初三数学第一次月考试卷带答案
人教版数学九年级上册第一次月考数学试卷带答案解析
人教版数学九年级上册第一次月考试题一、选择题:(本大题共8个小题,每小题3分,共24分)每小题只有一个答案是正确的,请将正确答案的代号填入下列对应题号内.1.已知二次函数y=mx2+x﹣1的图象与x轴有两个交点,则m的取值范围是()A.m>﹣B.m≥﹣C.m>﹣且m≠0D.m≥﹣且m≠02.已知抛物线y=ax2+bx+c与x轴交点为A(﹣2,0),B(6,0),则该二次函数的对称轴为()A.x=﹣1B.x=1C.x=2D.y轴3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数y有最大值;②该函数的图象关于直线x=﹣1对称;③当x=﹣2时,函数y的值等于0;④当x=﹣3或x=1时,函数y的值都等于0.其中正确结论的个数是()A.4B.3C.2D.14.若二次函数y=x2﹣6x+c的图象过A(﹣1,y1),B(3,y2),C(3+,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y25.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x26.二次函数y=﹣(x﹣1)2+3的图象的顶点坐标是()A.(﹣1,3)B.(1,3)C.(﹣1,﹣3)D.(1,﹣3)7.已知函数y=2x2的图象是抛物线,现在同一坐标系中,将该抛物线分别向上、向左平移2个单位,那么所得到的新抛物线的解析式是()A.y=2(x+2)2+2B.y=2(x+2)2﹣2C.y=2(x﹣2)2﹣2D.y=2(x﹣2)2+2 8.抛物线C1:y=x2+1与抛物线C2关于x轴对称,则抛物线C2的解析式为()A.y=﹣x2B.y=﹣x2+1C.y=x2﹣1D.y=﹣x2﹣1二、填空题(本大题共7个小题,每小题3分,共21分)9.若把函数y=x2﹣2x﹣3化为y=(x﹣m)2+k的形式,其中m,k为常数,则m+k=.10.已知二次函数y=﹣x2+4x+m的部分图象如图,则关于x的一元二次方程﹣x2+4x+m=0的解是.11.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表:x…﹣2﹣1012…y…04664…从表可知,下列说法中正确的是.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线x=;④在对称轴左侧,y随x增大而增大.12.函数y=2x2﹣3x+1与y轴的交点坐标为,与x轴的交点的坐标为,.13.请写出符合以下三个条件的一个函数的解析式,①过点(3,1);②当x>0时,y随x的增大而减小;③当自变量的值为2时,函数值小于2.14.抛物线y=﹣x2+bx+c的图象如图所示,则此抛物线的解析式为.15.如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是.(只要求填写正确命题的序号)三、解答题16.(12分)解方程①x2﹣3x+2=0②4x2﹣8x﹣7=﹣11③5x﹣2x2=0④x2+6x﹣1=0.17.(8分)用配方法将二次函数化成y=a(x﹣h)2+k的形式,并写出顶点坐标和对称轴①y=2x2+6x﹣12②y=﹣0.5x2﹣3x+3.18.(8分)已知二次函数y=2x2﹣4x﹣6.(1)用配方法将y=2x2﹣4x﹣6化成y=a(x﹣h)2+k的形式;(2)在平面直角坐标系中,画出这个二次函数的图象;(3)当x取何值时,y随x的增大而减少?(4)当x取何值是,y=0,y>0,y<0,(5)当0<x<4时,求y的取值范围;(6)求函数图象与两坐标轴交点所围成的三角形的面积.19.(8分)二次函数y=ax2+bx+c的图象与x轴交于B、C两点,与y轴交于A点.(1)根据图象确定a、b、c的符号,并说明理由;(2)如果点A的坐标为(0,﹣3),∠ABC=45°,∠ACB=60°,求这个二次函数的解析式.20.(8分)已知抛物线C1:y=x2﹣2(m+2)x+m2﹣10的顶点A到y轴的距离为3.(1)求顶点A的坐标及m的值;=6,求点B的坐(2)若抛物线与x轴交于C、D两点.点B在抛物线C1上,且S△BCD标.21.(9分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?22.(8分)已知函数y=ax2+60x,在x>20时,y随x增大而减小,求:(1)a的取值范围;(2)若该函数为飞机着陆后滑行距离y(m)与滑行时间x(s)之间的函数关系,已知函数的对称轴为直线x=20,请写出自变量滑行时间的取值范围,并求出飞机着陆后需滑行多少米才能停下来?23.(14分)如图1,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)如图2,点P为第一象限抛物线上一点,满足到线段CB距离最大,求点P坐标;(3)如图3,若抛物线的对称轴EF(E为抛物线顶点)与线段BC相交于点F,M为线段BC上的任意一点,过点M作MN∥EF交抛物线于点N,以E,F,M,N为顶点的四边形能否为平行四边形?若能,求点N的坐标;若不能,请说明理由.参考答案与试题解析一、选择题:(本大题共8个小题,每小题3分,共24分)每小题只有一个答案是正确的,请将正确答案的代号填入下列对应题号内.1.已知二次函数y=mx2+x﹣1的图象与x轴有两个交点,则m的取值范围是()A.m>﹣B.m≥﹣C.m>﹣且m≠0D.m≥﹣且m≠0【考点】抛物线与x轴的交点.【分析】根据二次函数y=mx2+x﹣1的图象与x轴有两个交点,可得△=12﹣4m×(﹣1)>0且m≠0.【解答】解:∵原函数是二次函数,∴m≠0.∵二次函数y=mx2+x﹣1的图象与x轴有两个交点,则△=b2﹣4ac>0,△=12﹣4m×(﹣1)>0,∴m>﹣.综上所述,m的取值范围是:m>﹣且m≠0,故选C.【点评】本题考查了抛物线与x轴的交点,关键是熟记当△=b2﹣4ac>0时图象与x轴有两个交点;当△=b2﹣4ac=0时图象与x轴有一个交点;当△=b2﹣4ac<0时图象与x轴没有交点.2.已知抛物线y=ax2+bx+c与x轴交点为A(﹣2,0),B(6,0),则该二次函数的对称轴为()A.x=﹣1B.x=1C.x=2D.y轴【考点】抛物线与x轴的交点.【分析】根据抛物线的对称性得到点A和点B是抛物线上的对称点,所以点A和点B的对称轴即为抛物线的对称轴.【解答】解:∵抛物线y=ax2+bx+c与x轴交点为A(﹣2,0),B(6,0),∴该二次函数的对称轴为直线x=2.故选C.【点评】本题考查了抛物线与x轴的交点:从二次函数的交点式y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0)中可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).解决本题的关键是掌握抛物线的对称性.3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数y有最大值;②该函数的图象关于直线x=﹣1对称;③当x=﹣2时,函数y的值等于0;④当x=﹣3或x=1时,函数y的值都等于0.其中正确结论的个数是()A.4B.3C.2D.1【考点】二次函数的性质.【分析】观察图象即可判断.①开口向上,应有最小值;②根据抛物线与x轴的交点坐标来确定抛物线的对称轴方程;③x=﹣2时,对应的图象上的点在x轴下方,所以函数值小于0;④图象与x轴交于﹣3和1,所以当x=﹣3或x=1时,函数y的值都等于0.【解答】解:由图象知:①函数有最小值;错误.②该函数的图象关于直线x=﹣1对称;正确.③当x=﹣2时,函数y的值小于0;错误.④当x=﹣3或x=1时,函数y的值都等于0.正确.故正确的有两个,选C.【点评】此题考查了根据函数图象解答问题,体现了数形结合的数学思想方法.4.若二次函数y=x2﹣6x+c的图象过A(﹣1,y1),B(3,y2),C(3+,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y2【考点】二次函数图象上点的坐标特征.【分析】根据二次函数的性质结合二次函数的解析式即可得出y1>y3>y2,此题得解.【解答】解:二次函数y=x2﹣6x+c的对称轴为x=3,∵a=1>0,∴当x=3时,y值最小,即y2最小.∵|﹣1﹣3|=4,|3+﹣3|=,4>,∴点y1>y3.∴y1>y3>y2.故选B.【点评】本题考查了二次函数的性质,根据二次函数的性质确定A、B、C三点纵坐标的大小是解题的关键.5.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x2【考点】根据实际问题列二次函数关系式.【分析】由图中可以看出,所求抛物线的顶点在原点,对称轴为y轴,可设此函数解析式为:y=ax2,利用待定系数法求解.【解答】解:设此函数解析式为:y=ax2,a≠0;那么(2,﹣2)应在此函数解析式上.则﹣2=4a即得a=﹣,那么y=﹣x2.故选:C.【点评】根据题意得到函数解析式的表示方法是解决本题的关键,关键在于找到在此函数解析式上的点.6.二次函数y=﹣(x﹣1)2+3的图象的顶点坐标是()A.(﹣1,3)B.(1,3)C.(﹣1,﹣3)D.(1,﹣3)【考点】二次函数的性质.【分析】根据二次函数的顶点式一般形式的特点,可直接写出顶点坐标.【解答】解:二次函数y=﹣(x﹣1)2+3为顶点式,其顶点坐标为(1,3).故选B.【点评】主要考查了求抛物线的顶点坐标的方法.7.已知函数y=2x2的图象是抛物线,现在同一坐标系中,将该抛物线分别向上、向左平移2个单位,那么所得到的新抛物线的解析式是()A.y=2(x+2)2+2B.y=2(x+2)2﹣2C.y=2(x﹣2)2﹣2D.y=2(x﹣2)2+2【考点】二次函数图象与几何变换.【分析】直接利用平移规律(左加右减,上加下减)求新抛物线的解析式.【解答】解:抛物线y=2x2向上、向左平移2个单位后的解析式为:y=2(x+2)2+2.故选:A.【点评】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.8.抛物线C1:y=x2+1与抛物线C2关于x轴对称,则抛物线C2的解析式为()A.y=﹣x2B.y=﹣x2+1C.y=x2﹣1D.y=﹣x2﹣1【考点】二次函数图象与几何变换.【分析】画出图形后可根据开口方向决定二次项系数的符号,开口度是二次项系数的绝对值;与y轴的交点为抛物线的常数项进行解答.【解答】解:关于x轴对称的两个函数解析式的开口方向改变,开口度不变,二次项的系数互为相反数;对与y轴的交点互为相反数,那么常数项互为相反数,故选D.【点评】根据画图可得到抛物线关于x轴对称的特点:二次项系数,一次项系数,常数项均互为相反数.二、填空题(本大题共7个小题,每小题3分,共21分)9.若把函数y=x2﹣2x﹣3化为y=(x﹣m)2+k的形式,其中m,k为常数,则m+k=﹣3.【考点】二次函数的三种形式.【分析】利用配方法操作整理,然后根据对应系数相等求出m、k,再相加即可.【解答】解:y=x2﹣2x﹣3,=(x2﹣2x+1)﹣1﹣3,=(x﹣1)2﹣4,所以,m=1,k=﹣4,所以,m+k=1+(﹣4)=﹣3.故答案为:﹣3.【点评】本题考查了二次函数的三种形式,熟练掌握配方法的操作是解题的关键.10.已知二次函数y=﹣x2+4x+m的部分图象如图,则关于x的一元二次方程﹣x2+4x+m=0的解是x1=﹣1,x2=5.【考点】抛物线与x轴的交点.【分析】由二次函数y=﹣x2+4x+m的部分图象可以得到抛物线的对称轴和抛物线与x轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x的一元二次方程﹣x2+4x+m=0的解.【解答】解:根据图示知,二次函数y=﹣x2+4x+m的对称轴为x=2,与x轴的一个交点为(5,0),根据抛物线的对称性知,抛物线与x轴的另一个交点横坐标与点(5,0)关于对称轴对称,即x=﹣1,则另一交点坐标为(﹣1,0)则当x=﹣1或x=5时,函数值y=0,即﹣x2+4x+m=0,故关于x的一元二次方程﹣x2+4x+m=0的解为x1=﹣1,x2=5.故答案是:x1=﹣1,x2=5.【点评】本题考查了抛物线与x轴的交点.解答此题需要具有一定的读图的能力.11.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表:x…﹣2﹣1012…y…04664…从表可知,下列说法中正确的是.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线x=;④在对称轴左侧,y随x增大而增大.【考点】抛物线与x轴的交点;二次函数的性质;二次函数的最值.【分析】根据表中数据和抛物线的对称性,可得到抛物线的开口向下,当x=3时,y=0,即抛物线与x轴的交点为(﹣2,0)和(3,0);因此可得抛物线的对称轴是直线x=3﹣=,再根据抛物线的性质即可进行判断.【解答】解:根据图表,当x=﹣2,y=0,根据抛物线的对称性,当x=3时,y=0,即抛物线与x轴的交点为(﹣2,0)和(3,0);∴抛物线的对称轴是直线x=3﹣=,根据表中数据得到抛物线的开口向下,∴当x=时,函数有最大值,而不是x=0,或1对应的函数值6,并且在直线x=的左侧,y随x增大而增大.所以①③④正确,②错.故答案为:①③④.【点评】本题考查了抛物线y=ax2+bx+c的性质:抛物线是轴对称图形,它与x轴的两个交点是对称点,对称轴与抛物线的交点为抛物线的顶点;a<0时,函数有最大值,在对称轴左侧,y随x增大而增大.12.函数y=2x2﹣3x+1与y轴的交点坐标为(0,1),与x轴的交点的坐标为(,0),(1,0).【考点】抛物线与x轴的交点.【分析】函数y=2x2﹣3x+1与y轴的交点坐标,即为x=0时,y的值.当x=0,y=1.故与y 轴的交点坐标为(0,1);x轴的交点的坐标为y=0时方程2x2﹣3x+1=0的两个根为x1=,x2=1,与x轴的交点的坐标为(,0),(1,0).【解答】解:把x=0代入函数可得y=1,故y轴的交点坐标为(0,1),把y=0代入函数可得x=或1,故与x轴的交点的坐标为(,0),(1,0).【点评】解答此题要明白函数y=2x2﹣3x+1与y轴的交点坐标即为x=0时y的值;x轴的交点的坐标为y=0时方程2x2﹣3x+1=0的两个根.13.请写出符合以下三个条件的一个函数的解析式y=﹣x+2,①过点(3,1);②当x>0时,y随x的增大而减小;③当自变量的值为2时,函数值小于2.【考点】二次函数的性质;一次函数的性质.【分析】由题意设出函数的一般解析式,再根据①②③的条件确定函数的解析式.【解答】解:设函数的解析式为:y=kx+b,∵函数过点(3,1),∴3k+b=1…①∵当x>0时,y随x的增大而减小,∴k<0…②,又∵当自变量的值为2时,函数值小于2,当x=2时,函数y=2k+b<2…③由①②③知可以令b=2,可得k=﹣,此时2k+b=﹣+2<2,∴函数的解析式为:y=﹣x+2.答案为y=﹣x+2.【点评】此题是一道开放性题,主要考查一次函数的基本性质,函数的增减性及用待定系数法来确定函数的解析式.14.抛物线y=﹣x2+bx+c的图象如图所示,则此抛物线的解析式为y=﹣x2+2x+3.【考点】待定系数法求二次函数解析式.【分析】此图象告诉:函数的对称轴为x=1,且过点(3,0);用待定系数法求b,c的值即可.【解答】解:据题意得解得∴此抛物线的解析式为y=﹣x2+2x+3.【点评】本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法,考查了数形结合思想.15.如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是①③.(只要求填写正确命题的序号)【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点.【分析】由图象可知过(1,0),代入得到a+b+c=0;根据﹣=﹣1,推出b=2a;根据图象关于对称轴对称,得出与X轴的交点是(﹣3,0),(1,0);由a﹣2b+c=a﹣2b﹣a﹣b=﹣3b<0,根据结论判断即可.【解答】解:由图象可知:过(1,0),代入得:a+b+c=0,∴①正确;﹣=﹣1,∴b=2a,∴②错误;根据图象关于对称轴x=﹣1对称,与X轴的交点是(﹣3,0),(1,0),∴③正确;∵b=2a>0,∴﹣b<0,∵a+b+c=0,∴c=﹣a﹣b,∴a﹣2b+c=a﹣2b﹣a﹣b=﹣3b<0,∴④错误.故答案为:①③.【点评】本题主要考查对二次函数与X轴的交点,二次函数图象上点的坐标特征,二次函数图象与系数的关系等知识点的理解和掌握,能根据图象确定系数的正负是解此题的关键.三、解答题16.(12分)(2016秋•南昌校级月考)解方程①x2﹣3x+2=0②4x2﹣8x﹣7=﹣11③5x﹣2x2=0④x2+6x﹣1=0.【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法.【分析】①因式分解法求解可得;②整理成一般式后,因式分解法求解可得;③因式分解法求解可得;④公式法求解可得.【解答】解:①(x﹣1)(x﹣2)=0,∴x﹣1=0或x﹣2=0,解得:x=1或x=2;②原方程整理可得:x2﹣2x+1=0,∴(x﹣1)2=0,解得:x=1;③x(5﹣2x)=0,∴x=0或5﹣2x=0,解得x=0或x=;④∵a=1,b=6,c=﹣1,∴△=36+4=40>0,∴x==﹣3.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.17.用配方法将二次函数化成y=a(x﹣h)2+k的形式,并写出顶点坐标和对称轴①y=2x2+6x﹣12②y=﹣0.5x2﹣3x+3.【考点】二次函数的三种形式.【分析】①②利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑成完全平方式,可把一般式转化为顶点式,从而得出顶点坐标和对称轴.【解答】解:①y=2x2+6x﹣12=2(x+)2﹣,则该抛物线的顶点坐标是(﹣,﹣),对称轴是x=﹣;②y=﹣0.5x2﹣3x+3=﹣(x+3)2+,则该抛物线的顶点坐标是(﹣3,),对称轴是x=﹣3.【点评】此题考查了二次函数表达式的一般式与顶点式的转换,并要求熟练掌握顶点公式和对称轴公式.18.已知二次函数y=2x2﹣4x﹣6.(1)用配方法将y=2x2﹣4x﹣6化成y=a(x﹣h)2+k的形式;(2)在平面直角坐标系中,画出这个二次函数的图象;(3)当x取何值时,y随x的增大而减少?(4)当x取何值是,y=0,y>0,y<0,(5)当0<x<4时,求y的取值范围;(6)求函数图象与两坐标轴交点所围成的三角形的面积.【考点】二次函数的三种形式;二次函数的图象;二次函数的性质.【分析】(1)直接利用配方法得出函数顶点式即可;(2)利用顶点式得出顶点坐标,进而得出函数与坐标轴交点进而画出函数图象;(3)利用函数顶点式得出对称轴进而得出答案;(4)利用函数图象得出答案即可;(5)利用x=1以及x=4是求出函数值进而得出答案;(6)利用函数图象得出三角形面积即可.【解答】解:(1)y=2x2﹣4x﹣6=2(x2﹣2x)﹣6=2(x﹣1)2﹣8;(2)当y=0,则0=2(x﹣1)2﹣8,解得:x1=﹣1,x2=3,故图象与x轴交点坐标为:(﹣1,0),(3,0),当x=0,y=﹣6,故图象与y轴交点坐标为:(0,﹣6),如图所示:;(3)当x<1时,y随x的增大而减少;(4)当x=1或﹣3时,y=0,当x<﹣1或x>3时,y>0,当﹣1<x<3时;y<0;(5)当0<x<4时,x=1时,y=﹣8,x=4时,y=10,故y的取值范围是:﹣8≤y<10;(6)如图所示:函数图象与两坐标轴交点所围成的三角形的面积为:×4×6=12.【点评】此题主要考查了配方法求函数顶点坐标以及利用图象判断函数值以及三角形面积求法,正确画出函数图象是解题关键.19.二次函数y=ax2+bx+c的图象与x轴交于B、C两点,与y轴交于A点.(1)根据图象确定a、b、c的符号,并说明理由;(2)如果点A的坐标为(0,﹣3),∠ABC=45°,∠ACB=60°,求这个二次函数的解析式.【考点】二次函数综合题;解三元一次方程组;待定系数法求二次函数解析式.【分析】(1)根据开口方向可确定a的符号,由对称轴的符号,a的符号,结合起来可确定b的符号,看抛物线与y轴的交点可确定c的符号;(2)已知OA=3,解直角△OAB、△OAC可得B、C的坐标,设抛物线解析式的交点式,把A、B、C代入即可求解析式.【解答】解:(1)∵抛物线开口向上∴a>0又∵对称轴在y轴的左侧∴<0,∴b>0又∵抛物线交y轴的负半轴∴c<0(2)连接AB,AC∵在Rt△AOB中,∠ABO=45°∴∠OAB=45°,∴OB=OA∴B(﹣3,0)又∵在Rt△ACO中,∠ACO=60°∴OC=OAcot=60°=∴C(,0)设二次函数的解析式为y=ax2+bx+c(a≠0)由题意:∴所求二次函数的解析式为y=x2+(﹣1)x﹣3.【点评】本题考查了点的坐标求法,正确设抛物线解析式,求二次函数解析式的方法,需要学生熟练掌握.20.已知抛物线C1:y=x2﹣2(m+2)x+m2﹣10的顶点A到y轴的距离为3.(1)求顶点A的坐标及m的值;=6,求点B的坐(2)若抛物线与x轴交于C、D两点.点B在抛物线C1上,且S△BCD标.【考点】抛物线与x轴的交点.【分析】(1)根据顶点A到y轴的距离为3,说明顶点A的横坐标为3或﹣3,根据公式﹣代入列式,求出m的值,分别代入解析式中,求出对应的顶点坐标A;也可以直接配方求得;(2)先计算抛物线与x轴的交点坐标,发现当m=﹣5时不符合题意,因此根据m=1时,对应的抛物线计算CD的长,求出点B的坐标.【解答】解:(1)由题意得:﹣=3或﹣3,∴m+2=3或m+2=﹣3,∴m=1或﹣5,当m=1时,抛物线C1:y=x2﹣6x﹣9=(x﹣3)2﹣18,∴顶点A的坐标为(3,﹣18);当m=﹣5时,抛物线C1:y=x2+6x+15=(x+3)2+6,∴顶点A的坐标为(﹣3,6);(2)设B(a,b),当抛物线C1:y=x2﹣6x﹣9=(x﹣3)2﹣18时,当y=0时,(x﹣3)2﹣18=0,x1=3+3,x2=3﹣3,∴CD=3+3+3﹣3=6,=6,∵S△BCD∴CD•|b|=6,∴×6•|b|=6,∴b=±2,当b=2时,x2﹣6x﹣9=2,解得:x=3±2,当b=﹣2时,x2﹣6x﹣9=﹣2,解得:x=7或﹣1,∴B(3+2,2)或(3﹣2,2)或(7,﹣2)或(﹣1,﹣2),当抛物线C1:y=x2+6x+15=(x+3)2+6时,当y=0时,(x+3)2+6=0,此方程无实数解,所以此时抛物线与x轴无交点,不符合题意,∴B(3+2,2)或(3﹣2,2)或(7,﹣2)或(﹣1,﹣2).【点评】本题是二次函数性质的应用,考查了抛物线与x轴的交点及顶点坐标,对于利用三角形面积求点的坐标问题,解题思路为:设出该点的坐标,根据面积列方程,求出未知数的值,再代入解析式中求另一坐标即可;同时要注意数形结合的思想的应用.21.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?【考点】二次函数的应用.【分析】(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P与x的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x的取值范围,再根据(1)中所求得的销售量y(盒)与每盒售价x(元)之间的函数关系式即可求解.【解答】解:(1)由题意得,y=700﹣20(x﹣45)=﹣20x+1600;(2)P=(x﹣40)(﹣20x+1600)=﹣20x2+2400x﹣64000=﹣20(x﹣60)2+8000,∵x≥45,a=﹣20<0,元,∴当x=60时,P最大值=8000即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)由题意,得﹣20(x﹣60)2+8000=6000,解得x1=50,x2=70.∵抛物线P=﹣20(x﹣60)2+8000的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润.又∵x≤58,∴50≤x≤58.∵在y=﹣20x+1600中,k=﹣20<0,∴y随x的增大而减小,﹣20×58+1600=440,∴当x=58时,y最小值=即超市每天至少销售粽子440盒.【点评】本题考查的是二次函数与一次函数在实际生活中的应用,主要利用了利润=1盒粽子所获得的利润×销售量,求函数的最值时,注意自变量的取值范围.22.已知函数y=ax2+60x,在x>20时,y随x增大而减小,求:(1)a的取值范围;(2)若该函数为飞机着陆后滑行距离y(m)与滑行时间x(s)之间的函数关系,已知函数的对称轴为直线x=20,请写出自变量滑行时间的取值范围,并求出飞机着陆后需滑行多少米才能停下来?【考点】二次函数的应用.【分析】(1)根据二次函数性质可知该抛物线的对称轴x=﹣≤20,得出关于a的不等式,解之即可;(2)根据对称轴求出a,即可得二次函数解析式,将其配方成顶点式,根据函数取得最大值时即飞机滑行停止滑行,据此解答即可.【解答】解:(1)∵函数y=ax2+60x,在x>20时,y随x增大而减小,∴a<0且﹣≤20,解得:a≤﹣;(2)根据题意得:﹣=20,解得a=﹣,∴y=﹣x2+60x=﹣(x﹣20)2+600,则自变量x的范围为0≤x≤20,且飞机着陆后需滑行600米才能停下来.【点评】本题主要考查二次函数的应用,熟练掌握二次函数的性质及顶点在具体问题中的实际意义是解题的关键.23.(14分)(2016秋•南昌校级月考)如图1,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)如图2,点P为第一象限抛物线上一点,满足到线段CB距离最大,求点P坐标;(3)如图3,若抛物线的对称轴EF(E为抛物线顶点)与线段BC相交于点F,M为线段BC上的任意一点,过点M作MN∥EF交抛物线于点N,以E,F,M,N为顶点的四边形能否为平行四边形?若能,求点N的坐标;若不能,请说明理由.【考点】二次函数综合题.【分析】(1)根据抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,列出a和b 的二元一次方程组,求出a和b的值,进而求出点B的坐标,即可求出直线BC的解析式;(2)过点P作PQ∥y轴,交直线BC于Q,设P(x,﹣x2+3x+4),则Q(x,﹣x+4);=PQ•OB列出S关于x的二次函数,利用函数的性质求出面积求出PQ的长,利用S△PCB的最大值,进而求出点P的坐标;(3)首先求出EF的长,设N(x,﹣x2+3x+4),则M(x,﹣x+4),利用平行四边形对边平行且相等列出x的一元二次方程,解方程求出x的值即可.【解答】解:(1)由题意得,解得.∴抛物线的解析式:y=﹣x2+3x+4.(2)由B(4,0)、C(0,4)可知,直线BC:y=﹣x+4;如图1,过点P作PQ∥y轴,交直线BC于Q,设P(x,﹣x2+3x+4),则Q(x,﹣x+4);∴PQ=(﹣x2+3x+4)﹣(﹣x+4)=﹣x2+4x;S△PCB=PQ•OB=×(﹣x2+4x)×4=﹣2(x﹣2)2+8;∴当P(2,6)时,△PCB的面积最大;(3)存在.抛物线y=﹣x2+3x+4的顶点坐标E(,),直线BC:y=﹣x+4;当x=时,F(,),∴EF=.如图2,过点M作MN∥EF,交直线BC于M,设N(x,﹣x2+3x+4),则M(x,﹣x+4);∴MN=|(﹣x2+3x+4)﹣(﹣x+4)|=|﹣x2+4x|;当EF与NM平行且相等时,四边形EFMN是平行四边形,∴|﹣x2+4x|=;由﹣x2+4x=时,解得x1=,x2=(不合题意,舍去).当x=时,y=﹣()2+3×+4=,∴N1(,).当﹣x2+4x=﹣时,解得x=,当x=时,y=,∴N2(,),当x=时,y=,∴N3(,),综上所述,点N坐标为(,)或(,)或(,).【点评】本题主要考查了二次函数综合题,此题涉及到待定系数法求函数解析式,二次函数的性质、三角形面积的计算、平行四边形的判定等知识,解答(2)问关键是用x表示出PQ 的长,解答(3)问关键是求出EF的长,利用平行四边形对边平行且相等进行解答,此题有一定的难度.。
人教版九年级上册数学第一次月考试卷含答案
人教版九年级上册数学第一次月考试题一、单选题1.下列方程中,属于一元二次方程的是()A 0=B .2x +1=0C .20y x +=D .21x =12.方程(x+3)(x-4)=0的根是()A .123,4x x =-=B .123,4x x ==C .1234,x x ==-D .123,4x x =-=-3.已知关于x 的方程260--=x kx 的一个根为x=4,则实数k 的值为()A .25B .52C .2D .54.用配方法解方程2250x x --=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=5.已知方程2380x x --=的两个解分别为12,x x ,则1212,x x x x +⋅的值分别是()A .3,-8B .-3,-8C .-3,8D .3,86.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x ,根据题意所列方程正确的是()A .236(1)3625x -=-B .236(12)25x -=C .236(1)25x -=D .225(1)36x -=7.抛物线22(2)1y x =-+的顶点坐标是()A .()2,1B .()2,1-C .()1,2D .()1,2-8.抛物线2y ax bx c =++的图象如图所示,则一元二次方程20ax bx c ++=的解是()A .x=-1B .x=3C .x=-1或x=3D .无法确认9.将抛物线y=4x 2向右平移1个单位,再向上平移3个单位,得到的抛物线是()A .y=4(x+1)2+3B .y=4(x ﹣1)2+3C .y=4(x+1)2﹣3D .y=4(x ﹣1)2﹣310.二次函数2(2)1y x =+-的图像大致为()A .B .C .D .二、填空题11.将方程()()3152x x x -=+化为一元二次方程的一般式______.12.一元二次方程x 2﹣4=0的解是_________.13.已知关于x 的一元二次方程22(2)(21)10m x m x -+++=有两个不相等的实数根,则m 的取值范围是______14.函数243y x x =-++有_____(填“最大”或“最小”),所求最值是_______15.抛物线2y ax bx c =++与x 轴的交点坐标为(1,0)-和(3,0),则这条抛物线的对称轴是x =______.16.已知二次函数23(1)y x k =-+的图象上三点1(2,)A y ,2(3,)B y ,3(4,)C y -,则1y 、2y 、3y 的大小关系是_____.17.将抛物线247y x x =++沿竖直方向平移,使其顶点在x 轴上,且过点A (m ,n ),B (m+10,n ),则n=________三、解答题18.解方程:(1)2410x x --=(2)()255x x-=-19.已知抛物线y=4x 2-11x-3.(1)求它的对称轴;(2)求它与x 轴,y 轴的交点坐标.20.已知关于x 的方程(1)若该方程的一个根为,求的值及该方程的另一根;(2)求证:不论取何实数,该方程都有两个不相等的实数根.21.如图,抛物线2y x bx c =-++经过坐标原点,并与x 轴交于点A (2,0).(1)求此抛物线的解析式:(2)设抛物线的顶点为B ,求∆OAB 的面积S .22.如图,某农场要建一个长方形的养鸡场,鸡场的一边靠墙,墙长25m ,另外三边木栏围着,木栏长40m .(1)若养鸡场面积为200m 2,求鸡场靠墙的一边长.(2)养鸡场面积能达到250m 2吗?如果能,请给出设计方案,如果不能,请说明理由23.已知抛物线()2114y a x =-+与直线21y x =+的一个交点的横坐标是2(1)求a 的值;(2)请在所给的坐标系中,画出函数21(1)4y a x =-+与21y x =+的图象,并根据图象,直接写出12y y ≥时x 的取值范围24.大润发超市以每件30元的价格购进一种商品,试销中发现每天的销售量y (件)与每件的销售价x (元)之间满足一次函数1623y x=-(1)写出超市每天的销售利润w (元)与每件的销售价x (元)之间的函数关系式;(2)如果超市每天想要获得销售利润420元,则每件商品的销售价应定为多少元?(3)如果超市要想获得最大利润,每件商品的销售价定为多少元最合适?最大销售利润为多少元?25.如图所示,抛物线2y x mx n =-++经过点A (1,0)和点C (4,0),与y 轴交于B(1)求抛物线所对应的解析式.(2)连接直线BC ,抛物线的对称轴与BC 交于点E ,F 为抛物线的顶点,求四边形AECF 的面积.(3)x 轴上是否存在一点P ,使得PB+PE 的值最小,若存在,请求出P 点坐标,若不存在,请说明理由.参考答案1.B 2.A 3.B 4.B 5.A 6.C 7.A 8.C 9.B 10.D11.238100x x --=12.x=±213.34m >且2m ≠14.最大715.116.123y y y <<17.2518.(1)2x =±,(2)5x =或4x =19.(1)x=118(2)该抛物线与x 轴的交点坐标为(3,0),1-,04⎛⎫⎪⎝⎭;该抛物线与y 轴的交点坐标为(0,-3).20.(1)m=1;0(2)见解析21.(1)y =−x 2+2x ;(2)122.(1)20m .(2)不能达到250m 2,理由见解析.23.(1)a=-1;(2)图见解析,-1≤x≤224.(1)w=-32x +252x -4860;(2)40或44;(3)42元,432元25.(1)254y x x =-+-;(2)458;(3)存在,P (2011,0)。
人教版九年级上册数学第一次月考试题含答案
人教版九年级上册数学第一次月考试卷一、选择题。
(每小题只有一个正确答案)1.下列是二次函数的是()A .22y x =+B .21y x =+C .11y x=-+D .220(0)ax a -=≠2.若关于x 的一元二次方程20x x m -+=的一个根是1x =,则m 的值是()A .1B .0C .-1D .23.关于x 的一元二次方程220(0,40)ax bx c a b ac ++=≠->的根是()A .2b a ±B .2b a -C .2b -D .2b a-±4.下列一元二次方程没有实数根的是()A .2210x x ++=B .220x x ++=C .210x -=D .2210x x --=5.用配方法解方程2640x x +-=时,配方结果正确的是()A .()235x +=B .()265x +=C .()2313x +=D .()2613x +=6.对于二次函数()212y x =--+的图象与性质,下列说法正确的是()A .对称轴是直线1x =,最大值是2B .对称轴是直线1x =,最小值是2C .对称轴是直线1x =-,最大值是2D .对称轴是直线1x =-,最小值是27.若关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根,则a 的取值范围是()A .a <-2B .a >-2C .-2<a <0D .-2≤a <08.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a 万件和b 万件,则()A .b=(1+22.1%×2)aB .b=(1+22.1%)2aC .b=(1+22.1%)×2aD .b=22.1%×2a9.将抛物线y=2x 2平移后得到抛物线y=2x 2+1,则平移方式为()A .向左平移1个单位B .向右平移1个单位C .向上平移1个单位D .向下平移1个单位10.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论:①ac >0;②当x≥1时,y 随x 的增大而减小;③2a+b=0;④b 2-4ac <0;⑤4a-2b+c >0,其中正确的个数是()A .1B .2C .3D .4二、填空题11.方程x 2=9的解为_____.12.把一元二次方程2346x x =-化成一般式是__________.13.已知函数24y x x m =-+的图象与x 轴只有一个交点,则m 的值为_______.14.已知二次函数2y x =,在14x -≤≤内,函数的最小值为______________.15.抛物线y =(x -h )2-k 的顶点坐标为(-3,1),则h -k=______________16.已知关于x 的方程2x mx 60+-=的一个根为2,则这个方程的另一个根是__.17.二次函数y =ax 2+bx +c (a ≠0)的部分对应值如下表:则二次函数y =ax 2+bx +c 在x =2时,y =_________.X …-3-20135…y…7-8-9-57…三、解答题18.解方程,2230x x +-=.19.已知抛物线的顶点为(1,4),与y 轴交点为(0,3),求该抛物线的解析式.20.若关于x 的二次方程(m+1)x 2+5x+m 2﹣3m=4的常数项为0,求m 的值.21.关于x 的一元二次方程x 2+(2m +1)x +m 2-1=0有两个不相等的实数根.(1)求m 的取值范围;(2)写出一个满足条件的m 的值,并求此时方程的根.22.己知:二次函数y =ax 2+bx +6(a ≠0)与x 轴交于A ,B 两点(点A 在点B 的左侧),点A ,点B 的横坐标是一元二次方程x 2﹣4x ﹣12=0的两个根.(1)求出点A ,点B 的坐标.(2)求出该二次函数的解析式.23.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.24.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y (单位:m )与飞行时间x (单位:s )之间具有函数关系y=﹣5x 2+20x ,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m 时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?25.如图,已知抛物线y=-x2+4x+m与x轴交于A,B两点,AB=2,与y轴交于点C.(1)求抛物线的解析式;(2)若P为对称轴上一点,要使PA+PC最小,求点P的坐标.参考答案1.A【分析】直接利用二次函数以及一次函数的定义分别判断得出答案.【详解】A、y=x2+2,是二次函数,故此选项正确;B、y=-2x+1,是一次函数,故此选项错误;C 、y=1x-+1,不是二次函数,故此选项错误;D 、()2200x a -=≠,是一次二次方程,故此选项错误;故选A .【点睛】此题主要考查了二次函数与一次函数定义,正确把握相关定义是解题关键.2.B 【分析】根据一元二次方程的解的定义,把x=1代入一元二次方程可得到关于m 的一元一次方程,然后解一元一次方程即可.【详解】把x=1代入x 2-x+m=0得1-1+m=0,解得m=0.故选B .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.3.D 【详解】当20,40a b ac ≠->时,一元二次方程20ax bx c ++=的求根公式为x =2b b ac a-.故选D.4.B 【分析】通过计算方程根的判别式,满足0 即可得到结论.【详解】解:A 、2=2411=0-⨯⨯ ,方程有两个相等的实数根,故本选项错误;B 、2=1421=-70-⨯⨯ ,方程没有实数根,故本选项正确;C 、2=04(1)=40-⨯- ,方程有两个不相等的实数根,故本选项错误;D 、2=(-2)41(1)=80-⨯⨯- ,方程有两个不相等的实数根,故本选项错误;故答案为B.【点睛】本题考查了根的判别式,熟练掌握一元二次方程的根与判别式的关系是解题的关键.(1)当0 ,方程有两个不相等的两个实数根;(2)当=0 ,方程有两个相等的两个实数根;(3)当0 时,方程无实数根.5.C 【分析】将常数项移到等式的右边,再两边配上一次项系数的一半可得.【详解】∵x 2+6x=4,∴x 2+6x+9=4+9,即(x+3)2=13,故选C .【点睛】本题主要考查配方法解一元二次方程,熟练掌握配方法的基本步骤是解题的关键.6.A 【分析】根据抛物线的图象与性质即可判断.【详解】解:由抛物线的解析式:y=-(x-1)2+2,可知:对称轴x=1,开口方向向下,所以有最大值y=2,故选:A .【点睛】本题考查二次函数的性质,解题的关键是正确理解抛物线的图象与性质,本题属于基础题型.7.C【分析】由关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根可得2214244202b ac a a ⎛⎫∆=-=-⨯⨯-=+> ⎪⎝⎭,解不等式即可求出a 的取值范围.【详解】∵关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根,∴2214244202b ac a a ⎛⎫∆=-=-⨯⨯-=+> ⎪⎝⎭,解得:a >−2,∵a <0,∴−2<a <0.故选C .【点睛】本题考查一元二次方程根的判别式,掌握根的判别式的应用为解题关键.8.B 【详解】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a 万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a ,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a 万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a 万件,即b=(1+22.1%)2a 万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.9.C 【解析】根据二次函数图象的平移规律“上加下减,左加右减”,将原抛物线以各个选项描述的平移方式进行平移可以获得不同的解析式,与题目中给出的解析式一致的选项即为正确选项.A 选项:将原抛物线向左平移1个单位,平移后的抛物线应为y =2(x +1)2,故A 选项错误;B 选项:将原抛物线向右平移1个单位,平移后的抛物线应为y =2(x -1)2,故B 选项错误;C 选项:将原抛物线向上平移1个单位,平移后的抛物线应为y =2x 2+1,故C 选项正确;D 选项:将原抛物线向下平移1个单位,平移后的抛物线应为y =2x 2-1,故D 选项错误.因此,本题应选C.点睛:本题考查了二次函数图象平移的相关知识.二次函数图象向上或向下平移时,应将平移量以“上加下减”的方式作为常数项添加到原解析式中;二次函数图象向左或向右平移时,应先以“左加右减”的方式将自变量x 和平移量组成一个代数式,再用该代数式替换原解析式中的自变量x .要特别注意理解和记忆二次函数图象左右平移时其解析式的相关变化.10.B 【详解】(1)由图可知,0 0a c ><,,∴0ac <,故①错;(2)由图可知,当1≥x 时,y 随x 的增大而增大,故②错;(3)由图可知,抛物线的对称轴为直线:12bx a=-=,∴2b a =-,即20a b +=,故③正确;(4)由图可知,抛物线和x 轴有两个不同的交点,∴240b ac ->,故④错;(5)由图可知,当2x =-时,图象在x 轴上方,即当2x =-时,420y a b c =-+>,故⑤正确;∴有2个结论正确,故选B.11.x=±3【分析】直接用开平方法求解即可.【详解】解:∵29x =,∴x=±3.故答案为:x=±3.【点睛】本题考查了解一元二次方程-直接开平方法,解决本题的关键是理解平方根的定义,注意一个正数的平方根有两个,这两个数互为相反数.12.23460x x -+=【分析】方程整理为一般形式即可.【详解】方程整理得:3x 2-4x+6=0,故答案为3x 2-4x+6=0.【点睛】此题考查了一元二次方程的一般形式,其一般形式为ax 2+bx+c=0(a≠0).13.4【分析】由抛物线与x 轴只有一个交点,得到根的判别式等于0,即可求出m 的值.【详解】∵函数y=x 2-4x+m 的图象与x 轴只有一个交点,∴b 2-4ac=(-4)2-4×1×m=0,解得:m=4,故答案为4【点睛】此题考查了抛物线与x 轴的交点,熟练掌握二次函数的性质是解本题的关键.14.0【分析】根据二次函数的性质即可判断出函数的最小值.【详解】∵a=1>0,∴二次函数2y x =的图象开口向上,∴二次函数2y x =的图象在14x -≤≤内有最低点,为原点(0,0),故二次函数2y x =,在14x -≤≤内,函数的最小值为0,故答案为0.【点睛】本题主要考查了二次函数的图象与性质.熟记二次函数的图象与性质是解题关键.15.-2【分析】根据二次函数的顶点式可直接进行求解.【详解】解:由题意得:h=-3,k=-1,∴()312h k -=---=-;故答案为-2.【点睛】本题主要考查二次函数的顶点式,熟练掌握二次函数的性质是解题的关键.16.-3.【解析】∵方程2x mx 60+-=的一个根为2,设另一个为a ,∴2a=-6,解得:a=-3.17.-8【分析】观察表中的对应值得到x =−3和x =5时,函数值都是7,则根据抛物线的对称性得到对称轴为直线x =1,所以x =0和x =2时的函数值相等.【详解】解:∵x =−3时,y =7;x =5时,y =7,∴二次函数图象的对称轴为直线x =1,∴x =0和x =2时的函数值相等,∴x =2时,y =−8.故答案为:−8.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.18.1231x x ,=-=【分析】利用因式分解法求一元二次方程的解即可.【详解】原方程因式分解得:(3)(1)0x x +-=∴1231x x ,=-=【点睛】本题考查利用因式分解法求一元二次方程的解.熟练掌握因式分解法是解答本题的关键.19.y=-(x-1)2+4.【分析】根据顶点坐标设其顶点式,再将(0,3)代入求解可得.【详解】设抛物线的解析式为y=a (x-1)2+4,将点(0,3)代入,得a+4=3.解得a=-1,抛物线的解析式为y=-(x-1)2+4.【点睛】解题的关键是熟练掌握待定系数法求函数解析式.20.4【解析】试题分析:根据方程中常数项为0,求出m 的值,检验即可.试题解析:解:∵关于x 的二次方程(m+1)x 2+5x+m 2﹣3m ﹣4=0的常数项为0,∴m 2﹣3m ﹣4=0,即(m ﹣4)(m+1)=0,解得:m=4或m=﹣1,当m=﹣1时,方程为5x=0,不合题意;则m 的值为4.考点:一元二次方程的一般形式.21.(1)m >-54;(2)x 1=0,x 2=-3.【详解】试题分析:(1)由方程有两个不相等的实数根即可得出△>0,代入数据即可得出关于m 的一元一次不等式,解不等式即可得出结论;(2)结合(1)结论,令m=1,将m=1代入原方程,利用因式分解法解方程即可得出结论.试题解析:(1)∵关于x 的一元二次方程2x +(2m+1)x+2m ﹣1=0有两个不相等的实数根,∴△=()()2221411m m +-⨯⨯-=4m+5>0,解得:m >54-;(2)m=1,此时原方程为2x +3x=0,即x (x+3)=0,解得:1x =0,2x =﹣3.考点:根的判别式;解一元二次方程——因式分解法;解一元一次不等式.22.(1)A (-2,0),B (6,0),(2)y=-12x 2+2x+6.【分析】(1)利用因式分解法解方程x 2-4x-12=0即可得到A 点和B 点坐标;(2)设交点式y=a (x+2)(x-6)=ax 2-4ax-12a ,则-12a=6,解得a=-12,所以抛物线解析式为y=-12x 2+2x+6.【详解】(1)解方程x 2-4x-12=0得x 1=-2,x 2=6,所以A (-2,0),B (6,0),(2)因为抛物线与x 轴交于点A (2,0),B (6,0),则抛物线解析式为y=a (x+2)(x-6)=ax 2-4ax-12a ,则-12a=6,解得a=-12,所以y=-12x 2+2x+6.【点睛】本题考查了抛物线与x 轴的交点问题:从二次函数的交点式y=a (x-x 1)(x-x 2)(a ,b ,c 是常数,a≠0)中可直接得到抛物线与x 轴的交点坐标(x 1,0),(x 2,0).也考查了二次函数的性质.23.(1)20%;(2)10368万元.【解析】试题分析:(1)首先设该县投入教育经费的年平均增长率为x ,然后根据增长率的一般公式列出一元二次方程,然后求出方程的解得出答案;(2)根据增长率得出2017年的教育经费.试题解析:(1)设该县投入教育经费的年平均增长率为x.则有:6000=8640解得:=0.2=-2.2(舍去)所以该县投入教育经费的年平均增长率为20%(2)因为2016年该县投入教育经费为8640万元,且增长率为20%所以2017年该县投入教育经费为8640×(1+20%)=10368(万元)考点:一元二次方程的应用24.(1)在飞行过程中,当小球的飞行高度为15m 时,飞行时间是1s 或3s ;(2)在飞行过程中,小球从飞出到落地所用时间是4s ;(3)在飞行过程中,小球飞行高度第2s 时最大,最大高度是20m .【详解】分析:(1)根据题目中的函数解析式,令y=15即可解答本题;(2)令y=0,代入题目中的函数解析式即可解答本题;(3)将题目中的函数解析式化为顶点式即可解答本题.详解:(1)当y=15时,15=﹣5x 2+20x ,解得,x 1=1,x 2=3,答:在飞行过程中,当小球的飞行高度为15m 时,飞行时间是1s 或3s ;(2)当y=0时,0═﹣5x 2+20x ,解得,x 3=0,x 2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s ;(3)y=﹣5x 2+20x=﹣5(x ﹣2)2+20,∴当x=2时,y 取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s 时最大,最大高度是20m .点睛:本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.25.(1)243y x x =-+-;(2)P 点坐标为(2,-1)【分析】(1)设点A 的坐标为()1,0x ,点B 的坐标为()2,0x ,然后根据AB=2及抛物线的对称轴可求解A 、B 的坐标,进而抛物线解析式可求;(2)连接BC ,交直线x =2于点P ,则PA =PB ,则有PA +PC =PB +PC =BC ,所以此时PA +PC 最小,然后求出直线BC 的解析式,进而问题可求.【详解】解:(1)设点A 的坐标为()1,0x ,点B 的坐标为()2,0x ,2121222x x x x +⎧=⎪⎨⎪-=⎩,∴1213x x =⎧⎨=⎩,把点A 的坐标(1,0)代入24y x x m =-++得3m =-,所以抛物线的解析式为243y x x =-+-;(2)解:连接BC ,交直线x =2于点P ,则PA =PB,如图所示:∴PA +PC =PB +PC =BC ,∴此时PA +PC 最小,设直线BC 的解析式为y =kx +b ,把C (0,-3),B (3,0)代入得330b k b =-⎧⎨+=⎩,解得31b k =-⎧⎨=⎩,∴直线BC 的解析式为y =x -3,当x =2时,y =x -3=2-3=-1,∴P 点坐标为(2,-1).【点睛】本题主要考查二次函数的综合,熟练掌握二次函数的性质是解题的关键.。
初三第一次月考数学试卷及答案
九年级数学第一次月考试卷一、选择题 (每题3分;共30分)1.下列为一元二次方程的是( )A 01322=+-x xB 0232=-+xx C 02=+-c bx ax D 0222=+y x2.方程()()032=+-x x 的解是( )A 2=xB 3=xC 3,221=-=x xD 3,221-==x x3.方程0422=--m x x 的跟的情况是( )A 一定有两个不等实数根B 一定有两个实数根C 一定有两个相等实数根D 一定无实数根4.一元二次方程0182=--x x 配方后为( )A 17)4(2=-xB 15)4(2=+xC 17)4(2=+xD 17)4(2=-x 或17)4(2=+x5.关于方程012=++y y 的说法正确的是( )A 两实数根之和为-1B 两实数根之积为1C 两实数根之和为1D 无实数根6.教育系统要组织一场足球赛;每两队之间进行两场比赛;计划踢90场比赛;则要邀请多少个足球队?( )A 10场B 9场C 8场D 7场7.某牧民要围成面积为352m 的矩形羊圈;且长比宽多2米;则此羊圈的周长是( )A 20米B 24 米C 26 米D 20或22米8.已知方程02=++a bx x 的一个根是)0(≠a a ;则代数式b a +的值是( )A -1B 1C 0D 以上答案都不是9.已知x 为实数;且满足03)3(2)3(222=-+++x x x x ;那么)3(2x x + 的值为( )A 1B -3或1C 3D -1或310.在一幅长80cm;宽50cm 的矩形风景画的四周镶一条金色纸边;制成一幅矩形挂图;如果要使整个挂图的面积是54002cm ;设金色纸边的宽为xcm ;那么满足的方程是( ) A 014001302=-+x x B 0350652=-+x xC 014001302=--x xD 0350652=---x x二、填空题(每题3分;共24分)11.把一元二次方程5)3(2=-x 化为一般形式为__________________;二次项为________;一次项系数为__________;常数项为________。
九年级数学上册月考试卷及答案【完整】
九年级数学上册月考试卷及答案【完整】第一部分:选择题
1. 请问下列哪个选项是正确的?
a. A
b. B
c. C
d. D
2. 如果 a = 2,b = 3,那么 a + b 的值是多少?
a. 4
b. 5
c. 6
d. 7
3. 三角形的内角和是多少?
a. 90度
b. 180度
c. 270度
d. 360度
4. 请问下列哪个选项是与三角形有关的公式?
a. F = ma
b. E = mc^2
c. A = 1/2bh
d. H = VQ
第二部分:填空题
1. 以下哪个数是质数:___。
2. 三角形的面积公式是___。
3. 二次方程的解的个数与 ___ 相关。
4. 下面哪个选项是平行四边形的特性之一:___。
第三部分:解答题
1. 解方程:3x + 5 = 20。
2. 计算三角形 ABC 的面积,已知底边 BC = 8 cm,高 AD = 6 cm。
答案
第一部分:选择题
1. c
2. b
3. b
4. c
第二部分:填空题
1. 2
2. A = 1/2bh
3. 二次方程的解的个数与判别式相关
4. 对角线互相平分
第三部分:解答题
1. x = 5
2. 三角形 ABC 的面积为 24 平方厘米。
以上是九年级数学上册月考试卷及答案的完整内容。
请注意,只有在详细核对题目和答案后,才可确认完全准确性。
2023-2024学年九年级(上)第一次月考数学试卷-(含答案)
2023-2024学年九年级(上)第一次月考数学试卷一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x 2﹣3x ﹣1=0,配方正确的是()A .(x ﹣)2=B .(x ﹣)2=C .(x ﹣)2=D .(x ﹣)2=2.(3分)下列说法不正确的是()A .一组同旁内角相等的平行四边形是矩形B .一组邻边相等的菱形是正方形C .有三个角是直角的四边形是矩形D .对角线相等的菱形是正方形3.(3分)若关于x 的一元二次方程x 2﹣2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的大致图象可能是()A .B .C .D .4.(3分)如图,在菱形ABCD 中,CE ⊥AB 于点E ,E 点恰好为AB 的中点,则菱形ABCD 的较大内角度数为()A .100°B .120°C .135°D .150°5.(3分)某市“菜篮子工程”蔬菜基地2022年产量为100吨,预计到2024年产量可达121吨.设该基地蔬菜产量的年平均增长率为x ,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=1216.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH 的长为.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.18.(8分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.参考答案与试题解析一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x2﹣3x﹣1=0,配方正确的是()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=【分析】化二次项系数为1后,把常数项﹣右移,应该在左右两边同时加上一次项系数﹣的一半的平方.【解答】解:由原方程,得x2﹣x=,x2﹣x+=+,(x﹣)2=,故选:A.2.(3分)下列说法不正确的是()A.一组同旁内角相等的平行四边形是矩形B.一组邻边相等的菱形是正方形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形【分析】利用正方形的判定、平行四边形的性质,菱形的性质,矩形的判定分别判断后即可确定正确的选项.【解答】解:A、一组同旁内角相等的平行四边形是矩形,正确;B、一组邻边相等的菱形是正方形,错误;C、有三个角是直角的四边形是矩形,正确;D、对角线相等的菱形是正方形,正确.故选:B.3.(3分)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y =kx+b的大致图象可能是()A.B.C.D.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到根的判别式大于0,求出kb的符号,对各个图象进行判断即可.【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b=0,即kb=0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k>0,b>0,即kb>0,故C不正确;D.k<0,b<0,即kb>0,故D不正确.故选:B.4.(3分)如图,在菱形ABCD中,CE⊥AB于点E,E点恰好为AB的中点,则菱形ABCD 的较大内角度数为()A.100°B.120°C.135°D.150°【分析】连接AC,证明△ABC是等边三角形,得出∠B=60°,则∠D=60°,∠BAD =∠BCD=120°,即可得出答案.【解答】解:连接AC,如图:∵四边形ABCD是菱形,∴AB=BC,∠BAD=∠BCD,∠B=∠D,AD∥BC,∴∠BAD+∠B=180°,∵CE⊥AB,点E是AB中点,∴BC=AC=AB,∴△ABC是等边三角形,∴∠B=60°,∴∠D=60°,∠BAD=∠BCD=120°;即菱形ABCD的较大内角度数为120°;故选:B.5.(3分)某市“菜篮子工程”蔬菜基地2022年产量为100吨,预计到2024年产量可达121吨.设该基地蔬菜产量的年平均增长率为x,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=121【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从100吨增加到121吨”,即可得出方程.【解答】解:由题意知,设该基地蔬菜产量的年平均增长率为x,根据2022年产量为100吨,则2023年蔬菜产量为100(1+x)吨,2024年蔬菜产量为100(1+x)(1+x)吨,预计2024年产量可达121吨,即:100(1+x)(1+x)=121或100(1+x)2=121.故选:A.6.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等【分析】证明△ABE≌△DBF(AAS),可得AE=DF,根据线段的和可知:AE+CF=AB,是一定值,可作判断.【解答】解:连接BD,∵四边形ABCD是菱形,∴AB=AD=CD,∵∠A=60°,∴△ABD是等边三角形,∴AB=BD,∠ABD=60°,∵DC∥AB,∴∠CDB=∠ABD=60°,∴∠A=∠CDB,∵∠EBF=60°,∴∠ABE+∠EBD=∠EBD+∠DBF,∴∠ABE=∠DBF,在△ABE和△DBF中,∵,∴△ABE≌△DBF(AAS),∴AE=DF,∴AE+CF=DF+CF=CD=AB,故选:D.7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO【分析】根据平行四边形的判定,矩形的判定,菱形的判定逐个判断即可.【解答】解:A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,不能推出四边形ABCD是矩形,故本选项不符合题意;B、根据AB=BC,AO=CO不能推出四边形ABCD是矩形,故本选项不符合题意;C、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项不符合题意;D、∵OA=OB=OC=OD,∴OA=OC,OB=OD,AC=BD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项符合题意;故选:D.8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个【分析】由平行四边形的性质、菱形的判定、矩形的判定即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠1=∠BCO,若∠1+∠DBC=90°时,则∠BCO+∠DBC=90°,∴∠BOC=90°,∴AC⊥BD,∴四边形ABCD是菱形;(1)能判定平行四边形ABCD是菱形;若OA=OB,则AC=BD,∴四边形ABCD是矩形;(2)不能判定平行四边形ABCD是菱形;若∠1=∠2,则∠2=∠BCO,∴AB=CB,∴四边形ABCD是菱形;(3)能判定平行四边形ABCD是菱形;故选:C.9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.=S△AOE+S△DOE,【分析】依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD 即可得到OE+EF的值.【解答】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AC==10,∴AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴S△AOD∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个【分析】①根据正方形的性质和角平分线的定义得:∠BAG=∠CAG=22.5°,由垂直的定义计算∠AED=90°﹣22.5°=67.5°,∠EAD=∠EAD=22.5°,得ED是AG的垂直平分线,则AE=EG,△BEG是等腰直角三角形,则AD=AB>2AE,可作判断;②证明△DAF≌△ABG(ASA),可作判断;③分别计算∠CDF=∠CFD=67.5°,可作判断;④根据对角线互相平分且垂直的四边形是菱形可作判断;⑤设BG=x,则AF=AE=x,表示OF和BE的长,可作判断.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=90°,∠BAC=45°,∵AG平分∠BAC,∴∠BAG=∠CAG=22.5°,∵AG⊥ED,∴∠AHE=∠EHG=90°,∴∠AED=90°﹣22.5°=67.5°,∴∠ADE=22.5°,∵∠ADB=45°,∴∠EDG=22.5°=∠ADE,∵∠AHD=∠GHD=90°,∴∠DAG=∠DGA,∴AD=DG,AH=GH,∴ED是AG的垂直平分线,∴AE=EG,∴∠EAG=∠AGE=22.5°,∴∠BEG=45°=∠ABG,∴∠BGE=90°,∴AE=EG<BE,∴AD=AB>2AE,故①不正确;②∵四边形ABCD是正方形,∴AD=AB,∠DAF=∠ABG=45°,∵∠ADF=∠BAG=22.5°,∴△DAF≌△ABG(ASA),∴DF=AG,故②正确;③∵∠CDF=45°+22.5°=67.5°,∠CFD=∠AFE=90°﹣22.5°=67.5°,∴∠CDF=∠CFD,∴CF=CD,故③正确;④∵∠EAH=∠FAH,∠AHE=∠AHF,∴∠AEF=∠AFE,∴AE=AF,∴EH=FH,∵AH=GH,AG⊥EF,∴四边形FGEA是菱形;故④正确;⑤设BG=x,则AF=AE=x,由①知△BEG是等腰直角三角形,∴BE=x,∴AB=AE+BE=x+x=(+1)x,∴AO==,∴OF=AO﹣AF=﹣x=,∴==,∴OF=BE;故⑤正确;本题正确的结论有:②③④⑤;故选:C.二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根x1=0,x2=5.【分析】先移项,然后通过提取公因式x对等式的左边进行因式分解.【解答】解:由原方程,得x2﹣5x=0,则x(x﹣5)=0,解得x1=0,x2=5.故答案是:x1=0,x2=5.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH的长为.【分析】直接利用菱形的性质得出AO,DO的长,再利用三角形面积以及勾股定理得出答案.【解答】解:∵四边形ABCD是菱形,AC=24,BD=10,=×AC×BD=120,AO=12,OD=5,AC⊥BD,∴S菱形ABCD∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=.故答案为:.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是k≤5.【分析】分k﹣1=0和k﹣1≠0两种情况,其中k﹣1≠0时根据题意列出关于k的不等式求解可得.【解答】解:当k﹣1=0时,方程为4x+1=0,显然有实数根;当k﹣1≠0,即k≠1时,△=42﹣4×(k﹣1)×1≥0,解得k≤5且k≠1;综上,k≤5.故答案为:k≤5.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为1.【分析】方法一:连接CH并延长交AD于P,连接PE,根据正方形的性质得到∠A=90°,AD∥BC,AB=AD=BC=2,根据全等三角形的性质得到PD=CF=,根据勾股定理和三角形的中位线定理即可得到结论.方法二:设DF,CE交于O,根据正方形的性质得到∠B=∠DCF=90°,BC=CD=AB,根据线段中点的定义得到BE=CF,根据全等三角形的性质得到CE=DF,∠BCE=∠CDF,求得DF⊥CE,根据勾股定理得到CE=DF==,点G,H分别是EC,FD的中点,根据相似三角形的判定和性质定理即可得到结论.【解答】解:方法一:连接CH并延长交AD于P,连接PE,∵四边形ABCD是正方形,∴∠A=90°,AD∥BC,AB=AD=BC=2,∵E,F分别是边AB,BC的中点,∴AE=CF=×2=,∵AD∥BC,∴∠DPH=∠FCH,∵∠DHP=∠FHC,∵DH=FH,∴△PDH≌△CFH(AAS),PD=CF=,∴AP=AD﹣PD=,∴PE===2,∵点G,H分别是EC,FD的中点,∴GH=EP=1;方法二:设DF,CE交于O,∵四边形ABCD是正方形,∴∠B=∠DCF=90°,BC=CD=AB,∵点E,F分别是边AB,BC的中点,∴BE=CF,∴△CBE≌△DCF(SAS),∴CE=DF,∠BCE=∠CDF,∵∠CDF+∠CFD=90°,∴∠BCE+∠CFD=90°,∴∠COF=90°,∴DF⊥CE,∴CE=DF==,∵点G,H分别是EC,FD的中点,∴CG=FH=,∵∠DCF=90°,CO⊥DF,∴∠DCO+∠FCO=∠DCO+∠CDO=90°,∴∠FCO=∠CDO,∵∠DCF=∠COF=90°,∴△COF∽△DOC,∴=,∴CF2=OF•DF,∴OF===,∴OH=,OD=,∵∠COF=∠COD=90°,∴△COF∽△DOC,∴,∴OC2=OF•OD,∴OC==,∴OG=CG﹣OC=﹣=,∴HG===1,故答案为:1.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,则CB=CB′,由翻折的性质,得EB=EB′,∴点E、C在BB ′的垂直平分线上,∴EC垂直平分BB′,由折叠,得EF也是线段BB′的垂直平分线,∴点F与点C重合,这与已知“点F是边BC上不与点B,C重合的一个动点”不符,故此种情况不存在,应舍去.综上所述,DB′的长为16或4.故答案为:16或4.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.【分析】(1)利用公式法求解可得;(2)利用直接开平方法求解可得;(3)利用换元法求解可得;(4)整理成一般式,再利用公式法求解可得.【解答】解:(1)∵a=1,b=4,c=﹣2,∴△=42﹣4×1×(﹣2)=24>0,则x==﹣2±,即x1=﹣2+,x2=﹣2﹣;(2)∵4x2=25,∴x2=,解得x1=,x2=﹣;(3)令2x+1=a,则a2+4a+4=0,∴(a+2)2=0,解得a=﹣2,∴2x+1=﹣2,解得x1=x2=﹣1.5;(4)方程整理为一般式,得:x2﹣4x﹣5=0,解得:(x﹣5)(x+1)=0,则x﹣5=0或x+1=0,解得x1=5,x2=﹣1.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.【分析】(1)证△MOD≌△NOB(AAS),得出OM=ON,由OB=OD,证出四边形BNDM 是平行四边形,进而得出结论;(2)由菱形的性质得出BM=BN=DM=DN,OB=BD=12,OM=MN=5,由勾股定理得BM=13,即可得出答案.【解答】(1)证明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是对角线BD的垂直平分线,∴OB=OD,MN⊥BD,在△MOD和△NOB中,,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四边形BNDM是平行四边形,∵MN⊥BD,∴四边形BNDM是菱形;(2)解:∵四边形BNDM是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,在Rt△BOM中,由勾股定理得:BM===13,∴菱形BNDM的周长=4BM=4×13=52.18.(8分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.【分析】(1)利用判别式的意义得到△=(﹣3)2﹣4k≥0,然后解不等式即可;(2)先确定k=2,再解方程2﹣3+2=0,解得x1=1,x2=2,然后分别把x=1和x=2代入元二次方程(﹣1)2++﹣3=0可得到满足条件的m的值.【解答】解:(1)根据题意得△=(﹣3)2﹣4k≥0,解得k≤;(2)满足条件的k的最大整数为2,此时方程2﹣3+=0变形为方程2﹣3+2=0,解得x1=1,x2=2,当相同的解为x=1时,把x=1代入方程(﹣1)2++﹣3=0得m﹣1+1+m﹣3=0,解得m=;当相同的解为x=2时,把x=2代入方程(﹣1)2++﹣3=0得4(m﹣1)+2+m﹣3=0,解得m=1,而m﹣1≠0,不符合题意,舍去,所以m的值为.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是25.【分析】(1)根据菱形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据全等三角形的判定定理得到Rt△ABE≌Rt△DCF(HL),求得矩形AEFD的面积=菱形ABCD的面积,根据等腰三角形的性质得到结论.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∵CF=BE,∴BC=EF,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴平行四边形AEFD是矩形;(2)解:∵AB=CD,BE=CF,∠AEB=∠DFC=90°,∴Rt△ABE≌Rt△DCF(HL),∴矩形AEFD的面积=菱形ABCD的面积,∵∠ABC=60°,∴△ABC是等边三角形,∵AC=10,∴AE=AC=5,AB=10,BO=5,∵AD=EF=10,∴矩形AEFD的面积=菱形ABCD的面积=×10×10=50,故答案为:50.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费28000元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?【分析】(1)首先表示出40人是平均每人的费用,进而得出总费用;(2)表示出每人平均费用为:800﹣10(x﹣30),进而得出等式求出答案.【解答】解:(1)∵人数多于30人,那么每增加1人,人均收费降低10元,∴第一批组织40人去学习,则公司应向旅行社交费:40×[800﹣(40﹣30)×10]=28000(元);故答案为:28000;(2)设这次旅游应安排x人参加,∵30×800=24000<29250,∴x>30,根据题意得:x[800﹣10(x﹣30)]=29250,整理得,x2﹣110x+2925=0,解得:x1=45,x2=65∵800﹣10(x﹣30)≥500,∴x≤60.∴x=45.答:这次旅游应安排45人参加.21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为 1.5时,四边形AMDN是矩形;②当AM的值为3时,四边形AMDN是菱形.【分析】(1)求出△DNE≌△AME,根据全等及时向的性质得出NE=ME,根据平行四边形的判定得出即可;(2)①根据等边三角形的判定得出△ABD是等边三角形,根据等边三角形的性质求出DM⊥AB,根据矩形的判定得出即可;②求出△ABD是等边三角形,求出M和B重合,根据菱形的判定得出即可..【解答】(1)证明:∵点E是AD边的中点,∴AE=DE,∵四边形ABCD是菱形,∴DC∥AB,∴∠DNE=∠AME,在△DNE和△AME中,∴△DNE≌△AME(AAS),∴NE=ME,∵AE=DE,∴四边形AMDN是平行四边形;(2)解:①当AM=1.5时,四边形AMDN是矩形,理由是:连接BD,∵四边形ABCD是菱形,∴AD=AB=3,∵∠DAB=60°,∴△ADB是等边三角形,∴AD=BD=3,∵AM=1.5,AB=3,∴AM=BM,∴DM⊥AB,即∠DMA=90°,∵四边形AMDN是平行四边形,∴四边形AMDN是矩形,即当AM=1.5时,四边形AMDN是矩形,故答案为:1.5;②当AM=3时,四边形AMDN是菱形,理由是,此时AM=AB=3,即M和B重合,∵由①知:△ABD是等边三角形,∴AM=MD,∵四边形AMDN是平行四边形,∴四边形AMDN是菱形,故答案为:3.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=2,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?【分析】(1)利用求根公式即可求出方程的两根;(2)仿照(1)找准关于x的一元二次方程,由根的判别式△=﹣7<0,可得出方程无解,即不存在满足要求的矩形B;(3)仿照(1)找准关于x的一元二次方程,由根的判别式△≥0,可找出m、n之间的关系.【解答】解:(1)利用求根公式可知:x1==,x2==2.故答案为:;2.(2)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣3x+2=0.∵b2﹣4ac=(﹣3)2﹣4×2×2=﹣7<0,∴该方程无解,∴不存在满足要求的矩形B.(3)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣(m+n)x+mn=0.∵矩形B存在,∴b2﹣4ac=[﹣(m+n)]2﹣4×2mn≥0,∴(m﹣n)2≥4mn.故当m、n满足(m﹣n)2≥4mn时,矩形B存在.23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.【分析】(1)过G作GH⊥EC于H,推出EF∥GH∥DC,求出H为EC中点,根据梯形的中位线求出EG=GC,GH=(EF+DC)=(EB+BC),推出GH=EH=BC,根据直角三角形的判定推出△EGC是等腰直角三角形即可;(2)延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,证△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,证出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案;(3)分两种情况:①CE在BC的上方,如图3,作辅助线,构建等腰直角三角形,求出cos∠DBE=,推出∠DBE=60°,证明△GDC≌△EBC(ASA),则EC=CG,DG=EB=1,从而得结论;②CE在BC的下方,如图4,同理可得结论.【解答】解:(1)EG⊥CG,;理由是:如图1,过G作GH⊥EC于H,∵∠FEB=∠DCB=90°,∴EF∥GH∥DC,∵G为DF中点,∴H为EC中点,∴EG=GC,GH=(EF+DC)=(EB+BC)=CE,即GH=EH=HC,∴∠EGC=90°,即△EGC是等腰直角三角形,;(2)结论还成立,理由是:如图2,延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,延长CB交EQ于R,延长CD,交EH于N,在△EFG和△HDG中,,∴△EFG≌△HDG(SAS),∴DH=EF=BE,∠FEG=∠DHG,∴EF∥DH,同理得ER∥CD,∴∠1=∠2,∴∠1=∠2=90°﹣∠3=∠4,∴∠EBC=180°﹣∠4=180°﹣∠1=∠HDC,在△EBC和△HDC中,,∴△EBC≌△HDC(SAS).∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°,∴△ECH是等腰直角三角形,∵G为EH的中点,∴EG⊥GC,,即(1)中的结论仍然成立;(3)分两种情况:①如图3,连接BD,过C作CG⊥EC,交ED的延长线于G,∵AB=,正方形ABCD,∴BD=2,Rt△BED中,cos∠DBE=,∴∠DBE=60°,∠BDF=30°∵tan∠BDE==,∴DE=BE=,∵∠ABD=45°,∴∠ABE=60°﹣45°=15°,∴∠EBC=90°+15°=105°,∵∠EDC=∠BDE+∠CDB=30°+45°=75°,∴∠CDG=180°﹣75°=105°,∴∠CDG=∠CBE,∵∠ECG=∠BCD=90°,∴∠DCG=∠BCE,∵BC=CD,∴△GDC≌△EBC(ASA),∴EC=CG,DG=EB=1,∴△ECG是等腰直角三角形,∴EG=CE,∵EG=ED+DG=+1,∴CE==;②如图4,连接BD,过C作CH⊥EC,交ED于H,同理得△DHC≌△BEC(ASA),∴EC=CH,DH=EB=1,同理可知:DE=,∴EH=DE﹣DH=﹣1,∵△ECH是等腰直角三角形,∴EH=CE,∴CE==;综上,CE的长为.。
2023-2024学年九年级上学期数学(北师大版)第一次月考试卷附详细答案精选全文
可编辑修改精选全文完整版2023-2024学年九年级上学期数学(北师大版)第一次月考试卷▼(上册1.1~2.4) ▼说明:共有六个大题,23个小题,满分120分,作答时间120分钟. 一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填入题后括号内.错选、多选或未选均不得分. 1.下列方程是一元二次方程的是( )A.3x −1=0B.a x 2+b x +c=0(a ,b ,c 为常数)C.x ²+x =3D.3x 2−2x y −5y 2=0 2.菱形具有而平行四边形不一定具有的性质是( )A.对角线互相垂直B.对边相等C.对角相等D.是中心对称图形 3.一元二次方程x 2=4的解为( )A.x =2B.x =4C.x 1=−2,x 2=2D.x 1=−4,x 2=4 4.如图,若四边形ABCD 是平行四边形,则下列结论中错误的是( ) A.当AC ⊥BD 时,它是菱形 B.当AC=BD 时,它是矩形 C.当∠ABC=90°时,它是矩形 D.当AB=BC 时,它是正方形5.已知关于x 的一元二次方程x 2+b x +c=0有一个非零实数根c ,则b+c 的值为( )ADCBOA.1B.−1C.0D.26.如图,把一张矩形纸片ABCD 按如下方法进行两次折叠:第一次将DA 边折叠到DC 边上得到DA ´,折痕为DM ,连接A ´M ,CM ,第二次将△MBC 沿着MC 折叠,MB 边恰好落在MD 边上.若AD=1,则AB 的长为( )A.32 B.√2 C.√3 D.√2−1 二、填空题(本大题共6小题,每小题3分,共18分)7.把一元二次方程x (x −3)=4化成a x 2+b x +c=0的一般形式,其中a=1,则常数项c=______.8.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,如果∠ADB=25°,那么∠AOB 的度数为______.9.若关于x 的方程x 2−2x +1−k=0有两个相等的实数根,则k 的值为______. 10.若关于x 的一元二次方程a x 2=b(ab >0)的两个根分别为m 与2m −6,则m 的值为______.11.如图,在平面直角坐标系x Oy 中,四边形ABCO 是正方形,已知点A 的坐标为(2,1),则点C 的坐标为______.12.如图,在菱形ABCD 中,AB=20,∠A=45°,点E 在边AB 上,AE=13,点P 从点A第8题图ADCBO第12题图A D BCPE第11题图ACDB出发,沿着A →D →C →B 的路线向终点B 运动,连接PE ,若△APE 是以AE 为腰的等腰三角形,则AP 的长可以是______.三、解答题(本大题共5小题,每小题6分,共30分) 13.(1)解方程:x 2−2x −1=0.(2)如图,在Rt △ABC 中,∠ACB=90°,D 为AB 的中点,∠A=30°,BC=2,求CD 的长.14.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点C 作BD 的平行线交AB 的延长线于点E.求证:AC=CE.15.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,过点A 作AE ⊥BC 于点E ,若OB=2,S 菱形ABCD =4,求AE 的长.16.如图,△ACB 和△CED 都是等腰直角三角形,点B ,C ,E 在同一直线上,且E 是BC 的中点,请仅用无刻度的直尺......按要求完成以下作图(保留作图痕迹). (1)在图1中,作□ABMC. (2)在图2中,作正方形ACBN.ADBEO ABCDEOADBC17.如图,矩形绿地的长为12m ,宽为9m ,将此绿地的长、宽各增加相同的长度后,绿地面积增加了72m 2,求绿地的长、宽增加的长度.四、解答题(本大题共3小题,每小题8分,共24分)18.设关于x 的一元二次方程为x 2+b x +c=0.在下面的四组条件中选择其中一组b ,c 的值,使这个方程有两个不相等的实数根,并解这个方程. ①b=2,c=1;②b=1,c=2;③b=3,c=−1;④b=−3,c=2. 注:如果选择多组条件分别作答,按第一个解答计分.19.定义:如果关于x 的一元二次方程a x 2+b x +c=0(a ≠0)满足b=a+c ,那么我们称这个方程为“完美方程”.(1)下面方程是“完美方程”的是______.(填序号) ①x 2−4x +3=0;②2x 2+x +3=0;③2x 2−x −3=0.(2)已知3x 2+m x +n=0是关于x 的“完美方程”,若m 是此“完美方程”的一个根,求m 的值.20.如图,在□ABCD 中,E ,F 分别是边CD ,BC 上的点,连接BE ,DF ,BE 与DF 交于点P ,BE=DF.添加下列条件之一使□ABCD 成为菱形:①CE=CF ;②BE ⊥CD ,DF ⊥BC. (1)你添加的条件是_______(填序号),并证明.图1ADCBEA图2CDE B(2)在(1)的条件下,若∠A=45°,△BFP 的周长为4,求菱形的边长.五、解答题(本大题共2小题,每小题9分,共18分) 21.【阅读】解方程:(x −1)2−5(x −1)+4=0.解:设x −1=y ,则原方程可化为y 2−5y+4=0,解得y 1=1,y 2=4. 当y=1时,即x −1=1,解得x =2;当y=4时,即x −1=4,解得x =5. 所以原方程的解为x 1=2,x 2=5. 上述解法称为“整体换元法”. 【应用】 (1)若在方程x−1x−3xx−1=0中,设y=x−1x,则原方程可化为整式方程:________.(2)请运用“整体换元法”解方程:(2x −3)2−(2x −3)−2=0.22.如图1,在□ABCD 中,点E ,F 在对角线AC 上,AE=CF ,DE ⊥AC ,过点D 作DG ∥AC 交BF 的延长线于点G. (1)求证:四边形DEFG 是矩形.(2)如图2,连接DF ,BE ,当∠DFG=∠BEF 时,判断四边形 DEFG 的形状,并说明理由.图1E F ABCDG图2ABDGCFE AFCDE P B六、解答题(本大题共12分) 23.【课本再现】(1)如图1,在正方形ABCD 中,F 为对角线AC 上一点,连接BF ,DF.你能找出图中的全等三角形吗?结论猜想:图中的全等三角形有__________ (不必证明). 【知识应用】(2)如图2,P 为DF 延长线上一点,且BP ⊥BF ,DP 交BC 于点E.判断△BPE 的形状,并说明理由. 【拓展提升】(3)如图3,过点F 作HF ⊥BF 交DC 的延长线于点H. ①求证:HF=DF.②若AB=√3+1,∠CBF=30°,请直接写出CH 的长.2023-2024学年九年级上学期数学(北师大版)第一次月考试卷参考答案▼(上册1.1~2.4) ▼说明:共有六个大题,23个小题,满分120分,作答时间120分钟. 一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填入题后图1AB CDFA图2B PDC EF图3ABDHCF括号内.错选、多选或未选均不得分. 1.下列方程是一元二次方程的是( )A.3x −1=0B.a x 2+b x +c=0(a ,b ,c 为常数)C.x ²+x =3D.3x 2−2x y −5y 2=01.解:A 是一元一次方程,B 当a ≠0时是一元二次方程,C 是一元二次方程,D 是二元二次方程,故选C 。
人教版九年级上册数学第一次月考试卷及答案
人教版九年级上册数学第一次月考试题一、单项选择题。
(每小题3分,共30分)1.下列方程中,是关于x 的一元二次方程的是()A .2130x x++=B .220xy x +=C .252x x =-D .20ax bx c ++=2.小明在解方程220x x -=时,只得出一个根2x =,则漏掉的一个根是()A .2x =-B .0x =C .1x =D .3x =3.二次函数2231y x x =-+图象一定过点()A .()1,1-B .(),215-C .()0,1-D .()3,74.若1x 、2x 是一元二次方程2280x x --=的两个根,则1212x x x x +-的值是()A .10B .8-C .6-D .25.将抛物线()212y x =-+向左平移1个单位,再向下平移5个单位后所得抛物线的解析式为()A .()227y x =-+B .()223y x =-+C .23y x =-D .27y x =+6.对于二次函数()=+-2y x 12的图象,下列说法正确的是()A .开口向下B .对称轴1x =C .顶点坐标()1,2--D .与x 轴无交点7.有1个人得了流感,经过两轮传染共有144人患流感,则第三轮后共有()人患流感.A .1000B .1331C .1440D .17288.在同一坐标系中,一次函数2y ax =+与二次函数2y x a =+的图像可能是()A .B .C .D .9.如果关于x 的一元二次方程k 2x 2-(2k+1)x+1=0有两个不相等的实数根,那么k 的取值范围是()A .k>-14B .k>-14且0k ≠C .k<-14D .k ≥-14且0k ≠10.抛物线2(0)y ax bx c a =++≠的部分图象如图所示,与x 轴的一个交点坐标为()4,0,抛物线的对称轴是1x =.下列结论中:①0abc <;②20a b +=;③0a c +>;④若点(),A m n 在该抛物线上,则2am bm c a b c ++≤++.⑤方程24ax bx c ++=有两个不相等的实数根;其中正确的有()A .5个B .4个C .3个D .2个二、填空题11.一元二次方程290x -=的解是______.12.二次函数245y x x =-+的顶点坐标是__________.13.关于x 的方程22(2)(3)20mm x m x --+--=是一元二次方程,则m 的值为____.14.关于x 的一元二次方程x 2﹣x+m=0没有实数根,则m 的取值范围是______.15.一元二次方程23100x x +-=的两个根是12x =-,253x =,那么二次函数2310y x x =+-与x 轴的交点坐标是________.16.a 是方程210x x +-=的一个根,则代数式3222007a a ++的值是________.17.如图,坐标平面上,二次函数24y x x k =-+-的图形与x 轴交于A 、B 两点,与y 轴交于C 点,其顶点为D ,且0k >.若ABC ∆与ABD ∆的面积比为1:3,则k 值为________.三、解答题18.解方程2340x x +-=.19.一个二次函数,当自变量0x =时,函数值1y =-,且过点()2,0-和点1,02⎛⎫⎪⎝⎭,求这个二次函数的解析式.20.某家快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同,求该快递公司投递总件数的月平均增长率.21.已知关于x 的一元二次方程2240x x m --=.(1)求证:该方程有两个不等的实根;(2)若该方程的两个实数根1x 、2x 满足1229x x +=,求m 的值.22.已知二次函数y=x 2-2x-3.(1)用配方法把y=x 2-2x-3化为y=a (x-h )2+k 的形式为__________(2)完成下表,并在平面直角坐标系中画出这个函数图像.x ……y……(3)结合图像回答:不等式2230x x --<的解集是.23.王老师对小明推铅球的录像进行技术分析,发现铅球行进的高度(m)y 与水平距离(m)x 之间的关系可以表示为2+112243y x x =-+,铅球从出手到落地的路线如图所示.(1)求铅球出手点的离地面的高度OA 是多少米?铅球推出的水平距离OB 是多少米?(2)求铅球推出的水平距离是多少米时铅球到达最高点?24.如图,用长为6m 的铝合金条制成“日”字形窗框,若窗框的宽为xm ,窗户的透光面积为ym 2(铝合金条的宽度不计).(1)求出y 与x 的函数关系式(结果要化成一般形式);(2)能否使窗的透光面积达到2平方米,如果能,窗的高度和宽度各是多少?如果不能,请说明理由.(3)窗的宽度为多少米时,窗户的透光面积最大?并求出此时的最大面积.25.如图,在平面直角坐标系中,已知抛物线y =x 2+bx +c 过A ,B ,C 三点,点A 的坐标是(3,0),点C 的坐标是(0,﹣3),动点P 在抛物线上.(1)求抛物线的解析式;(2)若动点P在第四象限内的抛物线上,过动点P作x轴的垂线交直线AC于点D,交x 轴于点E,垂足为E,求线段PD的长,当线段PD最长时,求出点P的坐标;(3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.参考答案1.C2.B3.B4.A5.C6.C7.D8.D9.B10.B11.x 1=3,x 2=﹣3.12.(2,1)13.2-14.m>0.2515.()2,0-,5,03⎛⎫ ⎪⎝⎭16.200817.118.14x =-,21x =19.2312y x x =+-20.10%.21.(1)证明见解析;(2)22.(1)()214y x =--;(2)见解析;(3)1x <-或3x >23.(1)铅球出手点离地面的高度是2米,铅球推出的水平距离DB 是12米;(2)铅球推出水平距离是4米时到达最高点,最高点是83米24.(1)233(02)2y x x x =-+<<;(2)不能使窗的透光面积达到2平方米,理由见解析;(3)窗的宽度为1米时,面积最大为32平方米25.(1)y =x 2﹣2x ﹣3;(2)315,24P ⎛⎫- ⎪⎝⎭;(3)存在,点P 的坐标为(1,﹣4)或(﹣2,5).。
2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)
2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第1章~第3章(北师版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.单项选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列方程中,是一元二次方程的是()A.xx2−3xx−5=−5B.2xx2−yy−1=0C.xx2−xx(xx+2.5)=0D.aaxx2+bbxx+cc=02.下列命题为真命题的是()A.有两边相等的平行四边形是菱形B.有一个角是直角的平行四边形是菱形C.对角线互相垂直的平行四边形是矩形D.有三个角是直角的四边形是矩形3.若关于xx的方程xx2+mmxx−6=2.则mm为()A.−2B.1 C.4 D.−34.a是方程xx2+2xx−1=0的一个根,则代数式aa2+2aa+2020的值是()A.2018 B.2019 C.2020 D.20215.如图,在正方形AAAAAAAA中,EE为AAAA上一点,连接AAEE,AAEE交对角线AAAA于点FF,连接AAFF,若∠AAAAEE=35°,则∠AAFFAA的度数为()A.80°B.70°C.75°D.45°6.有一块长40m,宽32m的矩形种植地,修如图等宽的小路,使种植面积为1140m2,求小路的宽.设小路的宽为x,则可列方程为()A.(40﹣2x)(32﹣x)=1140 B.(40﹣x)(32﹣x)=1140C.(40﹣x)(32﹣2x)=1140 D.(40﹣2x)(32﹣2x)=11407.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.248.如图,在菱形AAAAAAAA中,对角线AAAA,AAAA相交于点OO,EE是AAAA的中点,若菱形的周长为20,则OOEE的长为()A.10 B.5 C.2.5D.19.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为xx人,则根据题意可列方程为()A.xx(xx−1)=110B.xx(xx+1)=110C.(xx+1)2=110D.(xx−1)2=11010.关于xx的一元二次方程kkxx2−2xx−1=0有两个不相等的实数根,则kk的取值范围是()A.kk>−1B.kk>−1且kk≠0C.kk<1D.kk<1且kk≠011.如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为()A.74B.95C.1910D.76�312.如图,在正方形AAAAAAAA中,AAAA=4,E为对角线AAAA上与点A,C不重合的一个动点,过点E作EEFF⊥AAAA于点F,EEEE⊥AAAA与点G,连接AAEE,FFEE,有下列结论:①AAEE=FFEE.②AAEE⊥FFEE.③∠AAFFEE=∠AAAAEE.④FFEE的最小值为3,其中正确结论的序号为()A.①②B.②③C.①②③D.①③④第Ⅱ卷二.填空题(本题共6小题,每小题3分,共18分.)13.一元二次方程5xx2+2xx−1=0的一次项系数二次项系数常数项.14.xx1,xx2为一元二次方程xx2−2xx−10=0的两根,则1xx1+1xx2=.15.如图,矩形ABCD中,对角线AC、BD相交于点O,若OB=2,∠ACB=30°,则AB的长度为.16.如图所示,菱形AAAAAAAA的对角线AAAA、AAAA相交于点OO.若AAAA=6,AAAA=8,AAEE⊥AAAA,垂足为EE,则AAEE的长为.17.如图,将一张长方形纸片AAAAAAAA沿AAAA折起,重叠部分为ΔΔAAAAEE,若AAAA=6,AAAA=4,则重叠部分ΔΔAAAAEE的面积为.18.如图,在正方形AAAAAAAA中,AAAA=6,点E,F分别在边AAAA,AAAA上,AAEE=AAFF=2,点M在对角线AAAA上运动,连接EEEE和EEFF,则EEEE+EEFF的最小值等于.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解下列方程:(1)3xx2−4xx−1=0;(2)2�xx−3�2=xx2−920.(8分)已知方程xx2+�kk+1−6=0是关于xx的一元二次方程.(1)求证:对于任意实数kk方程中有两个不相等的实数根.(2)若xx1,xx2是方程的两根,kk=6,求1xx1+1xx2的值.21.(8分)如图,在菱形AAAAAAAA中,对角线AAAA,AAAA交于点OO,AAEE⊥AAAA交AAAA延长线于EE,AAFF∥AAEE交AAAA延长线于点FF.(1)求证:四边形AAEEAAFF是矩形;(2)若AAEE=4,AAAA=5,求AAAA的长.22.(10分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有______人,若该居民区有8000人,估计整个居民区爱吃D粽的有______人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.23.(8分)阅读材料,回答问题.材料1:为了解方程�xx2�2−13xx2+36=0,如果我们把xx2看作一个整体,然后设yy=xx2,则原方程可化为yy2−13yy+36=0,经过运算,原方程的解为xx1,2=±2,xx3,4=±3,我们把以上这种解决问题的方法通常叫做换元法.材料2:已知实数mm,nn满足mm2−mm−1=0,nn2−nn−1=0,且mm≠nn,显然mm,nn是方程xx2−xx−1=0的两个不相等的实数根,由韦达定理可知mm+nn=1,mmnn=−1.根据上述材料,解决以下问题:(1)为解方程xx4−xx2−6=0,可设yy=____,原方程可化为____.经过运算,原方程的解是____.(2)应用:若实数aa,bb满足:2aa4−7aa2+1=0,2bb4−7bb2+1=0且aa≠bb,求aa4+bb4的值;24.(10分)中秋期间,某商场以每盒140元的价格购进一批月饼,当每盒月饼售价为180元时,每天可售出60盒.为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每盒月饼降价2元,那么商场每天就可以多售出5盒.(1)设售价每盒下降xx元,则每天能售出______盒(用含xx的代数式表示);(2)当月饼每盒售价为多少元时,每天的销售利润恰好能达到2550元;(3)该商场每天所获得的利润是否能达到2700元?请说明理由.25.(12分)在数学实验课上,老师让学生以“折叠筝形”为主题开展数学实践探究活动.定义:两组邻边分别相等的四边形叫做“筝形”.(1)概念理解:如图1,将一张纸对折压平,以折痕为边折出一个三角形,然后把纸展平,折痕为四边形AAAAAAAA.判断四边形AAAAAAAA的形状:筝形(填“是”或“不是”);(2)性质探究:如图2,已知四边形AAAAAAAA纸片是筝形,请用测量、折叠等方法猜想筝形的角、对角线有什么几何特征,然后写出一条性质并进行证明;(3)拓展应用:如图3,AAAA是锐角△AAAAAA的高,将△AAAAAA沿边AAAA翻折后得到△AAAAEE,将△AAAAAA沿边AAAA翻折后得到△AAAAFF,延长EEAA,FFAA交于点G.①若∠AAAAAA=50°,当△AAAAEE是等腰三角形时,请直接写出∠AAAAAA的度数;②若∠AAAAAA=45°,AAAA=2,AAAA=5,AAEE=EEEE=FFEE,求AAAA的长.26.(12分)探究式学习是新课程倡导的重要学习方式,某兴趣小组学习正方形以后做了以下探究:在正方形AAAAAAAA中,E,F为平面内两点.【初步感知】(1)如图1,当点E在边AAAA上时,AAEE⊥AAFF,且B,C,F三点共线.请写出AAEE与FFAA的数量关系______;【深入探究】(2)如图2,当点E在正方形AAAAAAAA外部时,AAEE⊥AAFF,AAEE⊥EEFF,E,C,F三点共线.若AAEE=2,AAEE=4,求AAEE的长;【拓展运用】(3)如图3,当点E在正方形AAAAAAAA外部时,AAEE⊥EEAA,AAEE⊥AAFF,AAEE⊥AAEE,且D,F,E三点共线,猜想并证明AAEE,AAEE,AAFF之间的数量关系.2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
2024-2025学年初中九年级上学期第一次月考数学试题及答案(苏科版)
2024-2025学年度第一学期第一次月考模拟试卷一、单选题1. 下列是一元二次方程的是( )A. 20ax bx c ++=B. 22x x −=C. ()222x x x −=−D. 11x x+= 2. 一元二次方程2310x x −−=的根的情况为( )A. 无实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根3. 一元二次方程2430x x −+=配方后变形为( )A. ()241x −=B. ()221x −=C. ()241x +=D. ()221x += 4. 若关于x 一元二次方程2690kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 1k >B. 0k ≠C. 1k <D. 1k <且0k ≠ 5. 将抛物线2y x =先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线对应的函数解析式为( )A. ()223y x =−+B. ()232y x =−+ C. ()223y x =++ D. ()232y x =−− 6. 若()()()1232,,1,,2,A y B y C y −是抛物线()221y x a =−+上的三点,则123,,y y y 为的大小关系为( )A 123y y y >> B. 132y y y >> C. 321y y y >> D. 312y y y >> 7. 若抛物线242y kx x =−−与x 轴有两个交点,则k 的取值范围为( )A. 2k >−B. 2k ≥−C. 2k >−且0k ≠D. 2k ≥−且0k ≠ 8. 二次函数2y ax bx c =++图象上部分点的对应值如下表则使0y <的x 的取值范围为( ) x 3− 2− 1− 01 2 3 4 y 60 4− 6− 6− 4− 0 6A. 0x <B. 12x >C. 23x −<<D. 2x <−或3x >的.二、填空题9. 已知m 是方程2520x x −−=的一个根,则22101m m −−=______. 10. 一元二次方程()2110x k x +++=有两个相等的实数根,那么k 的值为_____. 11. 若关于x 的一元二次方程()22240m x mx m −++−=有一个根是0,则m 的值为________ 12. 用一根长22cm 的铁丝围成面积是230cm 的矩形.假设矩形的一边长是cm x ,则可列出方程_____________________13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点,则关于x 的不等式2ax bx c kx m ++≥+的解集是________.14. 抛物线()232y x =−−−的顶点坐标是________ .15. 已知二次函数()214y x =+−,当02x ≤≤时,函数值y 取值范围为__________16. 飞机着陆后滑行的距离(米)关于滑行时间(秒)的函数解析式为260 1.5s t t =−,则飞机着陆后滑行_________秒才停下来.17. 如图所示,,A B 分别为22(2)1y x =−−图象上的两点,且直线AB 垂直于y 轴,若2AB =,则点B 的纵坐标为________.18. 如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高163米,现要水平放置横截面为正方形的箱子,其中两个顶点在抛物线上的大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子的正方形的最大边长为______米.三、解答题19. 商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由. 20. 解方程:(1)2(2x 1)9+=;(2)2x 2﹣4x =1(配方法);(3)22x 5x 10−+=;(4) ()2(x 3)4x 3x 0−−−= 21. 随着科技的发展,某省正加快布局以5G 等为代表的新兴产业.据统计,目前该省5G 基站数量约为1.5万座,计划到今年底,全省5G 基站数是目前的4倍;到后年底,全省5G 基站数量将达到17.34万座.(1)计划在今年底,全省5G 基站数量是多少万座?(2)按照计划,从今年底到后年底,全省5G 基站数量的年平均增长率为多少?22. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由.23. 已知函数()214y x =−−+.(1)当x =____________时,抛物线有最大值,____________.(2)当x ____________时,y 随x 的增大而增大.(3)该函数可以由函数2y x =−的图象经过怎样的平移得到?(4)该抛物线与x 轴交于点____________,与y 轴交于点____________.(写坐标)(5)在下面的坐标系中画出该抛物线的图象.24. 已知图象的顶点坐标是()2,1,且与x 轴的一个交点坐标是()3,0,求此二次函数的解析式. 25. 已知:二次函数()221y x m x m =−++−. (1)求证:该抛物线与x(2)设抛物线与x 轴的两个交点是A B 、(A 在原点左边,B 在原点右边),且3AB =,求此时抛物线的解析式.26. 若直线5y x =−与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C −.(1)求二次函数解析式;(2)若点P 为直线AB 下方抛物线上一点,连接PA ,PB ,求ABP 面积的最大值及此时点P 的坐标;是的2024-2025学年度第一学期第一次月考模拟试卷一、单选题1. 下列是一元二次方程的是( )A. 20ax bx c ++=B. 22x x −=C. ()222x x x −=−D. 11x x += 【答案】B【解析】【分析】本题主要考查了一元二次方程的识别.本题根据一元二次方程的定义解答.【详解】解:A 、当0a ≠时,20ax bx c ++=是一元二次方程,故本选项不符合题意; B 、22x x −=是一元二次方程,故本选项符合题意;C 、变形为22x =不是一元二次方程,故本选项不符合题意;D 、11x x+=含有分式,不是一元二次方程,故本选项不符合题意; 故选:B2. 一元二次方程2310x x −−=的根的情况为( )A. 无实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根【答案】D【解析】【分析】本题考查一元二次方程根的情况,涉及一元二次方程根的判别式,由题中一元二次方程得到判别式,即可判断答案,熟记一元二次方程根的情况与判别式符号关系是解决问题的关键.【详解】解:一元二次方程2310x x −−=, 3,1,1a b c ==−=−,()()21431∴∆−−××−112=+130=>,∴一元二次方程2310x x −−=的根的情况为有两个不相等的实数根,故选:D .3. 一元二次方程2430x x −+=配方后变形为( )A. ()241x −=B. ()221x −=C. ()241x +=D. ()221x +=【答案】B【解析】【分析】本题考查了解一元二次方程—配方法,掌握配方法是解题的关键.先把常数项移到方程右边,再把方程两边加上4,然后把方程左边写成完全平方形式即可.【详解】解:2430x x −+=,∴243x x −=−,∴24434x x −+=−+,即()221x −=.故选:B4. 若关于x 的一元二次方程2690kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 1k >B. 0k ≠C. 1k <D. 1k <且0k ≠ 【答案】D【解析】【分析】本题考查了一元二次方程的定义和一元二次方程根的判别式.根据一元二次方程根的判别式,即可求解.【详解】解:∵关于x 的一元二次方程2690kx x −+=有两个不相等的实数根,∴()26490k ∆=−−×>,且0k ≠,解得:1k <且0k ≠,即k 的取值范围是1k <且0k ≠.故选:D5. 将抛物线2y x =先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线对应的函数解析式为( )A. ()223y x =−+B. ()232y x =−+ C. ()223y x =++ D. ()232y x =−− 【答案】B【解析】【分析】本题考查函数图象的平移,解题的关键是要熟练掌握函数的平移规律:“左加右减,上加下减”,根据函数图象平移规律即可得到答案.【详解】解:将抛物线2y x =先向上平移2个单位长度,得到22y x =+,再向右平移3个单位长度,得到()232y x =−+, 故选:B .6. 若()()()1232,,1,,2,A y B y C y −是抛物线()221y x a =−+上三点,则123,,y y y 为的大小关系为( )A. 123y y y >>B. 132y y y >>C. 321y y y >>D. 312y y y >>【答案】B【解析】【分析】本题主要考查了二次函数的性质,掌握当抛物线开口方向向上时,离对称轴越远,函数值越大成为解题的关键.先确定抛物线的对称轴,再确定抛物线开口向上,此时离对称轴越远,函数值越大,据此即可解答.【详解】解:∵()221y x a =−+,∴抛物线的对称轴为直线1x =,开口向上,∴离对称轴越远,函数值越大,∵点()12,A y −离对称轴最远,点()21,B y 在对称轴上,∴132y y y >>.故选:B .7. 若抛物线242y kx x =−−与x 轴有两个交点,则k 的取值范围为( )A. 2k >−B. 2k ≥−C. 2k >−且0k ≠D. 2k ≥−且0k ≠ 【答案】C【解析】【分析】本题主要考查了二次函数与一元二次方程之间的关系,二次函数的定义,二次函数与x 轴有两个交点,则与之对应的一元二次方程有两个不相等的实数根,据此利用判别式求出k 的取值范围,再结合二次项系数不为0即可得到答案.【详解】解:∵抛物线242y kx x =−−与x 轴有两个交点, 的∴()()2Δ44200k k =−−×−⋅> ≠ , ∴2k >−且0k ≠,故选:C .8. 二次函数2y ax bx c =++图象上部分点的对应值如下表则使0y <的x 的取值范围为( ) x 3− 2− 1− 01 2 3 4 y 60 4− 6− 6− 4− 0 6A. 0x <B. 12x >C. 23x −<<D. 2x <−或3x >【答案】C【解析】 【分析】本题主要考查了二次函数的性质,先求出二次函数的表达式,再根据与x 轴的交点即可求出0y <的x 的取值范围,解题的关键是求出二次函数2y ax bx c ++的表达式.【详解】解:由表格可知2y ax bx c ++经过()2,0−,()3,0,()0,6−,设解析式为()()23y a x x =+−∴()()02036a +−=−, 解得:1a =,∴抛物线解析式为()()2236y x x x x =+−=−−,∴抛物线图象开口向上,与x 轴的交点为()2,0−,()3,0,∴0y <时x 的取值范围是23x −<<,故选:C .二、填空题9. 已知m 是方程2520x x −−=的一个根,则22101m m −−=______. 【答案】3【解析】【分析】本题考查一元二次方程的根的定义、代数式求值,根据一元二次方程的根的定义,将m 代入2520x x −−=,求出252m m −=,即可求出22101m m −−的值.【详解】解:∵m 是方程2520x x −−=的一个根,∴252m m −=,∴()2221012512213,m m m m −−=−−=×−=故答案为:3. 10. 一元二次方程()2110x k x +++=有两个相等的实数根,那么k 的值为_____. 【答案】1或3−【解析】【分析】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.根据判别式的意义得到()2Δ1410k =+−×=,然后解关于k 的方程即可. 【详解】解:由题意得:()2Δ1410k =+−×=,即:()214k +=,解得:1k =或3−,故答案为:1或3−. 11. 若关于x 的一元二次方程()22240m x mx m −++−=有一个根是0,则m 的值为________ 【答案】2−【解析】【分析】此题考查了一元二次方程的定义及方程的解的定义,将0x =代入方程求出2m =±,再根据一元二次方程的定义求出2m ≠,由此得到答案,正确理解一元二次方程的定义及方程的解的定义是解题的关键.【详解】解:将0x =代入()22240m x mx m −++−=,得240m −=, 解得2m =±,∵20m −≠,∴2m ≠,∴2m =−,故答案为2−.12. 用一根长22cm 的铁丝围成面积是230cm 的矩形.假设矩形的一边长是cm x ,则可列出方程_____________________ 【答案】22=302x x −【解析】【分析】本题考查了一元二次方程的运用,要掌握运用长方形的面积计算公式S ab =来解题的方法.本题可根据长方形的周长可以用x 表示另一边长的值,然后根据面积公式即可列出方程.【详解】解:一边长为 c m x ,则另一边长为22cm 2x −, 得22=302x x −. 故答案为:22=302x x −. 13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点,则关于x 的不等式2ax bx c kx m ++≥+的解集是________.【答案】30x −≤≤【解析】【分析】本题考查了二次函数与不等式的关系,主要利用了数形结合的思想,解题关键在于对图象的理解,题目中的不等式的含义为:二次函数的图象在一次函数图象上方时,自变量x 的取值范围.根据图象,写出抛物线在直线上方部分的x 的取值范围即可.【详解】∵抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点, ∴由函数图象可得,不等式2ax bx c kx m ++≥+的解集是30x ≤≤﹣,故答案为:30x −≤≤.14. 抛物线()232y x =−−−的顶点坐标是________ . 【答案】()3,2− 【解析】【分析】本题考查了二次函数2()y a x h k =−+(a ,h ,k 为常数,0a ≠)性质,2()y a x h k =−+是抛物线的顶点式,a 决定抛物线的形状和开口方向,其顶点是(,)h k ,对称轴是直线x h =. 【详解】解:物线()232y x =−−−的顶点坐标是()3,2−.故答案为:()3,2−.15. 已知二次函数()214y x =+−,当02x ≤≤时,函数值y 的取值范围为__________ 【答案】35y −≤≤##53x ≥≥− 【解析】【分析】本题考查二次函数的图象与性质,根据题意得当1x >−时,y 随x 的增大而增大,求得当0x =时,=3y −;2x =时,5y =,即可求解.【详解】解:由题意得,10a =>,对称轴1x =−, ∴当1x >−时,y 随x 增大而增大, ∵当0x =时,=3y −;2x =时,5y =,∴当02x ≤≤时,函数值y 的取值范围为35y −≤≤, 故答案为:35y −≤≤.16. 飞机着陆后滑行的距离(米)关于滑行时间(秒)的函数解析式为260 1.5s t t =−,则飞机着陆后滑行_________秒才停下来. 【答案】20 【解析】【分析】本题主要考查二次函数的应用,飞机停下时,也就是滑行距离最远时,即在本题中需求出s 最大时对应的t 值,根据顶点坐标的实际意义可得答案. 【详解】∵()2260 1.5 1.520600s t t t =−=−−+, ∴当20t =时,s 取得最大值600, ∴飞机着陆后滑行20秒才停下来.的的故答案:20.17. 如图所示,,A B 分别为22(2)1y x =−−图象上的两点,且直线AB 垂直于y 轴,若2AB =,则点B 的纵坐标为________.【答案】1 【解析】【分析】本题主要考查二次函数图象的对称性,能够熟练运用对称轴求点的横坐标是解题关键.求出对称轴后根据对称性求点B 横坐标,再代入解析式即可解答. 【详解】解:∵()2221y x =−−, ∴抛物线对称轴为直线2x =, ∵2AB =,∴点B 横坐标为213+=,将3x =代入()2221y x =−−得1y =, ∴点B 的纵坐标为1. 故答案为:118. 如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高163米,现要水平放置横截面为正方形的箱子,其中两个顶点在抛物线上的大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子正方形的最大边长为______米.【解析】为【分析】本题主要考查了二次函数的实际应用,先建立解析中坐标系,则()4,0A ,设大小正方形的边长分别为2m ,n ,则点B 、C 的坐标分别为:()(),2,m m m n n +,,利用待定系数法求出抛物线解析式为211633y x =−+,再把B 、C 坐标代入求解即可.【详解】解:建立如下平面直角坐标系,则点()4,0A ,设大小正方形的边长分别为2m ,n ,则点B 、C 的坐标分别为:()(),2,m m m n n +,、设抛物线的表达式为:()21603y ax a =+≠, 将点A 的坐标代入上式得:160163a =+,解得13a =−,∴抛物线的表达式为:213y x =− 将点B 、C 的坐标代入上式得:()2211623311633m m n m n =−+ =−++①②,由①得1228m m ==−,(舍去),解得:2m n = = 或2m n = =(舍去),米.. 三、解答题19. 商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由. 【答案】(1)()40x −,2x(2)每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元; (3)不能,理由见解析 【解析】【分析】此题考查了一元二次方程的实际应用,解题的关键是正确分析题目中的等量关系. (1)设每套拖把降价x 元,根据题意列出代数式即可;(2)设每套拖把降价x 元,则每套的销售利润为()40x −元,平均每天的销售量为()202x +套,根据题意列出一元二次方程求解即可;(3)设每套拖把降价y 元,则每套的销售利润为()12080y −−元,平均每天的销售量为()202y +套,根据题意列出一元二次方程,然后依据判别式求解即可. 【小问1详解】解:设每套拖把降价x 元,则每天销售量增加2x 套,即每天销售()202x +套, 每套拖把盈利()1208040x x −−=−元.故答案为:()40x −,()202x +; 【小问2详解】解:设每套拖把降价x 元,则每套的销售利润为()40x −元,平均每天的销售量为()202x +套,依题意得:()()402021242x x −+=, 整理得:2302210x x −+=,解得:121317x x ==,. 又∵需要尽快减少库存,∴17x =.答:每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元; 【小问3详解】解:商家不能达到平均每天盈利1400元,理由如下:设每套拖把降价y 元,则每套的销售利润为()12080y −−元,平均每天的销售量为()202y +套,依题意得:()()120802021400y y −−+=, 整理得:2303000y y −+=. ∵()22Δ43041300300<0b ac =−=−−××=−, ∴此方程无实数解, 即不可能每天盈利1400元. 20. 解方程:(1)2(2x 1)9+=; (2)2x 2﹣4x =1(配方法); (3)22x 5x 10−+=;(4) ()2(x 3)4x 3x 0−−−=【答案】(1)121,2x x ==−;(2)1211x x ;(3)12x x ;(4)1233,5x x == 【解析】【分析】(1)直接开平方法解方程即可;(2)先方程两边除以2,将二次项系数化为1,再在方程两边同时加上1,配方开平方即可解答; (3)确定a 、b 、c ,求出△值,当判断方程有解时,带入公式求解即可; (4)整理方程,利用因式分解法解方程即可. 【详解】(1)2(2x 1)9+= 开平方,得:2x 13+=±, 解得:121,2x x ==−; (2)22x 41x −=,二次项系数化为1,得:21x 22x −=, 配方,得:21x 2112x −+=+, 即23(x 1)2−=,开方,得:1x −=解得:1211x x (3)22x 5x 10−+= ∵a=2,b=﹣5,c=1,∴△=224(5)42117b ac −=−−××=﹥0,∴x =,解得:12x x =(4)()2(x 3)4x 3x 0−−−= ()2(x 3)4x 30x +−−=(3)(53)0x x −−=∴30x −=或530x −=,解得:1233,5x x ==. 【点睛】本题考查解一元二次方程的方法,熟练掌握一元二次方程的各种解法的步骤和注意点,灵活选用解法是解答的关键.21. 随着科技的发展,某省正加快布局以5G 等为代表的新兴产业.据统计,目前该省5G 基站数量约为1.5万座,计划到今年底,全省5G 基站数是目前的4倍;到后年底,全省5G 基站数量将达到17.34万座.(1)计划在今年底,全省5G 基站数量是多少万座?(2)按照计划,从今年底到后年底,全省5G 基站数量的年平均增长率为多少? 【答案】(1)6万座 (2)70% 【解析】【分析】本题考查有理数乘法的应用,一元二次方程的实际应用:(1)根据计划到今年底,全省5G 基站数是目前的4倍,列出算式计算即可;(2)设全省5G 基站数量的年平均增长率为x ,根据题意,列出一元二次方程,进行求解即可 【小问1详解】解:由题意得:1.546×=(万座); 答:计划在今年底,全省5G 基站数量是6万座. 【小问2详解】解:设全省5G 基站数量的年平均增长率为x ,由题意得:()26117.34x +=,解得:120.7, 2.7x x ==−(不符合题意,舍去); 答:全省5G 基站数量的年平均增长率为70%.22. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由. 【答案】(1)当羊圈的边AB 的长为16m 或20m 时,能围成一个面积为2640m 的羊圈 (2)羊圈的面积不能达到2650m ,理由见解析 【解析】【分析】本题考查了一元二次方程的应用,根据题意列出一元二次方程,解一元二次方程是解题的关键. (1)设羊圈的边AB 的长为m x ,则边BC 的长为()722m x -根据题意列出一元二次方程,解方程即可求解;(2)同(1)的方法建立方程,根据方程无实根即可求解. 【小问1详解】解:设羊圈的边AB 的长为m x ,则边BC 的长为()722m x -,根据题意,得()722640x x −=,化简,得2363200x x −+=,解方程,得116x =,220x =,当116x =时,72240x −=, 当220x =时,72232x −=.答:当羊圈的边AB 的长为16m 或20m 时,能围成一个面积为2640m 的羊圈. 【小问2详解】不能,理由如下:根据题意,得()722650x x −=, 化简,得2363250x x −+=,()22436432540b ac −=−×=−−< , ∴该方程没有实数根. ∴羊圈的面积不能达到2650m 23. 已知函数()214y x =−−+.(1)当x =____________时,抛物线有最大值,是____________. (2)当x ____________时,y 随x 的增大而增大.(3)该函数可以由函数2y x =−的图象经过怎样的平移得到?(4)该抛物线与x 轴交于点,与y 轴交于点____________.(写坐标) (5)在下面的坐标系中画出该抛物线的图象.【答案】(1)1;4 (2)1<(3)见解析 (4)(1,0)−和(3,0);(0,3) (5)见解析 【解析】【分析】本题考查了二次函数的性质、抛物线与x 轴的交点坐标、二次函数图象与几何变换以及二次函数的最值,熟练掌握二次函数的性质是解题的关键.(1)根据二次函数的顶点式找出抛物线的顶点坐标,再根据二次项系数为1−得出抛物线开口向下,由此即可得出结论;(2)根据抛物线开口方向结合抛物线的对称轴,即可找出单增区间;(3)找出函数2y x =−的顶点坐标,结合函数2(1)4y x =−−+的顶点坐标,即可找出平移的方法; (4)令0y =可得出关于x 的一元二次方程,解方程求出x 值,由此得出抛物线与x 轴的交点坐标;令0x =求出y 值,由此即可得出抛物线与y 轴的交点坐标;(5)列表,描点,连线即可画出该抛物线的图象. 【小问1详解】解: 函数解析式为2(1)4y x =−−+,∴抛物线的开口向下,顶点坐标为(1,4). ∴当1x =时,抛物线有最大值,是4.故答案为:1;4; 【小问2详解】解: 抛物线的开口向下,对称轴为1x =,∴当1x <时,y 随x 的增大而增大.故答案为:1<; 【小问3详解】解: 函数2y x =−的顶点坐标为(0,0),∴将函数2y x =−的图象先向右平移1个单位长度,再向上平移4个单位长度即可得出函数2(1)4y x =−−+的图象.【小问4详解】解:令0y =,则有2(1)40x −−+=, 解得:11x =−,23x =,∴该抛物线与x 轴的交点坐标为(1,0)−和(3,0).当0x =时,2(01)43y =−−+=, ∴该抛物线与y 轴的交点坐标为(0,3).故答案为:(1,0)−和(3,0);(0,3). 【小问5详解】 解:列表:x 1−0 1 2 3 y343描点,连线,该抛物线的图象如图:.24. 已知图象的顶点坐标是()2,1,且与x 轴的一个交点坐标是()3,0,求此二次函数的解析式. 【答案】()221y x =−−+ 【解析】【分析】本题主要考查了求二次函数解析式,先把解析式设顶点式,再利用待定系数法求解即可. 【详解】解:设此二次函数解析式为()()2210y a x a =−+≠,把()3,0代入()()2210y a x a =−+≠中得:()20321a =−+,解得1a =−,∴此二次函数解析式为()221y x =−−+. 25. 已知:二次函数()221y x m x m =−++−.(1)求证:该抛物线与x 轴一定有两个交点;(2)设抛物线与x 轴的两个交点是A B 、(A 在原点左边,B 在原点右边),且3AB =,求此时抛物线的解析式.【答案】(1)见解析 (2)2y x x 2−− 【解析】【分析】(1)根据()()22Δ2418m m m =+−−=+的符号,即可求解,为(2)由根与系数关系,列出()()2224A B A B A B AB x x x x x x =−=+−⋅,即可求解,本题考查了根的判别式,根据系数关系,解题的关键是:熟练掌握根的判别式,根据系数关系.【小问1详解】证明:()()22Δ2418m m m =+−−=+,20m ≥ ,2Δ880m ∴=+≥>,故抛物线与x 轴一定有两个交点,【小问2详解】解:令0y =,得()2210x m x m −++−=, 由(1)知Δ0>,2A B x x m ∴+=+,1A B x x m ⋅=−,()()()()22224241A B A B A B AB x x x x x x m m =−=+−⋅=+−−, ()()22419m m ∴+−−=,解得1m =±,A 在原点左边,B 在原点右边,10A B x x m ∴⋅=−<,1m ∴<,1m ∴=−,故抛物线的表达式为:2y x x 2−−.26. 若直线5y x =−与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C −.(1)求二次函数的解析式;(2)若点P 为直线AB 下方抛物线上一点,连接PA ,PB ,求ABP 面积的最大值及此时点P 的坐标;【答案】(1)245y x x =−−(2)当52x =时,ABP S 最大,最大为1258,这时点P 的坐标为535,24 − 【解析】【分析】本题考查二次函数的综合应用,熟练掌握的图像和性质是解题的关键. (1)利用待定系数法求函数解析式即可;(2)过点P 作PQ x ⊥轴交AAAA 于点Q ,设点P 的坐标为()2,45x x x −−,则点Q 的坐标为(),5x x −,则25PQ x x =−+,然后根据ABPS PQ OB =⋅ 计算即可. 【小问1详解】解:当xx =0时,5y =−,∴点A 的坐标为()0,5−, 当0y =时,50x −=,解得5x =,∴点B 的坐标为()5,0,设抛物线的解析式为()()51y a x x =−+,代入()0,5−得:55a −=−,解得:1a =,∴二次函数的解析式为()()25145y x x x x =−+=−−; 【小问2详解】解:过点P 作PQ x ⊥轴交AAAA 于点Q ,设点P 的坐标为()2,45x x x −−,则点Q 的坐标为(),5x x −, ∴225(45)5PQ x x x x x =−−−−=−+, ∴()2211551255522228ABP S PQ OB x x x =⋅=×−+×==−−+ , 当52x =时,ABP S 最大,最大为1258,这时点P 的坐标为535,24 − .。
九年级数学上册第一次月考测试卷带答案
九年级数学上册第一次月考测试卷带答案A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若实数a 满足2a =,那么a 的取值情况是( )A .0a =B .2a =C .0a =或2a =D .2a ≤2、(4分)我国古代用勾、股和弦分别表示直角三角形的两条直角边和斜边,如图由四个全等的直角三角形和一个小正方形拼成一个大正方形,数学家邹元治利用该图证明了勾股定理,现已知大正方形面积为9,小正方形面积为5,则每个直角三角形中勾与股的差的平方为( )A .4B .3C .2D .13、(4分)如图,函数y ax =和2y kx =-的图象相交于点()2,3A -,则不等式2ax kx ≥-的解集为( )A .2x ≤B .3x ≤-C .2x ≥D .3x ≥-4、(4分)能判定四边形ABCD 是平行四边形的是( )A .AD //BC ,AB =CDB .∠A =∠B ,∠C =∠D C .∠A =∠C ,∠B =∠D D .AB =AD ,CB =CD5、(4分)已知某一次函数的图象与直线2y x =平行,且过点(3, 7),那么此一次函数为( ) A .21y x =-B .21y x =+C .23y x =+D .37y x =+6、(4分)晋商大院的许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中是中心对称图形但不是轴对称图形的是( )A .B .C .D .7、(4分)下列说法2①是8的立方根;4±②是64的立方根;13-③是127-的立方根;3(4)-④的立方根是4-,其中正确的说法有()个. A .1 B .2 C .3 D .48、(4分)已知□ABCD ,根据图中尺规作图的痕迹,判断下列结论中不一定成立的是( )A .∠DAE =∠BAEB .∠DEA = 12∠DABC .DE =BED .BC =DE二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)函数y x 的取值范围是________.10、(4分)在△ABC 中,BC=a .作BC 边的三等分点C 1,使得CC 1:BC 1=1:2,过点C 1作AC 的平行线交AB 于点A 1,过点A 1作BC 的平行线交AC 于点D 1,作BC 1边的三等分点C 2,使得C 1C 2:BC 2=1:2,过点C 2作AC 的平行线交AB 于点A 2,过点A 2作BC 的平行线交A 1C 1于点D 2;如此进行下去,则线段A n D n 的长度为______________.11、(4分)在方程组26x y ax y +=⎧-=⎨⎩中,已知0x >,0y <则a 的取值范围是______.12、(4分)使得分式值242x x -+为零的x 的值是_________; 13、(4分)设a 、b 是方程220190x x +-=的两个实数根,则()()11a b --的值为_____.三、解答题(本大题共5个小题,共48分)14、(12分)已知T 229633a a a a a -=+++()(). (1)化简T ;(2)若正方形ABCD 的边长为a ,且它的面积为9,求T 的值.15、(8分)先化简,再求值:222221412()x x x x x x x x-+-+÷-+,且x 为满足﹣3<x <2的整数. 16、(8分)已知:一次函数y =(3﹣m )x +m ﹣1.(1)若一次函数的图象过原点,求实数m 的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m 的取值范围.17、(10分)已知:甲、乙两车分别从相距300千米的A B ,两地同时出发相向而行,其中甲到B 地后立即返回,下图是它们离各自出发地的距离y (千米)与行驶时间x (小时)之间的函数图象.(1)求甲车离出发地的距离y (千米)与行驶时间x (小时)之间的函数关系式,并写出自变量的取值范围;(2)当它们行驶到与各自出发地的距离相等时,用了92小时,求乙车离出发地的距离y (千米)与行驶时间x (小时)之间的函数关系式;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.18、(10分)直线MN 与x 轴、y 轴分别交于点M 、N ,并且经过第二、三、四象限,与反比例函数y =k x(k <0)的图象交于点A 、B ,过A 、B 两点分别向x 轴、y 轴作垂线,垂足为C 、D 、E 、F ,AD 与BF 交于G点.(1)比较大小:S 矩形ACOD S 矩形BEOF (填“>,=,<”).(2)求证:①AG •GE =BF •BG ;②AM =BN ;(3)若直线AB 的解析式为y =﹣2x ﹣2,且AB =3MN ,则k 的值为 .B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)将一次函数y =2x ﹣3的图象沿y 轴向上平移3个单位长度,所得直线的解析式为_____.20、(4分)已知等腰三角形两条边的长为4和9,则它的周长=______.21、(4分)已知在正方形ABCD 中,4AC =则正方形ABCD 的面积为__________.22、(4分)如图,直线y ax b =+(a >0)与x 轴交于点(-1,0),关于x 的不等式ax b +>0的解集是_____________.23、(4分)如图,在▱ABCD 中,AB=2.BC=3.∠BAD=120°.AE 平分∠BAD ,交BC 于点E ,过点C 作CF∥AE,交AD于点F,则四边形AECF的面积为________.二、解答题(本大题共3个小题,共30分)BFCG又作平行24、(8分)如图,设线段AB的中点为C,以AC和CB为对角线作平行四边形AECD、.四边形CFHD、CGKE.求证:H,C,K三点共线.25、(10分)如图,在ABCD中,延长边BA到点E,延长边DC到点F,使CF=AE,连接EF,分别交AD,BC于点M,N.求证:AM=CN.26、(12分)如图是三张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上(1)在图(1)中,点P在小正方形的顶点上,作出点P关于直线AC的对称点Q(2)在图(2)中,画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上(3)在图(3)中,B是AC的中点,作线段AB的垂直平分线,要求:①仅用无刻度直尺,且不能用直尺中的直角;②保留必要的作图痕迹参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】.【详解】a+2=﹣(a﹣2)∴a﹣2≤0∴a≤2故选D.(0)(0)a aa a≥⎧=⎨-≤⎩是解决问题的关键.2、D【解析】设勾为x,股为y,根据面积求出xy=2,根据勾股定理求出x2+y2=5,根据完全平方公式求出x﹣y即可.【详解】设勾为x,股为y(x<y)∵大正方形面积为9,小正方形面积为5∴4×12xy+5=9∴xy=2∵x2+y2=5∴y﹣x=1(x﹣y)2=1故选:D.本题考查了勾股定理和完全平方公式,能根据已知和勾股定理得出算式xy =2和x 2+y 2=5是解此题的关键. 3、A【解析】以交点为分界,结合图象写出不等式2ax kx ≥-的解集即可.【详解】因为点A 的坐标为()2,3-看函数图象,当y ax =的图象在2y kx =-的图像上方时2ax kx ≥-,此时2x ≤故选:A .此题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.关键是求出A 点坐标以及利用数形结合的思想.4、C【解析】根据平行四边形的判定定理依次确定即可.【详解】A. AD//BC ,AB=CD ,不能判定四边形ABCD 是平行四边形,故不符合题意;B. ∠A=∠B ,∠C=∠D ,不能判定四边形ABCD 是平行四边形,故不符合题意;C. ∠A=∠C ,∠B=∠D ,能判定四边形ABCD 是平行四边形,故符合题意;D. AB=AD ,CB=CD ,不能判定四边形ABCD 是平行四边形,故不符合题意;故选:C.此题考查平行四边形的判定定理,熟记定理内容即可正确解答.5、B【解析】一次函数的图象与直线y=2x 平行,所以k 值相等,即k=2,又因该直线过点(3, 7),所以就有7=6+b ,从而可求出b 的值,进而解决问题.【详解】∵一次函数y=kx+b 的图象与直线2y x =平行∴k=2则即一次函数的解析式为y=2x+b.∵直线过点(3, 7)∴7=6+b∴b=1.∴直线l的解析式为y=2x+1.故选B.此题考查一次函数中的直线位置关系,解题关键在于利用待定系数法求解.6、B【解析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,也是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故正确;C、是轴对称图形,也是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故错误.故选B.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7、C【解析】根据立方根的概念即可求出答案.【详解】①2是8的立方根.故①正确.②4是64的立方根.故②错误.③13-是127-的立方根.故③正确.④由于(﹣4.3..64.所以﹣64的立方根是﹣4.故④正确.故选C.本题考查了立方根的概念.解题的关键是正确理解立方根的概念.本题属于基础题型.8、C【解析】根据角平分线的性质与平行四边形的性质对各选项进行逐一分析即可.【详解】解:A、由作法可知AE平分∠DAB,所以∠DAE=∠BAE,故本选项不符合题意;B、∵CD∥AB,∴∠DEA=∠BAE=12∠DAB,故本选项不符合题意;C、无法证明DE=BE,故本选项符合题意;D、∵∠DAE=∠DEA,∴AD=DE,∵AD=BC,∴BC=DE,故本选项不符合题意.故选B.本题考查的是作图−基本作图,熟知角平分线的作法和平行四边形的性质是解答此题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、x≤1【解析】分析:根据二次根式有意义的条件解答即可.详解:∵二次根式有意义,被开方数为非负数.1 -x≥0解得x≤1.故答案为x≤1.点睛:本题考查了二次根式有意义的条件,熟知二次根式有意义,被开方数为非负数是解题的关键.10、123nna-【解析】根据平行四边形的判定定理得到四边形A1C1CD1为平行四边形,根据平行四边形的性质得到A1D1=C1C,总结规律,根据规律解答.【详解】∵A1C1∥AC,A1D1∥BC∴四边形A1C1CD1为平行四边形∴A1D1=C1C=13a=11123a-同理,四边形A2C2C1D2为平行四边形∴A 2D 2=C 1C 2=29a=21223a - ……∴线段A n D n =123n n a - 故答案为:123n n a -. 本题考查的是平行四边形的判定和性质、图形的变化规律,掌握平行四边形的判定定理和性质定理是解题的关键.11、63a -<<【解析】先根据加减消元法解二元一次方程组,解得63263a x a y +⎧=⎪⎪⎨-⎪=⎪⎩,再根据0x >,0y <可列不等式组6032603a a +⎧>⎪⎪⎨-⎪<⎪⎩,解不等式组即可求解.【详解】方程组x y a 2x y 6+=⎧-=⎨⎩①② 由①+②,可得:36x a =+ 解得63a x +=把63a x +=代入①可得:26 3a y -= 因为0x > 0y < 所以6032603a a +⎧>⎪⎪⎨-⎪<⎪⎩所以不等式组的解集是63a -<<故答案为: 63a -<<.本题主要考查解含参数的二元一次方程组和一元一次不等式组,解决本题的关键是要熟练掌握解含参数的二元一次方程的解法.12、2【解析】根据分式的性质,要使分式有意义,则必须分母不能为0,要使分式为零,则只有分子为0,因此计算即可.【详解】解:要使分式有意义则20x +≠ ,即2x ≠-要使分式为零,则240x -= ,即2x =±综上可得2x =故答案为2本题主要考查分式的性质,关键在于分式的分母不能为0.13、-1【解析】根据根与系数的关系可得出1a b +=-,2019ab =-将其代入()()()111a b ab a b --=-++中即可得出结论.【详解】∵a 、b 是方程220190x x +-=的两个实数根∴1a b +=- 2019ab =-∴()()()111a b ab a b --=-++2019112017=-++=-.故答案为:-1.本题考查了根与系数的关系,牢记“两根之和等于b a -,两根之积等于c a ”是解题的关键. 三、解答题(本大题共5个小题,共48分)14、(1)1a ;(2)13. 【解析】.1)原式通分并利用同分母分式的加法法则计算即可求出值;.2)由正方形的面积求出边长a 的值,代入计算即可求出T 的值.【详解】.1.T22222 a96a3a31 a a3a a3a a3a-++=+==+++()()()()()..2)由正方形的面积为9,得到a.3,则T1 3 =.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.15、-5【解析】根据分式的运算法则即可求出答案.【详解】原式=[2(1)(1)xx x--+(2)(2)(2)x xx x-++]÷1x=.1xx-+2xx-.•x=x.1+x.2=2x.3由于x≠0且x≠1且x≠.2所以x=.1原式=.2.3=.5本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.16、(1)m=1;(2)3<m<1【解析】(1)由一次项系数非零及一元一次函数图象上点的坐标特征,可得出关于m的一元一次不等式及一元一次方程,解之即可得出实数m的值;(2)由一次函数的图象经过第二、三、四象限,利用一次函数图象与系数的关系可得出关于m的一元一次不等式组,解之即可得出实数m的取值范围.【详解】(1)∵一次函数y=(3﹣m)x+m﹣1的图象过原点∴30 50mm-≠⎧⎨-=⎩解得:m=1.(2)∵一次函数y=(3﹣m)x+m﹣1的图象经过第二、三、四象限∴3050mm<<-⎧⎨-⎩解得:3<m<1.本题考查了一次函数图象与系数的关系以及一次函数图象上点的坐标特征,解题的关键是:(1)根据一次项系数非零及一元一次函数图象上点的坐标特征,找出关于m 的一元一次不等式及一元一次方程;(2)牢记“k <0,b <0⇔y =kx +b 的图象在二、三、四象限”.17、见解析【解析】根据分段函数图像写出分段函数.试题分析:(1)当3x ≤时甲的函数图像过点(0,0)和(3,300),此时函数为:100y x =,当x=3时甲到达B 地,当2734x <≤时过点(3,300)和点27(,0)4,设此时函数为y ax b =+,则可得到方程组:3003a b =+,2704a b +=解得80,540a b =-=.2734x <≤时函数为:80540y x =-+,当274x >,y=0.(2)由图知乙的函数图像过点(0,0),设它的函数图像为:y="mx," .当它们行驶到与各自出发地的距离相等时,用了92小时,.998054022m =-⋅+,解得:m=40,.乙车离出发地的距离y (千米)与行驶时间x (小时)之间的函数关系式为:y=40x.(3)当它们在行驶的过程中,甲乙相遇两次即甲从A 向B 行驶的过程中相遇一次(3x ≤)和甲从B 返回A 的过程中相遇一次(2734x <≤),.当3x ≤时,有1510040300,7x x x +==;当2734x <≤,有98054040,2x x x -+==,.它们在行驶的过程中相遇的时间为:15972x x ==或. 考点:一次函数的应用.18、(1)=;(2)①见解析,②见解析;(3)﹣1.【解析】(1)根据反比例函数的比例系数的几何意义即可作出判断;(2)①设A 的横坐标是a ,B 的横坐标是b ,分别代入y =k x ,则A 的坐标是(a ,k a ),B 的坐标是(b ,k b),利用a 、b 表示出AG 、GE 、BF 、BG 的长,即可证得;②求得直线AB 的解析式,即可求得M 的坐标,即可证明CM =BF ,即可证得△ACM ≌△NFB ,根据全等三角形的对应边相等,即可证得;(3)根据AM =BN ,且AB =3MN ,可以得到AM =BN =MN ,则OF =2ON ,OM =BF ,在y =﹣2x ﹣2中,求得M 、N 的坐标,即可求得B 的坐标,代入反比例函数解析式即可求得k 的值.【详解】(1)根据反比例函数k 的几何意义可得:S 矩形ACOD =S 矩形BEOF =|k |故答案为:=;(2).设A 的横坐标是a ,B 的横坐标是b ,分别代入y =k x ,则A 的坐标是(a ,k a ),B 的坐标是(b ,k b ) 则AG =b ﹣a ,GE =k a ,BF =b ,BG =k a ﹣k b则AG •GE =(b ﹣a )•k a =()k b a a- BF •BG =b (k a ﹣k b )=()k b a a- .AG •GE =BF •BG ;.设过A 、B 的直线的解析式是y =mx +n ,则k ma n a k bm n b ⎧+=⎪⎪⎨⎪+=⎪⎩解得:()k m ab a b k n ab ⎧=-⎪⎪⎨+⎪=⎪⎩则函数的解析式是:y =﹣k ab x +()a b k ab+ 令y =0,解得:x =a +b则M 的横坐标是a +b.CM =a +b ﹣a =b.CM =BF则.ACM ..NFB.AM =BN ;(3).AM =BN ,且AB =3MN.AM =BN =MN.ON =NF在y =﹣2x ﹣2中,令x =0,解得:y =﹣2则ON =2令y=0,解得:x=﹣1,则OM=1.OF=2ON=1,OM=BF=1.B的坐标是(1,﹣1)把(1,﹣1)代入y=kx中,得:k=﹣1故答案为:﹣1.本题考查的是反比例函数与几何综合题,涉及了反比例函数k的几何意义,待定系数法,全等三角形的判定与性质等,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、y=2x【解析】根据上加下减,左加右减的法则可得出答案【详解】一次函数y=2x﹣3的图象沿y轴向上平移3个单位长度变为:y=2x﹣3+3=2x此题考查一次函数图象与几何变换,解题关键在于掌握平移的性质20、1【解析】分9是腰长与底边长两种情况讨论求解即可.【详解】①当9是腰长时,三边分别为9、9、4时,能组成三角形周长=9+9+4=1②当9是底边时,三边分别为9、4、4∵4+4<9∴不能组成三角形综上所述,等腰三角形的周长为1.故答案为:1.本题考查了等腰三角形的两腰相等的性质,难点在于要分情况讨论求解.21、8【解析】正方形是特殊的菱形,故根据菱形的面积计算公式即可求正方形ABCD的面积,即可解题.【详解】如图∵AC的长为4∴正方形ABCD的面积为12×42=1故答案为:1.本题考查了正方形面积的计算,掌握正方形的面积公式是解题关键.22、x>-1【解析】先根据一次函数y=ax+b的图象交x轴交于点(-1,0)可知,当x>-1时函数图象在x轴的上方,故可得出结论.【详解】∵直线y=ax+b(a>0)与x轴交于点(-1,0),由函数图象可知,当x>-1时函数图象在x轴的上方∴ax+b>0的解集是x>-1.故答案为:x>-1.本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的取值范围是解答此题的关键.23【解析】【分析】如图所示,过点A作AM⊥BC,垂足为M.先证明△ABE是等边三角形,从而求得BE=AB=2,继而求得AM长,再证明四边形AECF是平行四边形,继而根据平行四边形的面积公式进行计算即可求得.【详解】如图所示,过点A作AM⊥BC,垂足为M∵四边形ABCD是平行四边形∴AD//BC∴∠B=180°-∠BAD=180°-120°=60°∠DAE=∠AEB∵AE平分∠BAD.∠BAD=120°∴∠DAE=60°∴∠AEB=60°∴△ABE是等边三角形∴BE=AB=2∴=又∵CF//AE.∴四边形AECF是平行四边形∵CE=BC-BE=3-2=1∴S四边形AECF【点睛】本题考查了平行四边形的判定与性质、等边三角形的判定与性质、勾股定理等,正确添加辅助线、熟练应用相关的定理与性质是解题的关键.二、解答题(本大题共3个小题,共30分)24、证明见解析.【解析】如图,连接DE交AC于N,连接EG交KC于M,连接DF交CH于Q,连接FG交BC于J,连接MN,NQ,DG想办法证明四边形MNQJ是平行四边形即可解决问题;QJ,JM,.【详解】证明:如图,连接DE交AC于N,连接EG交KC于M,连接DF交CH于Q,连接FG交BC于J,连接MN,NQ,QJ,JM,DG.四边形AECD 是平行四边形EN ND ∴=,同法可证:EM MG =//MN DG ∴ 12MN DG = 同法可证://QJ DG 12QJ DG =//MN QJ ∴ MN QJ =∴四边形MNQJ 是平行四边形NJ ∴与MQ 互相平分AC BC = AN CN = CJ BJ =M ∴、C 、Q 共线H ∴,C ,K 三点共线.本题考查平行四边形的性质和判定,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题.25、见解析.【解析】由题意可证△AEM ≌△FNC ,可得结论.【详解】∵四边形ABCD 是平行四边形∴BE ∥DF ,AD ∥BC∴∠E=∠F ,∠AME=∠BNE又∵∠BNE=∠CNF∴∠AME=∠CNF在△AEM 和OCFN 中E F AME CNF AE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ΔAEM ≌ΔCFN(AAS)∴AM=CN.考查了平行四边形的性质,全等三角形的性质和判定,灵活运用这些性质解决问题是本题的关键.26、(1)见解析;(2)见解析;(3)见解析【解析】(1)利用数形结合的思想解决问题即可.(2,(3)取格点M ,N ,作直线MN 交AC 于E ,取格点F ,作直线EF ,直线EF 即为所求.【详解】解:(1)如图1所示.Q 为所求(2)如图2所示,矩形ABCD 为所求(3)取格点M ,N ,作直线MN 交AC 于E ,取格点F ,作直线EF ,直线EF 即为所求本题主要考查了线段垂直平分线的性质,矩形的判定与性质,作图-轴对称变换,掌握线段垂直平分线的性质,矩形的判定与性质,作图-轴对称变换是解题的关键.。
九年级数学第一次月考试卷【含答案】
九年级数学第一次月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。
A. a/2B. a√2C. 2aD. a²2. 下列函数中,奇函数是()。
A. y = x²B. y = |x|C. y = x³D. y = x² + 13. 在直角坐标系中,点P(2, -3)关于原点的对称点是()。
A. (2, 3)B. (-2, 3)C. (-2, -3)D. (2, -3)4. 若一组数据的平均数为10,方差为4,则这组数据的标准差为()。
A. 2B. 4C. 10D. 205. 在三角形ABC中,若sinA = 3/5,则cosB的值为()。
A. 3/5B. 4/5C. 3/4D. 4/3二、判断题(每题1分,共5分)6. 任何两个奇函数的乘积一定是偶函数。
()7. 在一次函数y = kx + b中,若k > 0,则函数图像一定经过第一、三象限。
()8. 两个负数相乘的结果一定是正数。
()9. 若一个多边形的内角和为540度,则这个多边形一定是五边形。
()10. 任何实数的平方都是非负数。
()三、填空题(每题1分,共5分)11. 若一个等差数列的首项为2,公差为3,则第10项的值为______。
12. 若一个等比数列的首项为3,公比为2,则第5项的值为______。
13. 在直角三角形中,若一个锐角的正弦值为1/2,则这个角的度数为______度。
14. 若一个圆的半径为r,则这个圆的面积为______。
15. 若一个正方体的体积为V,则这个正方体的表面积为______。
四、简答题(每题2分,共10分)16. 简述等差数列和等比数列的定义。
17. 简述正弦函数和余弦函数的定义域和值域。
18. 简述勾股定理的内容。
19. 简述圆的标准方程和一般方程。
20. 简述正方体的体积和表面积的公式。
五、应用题(每题2分,共10分)21. 已知一个等差数列的前5项和为35,第5项为15,求该数列的首项和公差。
九年级上册数学第一次月考试卷(含答案)
九年级月考(一)数学试题一.选择题(10×4)1.二次函数2(1)2y x =-+的最小值是( )A .2-B .2C .1-D .12.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为A. 0B. -1C. 1D. 23.二次函数22(1)3y x =-+的图象的顶点坐标是( ) A .(13),B .(13)-,C .(13)-,D .(13)--,4.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是 ( )5.将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大A. 7B. 6C. 5D. 4 6. 如图所示,A (1x ,1y )、B (2x ,2y )、C (3x ,3y )是函数xy 1=的图象在第一象限分支上的三个点,且1x <2x <3x ,过A 、B 、C 三点分别作坐标轴的垂线,得矩形ADOH 、BEON 、CFOP ,它们的面积分别为S 1、S 2、S 3,则下列结论中正确的是( ) A .S 1<S 2<S 3 B .S 3 <S 2< S 1C .S 2< S 3< S 1D .S 1=S 2=S 37.已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过 ( ) A (-a ,-b ) B (a ,-b ) C (-a ,b ) D (0,0)8.在平面直角坐标系中,如果抛物线y =2x 2不动,而把x 轴、y 轴分别向上、 向右平移2个单位,那么在新坐标系下抛物线的解析式是A .y =2(x -2)2 + 2B .y =2(x + 2)2-2C .y =2(x -2)2-2D .y =2(x + 2)2 + 2y–1 33O xP1 xy C OA B9.如图,正方形ABOC 的边长为2,反比例函数ky x=过点A ,则k 的值是( ) A .2 B .2- C .4 D .4-10.一个函数的图象如图,给出以下结论: ①当0x =时,函数值最大;②当02x <<时,函数y 随x 的增大而减小; ③存在001x <<,当0x x =时,函数值为0.其中正确的结论是( ) A .①② B .①③C .②③D .①②③五、填空题(5×5)11.如图,一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++.则他将铅球推出的距离是 m . 12.数学课本上,用“描点法”画二次函数2y ax bx c =++的图象时,列了如下表格:x… 2-1- 0 1 2 … y…162- 4-122- 2-122- …根据表格上的信息回答问题:该二次函数2y ax bx c =++在3x =时,y =13. 已知函数22y x x c =-++的部分图象如图所示,则c=______,当x______时,y 随x 的增大而减小. 14.如图,在反比例函数2y x=(x<0)的图象上,有点P 1(x 1,y 1),p 2(x 2,y 2)若x 1<x 2,则y 1___y 2 .15.如图,在平面直角坐标系中,函数ky x=(0x >,常数0k >)的图象经过点(12)A ,,()B m n ,,(1m >),过点B 作y 轴的垂线,垂足为C .若ABC △的面积为2,则点B 的坐标为 .(第10(第7题)ox13y OxC A (1,2)B (m ,n )三.解答题(85分)16.(8分)已知一次函数y =ax +b 的图像与反比例函数4y x=的图像交于A (2,2),B (-1,m ),求一次函数的解析式.17.(8分)已知二次函数y=x 2-2x-1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学第一次月考试卷带答案一.选择题:(每题3分)1.已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m的值等于()A. 1 B.0 C.﹣1 D.22.方程x2=2x的解是()A.x=2 B.x1=2,x2=0 C.x1=﹣,x2=0 D.x=03.解方程(5x﹣1)2=3(5x﹣1)的适当方法是()A.开平方法B.配方法C.公式法D.因式分解法4.从正方形的铁皮上,截去2cm宽的一条长方形,余下的面积48cm2,则原来的正方形铁皮的面积是()A.9cm2 B.68cm2 C.8cm2 D.64cm25.方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则()A.m=±2 B.m=2 C.m=﹣2 D.m≠±26.函数y=x2﹣2x+3的图象的顶点坐标是()A.(1,﹣4)B.(﹣1,2)C.(1,2)D.(0,3)7.一元二次方程(m﹣2)x2﹣4mx+2m﹣6=0有两个相等的实数根,则m等于()A.﹣6 B.1 C.﹣6或1 D.68.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.ab>0,c>0 B.ab>0,c<0 C.ab<0,c>0 D.ab<0,c<09.如果关于x的一元二次方程ax2+x﹣1=0有实数根,则a的取值范围是()A.a>﹣B.a≥﹣C.a≥﹣且a≠0 D.a>且a≠010.对于抛物线y=﹣(x﹣5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(﹣5,3)D.开口向上,顶点坐标(﹣5,3)二、填空题(每题3分)11.已知二次函数y=x2+bx+3的对称轴为x=2,则b=.12.一元二次方程2x2﹣3x+1=0的二次项系数为,一次项系数为,常数项为.13.抛物线y=ax2+bx+c过点A(1,0),B(3,0),则此抛物线的对称轴是直线x=.14.一元二次方程ax2+bx+c=0 (a≠0)的求根公式是:.15.抛物线y=x2+bx+c经过A(﹣1,0),B(3,0)两点,则这条抛物线的解析式为.16.当代数式x2+3x+5的值等于7时,代数式3x2+9x﹣2的值是.17.关于x的一元二次方程mx2+(2m﹣1)x﹣2=0的根的判别式的值等于4,则m=.18.目前甲型H1N1流感病毒在全球已有蔓延趋势,世界卫生组织提出各国要严加防控,因为曾经有一种流感病毒,若一人患了流感,经过两轮传染后共有81人患流感.如果设每轮传染中平均一个人传染x个人,那么可列方程为.19.若一个三角形的三边长均满足方程x2﹣6x+8=0,则此三角形的周长为.20.参加一次同学聚会,每两人都握一次手,所有人共握了45次,若设共有x人参加同学聚会.列方程得.三、解答题21.解方程(1)(3x+2)2=24(2)x2﹣7x+10=0(3)(2x+1)2=3(2x+1)(4)x2﹣2x﹣399=0.22.已知a、b、c均为实数,且+|b+1|+(c+3)2=0,求方程ax2+bx+c=0的根.23.如图1,在一幅矩形地毯的四周镶有宽度相同的花边.如图2,地毯中央的矩形图案长8米、宽6米,整个地毯的面积是80平方米.求花边的宽.24.已知一个二次函数的图象经过(﹣1,10),(1,4),(2,7)三点.求这个二次函数的解析式,并求出它的开口方向、对称轴和顶点坐标.25.某电脑公司2010年的各项经营收入中,经营电脑配件的收入为600万元,占全年经营总收入的40%,该公司预计2012年经营总收入要达到2160万元,且计划从2010年到2012年每年经营总收入的年增长率相同,问2011年预计经营总收入为多少万元?26.有一面积为150平方米的矩形鸡场,鸡场的一边靠墙(墙长18米),另三边用竹篱笆围成,如果竹篱笆的长为35米.求鸡场的长和宽.27.某商场销售一批衬衫,进货价为每件40元,按每件50元出售,一个月内可售出500件.已知这种衬衫每件涨价1元,其销售量要减少10件.为在月内赚取8000元的利润,同时又要使顾客得到实惠.售价应定为每件多少元?2014-2015学年黑龙江省伊春市铁力三中九年级(上)第一次月考数学试卷参考答案与试题解析一.选择题:(每题3分)1.已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m的值等于()A. 1 B.0 C.﹣1 D.2考点:一元二次方程的解;代数式求值.专题:计算题.分析:一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值;即用这个数代替未知数所得式子仍然成立;将m代入原方程即可求m2﹣m的值.解答:解:把x=m代入方程x2﹣x﹣1=0可得:m2﹣m﹣1=0,即m2﹣m=1;故选A.点评:此题应注意把m2﹣m当成一个整体.利用了整体的思想.2.方程x2=2x的解是()A.x=2 B.x1=2,x2=0 C.x1=﹣,x2=0 D.x=0考点:解一元二次方程-因式分解法.分析:把右边的项移到左边,用提公因式法因式分解求出方程的根.解答:解:x2=2x,x2﹣2x=0,x(x﹣2)=0,∴x=0,x﹣2=0,∴x1=0,x2=2,故选:B.点评:本题考查了运用因式分解法解一元二次方程的方法:先把方程右边化为0,再把方程左边进行因式分解,然后一元二次方程就可化为两个一元一次方程,解两个一元一次方程即可.3.解方程(5x﹣1)2=3(5x﹣1)的适当方法是()A.开平方法B.配方法C.公式法D.因式分解法考点:解一元二次方程-因式分解法.分析:移项后提公因式,即可得出选项.解答:解:(5x﹣1)2=3(5x﹣1)(5x﹣1)2﹣3(5x﹣1)=0,(5x﹣1)(5x﹣1﹣3)=0,即用了因式分解法,故选D.点评:本题考查了对解一元二次方程的解法的应用.4.从正方形的铁皮上,截去2cm宽的一条长方形,余下的面积48cm2,则原来的正方形铁皮的面积是()A.9cm2 B.68cm2 C.8cm2 D.64cm2考点:一元二次方程的应用.专题:几何图形问题.分析:可设正方形的边长是xcm,根据“余下的面积是48cm2”,余下的图形是一个矩形,矩形的长是正方形的边长,宽是x﹣2,根据矩形的面积公式即可列出方程求解.解答:解:设正方形的边长是xcm,根据题意得:x(x﹣2)=48,解得x1=﹣6(舍去),x2=8,那么原正方形铁片的面积是8×8=64cm2.故选D.点评:本题考查了一元二次方程应用以及矩形及正方形面积公式,表示出矩形各边长是解题关键.5.方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则()A.m=±2 B.m=2 C.m=﹣2 D.m≠±2考点:一元二次方程的定义.专题:压轴题.分析:本题根据一元二次方程的定义,必须满足两个条件:(1)未知数的次数是2;(2)二次项系数不为0.据此即可求解.解答:解:由一元二次方程的定义可得,解得:m=2.故选B.点评:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.6.函数y=x2﹣2x+3的图象的顶点坐标是()A.(1,﹣4)B.(﹣1,2)C.(1,2)D.(0,3)考点:二次函数的性质.分析:利用配方法化简y=x2﹣2x+3可以得到y=(x﹣1)2+2,由此即可确定顶点的坐标.解答:解:∴y=x2﹣2x+3=x2﹣2x+1+2=(x﹣1)2+2,故顶点的坐标是(1,2).故选C.点评:考查求抛物线的顶点坐标的方法.7.一元二次方程(m﹣2)x2﹣4mx+2m﹣6=0有两个相等的实数根,则m等于()A.﹣6 B.1 C.﹣6或1 D.6考点:根的判别式;解一元二次方程-因式分解法.分析:利用一元二次方程有相等的实数根,∴=0,建立关于m的等式,再根据m﹣2≠0,求出m的值.解答:解:由题意知,∴=16m2﹣4×(m﹣2)(2m﹣6)=0,且m﹣2≠0∴m2+5m﹣6=0,m≠2即(m+6)(m﹣1)=0解得:m1=﹣6,m2=1.故选C.点评:总结:一元二次方程根的情况与判别式∴的关系:(1)∴>0⇔方程有两个不相等的实数根;(2)∴=0⇔方程有两个相等的实数根;(3)∴<0⇔方程没有实数根.8.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.ab>0,c>0 B.ab>0,c<0 C.ab<0,c>0 D.ab<0,c<0考点:二次函数图象与系数的关系.专题:压轴题.分析:由抛物线开口方向向下可以得到a<0,由抛物线对称轴在y轴右侧可以得到﹣>0,可得到ab<0,由抛物线与y轴交点坐标为(0,c)点,由图知,由该点在x轴上方可以得到c>0,所以可以作出选择.解答:解:∴抛物线开口方向向下,∴a<0,∴抛物线对称轴在y轴右侧,∴﹣>0,∴b>0,∴ab<0,∴抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方,∴c>0.故选C.点评:考查二次函数y=ax2+bx+c系数符号的确定.9.如果关于x的一元二次方程ax2+x﹣1=0有实数根,则a的取值范围是()A.a>﹣B.a≥﹣C.a≥﹣且a≠0 D.a>且a≠0考点:根的判别式;一元二次方程的定义.分析:在判断一元二次方程根的情况的问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根的情况下必须满足∴=b2﹣4ac≥0.解答:解:依题意列方程组,解得a≥﹣且a≠0.故选C.点评:本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.10.对于抛物线y=﹣(x﹣5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(﹣5,3)D.开口向上,顶点坐标(﹣5,3)考点:二次函数的性质.分析:二次函数的一般形式中的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),它的对称轴是x=h,顶点坐标是(h,k).抛物线的开口方向有a的符号确定,当a>0时开口向上,当a<0时开口向下.解答:解:∴抛物线y=﹣(x﹣5)2+3,∴a<0,∴开口向下,∴顶点坐标(5,3).故选:A.点评:本题主要是对抛物线一般形式中对称轴,顶点坐标,开口方向的考查,是中考中经常出现的问题.二、填空题(每题3分)11.已知二次函数y=x2+bx+3的对称轴为x=2,则b=﹣4.考点:二次函数的性质.分析:可直接由对称轴公式﹣=2,求得b的值.解答:解:∴对称轴为x=2,∴﹣=2,∴b=﹣4.点评:本题难度不大,只要掌握了对称轴公式即可解出.主要考查二次函数解析式中系数与对称轴的关系.12.一元二次方程2x2﹣3x+1=0的二次项系数为2,一次项系数为﹣3,常数项为1.考点:一元二次方程的一般形式.分析:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.根据定义即可判断.解答:解:一元二次方程2x2﹣3x+1=0的二次项系数是2,一次项系数是﹣3,常数项是1.故答案是:2,﹣3,1.点评:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.13.抛物线y=ax2+bx+c过点A(1,0),B(3,0),则此抛物线的对称轴是直线x=2.考点:二次函数的图象.分析:抛物线过点A(1,0),B(3,0),纵坐标相等,它们是抛物线上的对称点,其对称轴是两点横坐标的平均数.解答:解:∴点A(1,0),B(3,0)的纵坐标相等,∴A、B两点是抛物线上的两个对称点,∴对称轴是直线x= =2.点评:解答此题利用二次函数的对称性容易解决.14.一元二次方程ax2+bx+c=0 (a≠0)的求根公式是:x= (b2﹣4ac≥0)..考点:解一元二次方程-公式法.专题:计算题.分析:利用配方法解方程即可得到一元二次方程ax2+bx+c=0 (a≠0)的求根公式.解答:解:方程两边除以a(a≠0),得x2+ x+ =0,∴x2+ x+()2=﹣+()2,∴(x+ )2﹣,当b2﹣4ac≥0,原方程有解,∴x+ =± ,∴x= .所以一元二次方程ax2+bx+c=0 (a≠0)的求根公式是:x= (b2﹣4ac≥0).故答案为:x= (b2﹣4ac≥0).点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的求根公式:x= (b2﹣4ac≥0).15.抛物线y=x2+bx+c经过A(﹣1,0),B(3,0)两点,则这条抛物线的解析式为y=x2﹣2x﹣3.考点:待定系数法求二次函数解析式.分析:抛物线y=x2+bx+c经过A(﹣1,0),B(3,0)两点,则这两点的坐标满足解析式,把点的坐标代入解析式就得到一个关于b,c的方程组,就可解得函数的解析式.解答:解:∴抛物线经过A(﹣1,0),B(3,0)两点,∴ ,解得b=﹣2,c=﹣3,∴抛物线解析式为y=x2﹣2x﹣3.点评:本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法等知识,难度不大.16.当代数式x2+3x+5的值等于7时,代数式3x2+9x﹣2的值是4.考点:代数式求值.专题:计算题.分析:根据题意求出x2+3x的值,原式前两项提取3变形后,将x2+3x的值代入计算即可求出值.解答:解:∴x2+3x+5=7,即x2+3x=2,∴原式=3(x2+3x)﹣2=6﹣2=4.故答案为:4.点评:此题考查了代数式求值,熟练掌握运算法则是解本题的关键.17.关于x的一元二次方程mx2+(2m﹣1)x﹣2=0的根的判别式的值等于4,则m=或﹣.考点:根的判别式;一元二次方程的定义.分析:根据根的判别式∴=b2﹣4ac,把相应的数代入进行计算,即可求出m的值.解答:解:∴∴=(2m﹣1)2﹣4×m×(﹣2)=4m2+4m+1,∴由题意得:4m2+4m+1=4,∴(2m+1)2=4,解得:m1= ,m2=﹣;故答案为:或﹣.点评:本题主要考查一元二次方程根的判别式,掌握根的判别式∴=b2﹣4ac和找出a,b,c 的值是本题的关键.18.目前甲型H1N1流感病毒在全球已有蔓延趋势,世界卫生组织提出各国要严加防控,因为曾经有一种流感病毒,若一人患了流感,经过两轮传染后共有81人患流感.如果设每轮传染中平均一个人传染x个人,那么可列方程为(1+x)2=81.考点:由实际问题抽象出一元二次方程.专题:其他问题.分析:本题可先列出一轮传染的人数,再根据一轮传染的人数写出二轮传染的人数的方程,令其等于81即可.解答:解:设一轮过后传染的人数为1+x,则二轮传染的人数为:(1+x)(1+x)=(1+x)2=81.故答案为:(1+x)2=81.点评:本题考查的是一元二次方程的运用,解本题时要注意第二轮传染的人数即为总共传染的人数.19.若一个三角形的三边长均满足方程x2﹣6x+8=0,则此三角形的周长为6,10,12.考点:解一元二次方程-因式分解法;三角形三边关系.专题:计算题;压轴题.分析:求∴ABC的周长,即是确定等腰三角形的腰与底的长求周长.首先求出方程的根,根据三角形三边关系定理列出不等式,然后解不等式即可.解答:解:解方程x2﹣6x+8=0得x1=4,x2=2;当4为腰,2为底时,4﹣2<4<4+2,能构成等腰三角形,周长为4+2+4=10;当2为腰,4为底时4﹣2=2<4+2不能构成三角形,当等腰三角形的三边分别都为4,或者都为2时,构成等边三角形,周长分别为6,12,故∴ABC 的周长是6或10或12.点评:本题从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.20.参加一次同学聚会,每两人都握一次手,所有人共握了45次,若设共有x人参加同学聚会.列方程得x(x﹣1)=45.考点:由实际问题抽象出一元二次方程.分析:此题利用一元二次方程应用中的基本数量关系:x人参加聚会,两人只握一次手,握手总次数为x(x﹣1)解决问题即可.解答:解:由题意列方程得,x(x﹣1)=45.故答案为:x(x﹣1)=45.点评:此题主要由x人参加聚会,两人只握一次手,握手总次数为x(x﹣1),利用这一基本数量关系类比运用解决问题.三、解答题21.解方程(1)(3x+2)2=24(2)x2﹣7x+10=0(3)(2x+1)2=3(2x+1)(4)x2﹣2x﹣399=0.考点:解一元二次方程-因式分解法;解一元二次方程-直接开平方法.专题:计算题.分析:(1)利用直接开方法求出解即可;(2)利用因式分解法求出解即可;(3)利用因式分解法求出解即可;(4)利用配方法求出解即可.解答:解:(1)开方得:3x+2=±2 ,解得:x1= ,x2= ;(2)分解因式得:(x﹣2)(x﹣5)=0,解得:x1=2,x2=5;(3)移项得:(2x+1)2﹣3(2x+1)=0,分解因式得:(2x+1)(2x+1﹣3)=0,解得:x1=﹣,x2=1;(4)方程变形得:x2﹣2x=399,配方得:x2﹣2x+1=400,即(x﹣1)2=400,开方得:x﹣1=20或x﹣1=﹣20,解得:x1=21,x2=﹣19.点评:此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.22.已知a、b、c均为实数,且+|b+1|+(c+3)2=0,求方程ax2+bx+c=0的根.考点:解一元二次方程-因式分解法;非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根.专题:计算题.分析:本题要求出方程ax2+bx+c=0的根,必须先求出a、b、c的值.根据非负数的性质,带根号、绝对值、平方的数值都大于等于0,三个非负数相加和为0,则这三个数的值必都为0,由此可解出a、b、c的值,再代入方程中可解此题.解答:解:根据分析得:a﹣2=0,b+1=0,c+3=0a=2,b=﹣1,c=﹣3方程ax2+bx+c=0即为2x2﹣x﹣3=0∴x1= ,x2=﹣1.点评:本题考查了一元二次方程的解法和非负数的性质.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.23.如图1,在一幅矩形地毯的四周镶有宽度相同的花边.如图2,地毯中央的矩形图案长8米、宽6米,整个地毯的面积是80平方米.求花边的宽.考点:一元二次方程的应用.专题:几何图形问题.分析:本题可根据地毯的面积为80平方米来列方程,其等量关系式可表示为:(矩形图案的长+两个花边的宽)×(矩形图案的宽+两个花边的宽)=地毯的面积.解答:解:设花边的宽为x米,根据题意得(2x+8)(2x+6)=80,解得x1=1,x2=﹣8,x2=﹣8不合题意,舍去.答:花边的宽为1米.点评:考查一元二次方程的应用;得到地毯的长与宽的代数式是解决本题的易错点.24.已知一个二次函数的图象经过(﹣1,10),(1,4),(2,7)三点.求这个二次函数的解析式,并求出它的开口方向、对称轴和顶点坐标.考点:待定系数法求二次函数解析式.分析:设二次函数的解析式为y=ax2+bx+c,把(﹣1,10),(1,4),(2,7)三点坐标代入,列方程组求a、b、c的值,确定函数解析式,根据二次函数解析式可知抛物线的对称轴及顶点坐标.解答:解:设二次函数的解析式为y=ax2+bx+c,把(﹣1,10),(1,4),(2,7)各点代入上式得,解得.则抛物线解析式为y=2x2﹣3x+5;由y=2x2﹣3x+5=2(x﹣)+ 可知,抛物线对称轴为直线x= ,顶点坐标为(,).点评:本题考查了用待定系数法求二次函数解析式的方法.关键是根据条件确定抛物线解析式的形式,再求其中的待定系数.一般式:y=ax2+bx+c(a≠0);顶点式y=a(x﹣h)2+k,其中顶点坐标为(h,k);交点式y=a(x﹣x1)(x﹣x2),抛物线与x轴两交点为(x1,0),(x2,0).25.某电脑公司2010年的各项经营收入中,经营电脑配件的收入为600万元,占全年经营总收入的40%,该公司预计2012年经营总收入要达到2160万元,且计划从2010年到2012年每年经营总收入的年增长率相同,问2011年预计经营总收入为多少万元?考点:一元二次方程的应用.分析:增长率问题的一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.本题中a就是2010年的经营收入,b就是2012年的经营收入,从而可求出增长率的值,进而可求2011年预计经营总收入.解答:解:2010年的经营总收入为600÷40%=1500(万元).设年增长率为x(x>0),依题意得,1500(1+x)2=2160,解得:x1=0.2,x2=﹣2.2,∴x>0∴x2=﹣2.2不合题意,∴只取x1=0.2.1500(1+x)=1500×1.2=1800(万元).答:2011年预计经营总收入为1800万元.点评:此题主要考查了一元二次方程的应用中增长率问题.解决此类两次变化问题,可利用公式a(1+x)2=b,其中a是变化前的原始量,b是两次变化后的量,x表示平均每次的增长率是解题的关键.26.有一面积为150平方米的矩形鸡场,鸡场的一边靠墙(墙长18米),另三边用竹篱笆围成,如果竹篱笆的长为35米.求鸡场的长和宽.考点:一元二次方程的应用.专题:几何图形问题.分析:可设垂直于墙的一边长x米,得到平行于墙的一边的长,根据面积为150列式求得平行于墙的一边的长小于18的值即可.解答:解:设垂直于墙的一边长x米,则另一边长为(35﹣2x),列方程,得x(35﹣2x)=150,解得x1=10,x2=7.5,当x=10时,35﹣2x=15<18,符合题意;当x=7.5时,35﹣2x=20>18,不符合题意,舍去.答:鸡场的长为15米,宽为10米.点评:考查一元二次方程的应用;得到长方形的边长是解决本题的突破点;舍去不合题意的值是解决本题的易错点.27.某商场销售一批衬衫,进货价为每件40元,按每件50元出售,一个月内可售出500件.已知这种衬衫每件涨价1元,其销售量要减少10件.为在月内赚取8000元的利润,同时又要使顾客得到实惠.售价应定为每件多少元?考点:一元二次方程的应用.专题:销售问题.分析:设售价应定为每件x元,则每件获利(x﹣40)元,月内售量为[500﹣(x﹣50)×10]件,由“月内赚取8000元的利润”作为相等关系列方程得:[500﹣(x﹣50)×10](x﹣40)=8000,解方程即可得解.解答:解:设售价应定为每件x元,则每件获利(x﹣40)元,由题意得[500﹣(x﹣50)×10](x﹣40)=8000.化简得x2﹣140x+4800=0,解得x1=60,x2=80.因为要使顾客得到实惠,所以售价取x=60.答:售价应定为每件60元.点评:此题的等量关系:月内利润=每件获利×月内售量.读懂题意,找到等量关系准确的列出方程是解题的关键.。