激光原理第四章习题
周炳琨激光原理第四章习题解答(完整版)
周炳琨激光原理第四章习题解答(完整版)习题1解:根据多普勒效应,有习题2解:为清楚起见,如下图所示光源发出频率为V o 的光,以M 上反射的光为I'它被M1反射并透过M ,由图中 的I 所标记;透过 M 的光记为II '它被M2反射后又为 M 反射,此光记为II ,由 于M 和M1均为固定镜,所以I 光的频率不变,仍为:°,将M2看作光接收器,由于它以速度:运动,故它感受到的光的频率为 :0,依照下式因M2反射II '光,所以它又相当于光发射器,其运动速度为 :时,发出的光的频率为当: = 0.1c 时, ■ 1 : 572 .4 nm 当: = 0.4c 时, ■ 2 : 414 .3nm 当: = 0.8c 时, ■ 3 :'210 .9 nm这样I 光的频率为:° ,11光的频率为■- ° 2v1在屏P 上, I 光和II 光的电场可分c 1相对应的M2镜的空间坐标,且有(Lz -L J^L习题3解:根据光波的相干长度公式(1.1.16)C LCAv由题意可知,忽略自然加宽和碰撞加宽,则主要表现为多普勒加宽7T 1/2_7C T 即:匸 -D 二 7.16 10 ■- 0( )7.16 10( M\ M二 336 MH ZC C则 L C0.89 mAv A%对氦氖激光器,相干长度为因而屏P 上的总光场为E ii = E ° cos |2,: ; o( V 、 fv2血)0t + — 2叱 0t icos 一2皿 0t 1 、、、 c 丿2光强正比于电场振幅的平方,所以P 上光强为I Io它是t 的周期函数,单位时间内的变化次数为u 2°o dLm = - 2: oc c dt由上式可得dt 时间间隔内屏上光强暗变化的次数为mdt 二c因为dt 是镜M2移动dL 长度所花费的时间, 屏上光强的亮暗变化次数,对上式两边积分,所以mdt 也就是镜M2 即可得到镜M2移动L暗变化的次数 S 二t 2t1 mdtL22o dLcL12°°(L 2J )= c式中t1和t2分别为M2镜开始移动的时刻和停止移动的时刻,L1和 移动dL 过程中 时,屏上光强亮 2L ■■"••0L2为与t1和t2E = E | :卜Eu =2E 0cos丿1 +c 0S|2兀 I v2uL C( ),—63.28 mu a习题4解:CO 2气体,T=300K ,考察10.6」m 线,多普勒线宽为35 10 H由- P - D 得:P .1.08kPa 。
激光原理课后习题
激光原理课后习题第1章习题1. 简述激光器的基本结构及各部分的作用。
2. 从能级跃迁角度分析,激光是受激辐射的光经放大后输出的光。
但是在工作物质中,自发辐射、受激辐射和受激吸收三个过程是同时存在的,使受激辐射占优势的条件是什么?采取什么措施能满足该条件?3. 叙述激光与普通光的区别,并从物理本质上阐明造成这一区别的原因。
4. 什么是粒子数反转分布?如何实现粒子数反转分布?5. 由两个反射镜组成的稳定光学谐振腔腔长为m,腔内振荡光的中心波长为 nm,求该光的单色性/的近似值。
6. 为使He-Ne激光器的相干长度达到1 km,它的单色性/应是多少?7. 在2cm3的空腔内存在着带宽为 nm,波长为m的自发辐射光。
试问:(1)此光的频带范围是多少?(2)在此频带范围内,腔内存在的模式数是多少?(3)一个自发辐射光子出现在某一模式的几率是多少?8. 设一光子的波长为510-1 m,单色性/=10-7,试求光子位置的不确定量x。
若光子波长变为510-4 m(X射线)和510-8 m(射线),则相应的x又是多少?9. 设一对激光(或微波辐射)能级为E2和E1,两能级的简并度相同,即g1=g2,两能级间跃迁频率为(相应的波长为),能级上的粒子数密度分别为n2和n1。
试求在热平衡时:(1)当=3000 MHz,T=300 K时,n2/n1=?(2)当=1 m,T=300 K时,n2/n1=?(3)当=1 m,n2/n1=时,T=?为1kHz,输出功率P为1 mW的单模He-Ne 10. 有一台输出波长为 nm,线宽s为1 mrad,试问:激光器,如果输出光束直径为1 mm,发散角(1)每秒发出的光子数目N 0是多少?(2)该激光束的单色亮度是多少?(提示,单模激光束的单色亮度为20)(πθννs A PB ?=) 11. 在2cm 3的空腔内存在着带宽为110-4 m ,波长为510-1 m 的自发辐射光。
试问:(1)此光的频带范围是多少?(2)在此频带宽度范围内,腔内存在的模式数是多少?(3)一个自发辐射光子出现在某一模式的几率是多少?第2章习题1. 均匀加宽和非均匀加宽的本质区别是什么?2. 为什么原子(分子,离子)在能级上的有限寿命会造成谱线加宽?从量子理论出发,阐明当下能级不是基态时,自然线宽不仅和上能级的自发辐射寿命有关,而且和下能级的自发辐射寿命有关,并给出谱线宽度与激光上、下能级寿命的关系式。
北交大激光原理第4章高斯光束部分-final
第四章高斯光束理论一、学习要求与重点难点学习要求1.掌握高斯光束的描述参数以及传输特性;2.理解q 参数的引入,掌握q 参数的ABCD 定律;3.掌握薄透镜对高斯光束的变换;4.了解高斯光束的自再现变换,及其对球面腔稳定条件的推导;5.理解高斯光束的聚焦和准直条件;6.了解谐振腔的模式匹配方法。
重点1.高斯光束的传输特性;2. q 参数的引入;3. q 参数的ABCD 定律;4.薄透镜对高斯光束的变换;5.高斯光束的聚焦和准直条件;6.谐振腔的模式匹配方法。
难点1. q 参数,及其ABCD 定律;2.薄透镜对高斯光束的变换;3.谐振腔的模式匹配。
1等相位面:以R 为半径的球面,R(z) =z [ 莘 -2点的远场发散角, m = lim 2w(z) _2 --- =e zY : z 二 W oW o(或f )及束腰位置―;将两个参数W(z)和R(Z)统一在一个表达式中,便于研究 z、知识点总结振幅分布:按高斯函数从中心向外平滑降落。
光斑半径 w(z)二w 0.:高斯光束特征参数 光斑半径w(z)和等相位面曲率半径:/% =w(z) 1 +⑷(z)丿 R(z)、 -'I :( z = R(z) 1十卜 j 匚 辽w(z)丿.二 W 2(z) 2咼斯光束基本性质远场发散角: 1 1. 九iq 参数,q (z) R(z)兀 w(z)2 q (z )=if+z =q +z =i 孚1高斯光束通过光学系统的传输规律2傍轴光线L 的变换规律器 士C ; D』傍轴球面波的曲率半径R 的变换规律R AR^B .遵从相同的变换规律 CR +D高斯光束q 参数的变换规律q^Aq^B Cq i +DABCD 公式高斯光束q 参数的变换规律 高斯光束的聚焦:只讨论单透镜 高斯光束的准直:一般为双透镜ABCD 公式云誓T 高斯光束的模式匹配:实质是透镜变换,分两种情况已知w 0,w 0,确定透镜焦距F 及透镜距离I ,I' 已知两腔相对位置固定l^ I I '及W o ,W o 确定,F 如何选择高斯光束的自再现变换 )W’o =W o or I'=I高斯光束的自再现变换和稳定球面腔q(I')=q(O )T 2透镜F J U 1+徳J]-丿」I 球面镜R(I)=I 1+@曲[] . 4丿」二w 0即F E R(I)=稳定球面腔、典型问题的分析思路2高斯光束的q 参数在自由空间中的传输规律 q(z) = i —些亠z = q 0亠z1)高斯光束通过单个透镜的变换。
激光原理第四章答案1
气体的碰撞线宽系数 估算,根据 气体的碰撞线宽与气压p的关系近似为
可知,气体压强为 时的碰撞线宽约等于碰撞线宽系数.
再由 和 ,其中
可估算出其值约为
当 时,其气压为
所以,当气压在 附近时以多普勒加宽为主,当气压比 大很多时,以均匀加宽为主。
5.氦氖激光器有下列三种跃迁,即 的632.8nm, 的 和 的 的跃迁。求400K时它们的多普勒线宽,分别用 、 、 为单位表示。由所得结果你能得到什么启示?
(2)在 时间内自发辐射的光子数为:
所以
(3)量子产额为:
无辐射跃迁导致能级2的寿命偏短,可以由
定义一个新的寿命 ,这样
7.二能级的波数分别为 和 ,相应的量子数分别为 和 ,上能级的自发辐射概率 ,测出自发辐射谱线形状如图4.1所示。求
(1)中心频率发射截面 ;
(2)中心频率吸收截面 。
(能级简并度和相应量子数的关系为 ,可设该工作物质的折射率为1.)
解:实验方框图如下:
实验程序以及计算公式如下:
(1)测量小信号中心频率增益系数:移开红宝石棒,微安表读数为 ,放入红宝石棒,微安表的读数为 ,由此得到小信号增益系数为
减小入射光光强,使小信号增益系数最大。然后维持在此光强,微调单色仪鼓轮以改变入射波长(频率),使小信号增益系数最大,此最大增益系数即为小信号中心频率增益系数 。
式中 和 分别为镜 开始移动的时刻和停止移动的时刻; 和 为与 和 相对应的 镜的空间坐标,并且有 。
得证。
3.在激光出现以前, 低气压放电灯是很好的单色光源。如果忽略自然加宽和碰撞加宽,试估算在77K温度下它的605.7nm谱线的相干长度是多少,并与一个单色性 的氦氖激光器比较。
【激光原理】第四章作业答案
11.有一平凹氦氖激光器,腔长 0.5米 ,凹镜曲率半径为2米 ,现欲用小孔光阑选出基模,试求光阑放于紧靠平面镜和紧靠凹面镜处两种情况下小孔直径各为多少?(对于氦氖激光器,当小孔光阑的直径约等于基模半径的 3.3倍时,可选出基横模。
)解:已知条件R 1=∞, R 2=2 m, L =0.5 m∵等价的对称共焦腔参数L R R L R L Z L R R L R L Z 2221122121-+-=-+--=)(,)( LR R L R R L R L R L f 2212121-+-+--=))()(( ∴z 1=0 m, z 2=L =0.5 m, m .)(8702≈-=L R L f对于基横模 ∵22001⎪⎪⎭⎫ ⎝⎛+=πωλωωz z )(, πλωf =0≈0.418×10-3 m ∴平面镜的光斑半径ωs1=ω0, 凹面镜的光斑半径L R R s -=2202ωω≈0.481×10-3 m ∴光阑紧靠平面镜的小孔直径为d 1=3.3ωs1≈1.379×10-3 m ,而光阑紧靠凹面镜的小孔直径为d 2=3.3ωs2≈1.587×10-3 m2. 激光工作物质是钕玻璃(发光波长为1.06 μm),其荧光线宽 ΔλF =24 nm ,折射率μ=1.5,能用短腔选单纵模吗?解:相邻两个纵模频率差L cμν2=∆短腔法选单纵模的条件是2F v ∆>∆ν2 ∵F F cλλν∆=∆2≈6.4×1012 HzFv c L ∆<μ=0.31×10-4 m 腔长为几十微米的量级,很难实现高功率的激光输出。
因此不能用短腔法选单纵模。
3.解:mm s f 01.02.060300=⨯=='ωω 5.解:∵L 1紧靠腔的输出镜面∴入射在L 1上的光斑半径ω满足:∴31.1125.220012=⨯=='ωωf f M 7.解:当声频改变ν∆时,衍射光偏转的角度为:νμυλφ∆=∆s; 而高斯光束的远场发散角为:0μπωλθ=; 可分辨光斑数为:1571031050103003360=⨯⨯⋅⋅⨯=⋅⋅∆=∆=-.πυωπνθφsn 8. 请解释调Q 激光器的原理,以及脉冲形成分哪几个阶段。
激光原理第四章习题
思考练习题41.腔长30 cm的氦氖激光器荧光线宽为1500MHz,可能出现三个纵横。
用三反射镜法选取单纵横,问短耦合腔腔长()应为若干。
答:;2.He-Ne激光器辐射6328Å光波,其方形镜对称共焦腔,腔长L=0.2m。
腔内同时存在,,横模。
若在腔内接近镜面处加小孔光阑选取横模,试问:(1)如只使模振荡,光阑孔径应多大?(2)如同时使,模振荡而抑制振荡,光阑孔径应多大?答:(1)TEM00模在镜面处的光斑半径为所以光阑孔径应该为0.2mm(2)TEM11模在镜面处的光斑半径为所以光阑孔径为0.35mm3.一高斯光束束腰半径=0.2mm,=0.6328m,今用一焦距f为3cm的短焦距透镜聚焦,已知腰粗离透镜的距离为60cm,在几何光学近似下求聚焦后光束腰粗。
答:4.已知波长=0.6328m的两高斯光束的束腰半径,分别为0.2mm,50m。
试问此二光束的远场发散角分别为多少?后者是前者的几倍?答:;5.用如图(4-33)所示的倒置望远镜系统改善由对称共焦腔输出的光束方向性。
已知二透镜的焦距分别为f1=2.5cm,f2=20cm,=0.28mm,(L l紧靠腔的输出镜面),求该望远镜系统光束发散角的压缩比。
图(4-33) 第5题答:7.设一声光偏转器,声光材料为碘酸铅晶体,声频可调制度为=300MHz。
声波在介质中的速度=3×103m/s,而入射光束直径D=1mm,求可分辨光斑数。
答:当声频改变时,衍射光偏转的角度为:;而高斯光束的远场发散角为:;可分辨光斑数为:8.有一多纵模激光器纵模数是1000个,腔长为1.5m,输出的平均功率为1W,认为各纵模振幅相等。
(1)试求在锁模情况下,光脉冲的周期、宽度和峰值功率各是多少?(2)采用声光损耗调制元件锁模时,调制器上加电压。
试问电压的频率f为多大?答:(1)周期;宽度峰值功率(2)频率9.钕玻璃激光器的荧光线宽=7.5×1012Hz,折射率为1.52,棒长l=20cm,腔长L=30cm,如果处于荧光线宽内的纵模都能振荡,试求锁模后激光脉冲功率是自由振荡时功率的多少倍。
激光原理部分课后习题答案
µ
上一页 回首页 下一页 回末页 回目录
练习: 思考练习题2第 题 练习: (思考练习题 第9题).
第 二 章
§ 2 4 非 均 匀 增 宽 型 介 质 的 增 益 系 数 和 增 益 饱 和 .
连 续 激 光 器 的 原 理
µ hν 0 f (ν 0 ) πc∆ν c I s (ν 0 ) = hν 0 σ e (ν 0 ) ⇒ I s (ν 0 ) = 2 µτ σ e (ν ) = ⇒ ∆n σ e (ν 0 )τ 2 µ f (ν 0 ) = G (ν ) = ∆nB21 hνf (ν ) π∆ν c hν 0 (2) I s (ν 0 ) = σ e (ν 0 )τ ⇒ 2 c f (ν 0 ) σ e (ν 0 ) = 2 8πν 0 µ 2τ hν 0 4π 2 hcµ 2 ∆ν I s (ν 0 ) = = = 3.213 × 10 5 W / cm 2 σ e (ν 0 )τ λ3 上一页 回首页 下一页 回末页 回目录
第 二 章
§ 2 4 非 均 匀 增 宽 型 介 质 的 增 益 系 数 和 增 益 饱 和 .
练习: 思考练习题2第 题 练习: (思考练习题 第6题). 推导均匀增宽型介质,在光强I,频率为ν的光波作 用下,增益系数的表达式(2-19)。
∆ν 2 0 ) ]G (ν ) G (ν ) 2 = G (ν ) = I f (ν ) I ∆ν 2 1+ (ν − ν 0 ) 2 + (1 + )( ) I s f (ν 0 ) Is 2
.
I ( z ) = I ( 0) e
− Az
I ( z) 1 − 0.01⋅100 ⇒ =e = = 0.368 I ( 0) e
激光原理答案
激光原理答案测验1.11、梅曼(TheodoreH.Maiman)于I960年发明了世界上第一台激光器一—红宝石激光器,其波长为694.3nm。
其频率为:A:4.74某10^14(14是上标)HzB:4.32某10人14(14是上标)HzC:3.0某10人14(14是上标)Hz您的回答:B参考答案:Bnull满分:10分得分:10分2、下列说法错误的是:A:光子的某一运动状态只能定域在一个相格中,但不能确定它在相格内部的对应位置B:微观粒子的坐标和动量不能同时准确测定C:微观粒子在相空间对应着一个点您的回答:C参考答案:Cnull满分:10分得分:10分3、为了增大光源的空间相干性,下列说法错误的是:A:采用光学滤波来减小频带宽度B:靠近光源C:缩小光源线度您的回答:B参考答案:Bnull满分:10分得分:10分4、相干光强取决于:A:所有光子的数目B:同一模式内光子的数目C:以上说法都不对您的回答:B参考答案:Bnull满分:10分得分:10分5、中国第一台激光器——红宝石激光器于1961年被发明制造出来。
其波长为A:632.8nmB:694.3nmC:650nm您的回答:B参考答案:Bnull满分:10分得分:10分6、光子的某一运动状态只能定域在一个相格中,这说明了A:光子运动的连续性B:光子运动的不连续性C:以上说法都不对您的回答:参考答案:Bnull满分:10分得分:10分7、3-4在2cm的空腔内存在着带宽(A入)为1某10m、波长为0.5m的自发辐射光。
求此光的频带范围A V°A:120GHzB:3某10八18(18为上标)Hz您的回答:B参考答案:Anull满分:10分得分:0分8、接第7题,在此频带宽度范围内,腔内存在的模式数?A:2某10八18(18为上标)B:8某10八10(10为上标)您的回答:A参考答案:Bnull满分:10分得分:0分9、由两个全反射镜组成的稳定光学谐振腔腔长为L腔内振荡光的中心波长为求该光的波长带宽的近似值。
激光原理第四章习题解答
1 静止氖原子的4223P S →谱线中心波长为632.8纳米,设氖原子分别以0.1C 、O.4C 、O.8C 的速度向着观察者运动,问其表观中心波长分别变为多少? 解答:根据公式(激光原理P136) 由以上两个式子联立可得:代入不同速度,分别得到表观中心波长为:nm C 4.5721.0=λ,nm C 26.4144.0=λ,nm C 9.2109.0=λ解答完毕(验证过)2 设有一台麦克尔逊干涉仪,其光源波长为λ,试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期性的变化L 2次。
证明:对于迈氏干涉仪的两个臂对应两个光路,其中一个光路上的镜是不变的,因此在这个光路中不存在多普勒效应,另一个光路的镜是以速度υ移动,存在多普勒效应。
在经过两个光路返回到半透镜后,这两路光分别保持本来频率和多普勒效应后的频率被观察者观察到(从半透境到观察者两个频率都不变),观察者感受的是光强的变化,光强和振幅有关。
以上是分析内容,具体解答如下:无多普勒效应的光场:()t E E ⋅=πνν2cos 0 产生多普勒效应光场:()t E E ⋅=''02cos ''πνν在产生多普勒效应的光路中,光从半透经到动镜产生一次多普勒效应,从动镜回到半透镜又产生一次多普勒效应(是在第一次多普勒效应的基础上) 第一次多普勒效应:⎪⎭⎫⎝⎛+=c υνν1'第二次多普勒效应:⎪⎭⎫⎝⎛+≈⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=c c c υνυνυνν21112'''在观察者处:()⎪⎭⎫ ⎝⎛⋅⋅⎪⎭⎫ ⎝⎛⋅+⋅==⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛++⋅=+=t c t c t E t c t E E E E πνυπνυπνυπνπν2cos 22cos 2212cos 2cos 0021观察者感受到的光强:⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⋅⎪⎭⎫ ⎝⎛⋅+=t c I I υνπ22cos 12显然,光强是以频率cυν⋅2为频率周期变化的。
激光原理第四章答案1
第四章 电磁场与物质的共振相互作用1 静止氖原子的4223P S →谱线中心波长为632.8nm ,设氖原子分别以0.1c 、0.4c 、0.8c 的速度向着观察者运动,问其表观中心波长分别变为多少?解:根据公式νν=c λν=可得:λλ=代入不同速度,分别得到表观中心波长为: nm C 4.5721.0=λ,0.4414.3C nm λ=,nm C 9.2109.0=λ2.设有一台迈克尔逊干涉仪,其光源波长为λ。
试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期地变化2/L λ次。
证明:如右图所示,光源S 发出频率为ν的光,从M 上反射的光为I ',它被1M 反射并且透过M ,由图中的I 所标记;透过M 的光记为II ',它被2M 反射后又被M 反射,此光记为II 。
由于M 和1M 均为固定镜,所以I 光的频率不变,仍为ν。
将2M 看作光接收器,由于它以速度v 运动,故它感受到的光的频率为:因为2M 反射II '光,所以它又相当于光发射器,其运动速度为v 时,发出的光的频率为这样,I 光的频率为ν,II 光的频率为(12/)v c ν+。
在屏P 上面,I 光和II 光的广场可以分别表示为:S2M (1)vcνν'=+2(1)(1)(12)v v v c c cνννν'''=+=+≈+00cos(2)cos 2(12)I II E E t v E E t πνπν=⎡⎤=+因而光屏P 上的总光场为光强正比于电场振幅的平方,所以P 上面的光强为它是t 的周期函数,单位时间内的变化次数为由上式可得在dt 时间内屏上光强亮暗变化的次数为(2/)mdt c dL ν=因为dt 是镜2M 移动dL 长度所花费的时间,所以mdt 也就是镜2M 移动dL 过程中屏上光强的明暗变化的次数。
对上式两边积分,即可以得到镜2M 移动L 距离时,屏上面光强周期性变化的次数S式中1t 和2t 分别为镜2M 开始移动的时刻和停止移动的时刻;1L 和2L 为与1t 和2t 相对应的2M 镜的空间坐标,并且有21L L L -=。
激光原理周炳坤-第4章习题答案
第四章 电磁场和物质的共振相互作用习题(缺7)1.解:根据多普勒效应,有ccz z /1/10υυυυ-+=则ccc c cc z z z z /1/1/1/1/0υυλυυυυλ+-=+-== 当c z 1.0=υ时,nm 4.5721≈λ 当c z 4.0=υ时,nm 3.4142≈λ 当c z 8.0=υ时,nm 9.2103≈λ2.设有一台迈克尔逊干涉仪,其光源波长为λ。
试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期地变化2/L λ次。
证明:如右图所示,光源S 发出频率为ν的光,从M 上反射的光为I ',它被1M 反射并且透过M ,由图中的I 所标记;透过M 的光记为II ',它被2M 反射后又被M 反射,此光记为II 。
由于M 和1M 均为固定镜,所以I 光的频率不变,仍为ν。
将2M 看作光接收器,由于它以速度v 运动,故它感受到的光的频率为:因为2M 反射II '光,所以它又相当于光发射器,其运动速度为v 时,发出的光的频率为:这样,I 光的频率为ν,II 光的频率为(12/)v c ν+。
在屏P 上面,I 光和II 光的广场可以分别表示为:S2M (1)v cνν'=+2(1)(1)(12)vv v c c cνννν'''=+=+≈+因而光屏P 上的总光场为:光强正比于电场振幅的平方,所以P 上面的光强为:它是t 的周期函数,单位时间内的变化次数为:由上式可得在dt 时间内屏上光强亮暗变化的次数为:(2/)mdt c dL ν=因为dt 是镜2M 移动dL 长度所花费的时间,所以mdt 也就是镜2M 移动dL 过程中屏上光强的明暗变化的次数。
对上式两边积分,即可以得到镜2M 移动L 距离时,屏上面光强周期性变化的次数S :式中1t 和2t 分别为镜2M 开始移动的时刻和停止移动的时刻;1L 和2L 为与1t 和2t 相对应的2M 镜的空间坐标,并且有21L L L -=。
激光原理(陈玉清)答案
习题一> ※<习题一 习题一 为使氦氖激光器的相干长度达到1km,它的单色性Δλ/λ 为使氦氖激光器的相干长度达到 ,它的单色性Δ 应是多少? 应是多少? 习题二> ※<习题二 习题二 (1)一质地均匀的材料对光的吸收为 )一质地均匀的材料对光的吸收为0.01mm-1,光通过 10cm长的该材料后,出射光强为入射光强的百分之几?( ) 长的该材料后, ?(2) 长的该材料后 出射光强为入射光强的百分之几?( 一光束通过长度为1m的均匀激活的工作物质 的均匀激活的工作物质, 一光束通过长度为 的均匀激活的工作物质,如果出射光强是 入射光强的两倍,试求该物质的增益系数. 入射光强的两倍,试求该物质的增益系数. ※<习题三 习题三> 习题三 如果激光器和微波激射器分别在= 如果激光器和微波激射器分别在=10um,λ=5×10-1um和ν , = × 和 输出1W连续功率 连续功率, =3000MHz输出 连续功率,试问每秒钟从激光上能级向下 输出 能级跃迁的粒子数是多少? 能级跃迁的粒子数是多少? 习题四> ※<习题四 习题四 设一光子的波长= × 设一光子的波长=5×10-1um,单色性 =10-7,试求光子位 , 若光子的波长变为5× 射线) 置的不确定量 Δx.若光子的波长变为 ×10-4um(x射线)和 ( 射线 5×10-18um(射线),则相应的 Δx又是多少? ),则相应的 又是多少? × (射线),
习题二> ※<习题二 习题二
(1)一质地均匀的材料对光的吸收为0.01mm-1,光通 )一质地均匀的材料对光的吸收为 长的该材料后, 过10cm长的该材料后,出射光强为入射光强的百分之几? 长的该材料后 出射光强为入射光强的百分之几? 的均匀激活的工作物质, (2)一光束通过长度为 的均匀激活的工作物质,如果 )一光束通过长度为1m的均匀激活的工作物质 出射光强是入射光强的两倍, 出射光强是入射光强的两倍,试求该物质的增益系
激光原理——课后习题解答
因为 与 相比很大,这表示粒子在 能级上停留的时间很短,因此可以认为 能级上的粒子数 ,因此有 。这样做实际上是将三能级问题简化为二能级问题来求解。
由(I)式可得:
代入式(V)得:
由于
所以
红宝石对波长为694.3nm的光透明,意思是在能量密度为 的入射光的作用下,红宝石介质内虽然有受激吸收和受激辐射,但是出射光的能量密度仍然是 。而要使入射光的能量密度等于出射光的能量密度,必须有 为常数,即 ,这样式(VI)变为:
第四章电磁场和物质的共振相互作用
习题
2.设有一台迈克尔逊干涉仪,其光源波长为 。试用多普勒原理证明,当可动反射镜移动距离L时,接收屏上的干涉光强周期地变化 次。
证明:如右图所示,光源S发出频率为 的光,从M上反射的光为 ,它被 反射并且透过M,由图中的I所标记;透过M的光记为 ,它被 反射后又被M反射,此光记为II。由于M和 均为固定镜,所以I光的频率不变,仍为 。将 看作光接收器,由于它以速度v运动,故它感受到的光的频率为:
解:入射高斯光束的共焦参数
根据 ,可得
束腰处的q参数为:
与束腰相距30cm处的q参数为:
与束腰相距无穷远处的q参数为:
16.某高斯光束 =1.2mm, 。今用F=2cm的锗透镜来聚焦,当束腰与透镜的距离为10m、1m、10cm、0时,求焦斑的大小和位置,并分析所得的结果。
解:入射高斯光束的共焦参数
又已知 ,根据
解: 气体在室温(300K)下的多普勒线宽 为
气体的碰撞线宽系数 为实验测得,其值为
气体的碰撞线宽与气压p的关系近似为
当 时,其气压为
所以,当气压小于 的时候以多普勒加宽为主,当气压高于 的时候,变为以均匀加宽为主。
激光 原理课后习题答案
激光原理复习题第一章电磁波1、麦克斯韦方程中麦克斯韦方程最重要的贡献之一是揭示了电磁场的内在矛盾和运动;不仅电荷和电流可以激发电磁场,而且变化的电场和磁场也可以相互激发。
在方程组中是如何表示这一结果?答:每个方程的意义:1)第一个方程为法拉第电磁感应定律,揭示了变化的磁场能产生电场。
2)第二个方程则为Maxwell的位移电流假设。
这组方程描述了电荷和电流激发电磁场、以及变化的电场与变化的磁场互相激发转化的普遍规律。
第二个方程是全电流安培环路定理,描述了变化的电场激发磁场的规律,表示传导电流和位移电流(即变化的电场)都可以产生磁场。
第二个方程意味着磁场只能是由一对磁偶极子激发,不能存在单独的磁荷(至少目前没有发现单极磁荷)3)第三个方程静电场的高斯定理:描述了电荷可以产生电场的性质。
在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献。
4)第四个方程是稳恒磁场的高斯定理,也称为磁通连续原理。
2、产生电磁波的典型实验是哪个?基于的基本原理是什么?答:赫兹根据电容器经由电火花隙会产生振荡原理设计的电磁波发生器实验。
(赫兹将一感应线圈的两端接于产生器二铜棒上。
当感应线圈的电流突然中断时,其感应高电压使电火花隙之间产生火花。
瞬间后,电荷便经由电火花隙在锌板间振荡,频率高达数百万周。
有麦克斯韦理论,此火花应产生电磁波,于是赫兹设计了一简单的检波器来探测此电磁波。
他将一小段导线弯成圆形,线的两端点间留有小电火花隙。
因电磁波应在此小线圈上产生感应电压,而使电火花隙产生火花。
所以他坐在一暗室内,检波器距振荡器10米远,结果他发现检波器的电火花隙间确有小火花产生。
赫兹在暗室远端的墙壁上覆有可反射电波的锌板,入射波与反射波重叠应产生驻波,他也以检波器在距振荡器不同距离处侦测加以证实。
赫兹先求出振荡器的频率,又以检波器量得驻波的波长,二者乘积即电磁波的传播速度。
激光原理第七版重要习题
-1.3
f 0.5
等价共焦腔
R2
-0.5
z1
z2
L=0.8
f=0.5
0
0.5
12.在所有a2/Lλ 相同而R不同的对称稳定球面腔中,共焦腔的衍射损耗最低。这里L表示 腔长,R=R1=R2为对称球面腔反射镜的曲率半径,a为镜的横向线度。 证明:对于共焦腔有: R=R1=R2,所以g1=g2=g=0 此时: 相同,不变
1 d 0 1
0 r 0 1 2 0
1
2
d
1 1d 2 相当于长度L=η1d/ η2的均匀空间变换矩阵 T 0 1
此题中,设等效腔长L’=L-d+η1d/ η2,解不等式:
L' L' 0 (1 )(1 ) 1 R1 R2
01 10
L1 1 0
01 1 0
L 1
1 1 ( A D ) 1 稳定腔要求: 2
B D
带入F即可求得R的范围,其中θ =30°
7.有一方形孔径共焦腔氦氖激光器,腔长L=30cm,方形孔边长d=2a=0.12cm, λ =632.8nm,镜的反射率为r1=1,r2=0.96,其他损耗以每程0.003估计。此激光器能 否单模运转?如果想在共焦镜面附近加一个小孔光阑来选择TEM00模,小孔的边长应 为多大?氦氖增益由公式 eg l 1 3 104 l 估算。
1 T 0
2
0 1
r r 1 1 2 0 T 1 0 0
即两次往返可自行闭合
0 r0 r0 1 0 0
d 2.证明光线通过如图所示厚度为d的平行平面介质的光线变换矩阵为 1 1 2 0 1
华南师范《激光原理》复习整理与部分习题解答
2 L
2 q
c 2 L c 2 L
纵模间隔: q 1 q
横模记法: TEM mnq :对于轴对称图形,m 表示沿腔镜面直角坐标系方向光场节线数,n 表示垂直方向光场节线数;对于旋转对称图形,m 表示沿辐角向的节线数(按直径数), n 表示沿径向节线圆数(暗环数)。 基模: TEM 00 q 光学谐振腔的损耗: ①几何损耗(选择性损耗,高阶横模的几何损耗比低阶横模大) 举例:腔镜倾斜:
1 L 2m 2D
②衍射损耗(选择性损耗,高阶横模的几何损耗比低阶横模大) 菲涅耳数(衍射光在腔内的最大往返次数,也表示从一面镜子的中心看到另一面镜子上可 划分的菲涅耳半波带数): N
a2 L
5 / 36
《激光原理》复习整理
平均单程衍射损耗因子: d
1 N
③透射损耗(非选择性损耗)/输出损耗:
1 A21
原子在该能级的平均寿命(起始值降到其 1/e): s
受激辐射:①外来光子能量达到 h E2 E1 才能引起受激辐射;②受激辐射所发出的光 子与外来光子的频率、传播方向、偏振方向、相位等性质完全相同。 受激辐射跃迁的爱因斯坦系数: B21 :
1 dn2 dn 1 W21 21 n2 dt dt st n2 W21 B21 v
《激光原理》复习整理
《激光原理》复习整理
序数 (No.) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 激光器名称 (Laser name) He-Cd N2 Kr Ar He-Cd Ar Kr Xe Ar-Kr He-Ne 红宝石 Cr Kr Ca、Al、As Ca、As Nd Nd/YAG(掺钕的钇 铝石榴石) He-Ne CO2 H2O HCN
激光原理第四章习题
激光原理第四章习题1. 基本概念在激光原理的第四章中,我们将探讨一些与激光相关的习题。
这些习题将帮助我们更深入地理解激光的工作原理和应用。
2. 习题2.1. 半导体激光器1.什么是半导体激光器?它与其他类型的激光器有什么区别?半导体激光器是一种利用半导体材料的特性产生激光的装置。
它与其他激光器相比具有体积小、功率密度高、效率高和成本低等优点。
2.半导体激光器的工作原理是什么?半导体激光器的工作原理基于电子和空穴在半导体材料中的再组合过程。
当电子和空穴在带隙中再组合时,它们会辐射出光子,形成激光。
3.请列举一些常见的半导体激光器的应用。
常见的半导体激光器应用包括光通信、激光打印、激光显示、激光雷达和医疗激光器等。
2.2. 激光的谐振腔1.谐振腔在激光器中的作用是什么?谐振腔在激光器中起着定向和增强激光的作用。
它通过反射激光光束,将光线保持在腔内,从而增加光子相互作用的机会,实现激光的放大和反馈。
2.什么是共振频率?共振频率是指谐振腔中的光波能够通过光学元件多次传播并与自身相干叠加的频率。
当光波的频率与谐振腔的共振频率匹配时,光波会被谐振腔增强。
3.如何调整激光器的谐振腔模式?可以通过调整谐振腔的长度、反射镜的曲率半径或腔内的光学元件来改变激光器的谐振腔模式。
2.3. 激光的特性1.激光的相干性是什么意思?激光的相干性指的是激光光束中的光波具有相同的相位,并能够产生干涉现象。
相干性较高的激光具有较长的相干长度和较窄的谱宽度。
2.请解释激光的单色性。
激光的单色性指的是激光光波的频率非常准确,只包含非常狭窄的频率范围内的光波。
单色性好的激光具有较小的谱宽度和高的频率稳定性。
3.什么是激光的直行性?激光的直行性指的是激光光束的光线近似为平行光束,其发散角非常小。
通过适当的光学设计和激光束整形技术,可以实现高度直行性的激光输出。
通过解答以上习题,我们加深了对激光原理的理解。
半导体激光器、激光的谐振腔和激光的特性是激光原理中重要的内容,它们在激光器的设计和应用中起着关键的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考练习题4
1.腔长30 cm 的氦氖激光器荧光线宽为1500MHz ,可能出现三个纵横。
用三反射镜法选取单纵横,问短耦合腔腔长(23L L +)应为若干。
答:L L L c
⨯⨯=+∆2103)(28
32μν=短; m L L L 2.02105.1329<+=⇒<∆⨯短ν
2.He -Ne 激光器辐射6328Å光波,其方形镜对称共焦腔,腔长L =0.2m 。
腔内同时存在00TEM ,11TEM ,22TEM 横模。
若在腔内接近镜面处加小孔光阑选取横模,试问:
(1)如只使00TEM 模振荡,光阑孔径应多大?
(2)如同时使00TEM ,11TEM 模振荡而抑制22TEM 振荡,光阑孔径应多大?
答:(1)TEM 00模在镜面处的光斑半径为mm L s 20.02.0106328.06=⨯⨯==-π
πλω 所以光阑孔径应该为0.2mm
(2)TEM 11模在镜面处的光斑半径为mm m s s
35.02.0312=⨯=+='ωω
所以光阑孔径为0.35mm
3.一高斯光束束腰半径0w =0.2mm ,λ=0.6328μm ,今用一焦距f 为3cm 的短焦距透镜聚焦,已知腰粗0w 离透镜的距离为60cm ,在几何光学近似下求聚焦后光束腰粗。
答:mm s f 01.02.060
300
=⨯=='ωω 4.已知波长λ=0.6328μm 的两高斯光束的束腰半径10w ,20w 分别为0.2mm ,50μm 。
试问此二光束的远场发散角分别为多少?后者是前者的几倍? 答:rad 330
1100.2102.06328.0222-⨯=⨯⨯⨯ππωλ
θ== rad 302100.850
6328.0222-⨯=⨯⨯ππωλθ==
; 412221=θθ 5.用如图(4-33)所示的倒置望远镜系统改善由对称共焦腔输出的光束方向性。
已知二透镜的焦距分别为f 1=2.5cm ,f 2=20cm ,0w =0.28mm ,11f l >> (L l 紧靠腔的输出镜面),
求该望远镜系统光束发散角的压缩比。
图(4-33) 第5题
答:31.1125
.220012=⨯=='ωωf f M
7.设一声光偏转器,声光材料为碘酸铅晶体,声频可调制度为ν∆=300MHz 。
声波在介质中的速度s υ=3×103m/s ,而入射光束直径D =1mm ,求可分辨光斑数。
答:当声频改变ν∆时,衍射光偏转的角度为:νμυλφ∆=∆s
; 而高斯光束的远场发散角为:0
μπωλθ=; 可分辨光斑数为:157103105.01030033
60=⨯⨯⋅⋅⨯=⋅⋅∆=∆=
-πνωπνφφs
n 8.有一多纵模激光器纵模数是1000个,腔长为1.5m ,输出的平均功率为1W ,认为各纵模振幅相等。
(1)试求在锁模情况下,光脉冲的周期、宽度和峰值功率各是多少? (2)采用声光损耗调制元件锁模时,调制器上加电压0cos 2u V ft π=。
试问电压的频率f 为多大?
答:(1)周期s c L T 881010
35.122-=⨯⨯==;宽度s N T 128100.51100021012--⨯≈+⨯=+=τ 峰值功率w I N I 6202100.412001)12(⨯≈⨯=+=
(2)频率Hz L c f 88
105
.121032=⨯⨯==
9.钕玻璃激光器的荧光线宽F ν∆=7.5×1012Hz ,折射率为1.52,棒长l =20cm ,腔长L =30cm ,如果处于荧光线宽内的纵模都能振荡,试求锁模后激光脉冲功率是自由振荡时功率的多少倍。
答:Hz L c
88
107.3)1.02.052.1(21032⨯=+⨯⨯==∆μν;4100.2⨯≈∆∆=ννF N 倍数=N =20000倍。