(2007?福建)对于向量、、和实数λ,下列命题中真命题是()A.若?=0,则=0或=0 B.若λ=,则λ=0或=C.若2=2,则=或=﹣D.若?=?,则=9.(5分)(2007?福建)已知m、n为两条不同的直线,α、β为两个不同的平⾯,则下列命题中正确的是()A.m?α,n?α,m∥β,n∥β?α∥βB.α∥β,m?α,n?α,?m∥nC.m⊥α,m⊥n?n∥αD.n∥m,n⊥α?m⊥α10.(5分)(2007?福建)以双曲线x2﹣y2=2的右焦点为圆⼼,且与其右准线相切的圆的⽅程是()A.x2+y2﹣4x﹣3=0 B.x2+y2﹣4x+3=0 C.x2+y2+4x﹣5=0 D.x2+y2+4x+5=0 11.(5分)(2007?福建)已知对任意x∈R,恒有f(﹣x)=﹣f(x),g(﹣x)=g(x),且当x>0时,f′(x)>0,g′(x)>0,则当x<0时有()A.f′(x)>0,g′(x)>0B.f′(x)>0,g′(x)<0 C.f′(x)<0,g′(x)>0 D.f′(x)<0,g′(x)<012.(5分)(2007?福建)某通讯公司推出⼀组⼿机卡号码,卡号的前七位数字固定,从“×××××××0000”到“×××××××9999”共10000个号码、公司规定:凡卡号的后四位带有数字“4”或“7”的⼀律作为“优惠卡”,则这组号码中“优惠卡”的个数为()A.2000 B.4096 C.5904 D.8320⼆、填空题(共4⼩题,每⼩题4分,满分16分)13.(4分)(2007?福建)(x2+)6的展开式中常数项是.(⽤数字作答)14.(4分)(2007?福建)已知实数x、y满⾜,则z=2x﹣y的取值范围是.15.(4分)(2007?福建)已知长⽅形ABCD,AB=4,BC=3,则以A、B为焦点,且过C、D两点的椭圆的离⼼率为.16.(4分)(2007?福建)中学数学中存在许多关系,⽐如“相等关系”、“平⾏关系”等等、如果集合A中元素之间的⼀个关系“﹣”满⾜以下三个条件:(1)⾃反性:对于任意a∈A,都有a﹣a;(2)对称性:对于a,b∈A,若a﹣b,则有b﹣a;(3)对称性:对于a,b,c∈A,若a﹣b,b﹣c,则有a﹣c、则称“﹣”是集合A的⼀个等价关系、例如:“数的相等”是等价关系,⽽“直线的平⾏”不是等价关系(⾃反性不成⽴)、请你再列出两个等价关系:.三、解答题(共6⼩题,满分74分)17.(12分)(2007?福建)在△ABC中,tanA=,tanB=.(Ⅰ)求⾓C的⼤⼩;(Ⅱ)若AB边的长为,求BC边的长.18.(12分)(2007?福建)甲、⼄两名跳⾼运动员⼀次试跳2⽶⾼度成功的概率分别为0、7、0、6,且每次试跳成功与否相互之间没有影响,求:(Ⅰ)甲试跳三次,第三次才能成功的概率;(Ⅱ)甲、⼄两⼈在第⼀次试跳中⾄少有⼀⼈成功的概率;(Ⅲ)甲、⼄各试跳两次,甲⽐⼄的成功次数恰好多⼀次的概率.19.(12分)(2007?福建)如图,正三棱柱ABC﹣A1B1C1的所有棱长都为2,D为CC1中点.(Ⅰ)求证:AB1⊥平⾯A1BD;(Ⅱ)求⼆⾯⾓A﹣A1D﹣B的⼤⼩.20.(12分)(2007?福建)设函数f(x)=tx2+2t2x+t﹣1(x∈R,t>0).(Ⅰ)求f (x)的最⼩值h(t);(Ⅱ)若h(t)<﹣2t+m对t∈(0,2)恒成⽴,求实数m的取值范围.21.(12分)(2007?福建)数列{a n}的前N项和为S n,a1=1,a n+1=2S n(n∈N*).(Ⅰ)求数列{a n}的通项a n;(Ⅱ)求数列{na n}的前n项和T n.22.(14分)(2007?福建)已知点F(1,0),直线l:x=﹣1,P为平⾯上的动点,过P作l 的垂线,垂⾜为点Q,且?(Ⅰ)求动点P的轨迹C的⽅程;(Ⅱ)过点F的直线交轨迹C于A、B两点,交直线l于点M.(1)已知,求λ1+λ2的值(2)求||?||的最⼩值.2007年福建省⾼考数学试卷(⽂科)参考答案与试题解析⼀、选择题(共12⼩题,每⼩题5分,满分60分)1.(5分)【考点】交、并、补集的混合运算.【分析】由题意全集U=|1,2,3,4,5|,且A={2,3,4},B={1,2},根据补集的定义可得C∪B={3,4,5},再根据交集的定义计算A∩(C∪B).【解答】解:∵全集U=|1,2,3,4,5|,B={1,2},∴C∪B={3,4,5},∵A={2,3,4},∴A∩(C∪B)={3,4},故选C.【点评】此题考查集合间的交、并、补运算是⾼考中的常考内容,要认真掌握,并确保得分.2.(5分)【考点】等⽐数列.【分析】由a4=4是a2、a6的等⽐中项,求得a2?a6【解答】解:a2?a6=a42=16故选C.【点评】本题主要考查等⽐中项.3.(5分)(【考点】⼆倍⾓的正弦.【分析】⽤诱导公式把题⽬中出现的⾓先化到锐⾓,再⽤诱导公式化到同名的三⾓函数,sin215°+cos215°=1或应⽤两⾓和的正弦公式求解.【解答】解:sin15°cos75°+cos15°sin105°=sin215°+cos215°=1,故选D.【点评】在⼀般的求值或证明三⾓函数的题中,只要熟练的掌握公式,⽤⼀般常⽤的⽅法都能解决问题,但在解决个别三⾓函数题时,⽤⼀般⽅法不易解决,只能⽤特殊的⽅法解决,要根据实际情况确定⽤什么公式.4.(5分)【考点】必要条件、充分条件与充要条件的判断.【分析】分别解出两不等式,再进⾏判断.【解答】解:由|x|<2得﹣2<x<2,由x2﹣x﹣6<0得﹣2<x<3,“﹣2<x<2”?“﹣2<x<3”,反之不成⽴.故选A.【点评】本题考查简单的绝对值不等式和⼆次不等式的求解,充要条件的判断,属基本题.5.(5分)【考点】正弦函数的对称性.【分析】根据三⾓函数对称性的求法,令2x+=kπ解出x的值即可得到答案.【解答】解:令2x+=kπ得x=,对称点为(,0)(k∈z),当k=1时为(,0),故选A.【点评】本题主要考查三⾓函数的对称性问题.属基础题.6.(5分)【考点】异⾯直线及其所成的⾓.【分析】先通过平移将两条异⾯直线平移到同⼀个起点B,得到的锐⾓∠A1BC1就是异⾯直线所成的⾓,在三⾓形A1BC1中求出此⾓即可.【解答】解:如图,连A1B、BC1、A1C1,则A1B=BC1=A1C1,且EF∥A1B、GH∥BC1,所以异⾯直线EF与GH所成的⾓等于60°,故选B.【点评】本题主要考查了异⾯直线及其所成的⾓,考查空间想象能⼒、运算能⼒和推理论证能⼒,属于基础题.7.(5分)【考点】函数单调性的性质.【分析】由函数的单调性可直接得到的⼤⼩,转化为解分式不等式,直接求解或特值法均可.【解答】解:由已知得解得x<0或x>1,故选D.【点评】本题考查利⽤函数的单调性解不等式,属基本题.8.(5分)【考点】平⾯向量数量积的含义与物理意义.【分析】本题是对⼏个常见的基本概念的考查,第⼀个是数量积为零,我们知道向量垂直时也有数量积为零,第⼆个考的是数乘运算,当⼀个实数和⼀个向量的积是零时,有两种情况,⼀是实数为零,⼀个是向量是零向量,本选项正确.【解答】解:⊥时也有?=0,A不正确;B正确;设,,此时2=2,但=或=﹣不成⽴,C错误;∵?=?得不到=,如为零向量或与、垂直时,D错误;故选B.【点评】在实数中,若a≠0,且a×b=0,则b=0;但是在数量积中,若≠0,且×=0,不能推出=0.因为其中cosq有可能为0.在做有关向量问题时,不要凭想当然做事,不然会出错.9.(5分)【考点】空间中直线与平⾯之间的位置关系.【分析】结合题意,由⾯⾯平⾏的判定定理判断A,⾯⾯平⾏的定义判断B,线⾯垂直的定义判断C,利⽤平⾏和垂直的结论【解答】解:A不正确,m、n少相交条件;B不正确,分别在两个平⾏平⾯的两条直线不⼀定平⾏;C不正确,n可以在α内;故选D【点评】本题主要考查了⾯⾯平⾏的判定定理及定义,线⾯垂直的定义及⼀些结论来判断空间线⾯的位置关系,培养逻辑思维能⼒.10.(5分)【考点】双曲线的简单性质;圆的⼀般⽅程.【分析】先根据双曲线⽅程求出右焦点的坐标即可得到圆⼼坐标,再求出右准线⽅程,进⽽可求出半径,从⽽可得到圆的标准⽅程.【解答】解:双曲线x2﹣y2=2的右焦点为(2,0),即圆⼼为(2,0),右准线为x=1,半径为1,圆⽅程为(x﹣2)2+y2=1,即x2+y2﹣4x+3=0,故选B.【点评】本题主要考查双曲线的简单性质﹣﹣焦点坐标和准线⽅程.属基础题.11.(5分)【考点】函数奇偶性的性质;导数的⼏何意义.【分析】由已知对任意x∈R,恒有f(﹣x)=﹣f(x),g(﹣x)=g(x),知f(x)为奇函数,g(x)为偶函数,⼜由当x>0时,f′(x)>0,g′(x)>0,可得在区间(0,+∞)上f(x),g(x)均为增函数,然后结合奇函数、偶函数的性质不难得到答案.【解答】解:由f(﹣x)=﹣f(x),g(﹣x)=g(x),知f(x)为奇函数,g(x)为偶函数.⼜x>0时,f′(x)>0,g′(x)>0,知在区间(0,+∞)上f(x),g(x)均为增函数由奇、偶函数的性质知,在区间(﹣∞,0)上f(x)为增函数,g(x)为减函数则当x<0时,f′(x)>0,g′(x)<0.故选B【点评】奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反,这是函数奇偶性与函数单调性综合问题的⼀个最关键的粘合点,故要熟练掌握.12.(5分)【考点】有理数指数幂的运算性质.【分析】考虑对⽴事件,10000个号码中不含4、7的有84=4096,故这组号码中“优惠卡”的个数为10000﹣4096=5904【解答】解:∵10000个号码中不含4、7的有84=4096,∴“优惠卡”的个数为10000﹣4096=5904,【点评】本题主要考查概率中的对⽴事件问题.注意事件与其对⽴事件的概率和为1.⼆、填空题(共4⼩题,每⼩题4分,满分16分)13.(4分)【考点】⼆项式定理的应⽤.【分析】本题可通过通项公式T r+1=C n r a n﹣r b r来确定常数项,从⽽根据常数相中x的指数幂为0即可确定C6r(x2)6﹣r中r的值,然后即可求出常数项是15【解答】解:设通项公式为,整理得C6r x12﹣3r,因为是常数项,所以12﹣3r=0,所以r=4,故常数项是c64=15故答案为15.【点评】本题主要考查⼆项式定理中通项公式的应⽤,属于基础题型.难度系数0.9.⼀般的通项公式的主要应⽤是求常数项,求有理项或者求某⼀项的系数,⼆项式系数等.所以在今后遇到这样的试题时⾸先都可以尝试⽤通项来加以解决.14.(4分)【考点】⼆元⼀次不等式(组)与平⾯区域.【分析】先画出可⾏域,再把⽬标函数变形为直线的斜截式,根据其在y轴上的截距即可求之.【解答】解:画出可⾏域,如图所⽰解得B(﹣1,3)、C(5,3),把z=2x﹣y变形为y=2x﹣z,则直线经过点B时z取得最⼩值;经过点C时z取得最⼤值.所以z min=2×(﹣1)﹣3=﹣5,z max=2×5﹣3=7.即z的取值范围是[﹣5,7].故答案为[﹣5,7].【点评】本题考查利⽤线性规划求函数的最值.15.(4分)【考点】椭圆的简单性质.【分析】由已知c=2,=3?b2=3a?a2﹣4=3a?a=4,由此可以求出该椭圆的离⼼率.【解答】解:∵AB=4,BC=3,A、B为焦点,∴c=2,=3,∴b2=3a,∴a2﹣4=3a∴a=4,∴e=.故答案:.【点评】本题考查椭圆的性质和应⽤,解题时要认真审题,仔细解答.16.(4分)【考点】元素与集合关系的判断.【分析】从所给的条件出发,通过观察、分析得出结论,再把各个结论代⼊题⽬中验证,看是否成⽴,由于结论不唯⼀,本类问题⼀般不要求证明,把结论⽤⾃反性、对称性、对称性进⾏验证.【解答】解:如“图形的全等”、“图形的相似”、“⾮零向量的共线”、“命题的充要条件”等等.故答案为:“图形的全等”、“图形的相似”.【点评】这类问题只给出条件但没有结论,解题⽅向不明,⾃由度⼤,需要解题者⽐较概括后,探索各种情况,并确定结论.在⼀般情况下,我们需要探索出较为深刻的结论三、解答题(共6⼩题,满分74分)17.(12分)【考点】两⾓和与差的正切函数;正弦定理的应⽤.【分析】(Ⅰ)利⽤三⾓形内⾓和可知tanC=﹣tan(A+B)然后利⽤正切的两⾓和公式求得tan(A+B)的值,进⽽求得tanC的值,则C的值可求.(Ⅱ)利⽤tanA的值求得sinA和cosA的关系式,进⽽利⽤⼆者的平⽅关系联⽴求得sinA,最后利⽤正弦定理求得BC的值.【解答】解:(Ⅰ)∵C=π﹣(A+B),∴tanC=﹣tan(A+B)=﹣,⼜∵0<C<π,∴C=(Ⅱ)由且A∈(0,),得sinA=.∵,∴BC=AB?.【点评】本⼩题主要考查两⾓和差公式,⽤同⾓三⾓函数关系等解斜三⾓形的基本知识以及推理知运算能⼒.18.(12分)【考点】相互独⽴事件的概率乘法公式;互斥事件的概率加法公式.【分析】(Ⅰ)由题意知本题是⼀个相互独⽴事件,甲试跳三次,第三次才能成功的概率,表⽰甲前两次试跳不成功,⽽第三次试跳才成功,记出事件,根据相互独⽴事件同时发⽣的概率,得到结果.(Ⅱ)甲、⼄两⼈在第⼀次试跳中⾄少有⼀⼈成功表⽰甲成功且⼄成功,甲不成功且⼄成功,甲成功且⼄不成功,三种结果,这三种事件之间是互斥关系,根据互斥事件和相互独⽴事件的概率,得到结果.(Ⅲ)甲、⼄各试跳两次,甲⽐⼄的成功次数恰好多⼀次表⽰甲成功两次且⼄成功⼀次,甲成功⼀次且⼄成功0次,两种结果,这两种结果是互斥的,根据互斥事件的概率,得到结果.【解答】解:记“甲第i次试跳成功”为事件A1,“⼄第i次试跳成功”为事件B1、依题意得P(A1)=0.7,P(B1)=0.6,且A1,B1(i=1,2,3)相互独⽴、(Ⅰ)“甲第三次试跳才成功”为事件A3,且三次试跳相互独⽴,∴P(A3)=P()P=0.3×0.3×0.7=0.063即甲第三次试跳才成功的概率为0.063.(Ⅱ)甲、⼄两⽀在第⼀次试跳中⾄少有⼀⼈成功为事件C,解法⼀:C=A1彼此互斥,∴P(C)===0.7×0.4+0.3×0.6+0.7×0.6=0.88解法⼆:P(C)=1﹣=1﹣0.3×0.4=0.88.即甲、⼄两⼈在第⼀次试跳中⾄少有⼀⼈成功的概率为0.88(Ⅲ)设“甲在两次试跳中成功i次”为事件M i(i=0,1,2),“⼄在两次试跳中成功i次”为事件N i(i=0,1,2),∵事件“甲、⼄各试跳两次,甲⽐⼄的成功次数恰好多⼀次”可表⽰为M1N0+M2N1,且M1N0、M2N1为互斥事件.∴所求的概率为P(M1N0+M2N1)=P(M1N0)+P(M2N1)=P(M1)P(N0)+P(M2)P (N1)=C21×0.7×0.3×0.42+0.72×C21×0.6×0.4=0.0672+0.2352=0.3024.即甲、⼄每⼈试跳两次,甲⽐⼄的成功次数恰好多⼀次的概率为0.3024.【点评】本⼩题主要考查概率的基础知识,运⽤数学知识解决问题的能⼒,以及推理与运算能⼒.相互独⽴事件是指,两事件发⽣的概率互不影响,注意应⽤相互独⽴事件同时发⽣的概率公式.19.(12分)【考点】直线与平⾯垂直的判定;与⼆⾯⾓有关的⽴体⼏何综合题.【分析】法⼀:(Ⅰ)先证明直线AB1垂直平⾯A1BD内的两条相交直线BD、A1B,即可证明AB1⊥平⾯A1BD;(Ⅱ)设AB1与A1B交于点C,在平⾯A1BD中,作GF⊥A1D于F,连接AF,说明∠AFG为⼆⾯A﹣A1B﹣B的平⾯⾓,然后求⼆⾯⾓A﹣A1D﹣B的⼤⼩.法⼆:取BC中点O,连接AO,以0为原点,的⽅向为x、y、z轴的正⽅向建⽴空间直⾓坐标系,求出,即可证明AB1⊥平⾯A1BD.求出平⾯A1AD的法向量为=(x,y,z),为平⾯A1BD的法向量,然后求⼆者的数量积,求⼆⾯⾓A﹣A1D﹣B的⼤⼩.【解答】解:法⼀:(Ⅰ)取BC中点O,连接AO、∵△ABC为正三⾓形,∴AO⊥BC.∵正三棱柱ABC﹣A1B1C1中,平⾯ABC⊥平⾯BCC1B1,∴AO⊥平⾯BCC1B1,连接B1O,在正⽅形BB1C1C中,O、D分别为BC、CC1的中点,∴B1O⊥BD,∴AB1⊥BD.在正⽅形ABB1A1中,AB1⊥A1B,∴AB1⊥平⾯A1BD.(Ⅱ)设AB1与A1B交于点G,在平⾯A1BD中,作GF⊥A1D于F,连接AF,由(Ⅰ)得AB1⊥平⾯A1BD,∴∠AFG为⼆⾯A﹣A1D﹣B的平⾯⾓,在△AA1D中,由等⾯积法可求得AF=,⼜∵AG==,∴sin∠AFG=,所以⼆⾯⾓A﹣A1D﹣B的⼤⼩为arcsin.法⼆:(Ⅰ)取BC中点O,连接AO.∵△ABC为正三⾓形,∴AO⊥BC、∵正三棱柱ABC﹣A1B1C1中,平⾯ABC⊥平⾯BCC1B1,∴AO⊥平⾯BCC1B1,取B1C1中点O1,以0为原点,的⽅向为x、y、z轴的正⽅向建⽴空间直⾓坐标系,则B(1,0,0),D(﹣1,1,0),A1(0,2,),A(0,0,),B1(1,2,0),∴∵,∴⊥⊥,∴AB1⊥平⾯A1BD.(Ⅱ)设平⾯A1AD的法向量为=(x,y,z),.∵⊥⊥,∴∵∴令z=1得=(﹣,0,1)为平⾯A1AD的⼀个法向量.由(Ⅰ)知AB1⊥A1BD.∴为平⾯A1BD的法向量.cos<,>===﹣.∴⼆⾯⾓A﹣A1D﹣B的⼤⼩为arccos.【点评】本题考查直线与平⾯垂直的判定,⼆⾯⾓的求法,考查空间想象能⼒,逻辑思维能⼒,计算能⼒,是中档题.20.(12分)【考点】函数恒成⽴问题;函数的最值及其⼏何意义.【分析】(Ⅰ)由f(x)=t(x+t)2﹣t3+t﹣1(x∈R,t>0),根据配⽅法即可求出最⼩值;(Ⅱ)令g(t)=h(t)﹣(﹣2t+m)=﹣t3+3t﹣1﹣m,对其求导后讨论即可得出答案.【解答】解:(Ⅰ)∵f(x)=t(x+t)2﹣t3+t﹣1(x∈R,t>0),∴当x=﹣t时,f(x)取最⼩值f(﹣t)=﹣t3+t﹣1,即h(t)=﹣t3+t﹣1;(Ⅱ)令g(t)=h(t)﹣(﹣2t+m)=﹣t3+3t﹣1﹣m,由g′(t)=﹣3t2+3=0得t=1,t=﹣1(不合题意,舍去)当t变化时g′(t)、g(t)的变化情况如下表:t (0,1) 1 (1,2)g′(t)+ 0 ﹣g(t)递增极⼤值1﹣m 递减∴g(t)在(0,2)内有最⼤值g(1)=1﹣mh(t)<﹣2t+m在(0,2)内恒成⽴等价于g(t)<0在(0,2)内恒成⽴,即等价于1﹣m<0所以m的取值范围为m>1.【点评】本题主要考查函数的单调性、极值以及函数导数的应⽤,难度⼀般,掌握运⽤数学知识分析问题解决问题的能⼒.21.(12分)【考点】数列的求和;数列递推式.【分析】(I)利⽤递推公式a n+1=2S n把已知转化为S n+1与S n之间的关系,从⽽确定数列a n 的通项;(II)由(I)可知数列a n从第⼆项开始的等⽐数列,设b n=n则数列b n为等差数列,所以对数列n?a n的求和应⽤乘“公⽐”错位相减.【解答】解:(I)∵a n+1=2S n,∴S n+1﹣S n=2S n,∴=3.⼜∵S1=a1=1,∴数列{S n}是⾸项为1、公⽐为3的等⽐数列,S n=3n﹣1(n∈N*).∴当n≥2时,a n﹣2S n﹣1=2?3n﹣2(n≥2),∴a n=(II)T n=a1+2a2+3a3+…+na n,当n=1时,T1=1;当n≥2时,Tn=1+4?30+6?31+…+2n?3n﹣2,①3T n=3+4?31+6?32+…+2n?3n﹣1,②①﹣②得:﹣2Tn=﹣2+4+2(31+32+…+3n﹣2)﹣2n?3n﹣1=2+2?=﹣1+(1﹣2n)?3n﹣1∴Tn=+(n﹣)3n﹣1(n≥2).⼜∵Tn=a1=1也满⾜上式,∴Tn=+(n﹣)3n﹣1(n∈N*)【点评】本⼩题考查数列的基本知识,考查等⽐数列的概念、通项公式及数列的求和,考查分类讨论及化归的数学思想⽅法,以及推理和运算能⼒.22.(14分)【考点】直线与圆锥曲线的综合问题.【分析】(Ⅰ)先设点P(x,y),由题中条件:“”得:x,y之间的关系,化简得C:y2=4x.(Ⅱ)(1)设直线AB的⽅程为:x=my+1(m≠0),A(x1,y1),B(x2,y2),⼜M(﹣1,﹣)联⽴⽅程组,将直线的⽅程代⼊双曲线的⽅程,消去x得到关于y的⼀元⼆次⽅程,再结合直线l与双曲线相交于两个不同的点得到根的判别式⼤于0,结合根与系数的关系及向量的条件,从⽽解决问题.(2)先将?=()2|y1﹣y M||y2﹣y M|表⽰成关于m的函数形式,再利⽤基本不等式求此函数式的最⼩值即可.【解答】解:(Ⅰ)设点P(x,y),则Q(﹣1,y),由?=?得:(x+1,0)?(2,﹣y)=(x﹣1,y)?(﹣2,y),化简得C:y2=4x.(Ⅱ)(1)设直线AB的⽅程为:x=my+1(m≠0)设A(x1,y1),B(x2,y2),⼜M(﹣1,﹣)联⽴⽅程组,消去x得:y2﹣4my﹣4=0,△=(﹣4m)2+12>0,由,得:,整理得:,∴==﹣2﹣=0.(2)解:?=()2|y1﹣y M||y2﹣y M|=(1+m2)|y1y2﹣y M(y1+y2)+y M2|=(1+m2)|﹣4+×4m+|==4(2+m2+)≥4(2+2)=16、当且仅当,即m=±1时等号成⽴,所以?最⼩值为16.【点评】本⼩题考查直线、抛物线、向量等基础知识,考查轨迹⽅程的求法以及研究曲线⼏何特征的基本⽅法,考查运算能⼒和综合解题能⼒.。
2007高考数学全国卷及答案文
2007年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k k n kn n P k C p p n n -=-= ,,,, 一、选择题(1)设{}210S x x =+>,{}350T x x =-<,则S T = ( )A.∅B.12x x ⎧⎫<-⎨⎬⎩⎭C.53x x ⎧⎫>⎨⎬⎩⎭D.1523x x ⎧⎫-<<⎨⎬⎩⎭(2)α是第四象限角,12cos 13α=,sin α=( ) A.513B.513-C.512 D.512-(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A.垂直B.不垂直也不平行C.平行且同向D.平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( ) A.221412x y -= B.221124x y -= C.221106x y -= D.221610x y -=(5)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( ) A.36种 B.48种 C.96种 D.192种(6)下面给出四个点中,位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A.(02),B.(20)-,C.(02)-,D.(20),(7)如图,正四棱柱1111ABCD A BC D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A.15B.25C.35D.45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( )B.2C.D.4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A.充要条件 B.充分而不必要的条件 C.必要而不充分的条件D.既不充分也不必要的条件(10)函数22cos y x =的一个单调增区间是( ) A.ππ44⎛⎫- ⎪⎝⎭,B.π02⎛⎫ ⎪⎝⎭,C.π3π44⎛⎫ ⎪⎝⎭,D.ππ2⎛⎫ ⎪⎝⎭,(11)曲线313y x x =+在点413⎛⎫⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( ) A.19B.29C.13D.23(12)抛物线24y x =的焦点为F ,准线为l ,经过Fx 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( ) A.4B.C.D.81A1D1C 1BD BCA第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ): 492 496 494 495 498 497 501 502 504 496497 503 506 508 507 492 496 500 501 499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g ~501.5g 之间的概率约为_____.(14)函数()y f x =的图像与函数3log (0)y xx =>的图像关于直线y x =对称,则()f x =____________.(15)正四棱锥S ABCD -S ,A ,B ,C ,D 都在同一个球面上,则该球的体积为_________.(16)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为______.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分)设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)若a =5c =,求b .(18)(本小题满分12分)某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率. (19)(本小题满分12分)四棱锥S ABC D -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD ,已知45ABC ∠=︒,2AB =,BC =SA SB == (Ⅰ)证明:SA BC ⊥;(Ⅱ)求直线SD 与平面SBC 所成角的大小.SCDAB(20)(本小题满分12分)设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.(Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围. (21)(本小题满分12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=(Ⅰ)求{}n a ,{}n b 的通项公式; (Ⅱ)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S . (22)(本小题满分12分)已知椭圆22132x y +=的左、右焦点分别为1F ,2F ,过1F 的直线交椭圆于B ,D 两点,过2F 的直线交椭圆于A ,C 两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值.2007年普通高等学校招生全国统一考试文科数学试题(必修+选修1)参考答案一、选择题1.D 2.B 3.A 4.A 5.C 6.C 7.D 8.D 9.B 10.D 11.A 12.C 二、填空题13.0.25 14.3()x x ∈R 15.4π3 16.13三、解答题 17.解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)根据余弦定理,得2222cos b a c ac B =+-272545=+-7=.所以,b =18.解:(Ⅰ)记A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无人采用一次性付款”.2()(10.6)0.064P A =-=,()1()10.0640.936P A P A =-=-=.(Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”.1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则01B B B =+.30()0.60.216P B ==,1213()0.60.40.432P B C =⨯⨯=.01()()P B P B B =+ 01()()P B P B =+0.2160.432=+ 0.648=.19.解法一:(1)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥. (Ⅱ)由(Ⅰ)知SA BC ⊥, 依题设AD BC ∥,故SA AD ⊥,由AD BC ==,SA =SD又sin 45AO AB ==DE BC ⊥,垂足为E ,则DE ⊥平面SBC ,连结SE .ESD ∠为直线SD 与平面SBC 所成的角.sin 11ED AO ESD SD SD ====∠ 所以,直线SD 与平面SBC所成的角为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系O xyz -,因为AO BO AB ===1SO =,又BC =0)A ,,(0B,(0C . (001)S ,,,1)SA =- ,,(0CB =,0SA CB =,所以SA BC ⊥.DCASO E(Ⅱ)1)SD SA AD SA CB =+=-=--,0)OA = ,.OA 与SD 的夹角记为α,SD 与平面ABC 所成的角记为β,因为OA为平面SBC 的法向量,所以α与β互余.cos OA SD OA SDα==sin β= 所以,直线SD 与平面SBC所成的角为arcsin 11. 20.解:(Ⅰ)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=⎧⎨++=⎩,.解得3a =-,4b =.(Ⅱ)由(Ⅰ)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--.当(01)x ∈,时,()0f x '>; 当(12)x ∈,时,()0f x '<; 当(23)x ∈,时,()0f x '>. 所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+. 则当[]03x ∈,时,()f x 的最大值为(3)98f c =+. 因为对于任意的[]03x ∈,,有2()f x c <恒成立,所以 298c c +<, 解得 1c <-或9c >,因此c 的取值范围为(1)(9)-∞-+∞ ,,. 21.解:(Ⅰ)设{}n a 的公差为d ,{}n b 的公比为q ,则依题意有0q >且4212211413d q d q ⎧++=⎪⎨++=⎪⎩,,解得2d =,2q =.所以1(1)21n a n d n =+-=-,112n n n b q --==.(Ⅱ)1212n n n a n b --=. 122135232112222n n n n n S ----=+++++ ,① 3252321223222n n n n n S ----=+++++ ,②②-①得22122221222222n n n n S ---=+++++- ,221111212212222n n n ---⎛⎫=+⨯++++- ⎪⎝⎭1111212221212n n n ----=+⨯-- 12362n n -+=-.22.证明(Ⅰ)椭圆的半焦距1c =,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200001132222x y x y ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+,12BD x x =-== ;因为AC 与BC 相交于点p ,且AC 的斜率为1k-.所以,2211132k AC k⎫+⎪⎝⎭==⨯+. 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =. 综上,四边形ABCD 的面积的最小值为9625.。
2007年全国统一高考数学试卷(文科)(全国卷ⅰ)
2007年全国统一高考数学试卷(文科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设S={x|2x+1>0},T={x|3x﹣5<0},则S∩T=()A.∅B.C.D.2.(5分)α是第四象限角,cosα=,则sinα=()A.B.C.D.3.(5分)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向4.(5分)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.5.(5分)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有()A.36种B.48种C.96种D.192种6.(5分)下面给出的四个点中,位于表示的平面区域内的点是()A.(0,2) B.(﹣2,0)C.(0,﹣2)D.(2,0)7.(5分)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.8.(5分)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.49.(5分)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件10.(5分)函数y=2cos2x的一个单调增区间是()A.B.C.D.11.(5分)曲线在点处的切线与坐标轴围成的三角形面积为()A.B.C.D.12.(5分)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.8二、填空题(共4小题,每小题5分,满分20分)13.(5分)从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499~.14.(5分)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=.15.(5分)正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的体积为.16.(5分)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.三、解答题(共6小题,满分80分)17.(10分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)若,c=5,求b.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获的利润不超过650元的概率.19.(12分)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.20.(12分)设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.21.(12分)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.22.(12分)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.2007年全国统一高考数学试卷(文科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2007•全国卷Ⅰ)设S={x|2x+1>0},T={x|3x﹣5<0},则S∩T=()A.∅B.C.D.【分析】集合S、T是一次不等式的解集,分别求出再求交集.【解答】解:S={x|2x+1>0}={x|x>﹣},T={x|3x﹣5<0}={x|x<},则S∩T=,故选D.2.(5分)(2007•全国卷Ⅰ)α是第四象限角,cosα=,则sinα=()A.B.C.D.【分析】根据同角的三角函数之间的关系sin2+cos2α=1,得到余弦的值,又由角在第四象限,确定符号.【解答】解:∵α是第四象限角,∴sinα=,故选B.3.(5分)(2007•全国卷Ⅰ)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向【分析】根据向量平行垂直坐标公式运算即得.【解答】解:∵向量,,得,∴⊥,故选A.4.(5分)(2007•全国卷Ⅰ)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.【分析】根据焦点坐标求得c,再根据离心率求得a,最后根据b=求得b,双曲线方程可得.【解答】解.已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则c=4,a=2,b2=12,双曲线方程为,故选A.5.(5分)(2007•全国卷Ⅰ)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有()A.36种B.48种C.96种D.192种【分析】根据题意,先分析甲,有C42种,再分析乙、丙,有C43•C43种,进而由乘法原理计算可得答案.【解答】解;根据题意,甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,有C42种,乙、丙各选修3门,有C43•C43种,则不同的选修方案共有C42•C43•C43=96种,故选C.6.(5分)(2007•全国卷Ⅰ)下面给出的四个点中,位于表示的平面区域内的点是()A.(0,2) B.(﹣2,0)C.(0,﹣2)D.(2,0)【分析】本题考查的是不等式所表示的平面区域内点所满足的条件的问题,解决此问题只需将点代入验证即可【解答】解:将四个点的坐标分别代入不等式组,解可得,满足条件的是(0,﹣2),故选C.7.(5分)(2007•全国卷Ⅰ)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.【分析】先通过平移将两条异面直线平移到同一个起点B,得到的锐角∠A1BC1就是异面直线所成的角,在三角形中A1BC1用余弦定理求解即可.【解答】解.如图,连接BC1,A1C1,∠A1BC1是异面直线A1B与AD1所成的角,设AB=a,AA1=2a,∴A1B=C1B=a,A1C1=a,∠A1BC1的余弦值为,故选D.8.(5分)(2007•全国卷Ⅰ)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.4【分析】因为a>1,函数f(x)=log a x是单调递增函数,最大值与最小值之分别为log a2a、log a a=1,所以log a2a﹣log a a=,即可得答案.【解答】解.∵a>1,∴函数f(x)=log a x在区间[a,2a]上的最大值与最小值之分别为log a2a,log a a,∴log a2a﹣log a a=,∴,a=4,故选D9.(5分)(2008•上海)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g (x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件【分析】本题主要是抽象函数奇偶性的判断,只能根据定义,而要否定奇偶性,一般用特值.【解答】解.若“f(x),g(x)均为偶函数”,则有f(﹣x)=f(x),g(﹣x)=g (x),∴h(﹣x)=f(﹣x)+g(﹣x)=f(x)+g(x)=h(x),∴“h(x)为偶函数”,而反之取f(x)=x2+x,g(x)=2﹣x,h(x)=x2+2是偶函数,而f(x),g(x)均不是偶函数”,10.(5分)(2007•全国卷Ⅰ)函数y=2cos2x的一个单调增区间是()A.B.C.D.【分析】要进行有关三角函数性质的运算,必须把三角函数式变为y=Asin(ωx+φ)的形式,要先把函数式降幂,降幂用二倍角公式.【解答】解:函数y=2cos2x=1+cos2x,由﹣π+2kπ≤2x≤2kπ,解得﹣π+kπ≤x≤kπ,k为整数,∴k=1即有它的一个单调增区是,故选D.11.(5分)(2007•全国卷Ⅰ)曲线在点处的切线与坐标轴围成的三角形面积为()A.B.C.D.【分析】(1)首先利用导数的几何意义,求出曲线在P(x0,y0)处的切线斜率,进而得到切线方程;(2)利用切线方程与坐标轴直线方程求出交点坐标(3)利用面积公式求出面积.【解答】解:若y=x3+x,则y′|x=1=2,即曲线在点处的切线方程是,它与坐标轴的交点是(,0),(0,﹣),围成的三角形面积为,故选A.12.(5分)(2007•全国卷Ⅰ)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.8【分析】先根据抛物线方程求出焦点坐标和准线方程,进而可得到过F且斜率为的直线方程然后与抛物线联立可求得A的坐标,再由AK⊥l,垂足为K,可求得K的坐标,根据三角形面积公式可得到答案.【解答】解:∵抛物线y2=4x的焦点F(1,0),准线为l:x=﹣1,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A(3,AK⊥l,垂足为K(﹣1,2),∴△AKF的面积是4故选C.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2007•全国卷Ⅰ)从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499~.【分析】~【解答】解:从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499~14.(5分)(2007•全国卷Ⅰ)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=3x(x∈R).【分析】由题意推出f(x)与函数y=log3x(x>0)互为反函数,求解即可.【解答】解.函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x 对称,则f(x)与函数y=log3x(x>0)互为反函数,f(x)=3x(x∈R)故答案为:3x(x∈R)15.(5分)(2007•全国卷Ⅰ)正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的体积为.【分析】先确定球心位置,再求球的半径,然后可求球的体积.【解答】解:正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的球心恰好是底面ABCD的中心,球的半径是1,体积为.故答案为:16.(5分)(2007•全国卷Ⅰ)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.【分析】先根据等差中项可知4S2=S1+3S3,利用等比数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.【解答】解:∵等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,∴a n=a1q n﹣1,又4S2=S1+3S3,即4(a1+a1q)=a1+3(a1+a1q+a1q2),解.故答案为三、解答题(共6小题,满分80分)17.(10分)(2007•全国卷Ⅰ)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)若,c=5,求b.【分析】(1)根据正弦定理将边的关系化为角的关系,然后即可求出角B的正弦值,再由△ABC为锐角三角形可得答案.(2)根据(1)中所求角B的值,和余弦定理直接可求b的值.【解答】解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由△ABC为锐角三角形得.(Ⅱ)根据余弦定理,得b2=a2+c2﹣2accosB=27+25﹣45=7.所以,.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获的利润不超过650元的概率.【分析】(1)3位购买该商品的顾客中至少有1位采用一次性付款的对立事件是3位顾客中无人采用一次性付款,根据独立重复试验公式得到3位顾客中无人采用一次性付款的概率,再根据对立事件的公式得到结论.(2)3位顾客每人购买1件该商品,顾客的付款方式为一次性付款和分期付款,且购买该商品的3位顾客中有1位采用分期付款,根据互斥事件的公式得到结果.【解答】解:(Ⅰ)记A表示事件:“3位顾客中至少1位采用一次性付款”,则表示事件:“3位顾客中无人采用一次性付款”.P(3.(Ⅱ)记B表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.B0表示事件:“购买该商品的3位顾客中无人采用分期付款”.B1表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则B=B0+B1.P(B03P(B1)=C31×2×P(B)=P(B0+B1)=P(B0)+P(B1+19.(12分)(2007•全国卷Ⅰ)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.【分析】解法一:(1)作SO⊥BC,垂足为O,连接AO,说明SO⊥底面ABCD.利用三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,设AD∥BC,连接SE.说明∠ESD为直线SD与平面SBC所成的角,通过,求出直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,通过证明,推出SA⊥BC.(Ⅱ).与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC 的法向量,利用α与β互余.通过,,推出直线SD与平面SBC所成的角为.【解答】解法一:(1)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥底面ABCD.因为SA=SB,所以AO=BO,又∠ABC=45°,故△AOB为等腰直角三角形,AO⊥BO,由三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,依题设AD∥BC,故SA⊥AD,由,,.又,作DE⊥BC,垂足为E,则DE⊥平面SBC,连接SE.∠ESD为直线SD与平面SBC所成的角.所以,直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥平面ABCD.因为SA=SB,所以AO=BO.又∠ABC=45°,△AOB为等腰直角三角形,AO⊥OB.如图,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,因为,,又,所以,,.S(0,0,1),,,,所以SA⊥BC.(Ⅱ),.与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,所以α与β互余.,,所以,直线SD与平面SBC所成的角为.20.(12分)(2007•全国卷Ⅰ)设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.【分析】(1)依题意有,f'(1)=0,f'(2)=0.求解即可.(2)若对任意的x∈[0,3],都有f(x)<c2成立⇔f(x)max<c2在区间[0,3]上成立,根据导数求出函数在[0,3]上的最大值,进一步求c的取值范围.【解答】解:(Ⅰ)f'(x)=6x2+6ax+3b,因为函数f(x)在x=1及x=2取得极值,则有f'(1)=0,f'(2)=0.即解得a=﹣3,b=4.(Ⅱ)由(Ⅰ)可知,f(x)=2x3﹣9x2+12x+8c,f'(x)=6x2﹣18x+12=6(x﹣1)(x﹣2).当x∈(0,1)时,f'(x)>0;当x∈(1,2)时,f'(x)<0;当x∈(2,3)时,f'(x)>0.所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c.因为对于任意的x∈[0,3],有f(x)<c2恒成立,所以9+8c<c2,解得c<﹣1或c>9,因此c的取值范围为(﹣∞,﹣1)∪(9,+∞).21.(12分)(2007•全国卷Ⅰ)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.【分析】(Ⅰ)设{a n}的公差为d,{b n}的公比为q,根据等比数列和等差数列的通项公式,联立方程求得d和q,进而可得{a n}、{b n}的通项公式.(Ⅱ)数列的通项公式由等差和等比数列构成,进而可用错位相减法求得前n项和S n.【解答】解:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,则依题意有q>0且解得d=2,q=2.所以a n=1+(n﹣1)d=2n﹣1,b n=q n﹣1=2n﹣1.(Ⅱ),,①S n=,②①﹣②得S n=1+2(++…+)﹣,则===.22.(12分)(2007•全国卷Ⅰ)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.【分析】(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,由此可以证出.(Ⅱ)设BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),由题意知|BD|=再求出|AC|=,由此可以求出四边形ABCD的面积的最小值.【解答】证明:(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,所以,.(Ⅱ)(ⅰ)当BD的斜率k存在且k≠0时,BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),则,|BD|=;因为AC与BD相交于点P,且AC的斜率为,所以,|AC|=.四边形ABCD的面积•|BD||AC|=.当k2=1时,上式取等号.(ⅱ)当BD的斜率k=0或斜率不存在时,四边形ABCD的面积S=4.综上,四边形ABCD的面积的最小值为.参与本试卷答题和审题的老师有:wdlxh;涨停;wkqd;wsj1012;danbo7801;blue;minqi5;wukexing;qiss;zhwsd;吕静;zlzhan(排名不分先后)菁优网2017年2月4日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年福建高考数学试卷(文科)一、选择题1.已知全集{1,2,3,4,5,}U =,且{2,3,4}A =,{1,2}B =,则()U A C B 等于………( )A .{2}B .{5}C .{3,4}D .{2,3,4,5} 2.等比数列{}n a 中,44a =,则26a a ⋅等于………( ) A .4 B .8 C .16 D .323.0sin15cos75cos15sin105+等于…………( )A .0B .12C.2 D .14.“2x <”是“260x x --<”的什么条件……( )A .充分而不必要B .必要而不充分C .充要D .既不充分也不必要 5.函数sin(2)3y x π=+的图像………( )A .关于点(,0)3π对称 B .关于直线4x π=对称 C .关于点(,0)4π对称 D .关于直线3x π=对称6.如图在正方体1111ABCD A B C D -中,E 、F 、G 、H 分别是1111...AA AB BB B C 的中点,则异面直线EF 与GH 所成的角等于( )A .45B .60C .90D .1207.已知()f x 是R 上的减函数,则满足1()(1)f f x>的实数x 的取值范围是( ) A .(,1)-∞ B .(1,)+∞ C .(,0)(0,1)-∞ D .(,0)(1,)-∞+∞8.对于向量..a b c 和实数λ,下列命题中真命题是…( )A .若0a b ⋅=,则0a =或0b =B .若0a λ=,则0λ=或0a =C .若22a b =,则a b =或a b =- D .若a b a c ⋅=⋅,则b c =9.已知m 、n 是两条不同的直线,.αβ为两个不同的平面,则下列命题中正确命题是( ) A .,,m n m αββαβ⊂⊂⇒ B .,,m n m n αβαβ⊂⊂⇒C .,m n n αβα⊥⊥⇒D .,m n n m αα⊥⇒⊥10.以双曲线222x y -=的右焦点为圆心,且以其右准线相切的圆的方程是…( )A .22430x y x +--= B .22430x y x +-+= C .22450x y x ++-= D .22450x y x +++= 11.已知对任意实数x ,有()(),()()f x f x g x g x -=--=,且x>0时'()0,'()0f x g x >>,则x<0时() A .'()0,'()0f x g x >> B .'()0,'()0f x g x >< C .'()0,'()0f x g x <> D .'()0,'()0f x g x <<ABC1BD1A1C1DEFGH12.某通信公司推出一组手机卡号码,卡号的前7位数字固定,从“×××××××0000”到“×××××××9999”共10000个号码,公司规定:凡卡号的后4位带有数字“4”或“7”的一律作为“优惠卡”,则这组号码中“优惠卡”的个数为( )A .2000B .4096C .5904D .8320 二、填空题13.261()x x+的展开式中常数项是_________(用数字作答)14.已知实数x,y 满足2203x y x y x +≥⎧⎫⎪⎪-≤⎨⎬⎪⎪≤≤⎩⎭,则2z x y =-的取值范围是_________15.已知长方形ABCD ,AB=4,BC=3,则以A 、B 为焦点,且过C 、D 两点的椭圆的离心率为_____16.中学数学中存在许多关系,比如“相等关系”“平行关系”等等,如果集合A 中元素之间的一个关系“~”满足以下三个条件:(1)自反性:对于任意,都有a~a ;(2)对称性:对于,若a~b ,则有b~a ;(3)传递性:对于,若a~b,b~c ,则有a~c 。
则称“~”是集合A 的一个等价关系,例如:“数的相等”是等价关系,“平行的直线”不是等价关系(自反性不成立),请你在列出两个等价关系_______。
三、解答题17.(12分)在ABC ∆中,13tan ,tan 45A B ==。
(1)求角C 的大小;(2)若AB,求BC 边的长。
18.(12分)甲、乙两名跳高运动员一次试跳2米高度成功的概率分别为0.7、0.6,且每次试跳成功与否相互之间没有影响,求:(1)甲试跳3次,第3次才成功地概率;(2)甲、乙两人在第一次试跳中至少有一人成功的概率;(3)甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率。
19.(12分)如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点。
(1)求证:1AB ⊥平面1A BD ;(2)求二面角1A A D B --的大小。
20.(12分)设函数22()21(,0)f x tx t x t x R t =++-∈>。
(1)求()f x 的最小值()h t ;(2)若()2h t t m <-+对(0,2)t ∈恒成立,求实数m 的取值范围。
21.(12分)数列{}n a 的前n项和为n S ,111,2(*)n n a a S n N +==∈。
(1)求数列{}n a 的通项n a ;(2)求数列{}n na 的前n 项和n T 。
22.(14分)如图,已知点(1,0)F ,直线:1l x =-,P 为平面上的动点,过点P 作l 的垂线,垂足为点Q ,且QP QF FP FQ ⋅=⋅。
(1)求动点P 的轨迹C 的方程;(2)过点F 的直线交轨迹C 于A 、B 两点,交直线l 于点M 。
①已知12,,MA AF MB BF λλ==求12λλ+的值;②求MA MB ⋅的最小值。
AB1AC1C 1BD1A1Cx参考答案一、选择题:CCDAAB DBDBBC 二、填空题:13.15 14.[-5,7] 15. 1216.不唯一:“图形的全等”“图形的相似”“命题的充要条件” 三、解答题17.解:221345(1)(),tan tan()11314530,4sin 1(2)tan ,sin cos 1,(0,)sin cos 4217sin ,sin sin sin C A B C A B C C A A A A A A A AB BC ABC AB C A Cππππ+=-+∴=-+=-=--⋅<<∴===+=∈⇒==∴=⋅=18.解:设“甲第i 次试跳成功”为事件i A ,“乙第i 次试跳成功”为事件i B ,则:123123(1):()()()()0.30.30.70.063P A A A P A P A P A ==⨯⨯=(2)“甲、乙在第1次试跳中至少有一人成功”的事件为:C ,则:11()1()()10.30.40.88P C P A P B =-=-⨯=设“甲在2次试跳中成功i 次”为事件i M ,“乙在2次试跳中成功i 次”为事件i N ,则:12211021102122()()()()()0.70.30.40.70.60.40.3024P M N M N P M P N P M P N C C +=+=⨯⨯⨯+⨯⨯⨯=答:19.(2)arcsin 20.解:(1)23()()1f x t x t t t =+-+-,∴当x t =-时,()f x 取最小值3()1f t t t -=-+-,即:3()1h t t t =-+-(2)令3()()(2)31,g t h t t m t t m =--+=-+--由2'()330g t t =-+=得1,1t t ==-(舍去负)∴()g t 在(0,2)内有最大值(1)1g m =-()2h t t m <-+在(0,2)内恒成立等价于()0g t <在(0,2)内恒成立。
即等价于10m -<,所以1m > 21.解:(1)111112,2,31n n n n n nS a S S S S a S +++=∴=∴===数列{}n S 是首项为1,公比为3的等比数列:13(*)n n S n N -=∈当2n ≥时,2121,1223(2),{23,2n n n n n n a S n a n ---===⋅≥∴=⋅≥(2)12323,n n T a a a na =++++当1n =时,11T =;当2n ≥时,0121436323,n n T n -=+⋅+⋅++⋅12133436323,n n T n -=+⋅+⋅++122112242(333)231(12)3n n n n T n n ---∴-=-+++++-⋅=-+-111()3(2)22n n T n n -∴=+-≥,又当1n =时,上式也成立。
111()3(*)22n n T n n N -∴=+-∈ 22.解:(1)24y x =;(2)①120λλ+=,②最小值:16。