复旦大学自主招生试题

合集下载

复旦自主招生试题及答案

复旦自主招生试题及答案

复旦自主招生试题及答案一、语文部分阅读理解:1. 阅读下面短文,回答问题。

(1)张謇(1854-1926)是中国现代教育家、政治家、社会活动家和思想家。

张謇曾于光绪十九年(1893年)中策划创办私立南洋公学,为中国留学生出国深造提供了机会,也为中国教育事业的发展做出了巨大贡献。

(2)南洋公学的创建者张謇,生于一般家庭,自小勤奋好学。

他上学时就常常帮助同学,与人为善,仗义疏财。

他在学习中总是能将分散的学习知识联系起来,形成系统地知识体系,且能应用灵活。

在上学期间,他还考取了举人资格。

(3)1875年,张謇考入了南洋公学,他将自己多年的积累展示了出来,并在广大师生的面前,发表了知名的《自力更生》演讲。

这个演讲使他备受赞誉,也为他未来的事业奠定了基础。

(4)张謇毕业后曾出任江西体育局局长,任内积极推行体育运动,提倡健身,改变了当时青年学生体育锻炼不足的状况。

后来,他还出任过官员、教育家等多个职位,努力改革中国教育制度,致力于提高教育的普及率和质量。

(5)张謇还通过创办南京高级工业学堂(复旦大学前身),来培养工科人才。

这一举措对中国的现代工业化进程起到了积极作用。

张謇还参与了辛亥革命,成为众多反清护国的活动家之一。

问题:(1)张謇是中国的哪位教育家和思想家?(2)张謇曾任职的机构有哪些?(3)南京高级工业学堂现在的名称是什么?答案:(1)张謇是中国现代教育家、政治家、社会活动家和思想家。

(2)张謇曾任江西体育局局长,官员和教育家等多个职位。

(3)南京高级工业学堂现在的名称是复旦大学。

二、数学部分选择题:1. 已知函数 f(x) = 2x + 3,求 f(4) 的值。

A. 7B. 9C. 11D. 132. 若 a + b = 20,且 a:b = 2:3,则 a 的值为多少?A. 8B. 10C. 12D. 16填空题:1. C = πd 的公式中,若 d = 10cm,则 C = ______ cm。

(复旦大学)自主招生与三位一体面试真题及答案分析

(复旦大学)自主招生与三位一体面试真题及答案分析

复旦大学自主招生与三位一体面试真题及答案分析1.你对当前房价上涨有何看法?【参考答案】现在的房子不是用来住的,是用来炒的。

真正想住房子的人住不上房子,房子只是那些商家用来赚钱的工具。

中国楼市这样下去总有一天崩盘。

投机倒把,没有任何理性,房价显示出人性最丑陋的一面,正确认识这些问题,对症下药、加大力度,遏制房价上涨势头,这既是广大群众的强烈呼声,也是关乎国民经济又好又快发展的重大问题。

还有人认为改革开放以来居民收入增加是房价上涨的首要原因,其次宽松的信贷政策是房价上涨的重要支撑,所以房价上涨也是理所当然的。

当然,每个人的年龄和他所处的环境不同,对房价上涨都会有不同的看法。

【专家点评】考查学生对时事现象的关注和思考情况,言之有理自圆其说即可。

2.金融危机对农村有何影响?【参考答案】金融危机不断向各国各个领域蔓延。

目前已经对农村和农民也有了非常直接的影响。

首先是由于出口需求的缩减,导致相关企业经营不景气,首当其冲的就是农民工失去就业机会,造成农民工返乡潮,既影响农民收入,也影响农村稳定,造成一些混乱局面;其次是以农副产品为原材料的加工业也很不景气,从而导致对农副产品需求的减少和价格回落,直接影响农民收入;第三,由于整体上预期收入和购买力增长的不协调,导致农产品价格合理上涨的势头受到抑制,甚至可能出现一定程度的价格回落;第四,由于各级财政收入可能因金融危机的影响而增幅减缓,而用于涉农的财政支出必将受到较大的影响,而直接影响农村基础设施和公共品的供给。

这些问题应当引起相关部门的重视。

换言之,应对金融危机,农村经济和农民生活是不可忽视的一个重要领域,国家要大力重视这个问题。

【专家点评】考查学生对于社会热点问题的理解。

3.如何对待文理分科?【参考答案】现在的社会是一个讲求专业人才、讲究分工协作的社会,人们主要从各自的专长和兴趣出发进行工作。

经过初中以及高一的文理科学习,相信大部分学生已经能够发现自己的能力和兴趣所在,此时进行文理分科有利于各类专才的早日培养,因为到了高中阶段学生的学习特长、兴趣倾向已经呈现,要根据自身的特长和今后的发展方向,自主选择侧重文科还是理科,有利于他们集中精力,为今后的发展奠定基础。

复旦自主招生试题

复旦自主招生试题

复旦自主招生试题复旦大学是中国知名的综合性高等教育机构,旨在培养具有创新意识和全球视野的高素质人才。

为了选拔优秀的学生,复旦大学设立了自主招生项目。

以下是一些典型的复旦大学自主招生试题,希望能帮助考生更好地准备自主招生考试。

1. 个人表现和领导能力(1) 请列举你在学校或社会活动中的个人成就,并解释你如何在领导团队或组织中发挥作用。

(2) 请描述一个你曾经遇到过的具体问题,解释你是如何解决这个问题的,并思考你从中学到了什么。

2. 学术潜力和研究兴趣(1) 请列举你在学校学习中的最骄傲的成绩和奖项,并解释你在这些学科中的研究兴趣或潜力。

(2) 请描述一个你在学术研究或实践中的项目,解释你在这个项目中的角色和所取得的成就。

3. 社会责任和公益活动(1) 请列举你在社会公益活动中的经历,并说明你对社会问题的看法和态度。

(2) 请描述一个你参与的具体公益活动,解释你对这个项目的贡献和对社会的影响。

4. 外语能力和跨文化交流(1) 请描述你的英语水平和你如何提高你的英语表达能力。

(2) 请根据你的经历,谈谈你对国际交流和跨文化交流的看法,并举例说明你在这方面的经验。

5. 自主学习和创新思维(1) 请描述一个你自主学习的经历,解释你如何培养了自主学习的能力。

(2) 请从你的角度出发,谈谈你对创新思维的理解,并举例说明你如何应用创新思维解决问题。

6. 价值观和人生目标(1) 请谈谈你的价值观和人生目标,并解释这些价值观和目标对你的影响。

(2) 请描述一个具体的情况,解释你如何遇到挫折并坚持追求目标。

以上是一些可能出现在复旦大学自主招生考试中的典型问题。

希望考生能认真思考并准备好答案,展示自己的优势和潜力。

同时,希望考生在撰写答案时能够充分发挥个人思考和表达能力,以增加自己的竞争力。

祝愿所有参加复旦大学自主招生考试的学生取得优异的成绩,实现自己的理想!。

复旦自主招生数学

复旦自主招生数学

一、选择题1.在(x 2−1x)10的展开式中系数最大的项是_____.A .第4、6项B .第5、6项C .第5、7项D .第6、7项 2.设函数y=ƒ (x)对一切实数x 均满足ƒ (5+x )=ƒ(5−x),且方程ƒ (x )=0恰好有6个不同的实根,那么这6个实根的和为____.A .10B .12C .18D .30 3.假设非空集合X={x |a +1≤x≤3a−5},Y={x |1≤x≤16},那么使得X ⊆X ∪Y 成立的所有a 的集合是_____.A .{a |0≤a≤7}B .{a |3≤a≤7}C .{a |a≤7}D .空集 4.设z 为复数,E={z |(z−1)2=|z−1|2},那么以下_ 是正确的A .E={纯虚数}B .E={实数}C .{实数}⊆E ⊆{复数}D .E={复数}5.把圆x 2+(y−1)2=1与椭圆x 2+2(1)9y +=1的公共点,用线段连接起来所得到的图形为_____.A .线段B .等边三角形C .不等边三角形D .四边形6.在正三棱柱ABC —A 1B 1C 1中,假设BB 1,那么AB 1与C 1B 所成的角的大小是___. A .60° B .75° C .90° D .105°7.某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量、可获利润以及托运所受限制如在最合理的安排下,获得的最大利润是______百元.A .58B .60C .62D .648.假设向量a +3b 垂直于向量7a −5b ,并且向量a −4b 垂直于向量7a −2b ,那么向量a 与b 的夹角为___ ___.A .2π; B .3π; C .4π; D .6π. 9.复旦大学外语系某年级举行一次英语口语演讲比赛,共有十人参赛,其中一班有三位,二班有两位,其它班有五位.假设采用抽签的方式确定他们的演讲顺序,那么一班的三位同学恰好演讲序号相连.问二班的两位同学的演讲序号不相连的概率是____.A .120 B .140 C .160 D .19010.sin α,cos α是关于x 的方程x 2−tx+t=0的两个根,这里t ∈3sin α+3cos α=___.A .B .;C .−D .11.设z 1,z 2为一对共轭复数,如果|z 1−z 2且122z z 为实数,那么|z 1|=|z 2|=____. AB .2C .3 D12.假设四面体的一条棱长是x ,其余棱长都是1,体积是V(x),那么函数V(x)在其定义域上为____.A .增函数但无最大值B .增函数且有最大值C .不是增函数且无最大值D .不是增函数但有最大值 13.以下正确的不等式是____.A .16<1201k =; B .18<1201k =<19; C .20<1201k =; D .22<1201k =<23. 14.设{αn }是正数列,其前n 项和为S n ,满足:对一切n ∈Z +,αn 和2的等差中项等于S n 和2的等比中项,那么limnn n→∞α=______.A .0B .4C .12D .10015.x 1,x 2是方程x 2−(α−2)x+(α2+3α+5)=0(α为实数)的两个实根,那么x 12+x 22的最大值为______.A .18B .19C .20D .不存在 16=α.条件乙:sin2θ+cos 2θ=α.那么以下________是正确的. A .甲是乙的充分必要条件 B .甲是乙的必要条件C .甲是乙的充分条件D .甲不是乙的必要条件,也不是充分条件 17.函数ƒ(x)的定义域为(0,1),那么函数g(x)= ƒ(x+c)+ƒ(x−c)在0<c<12时的定义域为____. A .(−c,1+c); B .(1−c,c); C .(1+c,−c); D .(c,1−c); 18.函数____.A .y min =54-,y max =54; B .无最小值,y max =54; C .y min =54-,无最大值 D .既无最小值也无最大值19.等差数列{αn }中,α5<0,α6>0且α6>|α5|,S n 是前n 项之和,那么以下___是正确的.A .S 1,S 2,S 3均小于0,而S 4,S 5,…均大于0B .S 1,S 2,…,S 5均小于0,而S 6,S 7,…均大于0C .S 1,S 2,…,S 9均小于0,而S 10,S 11,…均大于0D .S 1,S 2,…,S 10均小于0,而S 11,S 12,…均大于0 20.角θ的顶点在原点,始边为x 轴正半轴,而终边经过点Q(,y),(y≠0),那么角θ的终边所在的象限为___.A .第一象限或第二象限B .第二象限或第三象限C .第三象限或第四象限D .第四象限或第一象限21.在平面直角坐标系中,三角形△ABC 的顶点坐标分别为A(3,4),B(6,0),C(−5,−2),那么∠A 的平分线所在直线的方程为_____.A .7x−y−17=0;B .2x+y+3=0;C .5x+y−6=0;D .x−6y=0. 22.对所有满足1≤n≤m≤5的m ,n ,极坐标方程11cos nm C θρ=-表示的不同双曲线条数为_____.A .6B .9C .12D .1523.设有三个函数,第一个是y=ƒ(x),它的反函数就是第二个函数,而第三个函数的图象与第二个函数的图象关于直线x+y=0对称,那么第三个函数是______.A .y=−ƒ(x);B .y=−ƒ(−x);C .y=−ƒ−1(x);D .y=−ƒ−1(−x);24∈[2,3]时,ƒ(x)=x ,那么当x ∈[−2,0]时,ƒ(x)的解析式为_____.A .x+4;B .2−x;C .3−|x+1|;D .2+|x+1|. 25.α,b 为实数,满足(α+b)59=−1,( α−b)60=1,那么α59+α60+b 59+b 60=_____.A .−2B .−1C .0D .1 26.设αn 是)n 的展开式中x 项的系数(n=2,3,4,…),那么极限2323222lim()nn n →∞+++ααα…=________. A .15 B .6 C .17 D .8 27.设x 1,x 2∈(0,2π),且x 1≠x 2,不等式成立的有 (1)12(tanx 1+tanx 2)>tan 122x x +; (2) 12(tanx 1+tanx 2)<tan 122x x +; (3)12(sinx 1+sinx 2)>sin 122x x +; (4) 12(sinx 1+sinx 2)<sin 122x x + A .(1),(3) B .(1),(4) C .(2),(3) D .(2),(4)28.如下图,半径为r 的四分之一的圆ABC 上,分别以AB 和AC 为直径作两个半圆,分别标有α的阴影局部面积和标有b 的阴影局部面积,那么这两局部面积α和b 有_____.A .α>bB .α<bC .α=bD .无法确定CBAba29.设a ,b PQ =2a +k b ,QR =a +b ,RS =2a −3b .假设P ,Q ,S 三点共线,那么k 的值为_____.A .−1;B .−3;C .43-;D .35-; ##Answer## 1.C 2.D 3.C 4.B 5.B6. 【简解】设BB 1=1,那么取AC 、BC 1的中点D 、O,DOC 1B 1A 1CBAOD ∥AB 1,∠BOD 即为所求;在△BOD 中,OD=OB 1=2,BD=2,∠BOD=90°。

2022年复旦大学自主招生物理试题

2022年复旦大学自主招生物理试题

:137.用一不等臂天平称量物体旳质量,把物体放在左盘,称得物体旳质量为m 1;放在右盘,为m 2,则该天平左右两臂旳臂长之比l 左∶l 右为____B____。

A .m 1∶m 2B .m 11/2∶m 21/2C .m 2∶m 1D .m 21/2∶m 11/2 138.如下物理量旳选项中均是矢量旳是____A____。

①能量 ②力 ③电阻 ④位移 ⑤热力学温度 ⑥磁感应强度 ⑦功率 ⑧电场强度A .②④⑥⑧B .①③⑤⑦C .①②⑤⑥D .③④⑦⑧139.一物体竖直上抛,若空气阻力恒定,从抛出至最高点旳时间为1t ∆,从最高点下落至抛出点旳时间为2t ∆,则1t ∆同2t ∆之间旳关系是_D______。

A .无法拟定B .1t ∆>2t ∆C .1t ∆=2t ∆D .1t ∆<2t ∆140.将实际气体当作抱负气体来解决旳最佳条件是__C____。

A .常温常压B .高温常压C .高温低压D .低温高压141.如图所示,电源电动势为30V ,内阻不计.R 1=2Ω,R 2=3Ω,R 3=5Ω.为使一额定工作电压为10V ,额定功率为20W 旳小电灯泡正常工作,则可将其接入电路中旳____C__。

A .1,2点B .2,3点C .3,4点D .2,4点142.波尔理论旳基本假设是为理解释___D_____。

A .光电效应B .电子衍射现象C .光旳干涉现象D .氢原子光谱旳实验规律143.在圆柱形均匀磁场中,带正电旳粒子沿如图所示圆形轨道运动(旳等效成一圆电流),与磁场方向构成左手螺旋。

若磁感应强度B 旳数值忽然增大,则增大旳瞬间,带电粒子旳运动速度___B___。

A.变慢B.不变C.变快D.不能拟定144.若某横波沿x轴负方向传播,波速为v,t时刻旳波形如图所示,则该时刻___D___。

A.A点静止不动B.B点向右运动C.C点向下运动D.D点向下运动145.国际电位制(SI)采用在单位前面加词头旳措施,使任何单位都可以跟一系列旳词头构成相应旳十进制倍数单位和分单位.如km(千米)中旳k,便是词头名称为千(kilo)旳词头符号,它所示旳因数是103.同样,所示旳因数为109与10-9旳词头符号是___C___。

复旦大学自主招生考试数学试题及答案

复旦大学自主招生考试数学试题及答案

1、设函数y=f(x)=e x+1,则反函数OyxOyxO x答案:A2、设f(x)是区间[a,b]f(x)是[a,b]上的递增函数,那么,f(xA.存在满足x<y的x,y∈[a,b]B.不存在x,y∈[a,b]满足x<y且fC.对任意满足x<y的x,y∈[a,b]D.存在满足x<y的x,y∈[a,b]答案:A3、设]2,2[,ππβα-∈,且满足sinαA. [−2,2] B. [答案:D4、设实数0,≥yx,且满足2=+yxA.97/8 B.答案:C5则该多面体的体积为______________。

A.2/3 B.3/4答案:D6、在一个底面半径为1/2,高为1的圆柱内放入一个直径为1的实心球后,在圆柱内空余的地方放入和实心球、侧面以及两个底面之一都相切的小球,最多可以放入这样的小球个数是___________。

A .32个;B .30个;C .28个;D .26个答案:B7、给定平面向量(1,1),那么,平面向量(231-,231+)是将向量(1,1)经过________. A .顺时针旋转60°所得; B .顺时针旋转120°所得; C .逆时针旋转60°所得;D .逆时针旋转120°所得;答案:C8、在直角坐标系O xy 中已知点A 1(1,0),A 2(1/2,3/2),A 4(−1,0),A 5(−1/2,−3/2)和A6(1/2, −3/2).问在向量−−→−ji A A (i ,j=1,2,3,4,5,6,i≠j)中,不同向量的个数有_____. A .9个; B .15个; C .18个; D .30个答案:C9、对函数f:[0,1]→[0,1],定义f 1(x )=f (x ),……,f n(x ) =f (f n −1(x )),n=1,2,3,…….满足f n (x )=x 的点x ∈[0,1]称为f 的一个n −周期点.现设⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤=121,22,210,2)(x x x x x f 问f 的n −周期点的个数是___________.A .2n 个;B .2n 2个;C .2n个;D .2(2n−1)个.答案:C10、已知复数z 1=1+3i ,z 2=−3+3i ,则复数z 1z 2的幅角__________. A .13π/12 B .11π/12 C .−π/4 D .−7π/12答案:A11、设复数βαβαcos sin ,sin cos i w i z +=+=满足z w =3/2,则sin (β−α)=______. A .±3/2B .3/2,−1/2C .±1/2D .1/2,−3/2答案:D12、已知常数k 1,k 2满足0<k 1<k 2,k 1k 2=1.设C 1和C 2分别是以y =±k 1(x −1)+1和y =±k 2(x −1)+1为渐近线且通过原点的双曲线.则C 1和C 2的离心率之比e 1/e 等于_______.A .222111k k ++ B .212211k k ++ C .1 D .k 1/k 2答案:C13、参数方程0,)cos 1()sin (>⎩⎨⎧-=-=a t a y t t a x 所表示的函数y=f (x )是____________.A .图像关于原点对称;B .图像关于直线x =π对称;C .周期为2a π的周期函数D .周期为2π的周期函数.答案:C14、将同时满足不等式x −k y −2≤0,2x +3y −6≥0,x +6y −10≤0 (k>0)的点(x ,y )组成集合D 称为可行域,将函数(y +1)/x 称为目标函数,所谓规划问题就是求解可行域中的点(x ,y )使目标函数达到在可行域上的最小值.如果这个规划问题有无穷多个解(x ,y ),则k 的取值为_____.A .k≥1;B .k≤2C .k=2D .k=1.答案:C15、某校有一个班级,设变量x 是该班同学的姓名,变量y 是该班同学的学号,变量z 是该班同学的身高,变量w 是该班同学某一门课程的考试成绩.则下列选项中正确的是________.A .y 是x 的函数;B .z 是y 的函数;C .w 是z 的函数;D .w 是x 的函数.答案:B16、对于原命题“单调函数不是周期函数”,下列陈述正确的是________. A .逆命题为“周期函数不是单调函数”; B .否命题为“单调函数是周期函数”; C .逆否命题为“周期函数是单调函数”; D .以上三者都不正确 答案:D17、设集合A={(x ,y )|log a x +log a y >0},B={(x ,y )|y +x <a}.如果A∩B=∅,则a 的取值范围是_______ A .∅ B .a>0,a≠1 C .0<a≤2, a≠1 D .1<a≤2答案:D18、设计和X 是实数集R 的子集,如果点x 0∈R 满足:对任意a>0,都存在x ∈X 使得0<|x −x 0|<a ,则称x 0为集合X 的聚点.用Z 表示整数集,则在下列集合(1){n/(n+1)|n ∈Z , n≥0}, (2) R\{0}, (3){1/n|n ∈Z , n≠0}, (4)整数集Z 中,以0为聚点的集合有_____. A .(2),(3)B .(1),(4)C .(1),(3)D .(1),(2),(4)答案:A19、已知点A (−2,0),B (1,0),C (0,1),如果直线kx y =将三角形△ABC 分割为两个部分,则当k =______时,这两个部分得面积之积最大?A .23-B .43-C .34-D .32-答案:A20、已知x x x x f 2cos 3cos sin )(+=,定义域⎥⎦⎤⎢⎣⎡=ππ127,121)(f D ,则=-)(1x f_____A .π12123arccos 21+⎪⎪⎭⎫ ⎝⎛-x B .π6123arccos 21-⎪⎪⎭⎫ ⎝⎛-x C .π12123arcsin 21+⎪⎪⎭⎫ ⎝⎛--x D .π6123arcsin 21-⎪⎪⎭⎫ ⎝⎛-x 答案:A21、设1l ,2l 是两条异面直线,则直线l 和1l ,2l 都垂直的必要不充分条件是______ A .l 是过点11l P ∈和点22l P ∈的直线,这里21P P 等于直线1l 和2l 间的距离 B .l 上的每一点到1l 和2l 的距离都相等 C .垂直于l 的平面平行于1l 和2lD .存在与1l 和2l 都相交的直线与l 平行 答案:D22、设ABC −A’B’C’是正三棱柱,底面边长和高都为1,P 是侧面ABB’A’的中心,则P 到侧面ACC’A’的对角线的距离是_____A .21B .43C .814D .823答案:C23、在一个球面上画一组三个互不相交的圆,成为球面上的一个三圆组.如果可以在球面上通过移动和缩放将一个三圆组移动到另外一个三圆组,并且在移动过程中三个圆保持互不相交,则称这两个三圆组有相同的位置关系,否则就称有不同的位置关系.那么,球面上具有不同的位置关系的三圆组有______A .2种B .3种C .4种D .5种 答案:A24、设非零向量()()()321321321,,,,,,,,c c c c b b b b a a a a ===为共面向量,),,(31x x x x x = 是未知向量,则满足0,0,0=⋅=⋅=⋅x c x b x a的向量x 的个数为_____A .1个B .无穷多个C .0个D .不能确定 答案:B25、在Oxy 坐标平面上给定点)1,2(),3,2(),2,1(C B A ,矩阵⎪⎪⎭⎫⎝⎛-112k 将向量OC OB OA ,,分别变换成向量,,,如果它们的终点',','C B A 连线构成直角三角形,斜边为''C B ,则k 的取值为______A .2±B .2C .0D .0,−2 答案:B26、设集合A ,B ,C ,D 是全集X 的子集,A∩B≠∅,A∩C≠∅.则下列选项中正确的是______. A .如果B D ⊂或C D ⊂,则D∩A≠∅; B .如果A D ⊂,则C x D∩B≠∅,C x D∩C≠∅; C .如果A D ⊃,则C x D∩B=∅,C x D∩C=∅; D .上述各项都不正确.27、已知数列{}n a 满足21=a 且n a n ⎧⎫⎨⎬⎩⎭是公比为2的等比数列,则∑==nk k a 1______A .221-+n nB .22)1(1+-+n n C .)1(22-+n n n D .n n n 22)1(+-28、复平面上圆周2211=+--iz z 的圆心是_______ A .3+i B .3−iC .1+iD .1−i29.已知C 是以O 为圆心、r 为半径的圆周,两点P 、P *在以O 为起点的射线上,且满足|OP|∙|OP *|=r 2,则称P 、P *关于圆周C 对称.那么,双曲线22x y -=1上的点P (x ,y )关于单位圆周C':x 2+y 2=1的对称点P *所满足的方程是(A )2244x y x y -=+(B )()22222x y x y-=+(C )()22442x y x y-=+(D )()222222x y x y-=+30、经过坐标变换⎩⎨⎧+-=+=θθθθcos sin 'sin cos 'y x y y x x 将二次曲线06532322=-+-y xy x 转化为形如1''2222=±b y a x 的标准方程,求θ的取值并判断二次曲线的类型_______ A .)(6Z k k ∈+=ππθ,为椭圆 B .)(62Z k k ∈+=ππθ,为椭圆C .)(6Z k k ∈-=ππθ,为双曲线D .)(62Z k k ∈-=ππθ,为双曲线31、设k , m , n 是整数,不定方程mx+ny=k 有整数解的必要条件是____________ A .m ,n 都整除kB .m ,n 的最大公因子整除kC .m ,n ,k 两两互素D .m ,n ,k 除1外没有其它共因子。

二零二一年复旦大学自主招生数学试题-教师版

二零二一年复旦大学自主招生数学试题-教师版

2022年复旦大学自主招生数学试题2022年的高校自主招生已经落下帷幕,笔者对2022年复旦大学自主招生数学试题作出解析,以餐读者.第1题 抛物线22y px =, 过焦点F 作直线交抛物线于A B 、两点, 满足3AFFB =, 过A 作抛物线准线的垂线, 垂足记为A ', O 为顶点, 若四边形'CFAA 的面积为123, 求p .解法1:由题意可知,02p F ⎛⎫⎪⎝⎭,设直线AB 的方程为()02p x my m =+>,()(),,,AABBA x yB x y联立222y pxpx my ⎧=⎪⎨=+⎪⎩可得2220y pmy p --=由韦达定理可得:22,ABABy y pm y y p +==-因为3AF FB=,所以3ABy y=-易得22223B B y pm y p -=⎧⎨-=-⎩,所以2133A m y p ⎧=⎪⎨⎪=⎩所以32A x p =所以2'3333123222A AA CF S y p p p +=⋅=⋅==,解得22p =.解法2:设直线AB 的倾斜角为θ,易得,1cos 1cos p pAF BF θθ==-+因为3AFFB =,则1cos 31cos θθ+=-,解得1cos 2θ=,所以3πθ= 因为3'2,'232AF AA p CA p p ===⨯=所以()1231232S p p p =+⋅=,解得22p =. 第2题 已知实数xy , 满足221x xy +=, 求22x y +最小值.解法1:(消元法)因为0x ≠ ,则112y x x ⎛⎫=- ⎪⎝⎭,所以2222111515422x y x x -⎛⎫+=+-≥⎪⎝⎭ 当且仅当2215x x =,即255x =时,等号成立. 解法2:(三角换元法)设222x y r +=,则cos ,sin x r y r θθ==因为221x xy +=,所以222cos 2sin cos 1r r θθθ+⋅=即()221cos 215151cos sin 2sin 2sin 222222r θθθθθϕ+=+=++=++≤ 因此2512r -≥,所以22x y +的最小值为512-. 第3题已知()sin(2π)cos(2π)sin(4π)cos(4π)f x a x b x c x d x =+++, 若()()122f x f x f x ⎛⎫++= ⎪⎝⎭, 则在,,,a b c d 中能确定的参数是________. 解:因为()()122f x f x f x⎛⎫++= ⎪⎝⎭,所以令0x =,则102f d b ⎛⎫=-= ⎪⎝⎭,所以b d =令14x =,则3110442f f f ⎛⎫⎛⎫⎛⎫+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得20d -=,则0b d ==易得()sin(2π)sin(4π)f x a x c x =+因为()()122f x f x f x ⎛⎫++= ⎪⎝⎭,所以2sin 4sin 4sin8c x a x c x πππ=+恒成立即()sin 422cos40x c a c x ππ--=,惟独0a c ==恒成立,所以0a b c d ====. 第4题 若三次方程32450x ax x +++=有一个根是纯虚数, 则a =________.解:设纯虚数根为bi ,则32450b i ab bi --++=,所以3245b b b a⎧=⎨=⎩,解得54a =5.展开式102311x y x y ⎛⎫+++ ⎪⎝⎭中, 常数项为________.解法1:101010101023233410101010i=0i=0001111i i i i i i k k i j j i i i k j x y C x y C C x C y x y x y ---+--==⎡⎤⎛⎫⎛⎫⎡⎤⎛⎫+++=++=⎢⎥ ⎪ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭⎝⎭⎣⎦∑∑∑∑则有304100k i j i -=⎧⎨+-=⎩,即3104i k ij ⎧=⎪⎪⎨-⎪=⎪⎩,易得0,3,6,9i =当0i =时,52j Z =∉;当3i =时,74j Z =∉;当9i =时,14j Z =∉;当6i =时,2j k ==符合题意,则常数项为622106412600C C C ⋅⋅=解法2:只有一种情况出现常数,即()()3422311x y x y ⎛⎫⎛⎫⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭,它的系数为24131084312600C C C C ⋅⋅⋅=.6. ()111lim ++14253n n n →∞⎡⎤+=⎢⎥⨯⨯+⎣⎦________. 解:因为()1111333n n n n ⎛⎫=- ⎪++⎝⎭, 所以()1111111111111++14253314253123n n n n n n ⎛⎫+=-+-++⋅⋅⋅+-+- ⎪⨯⨯+-++⎝⎭1111111323123n n n ⎛⎫=++--- ⎪+++⎝⎭, 所以()11111111111lim ++lim 11425332312318n n n n n n n →∞→∞⎡⎤⎛⎫+=++---= ⎪⎢⎥⨯⨯++++⎝⎭⎣⎦ 第7题 点()4,5绕点()1,1顺时针旋转60度, 所得的点的坐标为________. 解法1:设点()()()1,1,3,4,,A B C x y ,则直线AB 的斜率为514413ABk-==- 由夹角公式可得43tan 6034113AC ABAC ABACACkk kk kk --︒===+⋅+,所以2534839AC k -=由()()221253481391125y x x y ⎧--=⎪-⎨⎪-+-=⎩可解得54326332x y ⎧+=⎪⎪⎨-⎪=⎪⎩,所以所得的点的坐标为54363322⎛⎫+- ⎪ ⎪⎝⎭, 解法2: 设点()()()1,1,3,4,,A B C x y ,则()3,4AB =,()1,1AC x y =-- 因为5AB AC ==,所以()()221125x y -+-=因为3471cos 252AB ACx y BAC AB AC⋅+-∠===⋅,所以41332y x =-+ 由()()22413321125y x x y ⎧=-+⎪⎨⎪-+-=⎩可解得:54326332x y ⎧+=⎪⎪⎨-⎪=⎪⎩, 易得点的坐标为54363322⎛⎫+- ⎪ ⎪⎝⎭, 解法3: 设点()()1,1,3,4A B ,则()3,4AB =,在复平面对应的复数为()345cos sin z i i θθ=+=+(其中34cos ,sin 55θθ==)则顺时针旋转60︒,则15cos sin 33z AC i ππθθ⎡⎤⎛⎫⎛⎫==-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦即343433,22AC ⎛⎫+-= ⎪ ⎪⎝⎭,易得点的坐标为54363322⎛⎫+- ⎪ ⎪⎝⎭, 第8题 方程5cos 43cos2ρθρρθ=+所表示的曲线形状是________.解法1:因为()25cos 43cos2432cos 1θθθ=+=+-,所以26cos 5cos 10θθ-+=所以1cos 2θ=或者1cos3θ=,所以曲线形状是从原点出发的左半平面的四条射线.解法2:原方程可化为2225cos 43cos2ρθρρθ=+,即()()222222543x x y x y x y +=++- 所以222257x x y x y +=+,即222424110x x y y -+=, 故()()()22223800x y xy x --=≥,所以()3,220y x y x x =±=±≥,所以曲线形状是从原点出发的左半平面的四条射线.第9题 设ππ,,,44x y ⎡⎤∈-⎢⎥⎣⎦若333πcos 20,24sin cos 0x x a y y y a ⎧⎛⎫++-=⎪ ⎪⎝⎭⎨⎪++=⎩则()cos 2x y += . 解:由333πcos 20,24sin cos 0x x a y y y a ⎧⎛⎫++-=⎪ ⎪⎝⎭⎨⎪++=⎩可得()33sin 202sin 220x x a y y a ⎧+-=⎪⎨++=⎪⎩构造函数()3sin f x x x=+,易得()f x 是奇函数.所以()()20f x f y +=所以20x y +=,则()cos 21x y +=第10题 实数,x y 满足221,x y +=若262x y a a x y +-++--的值与,x y 无关,则a 的范围是 .解法1:()262262x y a a x y x y a x y a +-++--=+-+-+-的值与,x y 无关,所以2x y a +-与()62x y a -+-同号,即026x y a ≤+-≤,所以26a x y a ≤+≤+因为221x y +=,令cos sin x y αα=⎧⎨=⎩,则()2cos 2sin 5sin 5,5x y αααϕ⎡⎤+=+=+∈-⎣⎦所以565a a ⎧≤-⎪⎨+≥⎪⎩,所以565a -≤≤-.解法2: ()2622625+55x y a x y a x y a a x y ⎡⎤+-++-+-++--=⎢⎥⎢⎥⎣⎦的值与,x y 无关,说明直线()20,260x y a x y a +-=+-+=在单位圆的两侧,所以565a -≤≤-. 第11题 在△ABC 中,1cos ,3BAC ∠=若O为内心,且满足,AO xAB y AC =+则x y +的最大值为 .解:设ADAO xAB y AC λλλ==+,因为,,B C D 三点共线,所以1x y λλ+=即11111sin 2AO AO AO x y OE AAD AO OD AO OE AO λ+===≤==++++因为21cos 1sin 23A A =-=,所以3sin 23A =.所以332x y -+≤第12题 已知直线:cos m y x α=和:3n x y c +=, 则( ) A.m 和n 可能重合 B. m 和n 不可能垂直C. 存在直线m 上一点,P 以P 为中心旋转后与m 重合D. 以上都不对解:直线m 的斜率为[]cos 1,1α∈-,所以m 和n 不可能重合,故A 错;当1cos 3α=时,两直线垂直,故B 错;直线m 和n 必相交,当点P 位于交点处时,以点P 为中心旋转后与m 重合,故选C.第13题 抛物线23y x =的焦点为,F A 在抛物线上,A 点处的切线与AF 夹角为30°,则A 点的横坐标为 .解:设()23,A y y ,对隐函数23yx =求导可得6'1y y ⋅=,即1'6y y=,所以切线的斜率为016k y =,因为0201312AF y k y =-,由夹角公式tan 301AF AF k k kk -︒=+,解得133AF k k k +=-即002003161133126y y y y+=--,解得0123y =,所以200134x y ==第14题 已知P 为直线6014x y -=-上一点,且P 点到()2,5A 和()4,3B 的距离相同,则P 点坐标为.解:直线方程为460x y +-=,线段AB 的中点为()34,,所以直线AB 的中垂线方程为1y x =+,点P 为直线460x y +-=与直线AB 的中垂线的交点.则146y x y x =+⎧⎨=-+⎩,解得12x y =⎧⎨=⎩,所以P 点坐标为()12, 第15题 已知{},1,2,3,4,5,6,7,8,9x y ∈且,y x ≠联结原点O 和()(),,,A x y B y x 两点,则12arctan 3AOB ∠=的概率为 .解法1:如图,设线段AB 的中点为C ,即1arctan 3AOC ∠=,易得,22x y x y C ++⎛⎫⎪⎝⎭在Rt ADC 中,,22x y x yCD AC --==, 所以在Rt ACO 中,2212sin 10x yACAOC AOx y -∠=⇒=+,解得12y x =在1~9中任取两个数,x y 满足12y x =的有()()()()21426384,,,,,,,,所以29419P C ==. 解法2:如图,设1arctan 3α=,线段OA 与x 轴正半轴所成的角为β,所以1113tan tan 14213πβα-⎛⎫=-== ⎪⎝⎭+,所以12y x = 在1~9中任取两个数,x y 满足12y x =的有()()()()21426384,,,,,,,,所以29419P C ==. 第16题 14323arcsin arcsin 84++=. 解:设14323arcsin,arcsin 84αβ+==,则14323sin ,sin 84αβ+== 易得32147cos ,cos 84αβ-==,所以()2cos cos cos sin sin 2αβαβαβ+=-=-,故34παβ+= 第17题 已知三棱锥-P ABC 的体积为10.5, 且6,4,10,AB AC BC AP BP =====则CP 长度为 .解:如图,取AB 的中点D ,连接,PD CD ,易得AB ⊥平面PCD ,91,7PD CD ==,所以三棱锥-P ABC 的体积为12132PCD SAB⋅=,即1121917sin 6322PDC ⨯⨯⨯⨯∠⨯=所以3sin 213PDC ∠=,所以43cos 213PDC ∠=±由余弦定理可得291+743cos 2917213PC PDC -∠==±⨯⨯,解得98743PC =± 第18题 在△ABC 中,9,6,7,AB BC CA ===则BC 边上中线长度为 .解法1:取BC 的中点D ,由中线长公式可得:222222AB AC AD BD +=+,解得214AD =.解法2:由余弦定理可知22296717cos 29627B +-==⨯⨯, 所以2279329321427AD =+-⨯⨯⨯= 第19题 若()21,f x x =-则()()f f x 的图象大致为 . 解:()()()2242112f f x x x x =--=-,图象大致为W 形.第20题 定义{}1,(),|()()11,M M Nx M f x M N x f x f x x M ∈⎧⎪=⊗==-⎨-∉⎪⎩, 已知{}|2A x x x =<-, {}|(3)(3)0B x x x x =+->, 则A B ⊗= .解:易知()()(),1,3,03,A B =-∞=-+∞当3x ≤-时,()()1AB fx f x =-满足题意;当30x -<<时,()()1AB fx f x =不满足题意;当01x ≤<时,()()1ABf x f x =-满足题意;当13x <≤时,()()1ABf x f x =不满足题意;当3x >时,()()1ABfx f x =-满足题意.综上所述,(][)(),30,13,A B ⊗=-∞-+∞第21题 方程34122022x y z ++=的非负整数解的组数为 .解:因为34122022x y z ++=,,,0x y z ≥,易得4|x ,设4x m =,则124122022m y z ++= 即33505m y z ++=,则3|505y -,因此()505mod3y ≡,则()1mod3y ≡,设31y n =+所以168,,,0m n z m n z ++=≥,设111p m q n r z =+⎧⎪=+⎨⎪=+⎩,则171,,1p q r p q r ++=≥,,用隔板法可得2170C 种.第22题 已知,,m n ∈且011,n ≤≤若满足202220222312,m n +=+则n = . 解:因为()()2022202220222022231mod3233mod 4+=+=,,所以7n =.第23题 凸四边形,ABCD 则BAC BDC ∠=∠是DAC DBC ∠=∠的 条件. 解:充要条件第24题 设函数()33x x f x -=-的反函数为()1,y f x -=则()()111g x f x -=-+在[]3,5-上的最大值和最小值的和为 .解:()()111g x f x -=-+在[]3,5-上的最大值和最小值等价于求()11f x -+在[]44-,上的最大值和最小值,即()44f x -≤≤,解得52325x -≤≤+,所以()()22log 52,log 25x ⎡⎤∈-+⎣⎦,所以()()111g x fx -=-+在[]3,5-上的最大值和最小值的和为()()32log52522⎡⎤+-+=⎣⎦. 第25题 若4,k >直线2280kx y k --+=与222440x k y k +--=和坐标轴围成的四边形面积的取值范围是 .解:直线2280kx y k --+=与222440x k y k +--=恒过定点()2,4C ,则2480,4,2,0A B k k ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭2214181411422448,0,224S k k k k k ⎛⎫⎛⎫⎛⎫⎛⎫=+⨯+-⨯=-+∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以17,82S ⎛⎫∈ ⎪⎝⎭.第26题 已知A B C D 、、、四点共圆,且1,2,4,5,AB CD AD BC ====则PA 的长度为 . 解:易得PABPCD ,则12PA PB AB PC PD CD ===,设,PA X PB Y ==,则25124254Y X X Y Y X Y X =-⎧==⇒⎨=+++⎩,解得143X = 第27题 给定5个函数,其中3个奇函数,2个偶函数,则在这5个函数中任意取3个,其中既有奇函数、又有偶函数的概率为 .解:33359110C P C =-= 第28题 下列不等式恒成立的是( )A. 2211x x x x+≥+ B. 12x y x y -+≥- C. x y x z y z -≥-+- 解:()()()()()222322221111111110x x x x x x x x x x x x x x x x -++-⎛⎫⎡⎤+-+=-+=---=≥ ⎪⎣⎦⎝⎭,A 选项正确;当0,2x y ==时,B 选项不成立;当1,2,0x y z ===时,C 选项不成立. 第29题 向量数列{}n a 满足1,n n a a d +=+且满足1133,,2a a d =⋅=-令11,n n ii S a a =⎛⎫=⋅ ⎪⎝⎭∑则当nS 取最大时,n 的值为 . 解:()()()211111313913244n n i i n n n n S a a a na d n n n =--⎛⎫⎛⎫=⋅=⋅+=-=-+ ⎪ ⎪⎝⎭⎝⎭∑,当6n =或者7n =时,nS 取得最大值. 第30题 某公司安排甲乙丙等7人完成7天的值班任务,每人负责一天.已知甲不安排在第一天,乙不安排在第二天,甲和丙在相邻两天,则不同的安排方式有 种.解:当甲丙在第一二天时,则有55120A =种;当甲丙在第二三天时,则有2525240A A =种; 当甲丙连续在第三四五六七天时,则有242444768A A =种;所以共有120+240+768=1128种.第31题 直线12,l l 交于O 点,M 为平面上任意一点,若,p q 分别为M 点到直线12,l l 的距离,则称(),p q 为点M 的距离坐标.已知非负常数,,p q 下列三个命题正确的个数是 .(1) 若0,p q ==则距离坐标为()0,0的点有且仅有1个;(2) 若0,pq =且0,p q +≠则距离坐标为(),p q 的点有且仅有2个;(3) 若0,pq ≠则距离坐标为(),p q 的点有且仅有4个.解:(1)正确,当0,p q ==则距离坐标为()0,0的点有且仅有1个为O 点;(2)正确,若0p =时,该点分别为关于交点O 对称的点,A B ;若0q =类似.(3)正确,作12,l l 的平行线交于,,,A B C D ,,AC BD 距离2l 为q ,,AB CD 距离1l 为p 故答案为3个.。

复旦大学自主招生题

复旦大学自主招生题

复旦大学2008年优秀高中生文化水平选拔测试试卷1.[元]施惠《绿林寄迹》:“倚山为寨,号为拦路虎。

金银财宝,劫来如粪土。

”句中的“拦路虎”一语作________。

A.补语 B.状语 C.动宾短语的宾语 D.宾语2.下列各组词语中,没有错别字的一组是______。

A.演绎必竞绊脚石目不暇接B.去逝耽搁爆发力举步维艰C.斡旋戏谑白内瘴运筹帷幄D.贸然简练纪录片舔犊情深3.鲁迅《月界旅行》七回:“那麦思敦更觉气色傲然,或饮或食,忽厢忽歌,大有,此间乐不思蜀’之意。

”与句中“乐不思蜀”构成反向意义的是_______。

A.留连忘返 B.饮水思源 C.乐而忘返 D.乐不可支4.[明]归庄《万古愁》:“有几个狼奔豕突的燕和赵,有几个狗屠驴贩奴和盗。

”与句中“狼奔豕突”近义的是_________。

A.鱼贯丽行 B.狼吞虎咽 C.狼狈不堪 D.抱头鼠串5.张洁《爱,是不能忘记的》:“有人就会说你的神经出了毛病,或是你有什么见不得人的隐私,或是你政治上出了什么问题,或是你刁钻古怪,看不起凡人,不尊重千百年来的社会习惯,你准是个离经叛道的邪人。

”句中“离经叛道,”的结构属于______。

A.主谓式 B.并列式 C.偏正式 D.连动式6.下列各句中,标点符号使用正确的一句是_____。

A.“学好语文的关键是什么?”他顿了一顿,郑重地说,“就是要注意日常积累和在课堂上认真听讲。

”B.“福娃妮妮”的造型创意来源于北京传统的沙燕风筝,“燕”还代表燕京,(古代北京的称谓)妮妮在体操比赛中登场,代表奥林匹克五环中绿色的一环。

C.她每次去超市都会买很多零碎的东西,什么杏肉呀、酸奶呀、薯片呀,满满地装了一车。

D.朋友问:“这条路谁能走通呢?”我干脆地回答:“我不知道这条路谁能走通?但我一定要坚定不移地走下去。

”7.艺术“天才”之所以为“天才”,最主要是指他有______。

A.独特的创造力 B.高超的技巧 C.全面的知识 D.很高的敏感度8.《巴黎圣母院》中的阿西莫多之所以荣获选丑冠军是因为_______。

复旦大学自主选拔录取申请资格测试试卷.doc

复旦大学自主选拔录取申请资格测试试卷.doc

复旦大学自主选拔录取申请资格测试试卷复旦大学自主选拔录取申请资格测试试卷本试卷27页,满分为1000分;每题5分;考试时间为180分钟。

考生注意1、答卷前,考生务必在试卷和答题卡上都用钢笔或圆珠笔填写姓名、准考证号,并用2B铅笔在答题卡上正确涂写试卷类型(A卷或B卷)和准考证号。

2、本卷为单选题,由机器阅卷,答案必须全部涂在答题卡上。

在答题卡上,考生应将代表正确答案的小方格用铅笔涂黑。

注意试题题号和答题卡编号一一对应,不能错位。

答案需要更改时,必须将原选项用橡皮擦去,重新选择并填涂。

答案不能写在试卷上,写在试卷上一律不给分。

1.杜甫旅夜书怀的前四句是细草微风岸,桅樯独夜舟。

A.穷年忧黎元,叹息肠内热。

B.飘飘何所以,天地一沙鸥。

C.星垂平野阔,月涌大江流。

D.山随平野尽,江入大荒流。

2.下面表达中,哪一种体现了意象的虚伪性特征。

A.“燕山雪花大如席” B.“春来江水绿如蓝” C.“半江瑟瑟半江红” D.“雾失楼兮,月迷津度” 3.原始舞蹈和原始绘画中所表现的。

A.只有原始宗教的观念B.只是物质匮乏和技术落后的形象化体现C.已有审美意识的反映D.只是闲来无事的涂鸦4.阿Q头上有疤,而忌讳“亮”、“光”,这属于。

A.相似联想B.接近联想C.对比联想D.对立联想5.中国古代文论中的“兴”,它被提出来主要用于阐释。

A.诗经B.乐府C.古诗十九首D.楚辞6.孙子曰凡用兵之法,全国为上,破国次之;全军为上,破军次之。

(孙子兵法·谋次)与“全国为上”的“全”用法不同的一项是。

A.全军为上,破军次之B.故兵不顿而利可全C.故今墓中全乎为王人也D.毁人之国而非久也,必以全争天下7.杜牧在阿房宫赋里描写秦人的奢华、浮靡时有这样几句话“鼎铛玉石,金块珠砾,弃之逦迤,秦人视之,亦不甚惜。

”下列与“金块珠砾”结构完全相同的一项是A.金玉良言B.蓬户瓮牖C.瓮牖绳枢D.渔夫樵父8.孟尝君曰“先生老矣,春秋高矣,何以教之”(汉·刘向新序·杂事第五)句中的“春秋”一词的含义是。

复旦自主招生试题

复旦自主招生试题

复旦自主招生试题复旦大学自主招生试题自主招生旨在选拔具有综合素质和潜力的优秀学生,复旦大学自主招生试题考察的是学生的才智、思维能力和学科基础。

以下是几道典型的复旦自主招生试题,帮助大家更好地了解复旦大学自主招生的考察方向和要求。

题一:数学思维某班一共有50名学生,其中有20%的学生参加了足球队,25%的学生参加了篮球队,30%的学生参加了乒乓球队,10%的学生既参加了足球队又参加了篮球队,15%的学生既参加了足球队又参加了乒乓球队,20%的学生既参加了篮球队又参加了乒乓球队,其中没有学生同时参加了三者。

请问有多少学生一个球队都没有参加?解题思路:首先我们可以利用集合论中的容斥原理来解决这个问题。

让A表示参加足球队的学生人数,B表示参加篮球队的学生人数,C表示参加乒乓球队的学生人数,根据题意可得:A +B +C - (A ∩ B) - (A ∩ C) - (B ∩ C) + (A ∩ B ∩ C) = 50其中,我们已知 A = 0.2 * 50 = 10, B = 0.25 * 50 = 12.5(约等于13),C = 0.3 * 50 = 15。

代入上式,可以计算得到:10 + 13 + 15 - (A∩ B) - (A ∩ C) - (B ∩ C) + (A ∩ B ∩ C) = 50。

再根据已知条件,可得到(A ∩ B) = 0.1 * 50 = 5,(A ∩ C) = 0.15 * 50 = 7.5(约等于8),(B ∩ C)= 0.2 * 50 = 10,(A ∩ B ∩ C) = 0。

代入上式,可得:10 + 13 + 15 - 5 - 8 - 10 + 0 = 50。

所以,有多少学生一个球队都没有参加,即(A' ∩ B' ∩ C') = 50 - 35 = 15个学生。

因此,共有15个学生一个球队都没有参加。

题二:文学赏析以下是经典文学作品的一些摘录,请阅读并简要进行评析。

复旦大学自主招生试题

复旦大学自主招生试题

复旦大学自主招生试题(正文)复旦大学自主招生试题自主招生,作为一种独特的选拔方式,给予了高中生更多展示自己的机会,而复旦大学作为一所顶尖的综合性大学,其自主招生试题更是备受考生关注。

本文将通过介绍复旦大学自主招生试题的一些例子,分析其考查内容和要求。

一、数学试题1. 已知函数f(x) = 2x^3 - 3x^2 - 12x + 5,求函数f(x)在区间[-2, 3]上的最小值和最大值。

分析:首先,我们需要先求出函数f(x)的导函数f'(x),然后再通过导函数的零点来找出函数f(x)的极值点。

根据极值的定义,我们可以通过求解f'(x) = 0来得到。

2. 某商店商品价格打9折,然后再减去10元,最后的价格是原价的40%。

求该商品的原价。

分析:假设原价为x元,那么根据题意,我们可以得到以下等式:0.9x - 10 = 0.4x。

通过解这个方程,我们可以求出该商品的原价x。

二、英语试题1. 阅读下面短文,并根据短文内容完成后面的题目。

Most people know that exercise is good for their health. Regular physical activity can prevent a multitude of diseases and improve one’s overall well-being. However, it is essential to find an exercise routine that suits your lifestyle and preferences. In this regard, yoga is a great option for many.Yoga combines physical poses, breathing exercises, and meditation to promote a healthy mind and body. The slow and controlled movements help build flexibility, strength, and balance. Additionally, the focus on deep breathing and mindfulness promotes relaxation and stress reduction.Furthermore, yoga can be practiced by people of all ages and fitness levels. From beginner classes to advanced poses, there are variations suitable for everyone. It is a versatile practice that can be adapted to individual needs and goals.Based on the information provided in the passage, answer the following questions:a. What are the benefits of regular exercise?b. What aspects does yoga combine?c. Why is yoga suitable for people of all ages and fitness levels?三、文学试题阅读下面的《Active Learning》一文,根据文章内容回答问题。

2020年上海市复旦大学自主招生数学试卷

2020年上海市复旦大学自主招生数学试卷

2020年上海市复旦大学自主招生数学试卷一、解答题1.抛物线y2=2px,过焦点F作直线交抛物线于A、B两点,满足,过A作抛物线准线的垂线,垂足记为A',O为顶点,若,求p.2.抛物线y2=2px,过焦点F作直线交抛物线于A,B两点,满足,过A作抛物线准线的垂线,垂足记为A',准线交x轴于C点,若,求p.3.已知实数x,y满足x2+2xy=1,求x2+y2最小值.二、填空题4.已知f(x)=a sin(2πx)+b cos(2πx)+c sin(4πx)+d cos(4πx),若,则在a,b,c,d中能确定的参数是 .5.若三次方程x3+ax2+4x+5=0有一个根是纯虚数,则实数a= .6.展开式中,常数项为 .7.[++…+]= .8.点(4,5)绕点(1,1)顺时针旋转60度,所得的点的坐标为 .9.方程5ρcosθ=4ρ+3ρcos2θ所表示的曲线形状是 .10.设,若,则cos(x+2y)= .11.当实数x、y满足x2+y2=1时,|x+2y﹣a|+|a+6﹣x﹣2y|的取值与x、y均无关,则实数a 的取值范围是 .12.在△ABC中,,若O为内心,且满足,则x+y的最大值为 .三、选择题13.已知直线m:y=x cosα和n:3x+y=c,则( )A.m和n可能重合B.m和n不可能垂直C.存在直线m上一点P,以P为中心旋转后与n重合D.以上都不对四、填空题14.抛物线3y2=x的焦点为F,A在抛物线上,A点处的切线与AF夹角为30°,则A点的横坐标为 .15.已知点P在直线上,且点P到A(2,5)、B(4,3)两点的距离相等,则点P的坐标是 .16.已知x,y∈{1,2,3,4,5,6,7,8,9}且y≠x,连接原点O和A(x,y),B(y,x)两点,则∠AOB=2arctan的概率为 .17.arcsin+arcsin= .18.已知三棱锥P﹣ABC的体积为10.5,且AB=6,AC=BC=4,AP=BP=10,则CP长度为 .19.在△ABC中,AB=9,BC=6,CA=7,则BC边上中线长度为 .20.若f(x)=x2﹣1,则f(f(x))的图象大致为 .21.定义f M(x)=,M⊗N={x|f M(x)f N(x)=﹣1},已知A=,B={x|x(x+3)(x﹣3)>0},则A⊗B= .22.方程3x+4y+12z=2020的非负整数解的组数为 .23.已知m,n∈Z,且0≤n≤11,若满足22020+32021=12m+n,则n= .24.凸四边形ABCD,则∠BAC=∠BDC是∠DAC=∠DBC的 条件.25.设函数f(x)=3x﹣3﹣x的反函数为y=f﹣1(x),则g(x)=f﹣1(x﹣1)+1在[﹣3,5]上的最大值和最小值的和为 .26.若k>4,直线kx﹣2y﹣2k+8=0与2x+k2y﹣4k2﹣4=0和坐标轴围成的四边形面积的取值范围是 .27.已知A、B、C、D四点共圆,且AB=1,CD=2,AD=4,BC=5,则PA的长度为 .28.给定5个函数,其中3个奇函数,2个偶函数,则在这5个函数中任意取3个,其中既有奇函数、又有偶函数的概率为 .五、选择题29.下列不等式恒成立的是( )A.x2+≥x+B.C.|x﹣y|≥|x﹣z|+|y﹣z|D.六、填空题30.向量数列满足,且满足,令,则当S n取最大时,n的值为 .31.某公司安排甲乙丙等7人完成7天的值班任务,每人负责一天.已知甲不安排在第一天,乙不安排在第二天,甲和丙在相邻两天,则不同的安排方式有 种.32.直线l1,l2交于O点,M为平面上任意一点,若p,q分别为M点到直线l1,l2的距离,则称(p,q)为点M的距离坐标.已知非负常数p,q,下列三个命题正确的个数是 .(1)若p=q=0,则距离坐标为(0,0)的点有且仅有1个;(2)若pq=0,且p+q≠0,则距离坐标为(p,q)的点有且仅有2个;(3)若pq≠0,则距离坐标为(p,q)的点有且仅有4个.2020年上海市复旦大学自主招生数学试卷参考答案与试题解析一、解答题1.抛物线y2=2px,过焦点F作直线交抛物线于A、B两点,满足,过A作抛物线准线的垂线,垂足记为A',O为顶点,若,求p.【考点】抛物线的性质.【分析】过A作抛物线准线的垂线,垂足记为A',过B作抛物线准线的垂线,垂足记为B',过B作AA′的垂线,垂足记为M.设|BF|=m,则|AF|=3m,|AM|=2m,可得∠A′AF=600,即可得A(,),利用可得2p=3m,利用梯形面积公式即可得p.【解答】解:过A作抛物线准线的垂线,垂足记为A',过B作抛物线准线的垂线,垂足记为B',过B作AA′的垂线,垂足记为M.设|BF|=m,则|AF|=3m,|AM|=2m,cos∠A′AF=,∴∠A′AF=600.A(,),由A在抛物线y2=2px上,,解得2p=3m,或2p=﹣9m(舍),∴|AF|=|AA′|=3m=2p,∵,∴(2p+)p=12,∴p=.【点评】本题考查了抛物线的定义与性质的应用问题,也考查了三角形面积的计算问题,是中档题.2.抛物线y2=2px,过焦点F作直线交抛物线于A,B两点,满足,过A作抛物线准线的垂线,垂足记为A',准线交x轴于C点,若,求p.【考点】抛物线的性质.【分析】过A作抛物线准线的垂线,垂足记为A',过B作抛物线准线的垂线,垂足记为B',过B作AA′的垂线,垂足记为M.设|BF|=m,则|AF|=3m,|AM|=2m,可得∠A′AF=600,即可得A(,),利用可得2p=3m,利用梯形面积公式即可得p.【解答】解:过A作抛物线准线的垂线,垂足记为A',过B作抛物线准线的垂线,垂足记为B',过B作AA′的垂线,垂足记为M.设|BF|=m,则|AF|=3m,|AM|=2m,cos∠A′AF=,∴∠A′AF=600.A(,),由A在抛物线y2=2px上,,解得2p=3m,或2p=﹣9m(舍),∴|AF|=|AA′|=3m=2p,∵,∴,∴p=2.【点评】本题考查了抛物线的定义与性质的应用问题,也考查了三角形面积的计算问题,是中档题.3.已知实数x,y满足x2+2xy=1,求x2+y2最小值.【考点】函数的最值及其几何意义.【分析】先把y用x表示,问题转化为单变量问题,再利用基本不等式求最小值即可.【解答】解:因为x2+2xy=1(x≠0),故,所以,当且仅当等号成立,所以x2+y2最小值为.【点评】本题考查基本不等式的应用,属于基础题.二、填空题4.已知f(x)=a sin(2πx)+b cos(2πx)+c sin(4πx)+d cos(4πx),若,则在a,b,c,d中能确定的参数是 a=b=c=d=0 .【考点】抽象函数及其应用.【分析】先令x=0和x=可得b=d=0,再由得到a=c=0.【解答】解:令,令,,,所以sin4πx(2c﹣a﹣2c cos4πx)=0恒成立,所以2c﹣a=2c=0⇒a=c=0,综上所述a=b=c=d=0.故答案为:a=b=c=d=0.【点评】本题考查赋值法在抽象函数中的应用,考查二倍角公式,属于中档题.5.若三次方程x3+ax2+4x+5=0有一个根是纯虚数,则实数a= .【考点】实系数多项式虚根成对定理.【分析】设三次方程的纯虚数根为bi(b∈R,b≠0),代入三次方程,由复数的运算性质和复数为0的条件,解方程可得所求值.【解答】解:设三次方程的纯虚数根为bi(b∈R,b≠0),可得﹣b3i﹣ab2+4bi+5=0,即(5﹣ab2)+(4b﹣b3)i=0,可得5﹣ab2=0,且4b﹣b3=0,解得b=±2,a=.故答案为:.【点评】本题考查实系数高次方程的根的定义,以及复数的运算法则的运用,考查运算能力,是一道基础题.6.展开式中,常数项为 12600 .【考点】二项式定理.【分析】要使展开式中出现常数项,由题意可知,展开式中的常数项应符合以下特征:,且k+2k+m+3m=10,由此求出k,m的值即可.【解答】解:利用组合的知识可知,展开式中的常数项满足:,且k+2k+m+3m=10,k,m∈N.即3k+4m=10,m,k∈N.解得,故常数项为:.【点评】本题考查二项式展开式中特定项的求法,注意组合知识在解题中的应用.属于基础题.7.[++…+]= .【考点】数列的极限.【分析】通过裂项消项法,求解数列的和,然后利用数列的极限的运算法则求解即可.【解答】解:=++…+==(1++﹣﹣﹣).[++…+]=(1++﹣﹣﹣)==.故答案为:.【点评】本题考查数列求和以及数列的极限的运算法则的应用,是中档题.8.点(4,5)绕点(1,1)顺时针旋转60度,所得的点的坐标为  .【考点】旋转变换.【分析】不妨设A(1,1),B(4,5),则,在在复平面对应的复数求出来,并用三角表示,再结合复数乘法运算的几何意义即可求出所对应的复数z2,进而求出的坐标,再求C点坐标,即为答案.【解答】解:不妨设A(1,1),B(4,5),则,在复平面对应的复数为,则顺时针旋转60°,则,,,因此,从而可得点.【点评】本题考查复数乘法运算的几何意义,考查转化能力和计算能力,属于中档题.9.方程5ρcosθ=4ρ+3ρcos2θ所表示的曲线形状是 两条射线 .【考点】简单曲线的极坐标方程.【分析】直接利用转换关系,消去ρ,整理成三角函数关系式,进一步求出结果.【解答】解:根据方程5ρcosθ=4ρ+3ρcos2θ,整理得5cosθ=4+3(2cos2θ﹣1),即6cos2θ﹣5cosθ+1=0,解得cos或cos.所以该曲线为两条射线.故答案为:两条射线.【点评】本题考查的知识要点:参数方程、极坐标方程和普通方程之间的转换,三角函数关系式的变换,主要考查学生的运算能力和转换能力及思维能力,属于基础题.10.设,若,则cos(x+2y)= 1 .【考点】函数与方程的综合运用.【分析】设f(x)=x3+sin x,把已知条件转化为f(x)+f(2y)=0,又因为函数f(x)在R上是单调递增的奇函数,故x+2y=0,进而求出cos(x+2y)=1.【解答】解:原式可得变形为,设f(x)=x3+sin x,因为f(﹣x)=(﹣x)3+sin(﹣x)=﹣(x3+sin x)=﹣f(x),所以f(x)为奇函数,当x>0 时,f(x)′=3x2+cos x①当0<x<时,cos x>0,所以f(x)′>0;②当x>时,3x2>3,cos x<1,所以f(x)′>0.所以f(x)在(0,+∞)上是单调递增函数,又因为奇函数关于原点对称,所以函数f(x)在R上是单调递增函数,因此f(x)+f(2y)=0,则x+2y=0,则cos(x+2y)=1.故答案为:1.【点评】本题考查函数的单调性与奇偶性的综合,考查学生的转化能力,是一道综合性的题目,属于中档题.11.当实数x、y满足x2+y2=1时,|x+2y﹣a|+|a+6﹣x﹣2y|的取值与x、y均无关,则实数a 的取值范围是 .【考点】直线和圆的方程的应用.【分析】根据x,y满足的表达式可设x=cosθ,y=sinθ,进而求出x+2y的范围,再由条件可知x+2y﹣a≥0,且a+6﹣x﹣2y≥0,则可求出a的取值范围.【解答】解:因为实数x,y满足x2+y2=1,设x=cosθ,y=sinθ,则x+2y=cosθ+2sinθ=,其中α=arctan2,所以﹣≤x+2y≤,因为|x+2y﹣a|+|a+6﹣x﹣2y|的取值与x、y均无关,所以|x+2y﹣a|+|a+6﹣x﹣2y|=x+2y﹣a+a+6﹣x﹣2y=6,即此时,所以x+2y﹣6≤a≤x+2y,则≤a≤﹣,故答案为:【点评】本题考查了圆的参数方程,涉及绝对值取值范围等知识点,属于中档题.12.在△ABC中,,若O为内心,且满足,则x+y的最大值为  .【考点】平面向量的基本定理.【分析】设=λ,根据共线向量的几何意义和二倍角公式解答.【解答】解:延长AO交BC于D,设BC与圆O相切于点E,AC与圆O相切于点F,则OE=OF,则OE≤OD,设=λ,因为B、C、D三点共线,所以λx+λy=1,即x+y======,因为cos A=1﹣2sin2=,所以sin=,所以x+y≤=.故答案是:.【点评】本题主要考查向量数量积的运算及几何意义,三角形的内心的概念,三角函数的转化关系,属于中档题.三、选择题13.已知直线m:y=x cosα和n:3x+y=c,则( )A.m和n可能重合B.m和n不可能垂直C.存在直线m上一点P,以P为中心旋转后与n重合D.以上都不对【考点】确定直线位置的几何要素;直线的一般式方程与直线的平行关系.【分析】求出直线m与直线n的斜率,由斜率不能相等判断两直线不可能重合;由斜率之积为﹣1,得出两直线垂直;由两直线不平行,得出两直线相交,从而判断直线m以交点P为中心旋转后与n重合.【解答】解:直线m:y=x cosα,斜率为k1=cosα;直线n:3x+y=c,斜率为k2=﹣3;k1≠k2,所以m和n不可能重合,A错误;cosα=时,k1•k2=﹣1,m和n垂直,所以B错误;由k1≠k2知m和n不平行,设m、n相交于点P,则直线m以P为中心旋转后与n重合,所以C正确.故选:C.【点评】本题考查了两条直线的位置关系应用问题,是基础题.四、填空题14.抛物线3y2=x的焦点为F,A在抛物线上,A点处的切线与AF夹角为30°,则A点的横坐标为 .【考点】直线与抛物线的综合.【分析】设A的坐标求导可得A的切线的斜率,设切线的倾斜角为α,求出准线AF的斜率,由题意可得k AF=tan(30°+α),可得A的横坐标.【解答】解:抛物线3y2=x可得y2=,所以焦点F坐标(,0),设A(x0,y0),设y0>0y=,y'=,所以在A处的切线的斜率为:k=,设在A处的倾斜角为α,则k=tanα=,k AF===,tan(30°+α)===,由题意可得k AF=tan(30°+α),所以=,整理可得:(1﹣2)(12x 0+1)=0,解得:x0=,所以A的横坐标为:,故答案为:.【点评】本题考查抛物线的性质及由求导法求在点的切线的斜率,属于中档题.15.已知点P在直线上,且点P到A(2,5)、B(4,3)两点的距离相等,则点P的坐标是 (1,2) .【考点】行列式.【分析】由二项展开式性质得点P在直线4x+y﹣6=0,设P(a,﹣4a+6),由点P到A (2,5)、B(4,3)两点的距离相等,能求出点P的坐标.【解答】解:∵点P在直线上,∴点P在直线4x+y﹣6=0,设P(a,﹣4a+6),∵点P到A(2,5)、B(4,3)两点的距离相等,∴,解得a=1,∴点P的坐标是(1,2).故答案为:(1,2).【点评】本题考查点的坐标的求法,考查行列式、直线方程、两点间距离公式等基础知识,考查运算求解能力,是基础题.16.已知x,y∈{1,2,3,4,5,6,7,8,9}且y≠x,连接原点O和A(x,y),B(y,x)两点,则∠AOB=2arctan的概率为 .【考点】古典概型及其概率计算公式.【分析】先由题设条件求出数对(x,y)总的个数,然后利用∠AOB=2arctan求出满足题意的数对(x,y)的个数,最后利用古典概型概率公式计算出结果.【解答】解:∵x,y∈{1,2,3,4,5,6,7,8,9}且y≠x,∴数对(x,y)共有9×8=72个.∵∠AOB=2arctan,∴tan∠AOB==,cos∠AOB=,又连接原点O和A(x,y),B(y,x)两点,得=(x,y),=(y,x),则cos∠AOB===,即(2x﹣y)(x﹣2y)=0,即y=2x,或y=x,∴满足∠AOB=2arctan的数对有:(1,2),(2,4),(3,6),(4,8),(2,1),(4,2),(6,3),(8,4),共8个,∴∠AOB=2arctan的概率P==.故答案为:.【点评】本题主要以集合为背景考查满足古典概型的概率的计算及三角公式的简单应用,属于中档题.17.arcsin+arcsin= .【考点】反三角函数.【分析】由题意判断出<arcsin+arcsin<π,求出sin(arcsin+arcsin)的值,即可得出arcsin+arcsin的值.【解答】解:由arcsin<arcsin<arcsin1,所以<arcsin<,又arcsin<arcsin<arcsin1,所以<arcsin<,所以<arcsin+arcsin<π,所以sin(arcsin+arcsin)=sin(arcsin)cos(arcsin)+cos(arcsin)sin(arcsin)=×+×=×+×=+=,所以arcsin+arcsin=.故答案为:.【点评】本题考查了反三角函数值的计算问题,也考查了运算求解能力,是中档题.18.已知三棱锥P﹣ABC的体积为10.5,且AB=6,AC=BC=4,AP=BP=10,则CP长度为 7 或 .【考点】棱柱、棱锥、棱台的体积.【分析】先根据题意证明平面ABC⊥平面PCD,进而得到P点到CD的距离即P点到平面ABC的距离,再利用三棱锥P﹣ABC的体积为10.5,求出sin∠PDC,利用同角的三角函数关系求出cos∠PDC,在△PDC中运用余弦定理即可求出PC的长度.【解答】解:取AB中点D,因为AB⊥CD,AB⊥PD,又因为PD∩CD=D且PD,CD⊂平面PCD,则AB⊥面PDC,又因为AB⊂平面ABC,所以平面ABC⊥平面PCD,那么P点到CD的距离即P点到平面ABC的距离,依题意可得,所以,那么,由余弦定理可得或.故答案为:7 或.【点评】本题考查线面垂直及面面垂直的证明,三棱锥体积公式,余弦定理,考查学生的转化能力和运算能力,属于中档题.19.在△ABC中,AB=9,BC=6,CA=7,则BC边上中线长度为 2 .【考点】三角形中的几何计算.【分析】利用余弦定理求出cos∠BAC的值,再利用平面向量的线性表示,即可求出中线的长度.【解答】解:△ABC中,AB=9,BC=6,CA=7,如图所示;由余弦定理得cos∠BAC==;设AD是BC边上的中线,则=(+),所以=×(+2•+)=×(81+2×9×7×+49)=56,解得||=2,所以BC边上的中线长度为2.故答案为:2.【点评】本题考查了平面向量的数量积与解三角形的应用问题,是基础题.20.若f(x)=x2﹣1,则f(f(x))的图象大致为 .【考点】函数的图象与图象的变换.【分析】求出f(f(x))的解析式,并判断奇偶性,利用导数求出x>0时的单调性,由对称性即可作出大致图象.【解答】解:f(f(x))=(x2﹣1)2﹣1=x4﹣2x2,令g(x)=x4﹣2x2,g(x)=0,可得x=±或0,由g(﹣x)=g(x),可得g(x)为偶函数,当x≥0时,g′(x)=4x3﹣4x=4x(x+1)(x﹣1),x∈(0,1)时,g′(x)<0,g(x)单调递减,x∈(1,+∞)时,g′(x)>0,g(x)单调递增,由偶函数关于y轴对称,可得f(f(x))的图象大致为故答案为:.【点评】本题主要考查函数的图象的画法,属于基础题.21.定义f M(x)=,M⊗N={x|f M(x)f N(x)=﹣1},已知A=,B={x|x(x+3)(x﹣3)>0},则A⊗B= (﹣∞,﹣3]∪[0,1)∪(3,+∞). .【考点】子集与交集、并集运算的转换.【分析】求出集合A,B,利用新定义求出A⊗B即可.【解答】解:A=(﹣∞,1),B={x|x(x﹣3)(x+3)>0}=(﹣3,0)∪(3,+∞);∁R A=[1,+∞),∁R B=(﹣∞,﹣3]∪[0,3].因为f A(x)•f B(x)=﹣1,所以当f A(x)=﹣1,f B(x)=1,A⊗B=B∩∁R A={x|x>3},当f A(x)=1,f B(x)=﹣1,A⊗B=A∩∁R B={x|x≤﹣3或0≤x<1},故A⊗B=(﹣∞,﹣3]∪[0,1)∪(3,+∞).故答案为:(﹣∞,﹣3]∪[0,1)∪(3,+∞).【点评】考查集合的交并集的计算,集合概念的理解,属于基础题.22.方程3x+4y+12z=2020的非负整数解的组数为 14365 .【考点】计数原理的应用.【分析】利用非负整数这一条件结合题干中的3×4=12进行分析入手即可.【解答】解:因为3x+4y+12z=2020,所以,因为x,y,z均为整数,所以也是整数,所以设x=4k,则3k+y+3z=505,所以3(k+z)+y=505,易知505÷3=168…1,则k+z可取的值为0~168,当k+z=0时,k=z=0,当k+z=1时,或,当k+z=n时,k的取值集合为{0,1,2,…,n},对应z=n﹣k,故当k+z取遍0~168时,z的所有可能取值数为种,故所有的非负整数解为14365种,故答案为14365.【点评】本题考查逻辑分析能力,考查学生对于题中隐藏条件的判断,属于中档题.23.已知m,n∈Z,且0≤n≤11,若满足22020+32021=12m+n,则n= 7 .【考点】进行简单的合情推理.【分析】通过研究2n+3n+1除以12的余数的规律得到结果.【解答】解:归纳:21+32=12×0+11,22+33=12×2+7,23+34=12×7+5,24+35=12×21+7,25+36=12×63+5,26+37=12×187+7,27+38=12×557+5,…由以上过程可知,除去第一个式子之外,余数为7,5循环;易知2n中n为奇数对应余数为5,n为偶数对应余数为7;2020为偶数,故余数为7.故答案为7.【点评】本题考查归纳推理,属于中档题.24.凸四边形ABCD,则∠BAC=∠BDC是∠DAC=∠DBC的 充要 条件.【考点】充分条件、必要条件、充要条件.【分析】根据四点共圆的性质,对∠BAC=∠BDC,∠DAC=∠DBC进行逻辑判断即可.【解答】解:在凸四边形ABCD中,若∠BAC=∠BDC,则ABCD四点共圆,则必有∠DAC =∠DBC;在凸四边形ABCD中,若∠DAC=∠DBC,则ABCD四点共圆,则必有∠BAC=∠BDC;所以:∠BAC=∠BDC是∠DAC=∠DBC的充要条件.故答案为:充要.【点评】本题考查了四点共圆问题,充分必要条件的定义,属于基础题.25.设函数f(x)=3x﹣3﹣x的反函数为y=f﹣1(x),则g(x)=f﹣1(x﹣1)+1在[﹣3,5]上的最大值和最小值的和为 2 .【考点】函数的最值及其几何意义;反函数.【分析】由﹣3≤x≤5,可得﹣4≤x﹣1≤4,令﹣4≤f(x)≤4,结合函数f(x)的单调性可得此时,再由反函数的性质即可得解.【解答】解:由﹣3≤x≤5,可得﹣4≤x﹣1≤4,令﹣4≤f(x)≤4,由f(x))=3x﹣3﹣x单调递增可得,,∴,∴g(x)在[﹣3,5]上的最大值与最小值之和为,故答案为:2.【点评】本题主要考查反函数的性质,考查运算能力,属于中档题.26.若k>4,直线kx﹣2y﹣2k+8=0与2x+k2y﹣4k2﹣4=0和坐标轴围成的四边形面积的取值范围是 (,+∞) .【考点】两条直线的交点坐标;三角形的面积公式.【分析】求出两直线经过的定点坐标,再求出直线与x轴的交点,与y轴的交点,得到所求的四边形,求出四边形的面积表达式,应用二次函数的知识求面积最小时的k值【解答】解:如图所示:直线L:kx﹣2y﹣2k+8=0 即k(x﹣2)﹣2y+8=0,过定点B(2,4),与y轴的交点D(0,4﹣k),与x轴的交点A(2﹣,0),直线M:2x+k2y﹣4k2﹣4=0,即2x+k2(y﹣4)﹣4=0,过定点B(2,4 ),与x轴的交点E(2k2+2,0),与y轴的交点C(0,4+),由题意,四边形OABC的面积等于△OCE面积﹣△ABE面积,∴所求四边形的面积为S=×(4+)(2k2+2)﹣×4×(2k2+2﹣2+)=﹣+8=4﹣8,∵k>4,∴0<则8>S>故k>4时,直线kx﹣2y﹣2k+8=0与2x+k2y﹣4k2﹣4=0和坐标轴围成的四边形面积的取值范围是(,8).【点评】本题考查了直线过定点问题,以及二次函数的最值问题,是基础题.27.已知A、B、C、D四点共圆,且AB=1,CD=2,AD=4,BC=5,则PA的长度为 .【考点】余弦定理.【分析】连接AC,BD,由圆内接四边形的性质可得∠PAB=∠BCD,∠PBA=∠ADC,在△ABD和△BCD中运用余弦定理,结合诱导公式求得cos∠PAB,sin∠PAB,同理可得cos∠PBA,sin∠PBA,再由两角和的正弦公式求得sin P,在△PAB中运用余弦定理可得所求;另解:由四点共圆的性质和三角形的相似的性质,解方程可得所求值.【解答】解:连接AC,BD,由A,B,C,D四点共圆,可得∠PAB=∠BCD,∠PBA=∠ADC,由BD2=AB2+AD2﹣2AB•AD•cos∠BAD,BD2=CB2+CD2﹣2CB•CD•cos∠BCD,且∠BAD+∠BCD=180°,可得cos∠BAD=﹣cos∠BCD,则1+16﹣2×1×4cos∠BAD=25+4﹣2×5×2×cos∠BCD,化为17+8cos∠BCD=29﹣20cos∠BCD,解得cos∠BCD=,即cos∠PAB=,则sin∠PAB==,又AC2=BA2+BC2﹣2BA•BC•cos∠ABC,AC2=DA2+DC2﹣2DA•DC•cos∠ADC,且∠ABC+∠ADC=180°,可得cos∠ABC=﹣cos∠ADC,则1+25﹣2×1×5cos∠ABC=16+4﹣2×4×2×cos∠ADC,化为26+10cos∠ADC=20﹣16cos∠ADC,解得cos∠ADC=﹣,即cos∠PBA=﹣,则sin∠PBA==,则sin P=sin(∠PAB+∠PBA)=sin∠PAB cos∠PBA+cos∠PAB sin∠PBA=×(﹣)+×=,在△PAB中,由=,可得=,解得PA=.另解:由A,B,C,D四点共圆,可得∠PAB=∠PCD,∠PBA=∠PDC,则△PAB∽△PCD,即有==,设PA=x,PB=y,可得==,即有2x=5+y,即y=2x﹣5,2y=4+x,即有2(2x﹣5)=4+x,解得x=,即PA=.故答案为:.【点评】本题考查三角形的余弦定理和正弦定理的运用,以及圆内接四边形的性质,考查化简运算能力,属于中档题.28.给定5个函数,其中3个奇函数,2个偶函数,则在这5个函数中任意取3个,其中既有奇函数、又有偶函数的概率为 .【考点】函数奇偶性的性质与判断;古典概型及其概率计算公式.【分析】基本事件总数n==10,其中既有奇函数、又有偶函数包含的基本事件个数m ==6,由此能求出其中既有奇函数、又有偶函数的概率.【解答】解:给定5个函数,其中3个奇函数,2个偶函数,则在这5个函数中任意取3个,基本事件总数n==10,其中既有奇函数、又有偶函数包含的基本事件个数m==6,∴其中既有奇函数、又有偶函数的概率为P===.故答案为:.【点评】本题考查概率的求法,考查概率定义等基础知识,考查运算求解能力,是基础题.五、选择题29.下列不等式恒成立的是( )A.x2+≥x+B.C.|x﹣y|≥|x﹣z|+|y﹣z|D.【考点】不等关系与不等式;基本不等式及其应用.【分析】A.x<0时,x2+≥x+成立;x>0时,设t=x+≥2,不等式x2+≥x+化为:t2﹣2≥t,化简即可判断出正误.B.取特殊值,令x﹣y=﹣1,即可判断出正误;C.由绝对值不等式的性质即可判断出正误;D.﹣=﹣,即可判断出真假.【解答】解:A.x<0时,x2+≥x+成立;x>0时,设t=x+≥2,不等式x2+≥x+化为:t2﹣2≥t,化为(t﹣2)(t+1)≥0,即t≥2,恒成立.因此不等式恒成立.B.取x﹣y=﹣1,则|x﹣y|+=1﹣1=0<2,因此不恒成立;C.由绝对值不等式的性质可得:|x﹣z|+|y﹣z|≥|(x﹣z)﹣(y﹣z)|=|x﹣y|,因此不恒成立.D.∵﹣>,∴﹣=﹣≤0,∴≤,错误.故选:A.【点评】本题考查了不等式的性质、绝对值不等式的性质,考查了推理能力与计算能力,属于基础题.六、填空题30.向量数列满足,且满足,令,则当S n取最大时,n的值为 6或7 .【考点】数列的求和;平面向量数量积的性质及其运算.【分析】直接利用向量的运算求出数列的通项公式,进一步利用前n项和公式的应用求出结果为二次函数的形式,最后利用二次函数的性质求出结果.【解答】解:数列满足,所以,,…,,所有的式子相加得到:,所以,由于,由于======,由于二次函数的对称轴方程为n=(n为整数),所以n=6或7时,S n取最大值.故答案为:6或7【点评】本题考查的知识要点:数列的通项公式,向量的运算,数列的前n项和,主要考查学生的运算能力和转换能力及思维能力,属于中档题.31.某公司安排甲乙丙等7人完成7天的值班任务,每人负责一天.已知甲不安排在第一天,乙不安排在第二天,甲和丙在相邻两天,则不同的安排方式有 1128 种.【考点】排列、组合及简单计数问题.【分析】根据题意,按甲乙丙的安排分5种情况讨论:①甲在第二天值班,则丙可以安排在第一天和第三天,乙没有限制,②甲在第三天值班,丙安排在第二天值班,乙没有限制,③甲在第三天值班,丙安排在第四天值班,乙有4种安排方法,④甲在第四五六天值班,丙有2种安排方法,乙有4种安排方法,⑤甲安排在第七天值班,丙只能安排在第六天,乙有4种安排方法,求出每种情况的安排方法数目,由加法原理计算可得答案.【解答】解:根据题意,甲不安排在第一天,乙不安排在第二天,甲和丙在相邻两天,分5种情况讨论:①甲在第二天值班,则丙可以安排在第一天和第三天,有2种情况,剩下5人全排列,安排在剩下的5天,有A55=120种安排方式,此时有2×120=240种安排方式,②甲在第三天值班,丙安排在第二天值班,剩下5人全排列,安排在剩下的5天,有A55=120种安排方式,此时有1×120=120种安排方式,③甲在第三天值班,丙安排在第四天值班,乙有4种安排方法,剩下4人全排列,安排在剩下的4天,有A44=24种安排方式,此时有4×24=96种安排方式,④甲在第四五六天值班,丙有2种安排方法,乙有4种安排方法,剩下4人全排列,安排在剩下的4天,有A44=24种安排方式,此时有3×2×4×24=576种安排方式,⑤甲安排在第七天值班,丙只能安排在第六天,乙有4种安排方法,剩下4人全排列,安排在剩下的4天,有A44=24种安排方式,此时有4×24=96种安排方式;故有240+120+96+576+96=1128种安排方式;故答案为:1128【点评】本题考查排列组合的应用,涉及分类、分步计数原理的应用,属于基础题.32.直线l1,l2交于O点,M为平面上任意一点,若p,q分别为M点到直线l1,l2的距离,则称(p,q)为点M的距离坐标.已知非负常数p,q,下列三个命题正确的个数是 (1)(2)(3) .(1)若p=q=0,则距离坐标为(0,0)的点有且仅有1个;(2)若pq=0,且p+q≠0,则距离坐标为(p,q)的点有且仅有2个;(3)若pq≠0,则距离坐标为(p,q)的点有且仅有4个.【考点】命题的真假判断与应用.【分析】由题意点到直线l1,l2的距离分别为p,q,由点M的距离坐标的定义逐一判断即可.【解答】解:(1)p=q=0,则“距离坐标”为(0,0)的点有且只有1个,此点为点O.故(1)正确;(2)若pq=0,且p+q≠0,则p,q中有且仅有一个为0,当p=0,q≠0时,距离坐标点在l1上,分别为关于O点对称的两点,当q=0,p≠0时,在l2上也有两点,但是这两种情况不能同时存在,∴若pq=0,且p+q≠0,则距离坐标为(p,q)的点有且仅有2个,故(2)正确;(3)若pq≠0,则距离坐标为(p,q)的点有且只有4个,而四个交点为与直线l1相距为p的两条平行线和与直线l2相距为q的两条平行线的交点.故答案为:(1)(2)(3).【点评】本题考查了新定义“距离坐标”,考查了理解能力与推理能力,属于中档题.。

复旦大学历年自主招生语文真题及答案.docx

复旦大学历年自主招生语文真题及答案.docx

复旦大学自主招生---语文真题071.[唐]韩愈《进学解》:“业精于勤,荒于嬉;行成于思,毁于随。

”这一句子中“于”的意思是____________。

A.在 B.从 C.由 D.对于2.[当]王充《论衡·量知篇》:“人之学问,知能成就,犹骨象玉石,切磋琢磨。

”其中“磋”字的准确含义是____________。

A.搓弄 B.商量讨论 C.摘取 D.把象牙加工成器物3.《左传·宣公十五年》:“我无尔诈,尔无我虞。

”句中前一个“尔”的意思是。

A.如此 B.而已 C.你 D.那样4.“苦口老师归寂日,知恩弟子庆生辰。

”([宋]惠洪《石门文字禅·云庵生辰》)其中“苦口”一词的含义是_____。

A.佛口B.说话太多口变苦C.口气沉重D.不辞烦劳、反复恳切地说5.当代小说家毕淑敏在《提醒幸福》中写道:“幸福有时会同我们开一个玩笑,乔装打扮而来。

机遇、友情、成功、团圆……它们都酷似幸福,但它们并不等同于幸福。

”与这里的“乔装打扮”一语的意思最远的一顶是_______。

A.涂脂沫粉B.改头换面C.庐山面目D.面目全非6.韩小蕙在《悠悠心会》中写道:“有的夫妻一个屋檐下厮守一辈子,有的同事一个办公室对坐几十年,就是没话,心灵始终隔膜着一片寸草不生的荒漠。

”与这里的“寸草不生”一语的意思最近的一项是______。

A. 赤地千里B.天府之国C.鱼米之乡D.山穷水尽7.2004情,通过中国国际救援队队员等多方救助后情况就得到了改善。

句中方框应填入的字是_________。

A.防B.措C.猝D.促8.[清]刘熙载《艺论》:“是其苦心孤诣,且不欲徇非常人意,况肯徇非常人之意乎?”句中“苦心孤诣”一语的结构属于____。

A.并列式B.偏正式C.补充式D.主谓式9.蒋子龙在《乔厂长上任记》中写道:“但是,他相信生活不是命运,也不是赶机会,而是需要智慧和斗争的无情逻辑!因此他要采取大会战孤注一掷。

”这里的“孤注一掷”在句中作________。

复旦自主招生试题及答案

复旦自主招生试题及答案

复旦自主招生试题及答案一、选择题1. 下列哪个选项是复旦大学的简称?A. 复旦B. 交大C. 同济D. 上大答案:A2. 复旦大学位于哪个城市?A. 北京B. 上海C. 广州D. 南京答案:B3. 以下哪项不是复旦大学自主招生的考核内容?A. 学术能力测试B. 面试C. 体育测试D. 艺术特长展示答案:C二、填空题4. 复旦大学自主招生的选拔标准主要包括______、______和______。

答案:学术成绩、综合素质、特长展示5. 复旦大学自主招生的面试环节主要评估考生的______、______和______。

答案:思维能力、表达能力、团队协作能力三、简答题6. 请简述复旦大学自主招生的流程。

答案:复旦大学自主招生流程主要包括网上报名、材料审核、笔试、面试、综合评价和录取公示等环节。

7. 复旦大学自主招生对学生的综合素质有哪些要求?答案:复旦大学自主招生对学生的综合素质要求包括学术成绩优异、有较强的创新能力和实践能力、具备良好的道德品质和社会责任感等。

四、论述题8. 论述复旦大学自主招生的意义和对学生个人发展的影响。

答案:复旦大学自主招生的意义在于选拔具有学术潜力和创新精神的优秀学生,为国家和社会培养高素质人才。

对学生个人发展的影响主要体现在:有助于学生发掘自身特长,提高自主学习和创新能力,拓宽视野,增强社会责任感,为未来的学术研究或职业发展打下坚实的基础。

五、案例分析题9. 假设你是复旦大学自主招生的面试官,请根据以下考生资料,分析其是否适合参加自主招生,并给出理由。

考生资料:张三,男,18岁,高中成绩优异,曾获得全国数学竞赛一等奖,热爱篮球运动,性格开朗,有较强的团队协作能力。

答案:张三同学适合参加复旦大学自主招生。

理由如下:首先,张三的高中成绩优异,符合自主招生的学术成绩要求;其次,他在全国数学竞赛中获得一等奖,显示出较强的学术潜力和创新能力;再次,张三热爱篮球运动,性格开朗,具备良好的团队协作能力,这些都是自主招生所看重的综合素质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

●你对人们追逐服装时尚潮流有什么看法?
●你最想去哪个朝代?
●对于人口老龄化问题,你认为中国的老龄化和西方的老龄化有何不同?
●你打过架吗?为什么打架?
●你谈过恋爱吗?
●人为什么鼻孔朝下?(考生回答:鼻孔朝上的话下雨会灌到鼻子里,人的鼻子没有封闭水的器官,一开始可能有鼻孔朝上的,但自然选择淘汰了这个物种。)
●一瓶矿泉水和纯净水的化学成分有什么不同?
●你在父母眼中是乖乖女吗?
●假如海平面上升会把上海和杭州的某些地方淹没,如果你是领导人你会怎么做?
●如果你有两枚硬币,用抛正反的方式在三人中公平抽取一人要怎么做?
●3月5日是学雷锋日,有一部电影当天上映,票房非常惨淡,这个问题你怎么看?你觉得雷锋精神是什么?
●电子书和纸质书有什么差别?
●给你一个20位的数字,让你现场背出来?
●为什么会出现彩虹,红色是在彩虹的哪个位置,为什么会出现双彩虹?
●101-102=1请移动一个数字使等式成立?
●平面上有1000个点,是否总存在直线能把1000个点分成500和500个,如何证明?
●不能用酒精,如何把碗上的油渍去除?
●你认为有外星人吗?
●科学与伦理的关系?
●一个硬币绕另一个硬币旋转,内侧硬币不动,问外侧硬币转了多少圈?
●什么是成功?
●如何看待教育是从经验总结而来,还是人类定义的?复旦有一个数学系的教授不同意你的观点,怎么办?
●如果你是市长,如何治理城市拥堵?
●有一个封闭的房间(和外界没有能量交换),里面有一台空调,无论是开冷风还是暖风都能降低室内湿度,这是为什么?
●你有多少好朋友?你最好的朋友是什么样的人?
●最近几年谁对你影响最大?如何影响你?
●你认为成绩不好的学生在哪方面胜过成绩好的学生?
●52张牌,4种花色,抽几张排能保证有7张相同花色?
●你如何看待闯红灯这种现象?可以从心理考虑这种现象的根源是什么?
●你觉得这个世界需要国家么?你认为国家是什么?
●为什么玻璃能透光,煤炭不能?
●你把我们前面问你的问题全部复述一遍?
相关文档
最新文档