西南交大 工程数学I 第4次作业答案
工程数学第四次作业
工程数学第四次作业随着工程的复杂性和综合性日益增长,工程数学成为了工程师必备的重要工具。
本次作业的主题为“线性代数与矩阵运算”。
线性代数是工程数学的一个重要分支,它研究的是向量空间及线性变换。
在工程领域,线性代数被广泛应用于计算机图形学、机器学习、物理建模和经济学等领域。
通过对线性代数的学习,工程师可以更好地理解和分析工程问题,提高解决问题的效率和质量。
矩阵是线性代数中的一个重要概念,它是向量空间中的一种特殊元素。
矩阵的运算是工程数学中的基本运算之一,它可以表示物体之间的相对位置和运动状态。
在工程中,矩阵被广泛应用于计算机图形学、计算机视觉、机器人学和控制系统等领域。
通过对矩阵的学习,工程师可以更好地理解和分析工程问题,提高解决问题的效率和质量。
本次作业的任务是完成一份关于线性代数与矩阵运算的试卷。
试卷包括了填空题、选择题和计算题等多种题型,涵盖了线性代数与矩阵运算的基本概念和基本运算。
完成本次作业需要学生掌握线性代数与矩阵运算的基本概念和基本运算,能够灵活运用所学知识解决实际问题。
通过本次作业,学生可以更好地理解和掌握线性代数与矩阵运算的基本概念和基本运算,提高解决实际问题的能力。
本次作业还可以帮助学生培养良好的学习习惯和思维方式,为未来的学习和工作打下坚实的基础。
工程数学第四次作业是关于线性代数与矩阵运算的一次重要实践。
通过本次作业,学生可以更好地理解和掌握工程数学的基本概念和基本方法,提高解决实际问题的能力。
本次作业还可以帮助学生培养良好的学习习惯和思维方式,为未来的学习和工作打下坚实的基础。
第四次中东战争中东战争是指在中东地区发生的多次军事冲突和战争,其中第四次中东战争是指1973年埃及和叙利亚等国家与以色列之间爆发的一场大规模战争。
这场战争的爆发原因和战场情况以及战争的影响和后果都值得我们深入探讨。
在第四次中东战争爆发前,中东地区已经存在着紧张的政治和军事局势。
以色列和埃及、叙利亚等国家之间长期存在着领土争端和民族矛盾,这是导致战争爆发的重要原因之一。
2013年普通高等学校招生全国统一考试西工大附中第四次适应性训练数学(理科)
2013年普通高等学校招生全国统一考试西工大附中第四次适应性训练数学(理科)第Ⅰ卷 选择题(共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)1.设复数21z i=+(其中i 为虚数单位),则z 等于( ) A .1+2i B .12i - C .2i - D .2i2.下列有关命题的说法中错误的是....( ) A .若“p q 或”为假命题,则p 、q 均为假命题B .“1x =”是“1x ≥”的充分不必要条件C .“12sin x =”的必要不充分条件是“6x π=” D .若命题p :“∃实数x 使20x ≥”,则命题p ⌝为“对于x R ∀∈都有20x <”3.执行右图所给的程序框图,则运行后输出的结果是( ) A .3 B .3- C .2- D .24.已知{}n a 是等差数列,n S 是其前n 项和,若公差0d <且27S S =,则下列结论中不正确的是.....( ) A .45S S = B .90S =C .50a =D .2745S S S S +=+5.如图是函数4sin()y x =ω+ϕ(0,||)ω>ϕ<π图像的一部分,则( )A .135,56πω=ϕ=B .11,56πω=ϕ= C .75,56πω=ϕ= D .23,56πω=ϕ=6.将直线20x y λ-+=沿x 轴向左平移1个单位,所得直线与圆22240x y x y ++-=相切,则实数λ的值为( ) A .-3或7 B .-2或8 C .0或10 D .1或117.在平面直角坐标系中,若不等式组0(1)1y y x y k x ≥⎧⎪≤⎨⎪≤--⎩表示一个三角形区域,则实数k 的取值范围是( )A .(),1-∞-B .()1,+∞C .()1,1-D .(,1)(1,)-∞-+∞8.从1,2,3,4,5中任取2个不同的数,设A 表示事件“取到的2个数之和为偶数”,B表示事件“取到的2个数均为偶数”,则P (B|A )=( )A .110 B .14 C .25 D .129.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的体积为( )A .13BC .1 D10.在平面直角坐标系中,由x 轴的正半轴、y 轴的正半轴、曲线x y e =以及该曲线在(1)x a a =≥处的切线..所围成图形的面积是( ) A .a e B .1a e - C .12a eD .121a e -第Ⅱ卷 非选择题(共100分)二、填空题(本大题共5小题,每小题5分,满分25分,把答案填写在答题卡相应的位置)11.二项式831x x ⎛⎫- ⎪⎝⎭的展开式中常数项为 ;12.若tan 2,α=则sin cos αα= ;13.PA ⊥平面ABC ,ABC=90︒∠,且PA=AB=BC ,则异面直线PB 与AC 所成角等于 ;14.若函数()f x 对于x R ∀∈都有(1)(1)f x f x -=+和(1)(3)0f x f x -++=成立,当[0,1]x ∈时,()f x x =,则(2013)f = ;15.选做题(请考生在以下三个小题中任选一题做答,如果多做,则按所做的第一题评阅记分)A (选修4—4坐标系与参数方程)已知点A 是曲线2sin ρθ=上任意一点,则点A 到直线3sin()4πρθ+=的距离的最小值是 ;B (选修4—5不等式选讲)已知22,,33,x y R x y ∈+≤则23x y +的最大值是 .;C(选修4—1几何证明选讲)如图,ABC ∆内接于O ,AB AC =,直线MN 切O 于点C ,//BE MN 交AC 于点E .若6,4,AB BC ==则AE 的长为 .三、解答题:解答应写出文字说明,证明过程或演算步骤(本大题共6小题,共75分)16.(本小题满分12分)已知等差数列{}n a ,满足37a =,5726a a =+.(Ⅰ)求数列{}n a 的通项n a ;(Ⅱ)令211n n b a =-(n N +∈),求数列{}n b 的前n 项和n S .17.(本小题满分12分)在ABC ∆中,角A,B,C 的对边分别为a ,b,c,且满足(2)c o s c o s a c B b C -=.(Ⅰ)求角B 的大小; (Ⅱ)设向量(sin ,cos2),(4,1)m A A n k == ,当k>1时,()f A m n =⋅ 的最大值是5,求k 的值.18.(本小题满分12分)某企业规定,员工在一个月内有三项指标任务,若完成其中一项指标任务,可得奖金160元;若完成其中两项指标任务可得奖金400元;若完成三项指标任务可得奖金800元;若三项指标都没有完成,则不能得奖金且在基本工资中扣80元,假设员工甲完成每项指标的概率都是12. (Ⅰ)求员工甲在一个月内所得奖金为400元的概率;(Ⅱ)求员工甲在一个月内所得奖金数的分布列和数学期望.19.(本小题满分12分)直三棱柱111ABC-A B C 中,1CC CA 2,AB BC ===,D 是1BC 上一点,且CD ⊥平面1ABC .(Ⅰ)求证:AB ⊥平面11BCC B ;(Ⅱ)求二面角1C AC B --的平面角的正弦值.20.(本小题满分13分)已知函数2()(2)x f x x kx k e -=-+⋅.(Ⅰ)当k 为何值时,()f x 无极值;(Ⅱ)试确定实数k 的值,使()f x 的极小值为0.21.(本小题满分14分)已知椭圆E :22221x y a b+=(,0)a b >与双曲线G :224x y -=,若椭圆E 的顶点恰为双曲线G 的焦点,椭圆E 的焦点恰为双曲线G 的顶点.(Ⅰ)求椭圆E 的方程;(Ⅱ)是否存在一个以原点为圆心的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A 、B ,且OA OB ⊥ ?若存在请求出该圆的方程,若不存在请说明理由.。
工程数学I第4次作业
工程数学I第4【1】次作业本次作业是本门课程本学期的第4次作业,注释如下:一、单项选择题(只有一个选项正确,共6道小题)1.(A)(B)(C)(D)你选择的答案:未选择 [错误]正确答案:D解答参考:2.(A) 圆(B) 椭圆(C) 双曲线(D) 抛物线你选择的答案:未选择 [错误]正确答案:B解答参考:3.(A)|A|E(B) E(C) A*(D) 不能乘你选择的答案:未选择 [错误]正确答案:A解答参考:4. 设A、B、C同为n阶方阵,且满足ABC=E,则必有().(A) ACB =E(B) CBA =E(C) BCA = E(D) BAC =E你选择的答案:未选择 [错误]正确答案:C解答参考:5.(A)(B)(C)(D)你选择的答案:未选择 [错误]正确答案:C解答参考:6. 设n元齐次线性方程组的系数矩阵的秩r <N,则方程组(&NBSP;&NBSP;&NBSP;&NBSP;> </N,则方程组(&NBSP;&NBSP;&NBSP;&NBSP;>(A) 其基础解系可由r个解组成(B) 有r个解向量线性无关(C) 有n-r个解向量线性无关(D) 无解你选择的答案:未选择 [错误]正确答案:C解答参考:二、判断题(判断正误,共6道小题)7.你选择的答案:未选择 [错误]正确答案:说法正确解答参考:你选择的答案:未选择 [错误]正确答案:说法正确解答参考:9.你选择的答案:未选择 [错误]正确答案:说法错误解答参考:10.你选择的答案:未选择 [错误]正确答案:说法错误解答参考:11.你选择的答案:未选择 [错误]正确答案:说法错误解答参考:12.你选择的答案:未选择 [错误]正确答案:说法正确解答参考:(注意:若有主观题目,请按照题目,离线完成,完成后纸质上交学习中心,记录成绩。
在线只需提交客观题答案。
工程数学(本科)形考任务答案
工程数学作业(一)答案第 2 章矩阵(一)单项选择题(每小题 2 分,共 20 分)⒈设,则( D ).A. 4B. - 4C. 6D. - 6⒉若,则( A ).A. B. - 1 C. D. 1⒊乘积矩阵中元素( C ).A. 1B. 7C. 10D. 8⒋设均为阶可逆矩阵,则下列运算关系正确的是( B ).A. B.C. D.⒌设均为阶方阵,且,则下列等式正确的是( D ).A. B.C. D.⒍下列结论正确的是( A ).A. 若是正交矩阵,则也是正交矩阵B. 若均为阶对称矩阵,则也是对称矩阵C. 若均为阶非零矩阵,则也是非零矩阵D. 若均为阶非零矩阵,则⒎矩阵的伴随矩阵为( C ).A. B.C. D.⒏方阵可逆的充分必要条件是( B ).A. B. C. D.⒐设均为阶可逆矩阵,则( D ).A. B.C. D.⒑设均为阶可逆矩阵,则下列等式成立的是( A ).A. B.C. D.(二)填空题(每小题 2 分,共 20 分)⒈7 .⒉是关于的一个一次多项式,则该多项式一次项的系数是 2 .⒊若为矩阵,为矩阵,切乘积有意义,则为 5 × 4 矩阵.⒋二阶矩阵.⒌设,则⒍设均为 3 阶矩阵,且,则72 .⒎设均为 3 阶矩阵,且,则- 3 .⒏若为正交矩阵,则 0 .⒐矩阵的秩为 2 .⒑设是两个可逆矩阵,则.(三)解答题(每小题 8 分,共 48 分)⒈设,求⑴;⑵;⑶;⑷;⑸;⑹.答案:⒉设,求.解:⒊已知,求满足方程中的.解:⒋写出 4 阶行列式中元素的代数余子式,并求其值.答案:⒌用初等行变换求下列矩阵的逆矩阵:⑴;⑵;⑶.解:( 1 )( 2 )( 过程略 ) (3)⒍求矩阵的秩.解:(四)证明题(每小题 4 分,共 12 分)⒎对任意方阵,试证是对称矩阵.证明:是对称矩阵⒏若是阶方阵,且,试证或.证明:是阶方阵,且或⒐若是正交矩阵,试证也是正交矩阵.证明:是正交矩阵即是正交矩阵工程数学作业(第二次)第 3 章线性方程组(一)单项选择题 ( 每小题 2 分,共 16 分 )⒈用消元法得的解为( C ).A. B.C. D.⒉线性方程组( B ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组的秩为( A ).A. 3B. 2C. 4D. 5⒋设向量组为,则( B )是极大无关组.A. B. C. D.⒌与分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则( D ).A. 秩秩B. 秩秩C. 秩秩D. 秩秩⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组( A ).A. 可能无解B. 有唯一解C. 有无穷多解D. 无解⒎以下结论正确的是( D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组线性相关,则向量组内( A )可被该向量组内其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量9 .设 A ,B为阶矩阵,既是A又是B的特征值,既是A又是B的属于的特征向量,则结论()成立.A.是 AB 的特征值B.是 A+B 的特征值C.是 A - B 的特征值D.是 A+B 的属于的特征向量10 .设A,B,P为阶矩阵,若等式(C)成立,则称A和B相似.A.B.C.D.(二)填空题 ( 每小题 2 分,共 16 分 )⒈当1时,齐次线性方程组有非零解.⒉向量组线性相关.⒊向量组的秩是3.⒋设齐次线性方程组的系数行列式,则这个方程组有无穷多解,且系数列向量是线性相关的.⒌向量组的极大线性无关组是.⒍向量组的秩与矩阵的秩相同.⒎设线性方程组中有 5 个未知量,且秩,则其基础解系中线性无关的解向量有2个.⒏设线性方程组有解,是它的一个特解,且的基础解系为,则的通解为.9 .若是A的特征值,则是方程的根.10 .若矩阵A满足,则称A为正交矩阵.(三)解答题 ( 第 1 小题 9 分,其余每小题 11 分 )1 .用消元法解线性方程组解:方程组解为2.设有线性方程组为何值时,方程组有唯一解 ? 或有无穷多解 ?解:]当且时,,方程组有唯一解当时,,方程组有无穷多解3.判断向量能否由向量组线性表出,若能,写出一种表出方式.其中解:向量能否由向量组线性表出,当且仅当方程组有解这里方程组无解不能由向量线性表出4.计算下列向量组的秩,并且( 1 )判断该向量组是否线性相关解:该向量组线性相关5.求齐次线性方程组的一个基础解系.解:方程组的一般解为令,得基础解系6.求下列线性方程组的全部解.解:方程组一般解为令,,这里,为任意常数,得方程组通解7.试证:任一4维向量都可由向量组,,,线性表示,且表示方式唯一,写出这种表示方式.证明:任一4维向量可唯一表示为⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解.证明:设为含个未知量的线性方程组该方程组有解,即从而有唯一解当且仅当而相应齐次线性方程组只有零解的充分必要条件是有唯一解的充分必要条件是:相应的齐次线性方程组只有零解9 .设是可逆矩阵A的特征值,且,试证:是矩阵的特征值.证明:是可逆矩阵A的特征值存在向量,使即是矩阵的特征值10 .用配方法将二次型化为标准型.解:令,,,即则将二次型化为标准型工程数学作业(第三次)第 4 章随机事件与概率(一)单项选择题⒈为两个事件,则( B )成立.A. B.C. D.⒉如果( C )成立,则事件与互为对立事件.A. B.C. 且D. 与互为对立事件⒊ 10 张奖券中含有 3 张中奖的奖券,每人购买 1 张,则前 3 个购买者中恰有 1 人中奖的概率为( D ).A. B. C. D.4. 对于事件,命题( C )是正确的.A. 如果互不相容,则互不相容B. 如果,则C. 如果对立,则对立D. 如果相容,则相容⒌某随机试验的成功率为, 则在 3 次重复试验中至少失败 1 次的概率为( D ).A. B. C. D.6. 设随机变量,且,则参数与分别是( A ).A. 6, 0.8B. 8, 0.6C. 12, 0.4D. 14, 0.27. 设为连续型随机变量的密度函数,则对任意的,( A ).A. B.C. D.8. 在下列函数中可以作为分布密度函数的是( B ).A. B.C. D.9. 设连续型随机变量的密度函数为,分布函数为,则对任意的区间,则( D ).A. B.C. D.10. 设为随机变量,,当( C )时,有.A. B.C. D.(二)填空题⒈从数字 1,2,3,4,5 中任取 3 个,组成没有重复数字的三位数,则这个三位数是偶数的概率为.2. 已知,则当事件互不相容时, 0.8 ,0.3 .3. 为两个事件,且,则.4. 已知,则.5. 若事件相互独立,且,则.6. 已知,则当事件相互独立时, 0.65 ,0.3 .7. 设随机变量,则的分布函数.8. 若,则 6 .9. 若,则.10. 称为二维随机变量的协方差.(三)解答题1. 设为三个事件,试用的运算分别表示下列事件:⑴中至少有一个发生;⑵中只有一个发生;⑶中至多有一个发生;⑷中至少有两个发生;⑸中不多于两个发生;⑹中只有发生.解 : (1) (2) (3)(4) (5) (6)2. 袋中有 3 个红球, 2 个白球,现从中随机抽取 2 个球,求下列事件的概率:⑴ 2 球恰好同色;⑵ 2 球中至少有 1 红球.解 : 设= “ 2 球恰好同色”,= “ 2 球中至少有 1 红球”3. 加工某种零件需要两道工序,第一道工序的次品率是 2% ,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是 3% ,求加工出来的零件是正品的概率.解:设“第 i 道工序出正品”( i=1,2 )4. 市场供应的热水瓶中,甲厂产品占 50% ,乙厂产品占 30% ,丙厂产品占20% ,甲、乙、丙厂产品的合格率分别为 90%,85%,80% ,求买到一个热水瓶是合格品的概率.解:设5. 某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是,求所需设计次数的概率分布.解:……………………故 X 的概率分布是6. 设随机变量的概率分布为试求.解:7. 设随机变量具有概率密度试求.解:8. 设,求.解:9. 设,计算⑴;⑵.解:10. 设是独立同分布的随机变量,已知,设,求.解:工程数学作业(第四次)第 6 章统计推断(一)单项选择题⒈设是来自正态总体(均未知)的样本,则( A )是统计量.A. B. C. D.⒉设是来自正态总体(均未知)的样本,则统计量( D )不是的无偏估计.A. B.C. D.(二)填空题1 .统计量就是不含未知参数的样本函数.2 .参数估计的两种方法是点估计和区间估计.常用的参数点估计有矩估计法和最大似然估计两种方法.3 .比较估计量好坏的两个重要标准是无偏性,有效性.4 .设是来自正态总体(已知)的样本值,按给定的显著性水平检验,需选取统计量.5 .假设检验中的显著性水平为事件( u 为临界值)发生的概率.(三)解答题1 .设对总体得到一个容量为 10 的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,5.0, 3.5, 4.0试分别计算样本均值和样本方差.解:2 .设总体的概率密度函数为试分别用矩估计法和最大似然估计法估计参数.解:提示教材第 214 页例 3矩估计:最大似然估计:,3 .测两点之间的直线距离 5 次,测得距离的值为(单位: m ):108.5 109.0 110.0 110.5 112.0测量值可以认为是服从正态分布的,求与的估计值.并在⑴;⑵未知的情况下,分别求的置信度为 0.95 的置信区间.解:( 1 )当时,由 1 -α= 0.95 ,查表得:故所求置信区间为:精品文档. ( 2 )当未知时,用替代,查 t (4, 0.05 ) ,得故所求置信区间为:4 .设某产品的性能指标服从正态分布,从历史资料已知,抽查10 个样品,求得均值为 17 ,取显著性水平,问原假设是否成立.解:,由,查表得:因为> 1.96 ,所以拒绝5 .某零件长度服从正态分布,过去的均值为 20.0 ,现换了新材料,从产品中随机抽取 8 个样品,测得的长度为(单位: cm ):20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5问用新材料做的零件平均长度是否起了变化().解:由已知条件可求得:∵ | T | < 2.62 ∴ 接受 H 0。
工程数学作业题参考答案
《工程数学》作业题参考答案一、填空题(每小题3分,共18分)1. i =5,k = 4;2. 40;3. 2-n A;4. 2442222136x x x x x x --+;5.2-;6. 充分。
7. 1. 16;8.n 2;9. r = n , r<n ; 10. -17; 11. 11<<-t 。
二、简答题(每小题4分,12分)1. 举出任何反例皆可。
当BA AB =时,等式2222)(B AB A B A ++=+成立。
2. 一定不为零。
若A 的特征值0=λ,则存在0 ≠x 使得0 ==x x A λ,即方程0=x A 有非零解,所以0=A ,即A 不可逆,与已知矛盾。
3. 不相似。
否则有可逆阵C 使C -1AC=B ,即A=B ,矛盾。
4. 分别是A B A k B A B ==-=,,(4分)。
5. 不相似(2分)。
否则,存在可逆阵C 使C-1AC=B ,即A=B ,矛盾(2分)。
6.B A +一定为正定阵因为0,00,,>>≠∈∀x B x x A x x R x ,B A T T n有所以为正定阵,从而0)(>+x B A x T ,所以B A +一定为正定阵。
三、计算题(一)(每小题8分,共32分) 1. 值为120(答案错误可适当给步骤分)。
2. 解:由X A E AX +=+2化简得))(()(E A E A X E A +-=-,E A E A --=-故,1可逆,所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+=201030102E A X 。
3.解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡601424527121103121301,,,,54321TT T T T ααααα∽⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00000110001011021301, 故421,,ααα 或431,,ααα为一个最大线性无关组(或其他正确答案)。
4. 解:利用分块矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=113232101,8231,2121A A O AA OA ,则 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎦⎤⎢⎣⎡--=--31702431161,1238211211A A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=⎥⎦⎤⎢⎣⎡=---000211000234216167000313200216110011121O A A OA5.是,⎪⎪⎩⎪⎪⎨⎧+=是奇数;,,是偶数,n n n nS 212dim 6. (1) 121||||2+=e f ;(2)))(41()(2是任意实数b e x b x g +-=。
工程数学 积分变换 第四版 课后习题答案
工程数学 积分变换(第四版 张元林 编)课后习题答案编辑者:余小龙第一章:Fourier 变换习题一解答1、证:利用Fourier 积分变换的复数形式,有⎰⎰+∞∞--+∞∞-⎥⎦⎤⎢⎣⎡=ωττπωωτd e d e f t f tj j )(21)(⎰⎰∞+∞-∞+∞-⎥⎦⎤⎢⎣⎡-=ωτωτωττπωd ed j f tj )sin )(cos (121[]⎰+∞∞-+-=ωωωωωd t j t jb a )sin (cos )()(21由于 )()(ωω-=a a , )()(ωω--=b b ,所以⎰⎰+∞∞-+∞∞-+=ωωωωωωtd b td a t f sin )(21cos )(21)(⎰⎰+∞+∞+=ωωωωωωtd b td a sin )(cos )(0。
注:本题也可以由Fourier 积分公式的三角形式得到证明。
2、解:(1)此题亦可写成⎩⎨⎧-=.0,1)(2t t f .1;1>≤t t 它是一个连续的偶函数,利用Euler 公式和分部积分法,由Fourier 积分公式的复数形式,有 ⎰⎰+∞∞-+∞∞--⎥⎦⎤⎢⎣⎡=ωττπωωτd ed e f t f tj j )(21)(⎰⎰+∞∞-⎥⎦⎤⎢⎣⎡-=ωτωττπωd ed tj 102cos )1(1ωωωττωωτωωττωωτπωd e tj 10232sin sin 2cos 2sin 1⎰∞+∞-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+--==ωωωωωπωd etj ⎰+∞∞--3)cos (sin 21=⎰+∞∞-+-ωωωωωωωπd t j t )sin (cos cos sin 23ωωωωωωπtd cos cos sin 43⎰+∞-=(2)函数)(t f 为一连续函数,用类似于(1)的方法,有⎰⎰+∞∞-+∞∞--⎥⎦⎤⎢⎣⎡=ωττπωωτd e d e f t f t j j )(21)(⎰⎰+∞∞-+∞--⎥⎦⎤⎢⎣⎡=ωττπωωττd ed e e tj j 02sin 21⎰⎰+∞∞-+∞+-⎥⎦⎤⎢⎣⎡=ωττπωτωd e d e t j j 0)1(2sin 21 {}()()⎰∞+∞-+∞+-⎥⎥⎦⎤⎢⎢⎣⎡++--+-=ωωττωπωτωd e j j e tj j 02)1(412cos 22sin )1(21⎰+∞∞-+-=ωωωπωd ej tj 252212[][]⎰∞+∞-+--+---=ωωωωωωωωωπd t j t j j j )sin (cos 2)5(2)5(2)5(1222⎰∞+∞-+---++-=ωωωωωωωωωωωπd tj t j t t 222224)5(cos 2sin )5(sin 2cos )5(1⎰∞+∞-+-+-=ωωωωωωωπd tt 432625sin 2cos )5(2(3)可以看出)(t f 为奇函数,且-1,0,1为其间断点。
工程数学2021参考答案
工程数学2021参考答案工程数学2021参考答案工程数学作为一门应用数学学科,广泛应用于工程领域中的问题求解和数据分析。
在2021年的考试中,工程数学的内容涵盖了多个方面,包括微积分、线性代数、概率统计等。
下面将为大家提供一份参考答案,希望能够对同学们的复习和学习有所帮助。
第一部分:微积分1. 求函数f(x) = x^3 - 3x^2 + 2x - 1的极值点和极值。
解:首先,求函数的导数f'(x) = 3x^2 - 6x + 2。
令f'(x) = 0,解得x = 1和x = 2。
然后,求二阶导数f''(x) = 6x - 6。
将x = 1和x = 2代入f''(x),得到f''(1) = 0和f''(2) = 6。
由于f''(1) = 0,说明x = 1处可能是极值点。
由f''(2) = 6 > 0,说明x = 2处是极小值点。
综上所述,函数f(x) = x^3 - 3x^2 + 2x - 1的极值点为x = 1和x = 2,其中x = 1是极值点,为极大值。
2. 求函数f(x) = e^x * sinx的不定积分。
解:根据乘积的积分法则,可以将f(x)拆分为两个函数的乘积:f(x) = e^x * sinx = u * v,其中u = e^x,v = sinx。
然后,对u和v分别求导,得到u' = e^x,v' = cosx。
根据乘积的积分法则,不定积分f(x)的结果可以表示为:∫f(x)dx = u * v - ∫v * u'dx。
将u、v、u'和v'代入上述公式,得到:∫f(x)dx = e^x * sinx - ∫sinx * e^xdx。
对于∫sinx * e^xdx,可以再次使用乘积的积分法则进行求解。
重复上述过程,直到得到不定积分的结果。
第四次作业参考答案
第四次作业参考答案4-1.在下列各题中,将向量β表为其他向量的线性组合:(1)12331105,0,1,1;6111βααα⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪====- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭(2)()()()()()12342,1,5,1,1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,1.βεεεε=-====解:(1)令112233k k k βααα=++,则123311*********k k k ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=++- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭,易解得12311,14,9k k k =-==,即12311149βααα=-++(2)令11223344k k k k βεεεε=+++,则123421000101005001010011k k k k ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪=+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,易解得12342,1,5,1k k k k ==-==,即123425βεεεε=-++4-3.确定a 使下列方程组有解,并求出解来:123412341234212427411x x x x x x x x x x x x a-++=⎧⎪+-+=⎨⎪+-+=⎩ 解:由题意得211111214212142053731741100005A a a --⎛⎫⎛⎫ ⎪ ⎪=-→--- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭, 要使原方程组有解,则50a -=,即5a =将5a =代入原方程组,则原方程组变为134234144555373555x x x x x x ⎧++=⎪⎪⎨⎪-+=⎪⎩,令3142,x t x t ==,解这个方程得,1241653375500050X t t ⎛⎫ ⎪--⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭,()12,t t R ∈4-5.用初等变换解下列方程组;(1)123123123123233350433136x x x x x x x x x x x x -+=⎧⎪+-=⎪⎨-+=⎪⎪+-=-⎩ (2)123423412423423443331731x x x x x x x x x x x x x -+-=⎧⎪-+=-⎪⎨+-=⎪⎪-++=-⎩ (4)2132344352x y z x y z x y z ωωω+-+=⎧⎪-+-=⎨⎪+-+=-⎩解:(1)133121331001222315001530102411300330011A ⎛⎫-⎪-⎛⎫⎛⎫⎪ ⎪ ⎪=-→--→⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎪⎝⎭,即原方程组的解为 121X ⎛⎫ ⎪= ⎪ ⎪⎝⎭(2)12344123440111301113130310024120731100004A----⎛⎫⎛⎫ ⎪ ⎪---- ⎪ ⎪=→ ⎪ ⎪-- ⎪ ⎪--⎝⎭⎝⎭,故()()34r A r A =≠= 即原方程组无解(4)116107772111159532134017771435200000A ⎛⎫--⎪-⎛⎫⎪ ⎪ ⎪=--→-- ⎪ ⎪ ⎪-- ⎪⎝⎭ ⎪⎪⎝⎭,令12,y t t ω==,解这个方程组得121211677779155x t t z t t ⎧=++⎪⎪⎨⎪=++⎪⎩,即1211677710079155001x y t t z ω⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中,()12,t t R ∈4-6.求下列齐次线性方程组的基础解系:(1)12341234123430202220x x x x x x x x x x x x ++-=⎧⎪++-=⎨⎪+++=⎩ (3)23503287043602470x y z x y z x y z x y z ωωωω+-+=⎧⎪++-=⎪⎨+-+=⎪⎪-+-=⎩解:(1)113110202111015122120054A --⎛⎫⎛⎫⎪ ⎪=-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,易解得1424344485345x x x x x x x x ⎧=⎪⎪=-⎪⎨⎪=⎪⎪=⎩,故,该方程组的基础解系为81545ξ⎛⎫⎪-⎪= ⎪ ⎪⎝⎭(3)231512473128702310041360018512470001A ---⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪=→ ⎪ ⎪- ⎪ ⎪--⎝⎭⎝⎭,即()r A n =,所以该方程组无基础解系4-7.选择p,q 使下列方程有解,并求其解:(1)12312321231px x x x px x p x x px p ⎧++=⎪++=⎨⎪++=⎩ (2)1234234123412342222135x x x x x x x x x x x p x x x x q +-+=⎧⎪--=⎪⎨+-+=⎪⎪-++=⎩解:(1)222211111110111110(1)(2)(1)(22)p pp A p p p p p pp p p p p p ⎛⎫⎛⎫ ⎪⎪=→--- ⎪ ⎪ ⎪ ⎪-+-++⎝⎭⎝⎭当1p ≠且2p ≠时,有唯一解()()()211121p x p p ⎛⎫-+ ⎪=≥ ⎪+⎪ ⎪+⎝⎭当1p =时,代入原方程组,易解得12111010001x t t --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中,()12,t t R ∈当2p =时,代入原方程组,得原方程组无解(2)12222100000111101111111300001111500001p p q q -⎛⎫⎛⎫⎪ ⎪----⎪ ⎪→ ⎪ ⎪--⎪ ⎪-+⎝⎭⎝⎭显然,当1p ≠或1q ≠-时,原方程组无解当1p =且1q =-时代入原方程组,的原方程组的解为12004111010001x t t -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中,()12,t t R ∈4-10已知123,,ξξξ是齐次方程组AX θ=的一个基础解系,记112223,2ηξξηξξ=-=+331,3ηξξ=-+,问123,,ηηη是否也可以作为AX θ=的基础解系?证明:为了证明123,,ηηη也可以作为AX θ=的基础解系,要证明三个方面。
西南交大《工程数学Ⅰ》1-4次离线作业
工程数学Ⅰ第1次离线作业三、主观题(共15道小题)29.求5元排列52143的逆序数。
解答:在排列52143中,排在5之后,并小于5的数有4个;排在2之后,并小于2的数有1个;排在1之后,并小于1的数有0个;排在4之后,并小于4的数有1个。
所以30.计算行列式解答:容易发现D的特点是:每列(行)元素之和都等于6,那么,把二、三、四行同时加到第一行,并提出第一行的公因子6,便得到由于上式右端行列式第一行的元素都等于1,那么让二、三、四行都减去第一行得31.求行列式中元素a和b的代数余子式。
解答:行列式展开方法==32.计算行列式解答:容易发现D的特点是:每列元素之和都等于6,那么,把二、三、四行同时加到第一行,并提出第一行的公因子6,便得到由于上式右端行列式第一行的元素都等于1,那么让二、三、四列都减去第一列,第一行就出现了三个零元素,即33.设,求解答:34.,求解答:35.求矩阵X使之满足解答:36.解矩阵方程,其中解答:首先计算出,所以A是可逆矩阵。
对矩阵(A,B)作初等行变换所以所以秩(A)= 4。
37.解答:38.求向量组解答:设39.求解非齐次线性方程组解答:对增广矩阵施行初等行变换化成简单阶梯形矩阵40.设解答:若41.设,求A的特征值和特征向量。
解答:42.求一个正交矩阵P,将对称矩阵化为对角矩阵。
解答:43.已知二次型,问:满足什么条件时,二次型 f 是正定的;满足什么条件时,二次型 f 是负定的。
解答:二次型 f 的矩阵为计算 A 的各阶主子式得工程数学Ⅰ第2次离线作业三、主观题(共14道小题)30.判断(1);(2)是否是五阶行列式 D5 中的项。
解答:(1)是;(2)不是;31.设求的根。
解答:行列式特点是:每行元素之和都等于 a+b+c+x,那么,把二、三、四列同时加到第一列,并提出第一列的公因子a+b+c+x,便得到二、三、四列-a依次减去第一列的-a、-b、-c倍得32.计算四阶行列式解答:D的第一行元素的代数余子式依次为由行列式的定义计算得33.用克莱姆法则解方程组解答:34.解答:35.解答:36.用初等行变换把矩阵化为阶梯形矩阵和简单阶梯形矩阵。
西南大学[0044]线性代数大作业答案春季
0044 20201单项选择题1、....2、矩阵A与B相似,则下列说法不正确的是().style="text-indent:32px">A与B有相同的特征值... A = B..R(A) = R(B)3、....4、....5、....6、.必有r个列向量线性无关.任意r个列向量都构成最大线性无关组.任何一个列向量都可以由其它r个列向量线性表出.任意r个列向量线性无关7、.0.1..0或1..8、.2.4..19、. C. 必有一列向量可有其余列向量线性表示.必有两列元素对应成比例.任一列向量是其余列向量的线性组合.必有一列元素全为010、. D. A有n个互异特征值.A是实对称阵.A有n个线性无关的特征向量.A的特征向量两两正交判断题11、. A.√. B.×12、. A.√. B.×13、. A.√. B.×14、. A.√. B.×15、. A.√. B.×16、. A.√. B.×17、. A.√. B.×18、. A.√. B.×19、. A.√. B.×20、设A、B为两个不可逆的同阶方阵,则|A|=|B| (). A.√. B.×21、转置运算不改变方阵的行列式、秩和特征值. ( ) . A.√. B.×22、. A.√. B.×23、. A.√. B.×24、. A.√. B.×主观题25、参考答案:26、参考答案:27、设三阶方阵A的三个特征值为1,2,3,则|A + E| = ( ).参考答案:2428、参考答案:29、参考答案:30、参考答案:31、参考答案:k>132、参考答案:333、参考答案:34、参考答案:35、参考答案:36、参考答案:237、参考答案:38、设线性方程组A x =0,A是4×5阶矩阵,如果R(A)=3,则其解空间的维数为( ).参考答案:239、参考答案:40、参考答案:41、参考答案:42、参考答案:43、参考答案:44、参考答案:45、参考答案:46、参考答案:47、参考答案:48、2.参考答案:49、参考答案:50、参考答案:51、参考答案:52、1.参考答案:53、参考答案:54、参考答案:55、参考答案:56、参考答案:57、参考答案:58、参考答案:59、参考答案:60、参考答案:。
工程数学:线性代数第三版习题四答案
1. 设v 1=(1, 1, 0)T , v 2=(0, 1, 1)T , v 3=(3, 4, 0)T , 求v 1-v 2及3v 1+2v 2-v 3.解 v 1-v 2=(1, 1, 0)T -(0, 1, 1)T=(1-0, 1-1, 0-1)T=(1, 0, -1)T .3v 1+2v 2-v 3=3(1, 1, 0)T +2(0, 1, 1)T -(3, 4, 0)T =(3⨯1+2⨯0-3, 3⨯1+2⨯1-4, 3⨯0+2⨯1-0)T =(0, 1, 2)T .2. 设3(a 1-a )+2(a 2+a )=5(a 3+a ), 求a , 其中a 1=(2, 5, 1, 3)T , a 2=(10, 1, 5, 10)T , a 3=(4, 1, -1, 1)T . 解 由3(a 1-a )+2(a 2+a )=5(a 3+a )整理得)523(61321a a a a -+=])1 ,1 ,1 ,4(5)10 ,5 ,1 ,10(2)3 ,1 ,5 ,2(3[61T T T --+==(1, 2, 3, 4)T .3. 已知向量组A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ;B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示. 证明 由⎪⎪⎪⎭⎫⎝⎛-=312123111012421301402230) ,(B A ⎪⎪⎪⎭⎫⎝⎛-------971820751610402230421301~r ⎪⎪⎪⎭⎫⎝⎛------531400251552000751610421301 ~r⎪⎪⎪⎭⎫⎝⎛-----000000531400751610421301~r 知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示. 由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛-=000000110201110110220201312111421402~~r r B 知R (B )=2. 因为R (B )≠R (B , A ), 所以A 组不能由B 组线性表示.4. 已知向量组A : a 1=(0, 1, 1)T , a 2=(1, 1, 0)T ;B : b 1=(-1, 0, 1)T , b 2=(1, 2, 1)T , b 3=(3, 2, -1)T , 证明A 组与B 组等价. 证明 由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=000001122010311112201122010311011111122010311) ,(~~r r A B ,知R (B )=R (B , A )=2. 显然在A 中有二阶非零子式, 故R (A )≥2, 又R (A )≤R (B , A )=2, 所以R (A )=2, 从而R (A )=R (B )=R (A , B ). 因此A 组与B 组等价.5. 已知R (a 1, a 2, a 3)=2, R (a 2, a 3, a 4)=3, 证明 (1) a 1能由a 2, a 3线性表示; (2) a 4不能由a 1, a 2, a 3线性表示.证明 (1)由R (a 2, a 3, a 4)=3知a 2, a 3, a 4线性无关, 故a 2, a 3也线性无关. 又由R (a 1, a 2, a 3)=2知a 1, a 2, a 3线性相关, 故a 1能由a 2, a 3线性表示.(2)假如a 4能由a 1, a 2, a 3线性表示, 则因为a 1能由a 2, a 3线性表示, 故a 4能由a 2, a 3线性表示, 从而a 2, a 3, a 4线性相关, 矛盾. 因此a 4不能由a 1, a 2, a 3线性表示.6. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T , (2, 1, 0)T , (1, 4, 1)T ; (2) (2, 3, 0)T , (-1, 4, 0)T , (0, 0, 2)T .解 (1)以所给向量为列向量的矩阵记为A . 因为⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=000110121220770121101413121~~r r A ,所以R (A )=2小于向量的个数, 从而所给向量组线性相关. (2)以所给向量为列向量的矩阵记为B . 因为022200043012||≠=-=B ,所以R (B )=3等于向量的个数, 从而所给向量组线性相无关.7. 问a 取什么值时下列向量组线性相关? a 1=(a , 1, 1)T , a 2=(1, a , -1)T , a 3=(1, -1, a )T . 解 以所给向量为列向量的矩阵记为A . 由)1)(1(111111||+-=--=a a a aa a A知, 当a =-1、0、1时, R (A )<3, 此时向量组线性相关. 8. 设a 1, a 2线性无关, a 1+b , a 2+b 线性相关, 求向量b 用a 1, a 2线性表示的表示式.解 因为a 1+b , a 2+b 线性相关, 故存在不全为零的数λ1, λ2使λ1(a 1+b )+λ2(a 2+b )=0,由此得 2211121122121211)1(a a a a b λλλλλλλλλλλλ+--+-=+-+-=,设211λλλ+-=c , 则 b =c a 1-(1+c )a 2, c ∈R .9. 设a 1, a 2线性相关, b 1, b 2也线性相关, 问a 1+b 1, a 2+b 2是否一定线性相关?试举例说明之. 解 不一定.例如, 当a 1=(1, 2)T , a 2=(2, 4)T , b 1=(-1, -1)T , b 2=(0, 0)T 时, 有a1+b1=(1, 2)T+b1=(0, 1)T, a2+b2=(2, 4)T+(0, 0)T=(2, 4)T,而a1+b1,a2+b2的对应分量不成比例,是线性无关的.10.举例说明下列各命题是错误的:(1)若向量组a1,a2,⋅⋅⋅,a m是线性相关的,则a1可由a2,⋅⋅⋅,a m线性表示.解设a1=e1=(1, 0, 0,⋅⋅⋅, 0),a2=a3=⋅⋅⋅=a m=0,则a1,a2,⋅⋅⋅,a m线性相关,但a1不能由a2,⋅⋅⋅,a m线性表示.(2)若有不全为0的数λ1,λ2,⋅⋅⋅,λm使λ1a1+⋅⋅⋅+λm a m+λ1b1+⋅⋅⋅+λm b m=0成立,则a1,a2,⋅⋅⋅,a m线性相关, b1,b2,⋅⋅⋅,b m亦线性相关.解有不全为零的数λ1,λ2,⋅⋅⋅,λm使λ1a1+⋅⋅⋅+λm a m+λ1b1+⋅⋅⋅+λm b m=0,原式可化为λ1(a1+b1)+⋅⋅⋅+λm(a m+b m)=0.取a1=e1=-b1,a2=e2=-b2,⋅⋅⋅,a m=e m=-b m,其中e1,e2,⋅⋅⋅,e m 为单位坐标向量,则上式成立,而a1,a2,⋅⋅⋅,a m和b1,b2,⋅⋅⋅,b m 均线性无关.(3)若只有当λ1,λ2,⋅⋅⋅,λm全为0时,等式λ1a1+⋅⋅⋅+λm a m+λ1b1+⋅⋅⋅+λm b m=0才能成立,则a1,a2,⋅⋅⋅,a m线性无关, b1,b2,⋅⋅⋅,b m亦线性无关.解由于只有当λ1,λ2,⋅⋅⋅,λm全为0时,等式由λ1a1+⋅⋅⋅+λm a m+λ1b1+⋅⋅⋅+λm b m=0成立,所以只有当λ1,λ2,⋅⋅⋅,λm全为0时,等式λ1(a1+b1)+λ2(a2+b2)+⋅⋅⋅+λm(a m+b m)=0成立.因此a1+b1,a2+b2,⋅⋅⋅,a m+b m线性无关.取a1=a2=⋅⋅⋅=a m=0,取b1,⋅⋅⋅,b m为线性无关组,则它们满足以上条件,但a1,a2,⋅⋅⋅,a m线性相关.(4)若a1,a2,⋅⋅⋅,a m线性相关, b1,b2,⋅⋅⋅,b m亦线性相关,则有不全为0的数,λ1,λ2,⋅⋅⋅,λm使λ1a1+⋅⋅⋅+λm a m=0,λ1b1+⋅⋅⋅+λm b m=0同时成立.解a1=(1, 0)T,a2=(2, 0)T,b1=(0, 3)T,b2=(0, 4)T,λ1a1+λ2a2 =0⇒λ1=-2λ2,λ1b1+λ2b2 =0⇒λ1=-(3/4)λ2,⇒λ1=λ2=0,与题设矛盾.11.设b1=a1+a2,b2=a2+a3, b3=a3+a4, b4=a4+a1,证明向量组b1,b2, b3,b4线性相关.证明由已知条件得a1=b1-a2,a2=b2-a3, a3=b3-a4, a4=b4-a1,于是a1 =b1-b2+a3=b1-b2+b3-a4=b 1-b 2+b 3-b 4+a 1, 从而 b 1-b 2+b 3-b 4=0,这说明向量组b 1, b 2, b 3, b 4线性相关.12. 设b 1=a 1, b 2=a 1+a 2, ⋅ ⋅ ⋅, b r =a 1+a 2+ ⋅ ⋅ ⋅ +a r , 且向量组a 1, a 2, ⋅ ⋅ ⋅ , a r 线性无关, 证明向量组b 1, b 2, ⋅ ⋅ ⋅ , b r 线性无关. 证明 已知的r 个等式可以写成⎪⎪⎪⎭⎫⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅100110111) , , ,() , , ,(2121r r a a a b b b , 上式记为B =AK . 因为|K |=1≠0, K 可逆, 所以R (B )=R (A )=r , 从而向量组b 1, b 2, ⋅ ⋅ ⋅ , b r 线性无关.13. 求下列向量组的秩, 并求一个最大无关组:(1)a 1=(1, 2, -1, 4)T , a 2=(9, 100, 10, 4)T , a 3=(-2, -4, 2, -8)T ; 解 由⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛----=000000010291032001900820291844210141002291) , ,(~~321r r a a a ,知R (a 1, a 2, a 3)=2. 因为向量a 1与a 2的分量不成比例, 故a 1, a 2线性无关, 所以a 1, a 2是一个最大无关组.(2)a 1T =(1, 2, 1, 3), a 2T =(4, -1, -5, -6), a 3T =(1, -3, -4, -7).解 由⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛------⎪⎪⎪⎭⎫⎝⎛------=00000059014110180590590141763451312141) , ,(~~321r r a a a , 知R (a 1T , a 2T , a 3T )=R (a 1, a 2, a 3)=2. 因为向量a 1T 与a 2T 的分量不成比例, 故a 1T , a 2T 线性无关, 所以a 1T , a 2T 是一个最大无关组.14. 利用初等行变换求下列矩阵的列向量组的一个最大无关组: (1)⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125; 解 因为⎪⎪⎪⎭⎫ ⎝⎛482032251345494751325394754317312513121433~r r r r r r ---⎪⎪⎪⎭⎫ ⎝⎛531053103210431731253423~rr r r --⎪⎪⎪⎭⎫ ⎝⎛00003100321043173125, 所以第1、2、3列构成一个最大无关组.(2)⎪⎪⎪⎭⎫⎝⎛---14011313021512012211. 解 因为⎪⎪⎪⎭⎫ ⎝⎛---1401131302151201221113142~rr r r --⎪⎪⎪⎭⎫ ⎝⎛------22201512015120122112343~rr r r +↔⎪⎪⎪⎭⎫ ⎝⎛---00000222001512012211,所以第1、2、3列构成一个最大无关组.15. 设向量组(a , 3, 1)T , (2, b , 3)T , (1, 2, 1)T , (2, 3, 1)T 的秩为2, 求a , b . 解 设a 1=(a , 3, 1)T , a 2=(2, b , 3)T , a 3=(1, 2, 1)T , a 4=(2, 3, 1)T . 因为⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=5200111031116110111031113111332221) , , ,(~~2143b a a b a b a r r a a a a ,而R (a 1, a 2, a 3, a 4)=2, 所以a =2, b =5.16. 设a 1, a 2, ⋅ ⋅ ⋅, a n 是一组n 维向量, 已知n 维单位坐标向量e 1, e 2,⋅ ⋅ ⋅, e n 能由它们线性表示, 证明a 1, a 2, ⋅ ⋅ ⋅, a n 线性无关. 证法一 记A =(a 1, a 2, ⋅ ⋅ ⋅, a n ), E =(e 1, e 2,⋅ ⋅ ⋅, e n ). 由已知条件知, 存在矩阵K , 使E =AK .两边取行列式, 得|E |=|A ||K |.可见|A |≠0, 所以R (A )=n , 从而a 1, a 2, ⋅ ⋅ ⋅, a n 线性无关.证法二 因为e 1, e 2,⋅ ⋅ ⋅, e n 能由a 1, a 2, ⋅ ⋅ ⋅, a n 线性表示, 所以R (e 1, e 2,⋅ ⋅ ⋅, e n )≤R (a 1, a 2, ⋅ ⋅ ⋅, a n ),而R (e 1, e 2,⋅ ⋅ ⋅, e n )=n , R (a 1, a 2, ⋅ ⋅ ⋅, a n )≤n , 所以R (a 1, a 2, ⋅ ⋅ ⋅, a n )=n , 从而a 1, a 2, ⋅ ⋅ ⋅, a n 线性无关.17.设a1,a2,⋅⋅⋅,a n是一组n维向量, 证明它们线性无关的充分必要条件是:任一n维向量都可由它们线性表示.证明必要性:设a为任一n维向量.因为a1,a2,⋅⋅⋅,a n线性无关,而a1,a2,⋅⋅⋅,a n,a是n+1个n维向量,是线性相关的,所以a能由a1,a2,⋅⋅⋅,a n线性表示,且表示式是唯一的.充分性:已知任一n维向量都可由a1,a2,⋅⋅⋅,a n线性表示,故单位坐标向量组e1,e2,⋅⋅⋅,e n能由a1,a2,⋅⋅⋅,a n线性表示,于是有n=R(e1,e2,⋅⋅⋅,e n)≤R(a1,a2,⋅⋅⋅,a n)≤n,即R(a1,a2,⋅⋅⋅,a n)=n,所以a1,a2,⋅⋅⋅,a n线性无关.18.设向量组a1,a2,⋅⋅⋅,a m线性相关,且a1≠0,证明存在某个向量a k (2≤k≤m),使a k能由a1,a2,⋅⋅⋅,a k-1线性表示.证明因为a1,a2,⋅⋅⋅,a m线性相关,所以存在不全为零的数λ1,λ2,⋅⋅⋅,λm,使λ1a1+λ2a2+⋅⋅⋅+λm a m=0,而且λ2,λ3,⋅⋅⋅,λm不全为零.这是因为,如若不然,则λ1a1=0,由a1≠0知λ1=0,矛盾.因此存在k(2≤k≤m),使λk≠0,λk+1=λk+2=⋅⋅⋅=λm=0,于是λ1a1+λ2a2+⋅⋅⋅+λk a k=0,a k =-(1/λk )(λ1a 1+λ2a 2+ ⋅ ⋅ ⋅ +λk -1a k -1),即a k 能由a 1, a 2, ⋅ ⋅ ⋅, a k -1线性表示.19. 设向量组B : b 1, ⋅ ⋅ ⋅, b r 能由向量组A : a 1, ⋅ ⋅ ⋅, a s 线性表示为 (b 1, ⋅ ⋅ ⋅, b r )=(a 1, ⋅ ⋅ ⋅, a s )K , 其中K 为s ⨯r 矩阵, 且A 组线性无关. 证明B 组线性无关的充分必要条件是矩阵K 的秩R (K )=r . 证明 令B =(b 1, ⋅ ⋅ ⋅, b r ), A =(a 1, ⋅ ⋅ ⋅, a s ), 则有B =AK . 必要性: 设向量组B 线性无关.由向量组B 线性无关及矩阵秩的性质, 有r =R (B )=R (AK )≤min{R (A ), R (K )}≤R (K ), 及 R (K )≤min{r , s }≤r .因此R (K )=r .充分性: 因为R (K )=r , 所以存在可逆矩阵C , 使⎪⎭⎫ ⎝⎛=O E KC r 为K 的标准形. 于是(b 1, ⋅ ⋅ ⋅, b r )C =( a 1, ⋅ ⋅ ⋅, a s )KC =(a 1, ⋅ ⋅ ⋅, a r ).因为C 可逆, 所以R (b 1, ⋅ ⋅ ⋅, b r )=R (a 1, ⋅ ⋅ ⋅, a r )=r , 从而b 1, ⋅ ⋅ ⋅, b r 线性无关.20. 设⎪⎩⎪⎨⎧+⋅⋅⋅+++=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅++=+⋅⋅⋅++=-1321312321 n n n n ααααβαααβαααβ,证明向量组α1, α2, ⋅ ⋅ ⋅, αn 与向量组β1, β2, ⋅ ⋅ ⋅, βn 等价. 证明 将已知关系写成⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅0111101111011110) , , ,() , , ,(2121n n αααβββ, 将上式记为B =AK . 因为0)1()1(0111101*********||1≠--=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-n K n , 所以K 可逆, 故有A =BK -1. 由B =AK 和A =BK -1可知向量组α1, α2, ⋅ ⋅ ⋅, αn 与向量组β1, β2, ⋅ ⋅ ⋅, βn 可相互线性表示. 因此向量组α1, α2, ⋅ ⋅ ⋅, αn 与向量组β1, β2, ⋅ ⋅ ⋅, βn 等价.21. 已知3阶矩阵A 与3维列向量x 满足A 3x =3A x -A 2x , 且向量组x , A x , A 2x 线性无关.(1)记P =(x , A x , A 2x ), 求3阶矩阵B , 使AP =PB ;解 因为AP =A (x , A x , A 2x )=(A x , A 2x , A 3x )=(A x , A 2x , 3A x -A 2x )⎪⎪⎭⎫ ⎝⎛-=110301000) , ,(2x x x A A ,所以⎪⎪⎭⎫ ⎝⎛-=110301000B .(2)求|A |.解 由A 3x =3A x -A 2x , 得A (3x -A x -A 2x )=0. 因为x , A x , A 2x 线性无关, 故3x -A x -A 2x ≠0, 即方程A x =0有非零解, 所以R (A )<3, |A |=0.22. 求下列齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x ; 解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=00004/14/3100401 2683154221081~r A , 于是得⎩⎨⎧+=-=43231)4/1()4/3(4x x x x x . 取(x 3, x 4)T =(4, 0)T , 得(x 1, x 2)T =(-16, 3)T ;取(x 3, x 4)T =(0, 4)T , 得(x 1, x 2)T =(0, 1)T .因此方程组的基础解系为ξ1=(-16, 3, 4, 0)T , ξ2=(0, 1, 0, 4)T .(2)⎪⎩⎪⎨⎧=-++=-++=+--03678024530232432143214321x x x x x x x x x x x x . 解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛----=000019/719/141019/119/201 367824531232~r A , 于是得⎩⎨⎧+-=+-=432431)19/7()19/14()19/1()19/2(x x x x x x . 取(x 3, x 4)T =(19, 0)T , 得(x 1, x 2)T =(-2, 14)T ;取(x 3, x 4)T =(0, 19)T , 得(x 1, x 2)T =(1, 7)T .因此方程组的基础解系为ξ1=(-2, 14, 19, 0)T , ξ2=(1, 7, 0, 19)T .(3)nx 1 +(n -1)x 2+ ⋅ ⋅ ⋅ +2x n -1+x n =0.解 原方程组即为x n =-nx 1-(n -1)x 2- ⋅ ⋅ ⋅ -2x n -1.取x 1=1, x 2=x 3= ⋅ ⋅ ⋅ =x n -1=0, 得x n =-n ;取x 2=1, x 1=x 3=x 4= ⋅ ⋅ ⋅ =x n -1=0, 得x n =-(n -1)=-n +1; ⋅ ⋅ ⋅ ;取x n -1=1, x 1=x 2= ⋅ ⋅ ⋅ =x n -2=0, 得x n =-2.因此方程组的基础解系为ξ1=(1, 0, 0, ⋅ ⋅ ⋅, 0, -n )T ,ξ2=(0, 1, 0, ⋅ ⋅ ⋅, 0, -n +1)T ,⋅ ⋅ ⋅,ξn -1=(0, 0, 0, ⋅ ⋅ ⋅, 1, -2)T .23. 设⎪⎭⎫ ⎝⎛--=82593122A , 求一个4⨯2矩阵B , 使AB =0, 且 R (B )=2.解 显然B 的两个列向量应是方程组AB =0的两个线性无关的解. 因为⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛--=8/118/5108/18/101 82593122~rA , 所以与方程组AB =0同解方程组为⎩⎨⎧+=-=432431)8/11()8/5()8/1()8/1(x x x x x x . 取(x 3, x 4)T =(8, 0)T , 得(x 1, x 2)T =(1, 5)T ;取(x 3, x 4)T =(0, 8)T , 得(x 1, x 2)T =(-1, 11)T .方程组AB =0的基础解系为ξ1=(1, 5, 8, 0)T , ξ2=(-1, 11, 0, 8)T .因此所求矩阵为⎪⎪⎪⎭⎫ ⎝⎛-=800811511B .24. 求一个齐次线性方程组, 使它的基础解系为ξ1=(0, 1, 2, 3)T , ξ2=(3, 2, 1, 0)T .解 显然原方程组的通解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛01233210214321k k x x x x , 即⎪⎩⎪⎨⎧=+=+==14213212213223k x k k x k k x k x , (k 1, k 2∈R ), 消去k 1, k 2得⎩⎨⎧=+-=+-023032431421x x x x x x , 此即所求的齐次线性方程组.25. 设四元齐次线性方程组I : ⎩⎨⎧=-=+004221x x x x , II : ⎩⎨⎧=+-=+-00432321x x x x x x . 求: (1)方程I 与II 的基础解系; (2) I 与II 的公共解.解 (1)由方程I 得⎩⎨⎧=-=4241x x x x . 取(x 3, x 4)T =(1, 0)T , 得(x 1, x 2)T =(0, 0)T ;取(x 3, x 4)T =(0, 1)T , 得(x 1, x 2)T =(-1, 1)T .因此方程I 的基础解系为ξ1=(0, 0, 1, 0)T , ξ2=(-1, 1, 0, 1)T .由方程II 得⎩⎨⎧-=-=43241x x x x x . 取(x 3, x 4)T =(1, 0)T , 得(x 1, x 2)T =(0, 1)T ;取(x 3, x 4)T =(0, 1)T , 得(x 1, x 2)T =(-1, -1)T .因此方程II 的基础解系为ξ1=(0, 1, 1, 0)T , ξ2=(-1, -1, 0, 1)T .(2) I 与II 的公共解就是方程III : ⎪⎩⎪⎨⎧=+-=+-=-=+00004323214221x x x x x x x x x x 的解. 因为方程组III 的系数矩阵⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=0000210010101001 1110011110100011~r A , 所以与方程组III 同解的方程组为⎪⎩⎪⎨⎧==-=4342412x x x x x x . 取x 4=1, 得(x 1, x 2, x 3)T =(-1, 1, 2)T , 方程组III 的基础解系为 ξ=(-1, 1, 2, 1)T .因此I 与II 的公共解为x =c (-1, 1, 2, 1)T , c ∈R .26. 设n 阶矩阵A 满足A 2=A , E 为n 阶单位矩阵, 证明R (A )+R (A -E )=n .证明 因为A (A -E )=A 2-A =A -A =0, 所以R (A )+R (A -E )≤n . 又R (A -E )=R (E -A ), 可知R (A )+R (A -E )=R (A )+R (E -A )≥R (A +E -A )=R (E )=n ,由此R (A )+R (A -E )=n .27. 设A 为n 阶矩阵(n ≥2), A *为A 的伴随阵, 证明⎪⎩⎪⎨⎧-≤-===2)( 01)( 1)( *)(n A R n A R n A R n A R 当当当. 证明 当R (A )=n 时, |A |≠0, 故有|AA *|=||A |E |=|A |≠0, |A *|≠0,所以R (A *)=n .当R (A )=n -1时, |A |=0, 故有AA *=|A |E =0,即A *的列向量都是方程组A x =0的解. 因为R (A )=n -1, 所以方程组A x =0的基础解系中只含一个解向量, 即基础解系的秩为1. 因此R (A *)=1.当R (A )≤n -2时, A 中每个元素的代数余子式都为0, 故A *=O , 从而R (A *)=0.28. 求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=+++=+++=+3223512254321432121x x x x x x x x x x ; 解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=2100013011080101 322351211250011~r B . 与所给方程组同解的方程为⎪⎩⎪⎨⎧=+=--=213 843231x x x x x . 当x 3=0时, 得所给方程组的一个解η=(-8, 13, 0, 2)T . 与对应的齐次方程组同解的方程为⎪⎩⎪⎨⎧==-=043231x x x x x . 当x 3=1时, 得对应的齐次方程组的基础解系ξ=(-1, 1, 1, 0)T .(2)⎪⎩⎪⎨⎧-=+++-=-++=-+-6242163511325432143214321x x x x x x x x x x x x . 解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-----=0000022/17/11012/17/901 6124211635113251~r B . 与所给方程组同解的方程为⎩⎨⎧--=++-=2)2/1((1/7)1)2/1()7/9(432431x x x x x x . 当x 3=x 4=0时, 得所给方程组的一个解η=(1, -2, 0, 0)T .与对应的齐次方程组同解的方程为⎩⎨⎧-=+-=432431)2/1((1/7))2/1()7/9(x x x x x x . 分别取(x 3, x 4)T =(1, 0)T , (0, 1)T , 得对应的齐次方程组的基础解系ξ1=(-9, 1, 7, 0)T.ξ2=(1,-1, 0, 2)T.29.设四元非齐次线性方程组的系数矩阵的秩为3,已知η1,η2,η3是它的三个解向量.且η1=(2, 3, 4, 5)T,η2+η3=(1, 2, 3, 4)T,求该方程组的通解.解由于方程组中未知数的个数是4,系数矩阵的秩为3,所以对应的齐次线性方程组的基础解系含有一个向量,且由于η1,η2,η3均为方程组的解,由非齐次线性方程组解的结构性质得2η1-(η2+η3)=(η1-η2)+(η1-η3)= (3, 4, 5, 6)T为其基础解系向量,故此方程组的通解:x=k(3, 4, 5, 6)T+(2, 3, 4, 5)T, (k∈R).30.设有向量组A:a1=(α, 2, 10)T,a2=(-2, 1, 5)T, a3=(-1, 1, 4)T,及b=(1,β,-1)T,问α,β为何值时(1)向量b不能由向量组A线性表示;(2)向量b能由向量组A线性表示,且表示式唯一;(3)向量b能由向量组A线性表示,且表示式不唯一,并求一般表示式.解 ⎪⎪⎭⎫ ⎝⎛---=11054211121) , , ,(123βαb a a a ⎪⎪⎭⎫ ⎝⎛-+++---βαβαα34001110121 ~r . (1)当α=-4, β≠0时, R (A )≠R (A , b ), 此时向量b 不能由向量组A 线性表示.(2)当α≠-4时, R (A )=R (A , b )=3, 此时向量组a 1, a 2, a 3线性无关, 而向量组a 1, a 2, a 3, b 线性相关, 故向量b 能由向量组A 线性表示, 且表示式唯一.(3)当α=-4, β=0时, R (A )=R (A , b )=2, 此时向量b 能由向量组A 线性表示, 且表示式不唯一.当α=-4, β=0时,⎪⎪⎭⎫ ⎝⎛----=1105402111421) , , ,(123b a a a ⎪⎪⎭⎫ ⎝⎛--000013101201 ~r , 方程组(a 3, a 2, a 1)x =b 的解为⎪⎪⎭⎫ ⎝⎛--+=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛c c c c x x x 1312011132321, c ∈R . 因此 b =(2c +1)a 3+(-3c -1)a 2+c a 1,即 b = c a 1+(-3c -1)a 2+(2c +1)a 3, c ∈R .31. 设a =(a 1, a 2, a 3)T , b =(b 1, b 2, b 3)T , c =(c 1, c 2, c 3)T , 证明三直线 l 1: a 1x +b 1y +c 1=0,l 2: a 2x +b 2y +c 2=0, (a i 2+b i 2≠0, i =1, 2, 3) l 3: a 3x +b 3y +c 3=0,相交于一点的充分必要条件为: 向量组a , b 线性无关, 且向量组a , b , c 线性相关.证明 三直线相交于一点的充分必要条件为方程组⎪⎩⎪⎨⎧=++=++=++000333222111c y b x a c y b x a c y b x a , 即⎪⎩⎪⎨⎧-=+-=+-=+333222111c y b x a c y b x a c y b x a 有唯一解. 上述方程组可写为x a +y b =-c . 因此三直线相交于一点的充分必要条件为c 能由a , b 唯一线性表示, 而c 能由a , b 唯一线性表示的充分必要条件为向量组a , b 线性无关, 且向量组a , b , c 线性相关.32. 设矩阵A =(a 1, a 2, a 3, a 4), 其中a 2, a 3, a 4线性无关, a 1=2a 2- a 3. 向量b =a 1+a 2+a 3+a 4, 求方程A x =b 的通解.解 由b =a 1+a 2+a 3+a 4知η=(1, 1, 1, 1)T 是方程A x =b 的一个解.由a 1=2a 2- a 3得a 1-2a 2+a 3=0, 知ξ=(1, -2, 1, 0)T 是A x =0的一个解.由a 2, a 3, a 4线性无关知R (A )=3, 故方程A x =b 所对应的齐次方程A x =0的基础解系中含一个解向量. 因此ξ=(1, -2, 1, 0)T 是方程A x =0的基础解系.方程A x =b 的通解为x =c (1, -2, 1, 0)T +(1, 1, 1, 1)T , c ∈R .33.设η*是非齐次线性方程组A x=b的一个解, ξ1,ξ2,⋅⋅⋅,ξn-r,是对应的齐次线性方程组的一个基础解系, 证明:(1)η*,ξ1,ξ2,⋅⋅⋅,ξn-r线性无关;(2)η*,η*+ξ1,η*+ξ2,⋅⋅⋅,η*+ξn-r线性无关.证明(1)反证法, 假设η*,ξ1,ξ2,⋅⋅⋅,ξn-r线性相关.因为ξ1,ξ2,⋅⋅⋅,ξn-r线性无关,而η*,ξ1,ξ2,⋅⋅⋅,ξn-r线性相关,所以η*可由ξ1,ξ2,⋅⋅⋅,ξn-r线性表示,且表示式是唯一的,这说明η*也是齐次线性方程组的解,矛盾.(2)显然向量组η*,η*+ξ1,η*+ξ2,⋅⋅⋅,η*+ξn-r与向量组η*,ξ1,ξ2,⋅⋅⋅,ξn-r可以相互表示,故这两个向量组等价,而由(1)知向量组η*,ξ1,ξ2,⋅⋅⋅,ξn-r线性无关,所以向量组η*,η*+ξ1,η*+ξ2,⋅⋅⋅,η*+ξn-r也线性无关.34.设η1,η2,⋅⋅⋅,ηs是非齐次线性方程组A x=b的s个解,k1,k2,⋅⋅⋅,k s为实数,满足k1+k2+⋅⋅⋅+k s=1. 证明x=k1η1+k2η2+⋅⋅⋅+k sηs也是它的解.证明因为η1,η2,⋅⋅⋅,ηs都是方程组A x=b的解,所以Aηi=b (i=1, 2,⋅⋅⋅,s),从而A(k1η1+k2η2+⋅⋅⋅+k sηs)=k1Aη1+k2Aη2+⋅⋅⋅+k s Aηs=(k1+k2+⋅⋅⋅+k s)b=b.因此x=k1η1+k2η2+⋅⋅⋅+k sηs也是方程的解.35.设非齐次线性方程组A x=b的系数矩阵的秩为r,η1,η2,⋅⋅⋅,ηn-r+1是它的n-r+1个线性无关的解.试证它的任一解可表示为x=k1η1+k2η2+⋅⋅⋅+k n-r+1ηn-r+1, (其中k1+k2+⋅⋅⋅+k n-r+1=1).证明因为η1,η2,⋅⋅⋅,ηn-r+1均为A x=b的解,所以ξ1=η2-η1,ξ2=η3-η1,⋅⋅⋅,ξn-r=η n-r+1-η1均为A x=b的解.用反证法证:ξ1,ξ2,⋅⋅⋅,ξn-r线性无关.设它们线性相关,则存在不全为零的数λ1,λ2,⋅⋅⋅,λn-r,使得λ1ξ1+λ2ξ2+⋅⋅⋅+λ n-rξ n-r=0,即λ1(η2-η1)+λ2(η3-η1)+⋅⋅⋅+λ n-r(ηn-r+1-η1)=0,亦即-(λ1+λ2+⋅⋅⋅+λn-r)η1+λ1η2+λ2η3+⋅⋅⋅+λ n-rηn-r+1=0,由η1,η2,⋅⋅⋅,ηn-r+1线性无关知-(λ1+λ2+⋅⋅⋅+λn-r)=λ1=λ2=⋅⋅⋅=λn-r=0,矛盾.因此ξ1,ξ2,⋅⋅⋅,ξn-r线性无关.ξ1,ξ2,⋅⋅⋅,ξn-r为A x=b的一个基础解系.设x为A x=b的任意解,则x-η1为A x=0的解,故x-η1可由ξ1,ξ2,⋅⋅⋅,ξn-r线性表出,设x-η1=k2ξ1+k3ξ2+⋅⋅⋅+k n-r+1ξn-r=k2(η2-η1)+k3(η3-η1)+⋅⋅⋅+k n-r+1(ηn-r+1-η1),x=η1(1-k2-k3⋅⋅⋅-k n-r+1)+k2η2+k3η3+⋅⋅⋅+k n-r+1ηn-r+1.令k1=1-k2-k3⋅⋅⋅-k n-r+1,则k1+k2+k3⋅⋅⋅-k n-r+1=1,于是x=k1η1+k2η2+⋅⋅⋅+k n-r+1ηn-r+1.36.设V1={x=(x1,x2,⋅ ⋅ ⋅,x n)T| x1,⋅ ⋅ ⋅,x n∈R满足x1+x2+⋅ ⋅ ⋅ +x n=0}, V2={x=(x1,x2,⋅ ⋅ ⋅,x n)T| x1,⋅ ⋅ ⋅,x n∈R满足x1+x2+⋅ ⋅ ⋅ +x n=1},问V1,V2是不是向量空间?为什么?解V1是向量空间,因为任取α=(a1,a2,⋅ ⋅ ⋅,a n)T∈V1,β=(b1,b2,⋅ ⋅ ⋅,b n)T∈V1,λ∈∈R,有a1+a2+⋅ ⋅ ⋅ +a n=0,b1+b2+⋅ ⋅ ⋅ +b n=0,从而(a1+b1)+(a2+b2)+⋅ ⋅ ⋅ +(a n+b n)=(a1+a2+⋅ ⋅ ⋅ +a n)+(b1+b2+⋅ ⋅ ⋅ +b n)=0,λa1+λa2+⋅ ⋅ ⋅ +λa n=λ(a1+a2+⋅ ⋅ ⋅ +a n)=0,所以α+β=(a1+b1,a2+b2,⋅ ⋅ ⋅,a n+b n)T∈V1,λα=(λa1,λa2,⋅ ⋅ ⋅,λa n)T∈V1.V2不是向量空间,因为任取α=(a1,a2,⋅ ⋅ ⋅,a n)T∈V1,β=(b1,b2,⋅ ⋅ ⋅,b n)T∈V1,有a1+a2+⋅ ⋅ ⋅ +a n=1,b1+b2+⋅ ⋅ ⋅ +b n=1,从而(a1+b1)+(a2+b2)+⋅ ⋅ ⋅ +(a n+b n)=(a1+a2+⋅ ⋅ ⋅ +a n)+(b1+b2+⋅ ⋅ ⋅ +b n)=2,所以α+β=(a1+b1,a2+b2,⋅ ⋅ ⋅,a n+b n)T∉V1.37. 试证: 由a 1=(0, 1, 1)T , a 2=(1, 0, 1)T , a 3=(1, 1, 0)T 所生成的向量空间就是R 3.证明 设A =(a 1, a 2, a 3), 由02011101110||≠-==A , 知R (A )=3, 故a 1, a 2, a 3线性无关, 所以a 1, a 2, a 3是三维空间R 3的一组基, 因此由a 1, a 2, a 3所生成的向量空间就是R 3.38. 由a 1=(1, 1, 0, 0)T , a 2=(1, 0, 1, 1)T 所生成的向量空间记作V 1,由b 1=(2, -1, 3, 3)T , b 2=(0, 1, -1, -1)T 所生成的向量空间记作V 2, 试证V 1=V 2.证明 设A =(a 1, a 2), B =(b 1, b 2). 显然R (A )=R (B )=2, 又由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=0000000013100211 1310131011010211) ,(~r B A , 知R (A , B )=2, 所以R (A )=R (B )=R (A , B ), 从而向量组a 1, a 2与向量组b 1, b 2等价. 因为向量组a 1, a 2与向量组b 1, b 2等价, 所以这两个向量组所生成的向量空间相同, 即V 1=V 2.39. 验证a 1=(1, -1, 0)T , a 2=(2, 1, 3)T , a 3=(3, 1, 2)T 为R 3的一个基, 并把v 1=(5, 0, 7)T , v 2=(-9, -8, -13)T 用这个基线性表示.解 设A =(a 1, a 2, a 3). 由06230111321|) , ,(|321≠-=-=a a a , 知R (A )=3, 故a 1, a 2, a 3线性无关, 所以a 1, a 2, a 3为R 3的一个基. 设x 1a 1+x 2a 2+x 3a 3=v 1, 则⎪⎩⎪⎨⎧=+=++-=++723053232321321x x x x x x x x ,解之得x 1=2, x 2=3, x 3=-1, 故线性表示为v 1=2a 1+3a 2-a 3. 设x 1a 1+x 2a 2+x 3a 3=v 2, 则⎪⎩⎪⎨⎧-=+-=++--=++1323893232321321x x x x x xx x ,解之得x 1=3, x 2=-3, x 3=-2, 故线性表示为v 2=3a 1-3a 2-2a 3.40. 已知R 3的两个基为a 1=(1, 1, 1)T , a 2=(1, 0, -1)T , a 3=(1, 0, 1)T ,b 1=(1, 2, 1)T , b 2=(2, 3, 4)T , b 3=(3, 4, 3)T . 求由基a 1, a 2, a 3到基b 1, b 2, b 3的过渡矩阵P . 解 设e 1, e 2, e 3是三维单位坐标向量组, 则 ⎪⎪⎭⎫⎝⎛-=111001111) , ,() , ,(321321e e e a a a ,1321321111001111) , ,() , ,(-⎪⎪⎭⎫ ⎝⎛-=a a a e e e , 于是 ⎪⎪⎭⎫ ⎝⎛=341432321) , ,() , ,(321321e e e b b b ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=-341432321111001111) , ,(1321a a a , 由基a 1, a 2, a 3到基b 1, b 2, b 3的过渡矩阵为⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=-1010104323414323211110011111P .。
工程数学阶段二三四作业
、判断题(共5道小题,共50.0分)1.若是非齐次线性方程组的两个解,则也是它的解.A. 正确B. 错误知识点: 阶段作业二学生答案: [B;] 标准答案: B得分: [10] 试题分值: 10.0提示:2.3.若向量组中的可用线性表示,则线性相关.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:4.5.若向量组线性相关,则一定可用线性表示.A. 正确B. 错误知识点: 阶段作业二学生答案: [B;] 标准答案: B得分: [10] 试题分值: 10.0提示:6.7.若是向量组的一个极大无关组,与等价.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:8.9. (错误)若存在一组不全为零的数使,则向量组线性无关.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: B得分: [0] 试题分值: 10.0提示:二、单项选择题(共5道小题,共50.0分)1. (错误)线性方程组的全部解为().A.B.C.D. (为任意常数)知识点: 阶段作业二学生答案: [C;] 标准答案: A得分: [0] 试题分值: 10.0提示:2. (错误)齐次线性方程组的一个基础解系为().A.B.C.D.知识点: 阶段作业二学生答案: [C;] 标准答案: D得分: [0] 试题分值: 10.0提示:3. (错误)当()时,线性方程组仅有零解.A. 且B. 且C. 且D. 且知识点: 阶段作业二学生答案: [C;] 标准答案: D;得分: [0] 试题分值: 10.0提示:4.当k =()时,线性方程组有非零解.A. 0或1B. 1或-1C. -1或-3D. -1或3知识点: 阶段作业二学生答案: [C;] 标准答案: C得分: [10] 试题分值: 10.0提示:5.6. (错误)向量组(m 2)线性相关的充分必要条件是().A. 中至少有一个向量可以用其余向量线性表示.B. 中有一个零向量.C. 中的所有向量都可以用其余向量线性表示.D. 中每一个向量都不能用其余向量线性表示.知识点: 阶段作业二学生答案: [C;] 标准答案: A得分: [0] 试题分值: 10.0提示:一、判断题(共5道小题,共50.0分)1. 设A、B为两事件,则表示“A、B两事件均不发生”.A. 正确B. 错误知识点: 阶段作业三学生答案: [B;]得分: [10] 试题分值: 10.0提示:2.3. 若X~N(μ,),则P =.A. 正确B. 错误知识点: 阶段作业三学生答案: [A;]得分: [10] 试题分值: 10.0提示:4.5. 设随机变量X的概率密度为,则常数k=.A. 正确B. 错误知识点: 阶段作业三学生答案: [B;]得分: [10] 试题分值: 10.0提示:6.7. (错误)某人打靶命中率为p,现重复射击5次,则P{至少命中2次}= .A. 正确B. 错误知识点: 阶段作业三学生答案: [A;]得分: [0] 试题分值: 10.0提示:8. (错误)A、B、C为三事件,则“A、B、C三事件不多于一个发生”表示为.A. 正确B. 错误知识点: 阶段作业三学生答案: [A;]得分: [0] 试题分值: 10.0提示:二、单项选择题(共5道小题,共50.0分)1. (错误)设,为标准正态分布的分布函数,则( ).A.B.C.D.知识点: 阶段作业三学生答案: [B;]得分: [0] 试题分值: 10.0提示:2. 设随机变量X的概率密度为,则常数().A. -4B. 4C.D.知识点: 阶段作业三学生答案: [B;]得分: [10] 试题分值: 10.0提示:3.4. (错误)设随机变量X的概率密度为,则a =().A.B.C. 1D. 2知识点: 阶段作业三学生答案: [B;]得分: [0] 试题分值: 10.0提示:5. (错误)设A与B对立,且P(A )≠ 0,P(B) ≠ 0,则().A. P(A∪B) = P(A)+ P(B)B. A =C. P(A B )≠ 0D. P(AB) = P(A) P(B)知识点: 阶段作业三学生答案: [B;]得分: [0] 试题分值: 10.0提示:6. (错误)设A与B互不相容,且P(A)>0,P(B) >0,则().A. P(AB) = P(A) P(B)B. P(A��B ) = P(A)C. P(B��A) = 0D. P(B��) ≥P(B)知识点: 阶段作业三学生答案: [B;]得分: [0] 试题分值: 10.0提示:一、判断题(共5道小题,共50.0分)1.若n阶矩阵A为正交矩阵,则A必为可逆矩阵且.A. 正确B. 错误知识点: 阶段作业一学生答案: [A;]得分: [10] 试题分值: 10.0提示:2.3.如果n阶矩阵A可逆,则=.A. 正确B. 错误知识点: 阶段作业一学生答案: [A;]得分: [10] 试题分值: 10.0提示:4.5.设A、B都为n阶矩阵,若AB = 0,则|A| = 0或|B| = 0.A. 正确B. 错误知识点: 阶段作业一学生答案: [A;]得分: [10] 试题分值: 10.0提示:6.7.设A为n阶矩阵,则必有.A. 正确B. 错误知识点: 阶段作业一学生答案: [A;]得分: [10] 试题分值: 10.0提示:8.9.设A为5阶矩阵,若k是不为零常数,则必有.A. 正确B. 错误知识点: 阶段作业一学生答案: [A;]得分: [10] 试题分值: 10.0提示:10.二、单项选择题(共5道小题,共50.0分)1. (错误)如果n阶矩阵A可逆,则= ( ).A.B.C.D.知识点: 阶段作业一学生答案: [C;]得分: [0] 试题分值: 10.0提示:2.当k = ( )时,矩阵不可逆.A. 4B. 2C.D. 0知识点: 阶段作业一学生答案: [C;]得分: [10] 试题分值: 10.0提示:3.4. (错误)设A、B均为n阶矩阵,且,则=().A. -1B. -8C. 16D. -32知识点: 阶段作业一学生答案: [C;]得分: [0] 试题分值: 10.0提示:5. (错误)设3阶行列式,则().A. 2kB. 6kC. 18kD.知识点: 阶段作业一学生答案: [C;]得分: [0] 试题分值: 10.0提示:6. (错误)设3阶行列式,则().A. 12B. -12C. 18D. -18知识点: 阶段作业一学生答案: [C;]得分: [0] 试题分值: 10.0提示:一、判断题(共5道小题,共50.0分)1. (错误)若线性方程组的系数矩阵A和增广矩阵满足Rank()=Rank(A),则此方程组有唯一解.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: B得分: [0] 试题分值: 10.0提示:2. (错误)若是非齐次线性方程组的两个解,则也是它的解.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: B得分: [0] 试题分值: 10.0提示:3.任何一个齐次线性方程组都有解.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:4.5. (错误)若向量组线性相关,则一定可用线性表示.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: B得分: [0] 试题分值: 10.0提示:6. (错误)若存在使式子成立,则向量组线性无关.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: B得分: [0] 试题分值: 10.0提示:二、单项选择题(共5道小题,共50.0分)1. (错误)当()时,线性方程组仅有零解.A. 且B. 且C. 且D. 且知识点: 阶段作业二学生答案: [B;] 标准答案: D;得分: [0] 试题分值: 10.0提示:2. (错误)设向量,,,,则向量 可由向量线性表示的表达式为( ).A.B.C.D.知识点: 阶段作业二学生答案: [C;] 标准答案: B得分: [0] 试题分值: 10.0提示:3. (错误)向量组(m≥ 2)线性无关的充分必要条件是().A. 中至少有一个向量可以用其余向量线性表示.B. 中有一个零向量.C. 中的所有向量都可以用其余向量线性表示.D. 中每一个向量都不能用其余向量线性表示.知识点: 阶段作业二学生答案: [B;] 标准答案: D得分: [0] 试题分值: 10.0提示:4. (错误)向量组(m≥ 2)线性相关的充分必要条件是().A. 中至少有一个向量可以用其余向量线性表示.B. 中有一个零向量.C. 中的所有向量都可以用其余向量线性表示.D. 中每一个向量都不能用其余向量线性表示.知识点: 阶段作业二学生答案: [C;] 标准答案: A得分: [0] 试题分值: 10.0提示:5.若( )的数使,则向量组线性无关.A. 存在一组不全为零B. 存在一组全不为零C. 仅存在一组全为零D. 存在一组全为零知识点: 阶段作业二学生答案: [C;] 标准答案: C得分: [10] 试题分值: 10.0提示:6.一、判断题(共5道小题,共50.0分)1.设,则,.A. 正确B. 错误知识点: 阶段作业四学生答案: [A;]得分: [10] 试题分值: 10.0提示:2.3.设随机变量X与Y独立,则X与Y的相关系数.A. 正确B. 错误知识点: 阶段作业四学生答案: [A;]得分: [10] 试题分值: 10.0提示:4.5.设随机变量X的概率密度,则.A. 正确B. 错误知识点: 阶段作业四学生答案: [A;]得分: [10] 试题分值: 10.0提示:6.7.设二维随机变量(X,Y)的分布列为则X与Y相互独立.A. 正确B. 错误知识点: 阶段作业四学生答案: [A;]得分: [10] 试题分值: 10.0提示:8.设(X,Y)的概率密度,则常数.A. 正确B. 错误知识点: 阶段作业四学生答案: [A;]得分: [10] 试题分值: 10.0提示:9.二、单项选择题(共5道小题,共50.0分)1.设X与Y的相关系数,,,则X与Y的协方差().A. -7.2B. -1.8C. -1.2D. -0.18知识点: 阶段作业四学生答案: [C;]得分: [10] 试题分值: 10.0提示:2.3. (错误)已知随机变量X的概率密度函数为,则,分别为( ).A. 1,2B. 1,4C. 2,1D. 4,1知识点: 阶段作业四学生答案: [C;]得分: [0] 试题分值: 10.0提示:4. (错误)设随机变量X的概率密度为,则D(X)=().A.B.C.D.知识点: 阶段作业四学生答案: [C;]得分: [0] 试题分值: 10.0提示:5.设随机变量的密度函数为,则().A.B.C.D.知识点: 阶段作业四学生答案: [C;]得分: [10] 试题分值: 10.0提示:6.7. (错误)设随机变量X的分布列为则().A. 0.6B. 3.04C. 3.4D. 3.76知识点: 阶段作业四学生答案: [C;]得分: [0] 试题分值: 10.0提示:一、判断题(共5道小题,共50.0分)1.若线性方程组的系数矩阵A满足Rank(A) < n,则此方程组有非零解.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:2.3. (错误)若是非齐次线性方程组的两个解,则也是它的解.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: B得分: [0] 试题分值: 10.0提示:4. (错误)任何一个齐次线性方程组都有基础解系,它的解都可由其基础解系线性表示.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: B得分: [0] 试题分值: 10.0提示:5. (错误)若存在使式子成立,则向量组线性无关.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: B得分: [0] 试题分值: 10.0提示:6. (错误)若存在一组不全为零的数使,则向量组线性无关.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: B得分: [0] 试题分值: 10.0提示:二、单项选择题(共5道小题,共50.0分)1. (错误)线性方程组的全部解为().A.B.C.D. (为任意常数)知识点: 阶段作业二学生答案: [B;] 标准答案: A得分: [0] 试题分值: 10.0提示:2.设向量,,,,则向量 可由向量线性表示的表达式为( ).A.B.C.D.知识点: 阶段作业二学生答案: [B;] 标准答案: B得分: [10] 试题分值: 10.0提示:3.4.设A为4阶矩阵,为它的行向量组,如果,则( ).A. 秩{}=3且向量组线性相关.B. 秩{}=4且向量组线性无关.C. 秩{}=3且向量组线性无关.D. 秩{}=4且向量组线性相关.知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:5.6.向量组(m 2)线性无关的充分必要条件是().A. 中至少有一个向量可以用其余向量线性表示.B. 中有一个零向量.C. 中的所有向量都可以用其余向量线性表示.D. 中每一个向量都不能用其余向量线性表示.知识点: 阶段作业二学生答案: [D;] 标准答案: D得分: [10] 试题分值: 10.0提示:7.8. (错误)若( )的数使,则向量组线性无关.A. 存在一组不全为零B. 存在一组全不为零C. 仅存在一组全为零D. 存在一组全为零知识点: 阶段作业二学生答案: [B;] 标准答案: C得分: [0] 试题分值: 10.0提示:一、判断题(共5道小题,共50.0分)1. 若线性方程组的系数矩阵A满足Rank(A) < n,则此方程组有非零解.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:2.3. (错误)若线性方程组的系数矩阵A和增广矩阵满足Rank()=Rank(A),则此方程组有唯一解.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: B得分: [0] 试题分值: 10.0提示:4. 若是非齐次线性方程组的两个解,则也是它的解.A. 正确B. 错误知识点: 阶段作业二学生答案: [B;] 标准答案: B得分: [10] 试题分值: 10.0提示:5.6. 任何一个齐次线性方程组都有基础解系,它的解都可由其基础解系线性表示.A. 正确B. 错误知识点: 阶段作业二学生答案: [B;] 标准答案: B得分: [10] 试题分值: 10.0提示:7.8. 若是向量组的一个极大无关组,与等价.A. 正确B. 错误9.二、单项选择题(共5道小题,共50.0分)1. 线性方程组的全部解为().A.B.C.D. (为任意常数)知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:2.3. (错误)三元线性方程组的全部解为().A.B.C.D. (为任意常数)知识点: 阶段作业二学生答案: [B;] 标准答案: A得分: [0] 试题分值: 10.0提示:4. 齐次线性方程组的一个基础解系为().A.B.C.D.知识点: 阶段作业二学生答案: [D;] 标准答案: D得分: [10] 试题分值: 10.0提示:5.6. 设A为n阶矩阵,,如果| A | = 0,则齐次线性方程组AX = 0().A. 无解B. 有非零解C. 仅有零解D. 不能确定是否有非零解知识点: 阶段作业二学生答案: [B;] 标准答案: B得分: [10] 试题分值: 10.0提示:7.8. 向量组(m ³ 2)线性相关的充分必要条件是().A. 中至少有一个向量可以用其余向量线性表示.B. 中有一个零向量.C. 中的所有向量都可以用其余向量线性表示.D. 中每一个向量都不能用其余向量线性表示.知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:一、判断题(共5道小题,共50.0分)1.设A、B为两事件,则表示“A、B两事件均不发生”.A. 正确B. 错误知识点: 阶段作业三学生答案: [B;]得分: [10] 试题分值: 10.0提示:2.3.若X~N(μ,),则P =.A. 正确B. 错误知识点: 阶段作业三学生答案: [A;]得分: [10] 试题分值: 10.0提示:4.5.设随机变量X的概率密度为,则常数k=.A. 正确B. 错误知识点: 阶段作业三学生答案: [B;]得分: [10] 试题分值: 10.0提示:6.7.某人打靶命中率为p,现重复射击5次,则P{至少命中2次}= .A. 正确B. 错误知识点: 阶段作业三学生答案: [B;]得分: [10] 试题分值: 10.0提示:8.9.A、B、C为三事件,则“A、B、C三事件不多于一个发生”表示为.A. 正确B. 错误知识点: 阶段作业三学生答案: [B;]得分: [10] 试题分值: 10.0提示:10.二、单项选择题(共5道小题,共50.0分)1. (错误)设,为标准正态分布的分布函数,则( ).A.B.C.D.知识点: 阶段作业三学生答案: [C;]得分: [0] 试题分值: 10.0提示:2.设随机变量X的概率密度为,则常数().A. -4B. 4C.D.知识点: 阶段作业三学生答案: [B;]得分: [10] 试题分值: 10.0提示:3.4.设随机变量X的概率密度为,则a=().A.B.C. 1D. 2知识点: 阶段作业三学生答案: [C;]得分: [10] 试题分值: 10.0提示:5.6. (错误)设A与B对立,且P(A )≠ 0,P(B) ≠ 0,则().A. P(A∪B) = P(A)+ P(B)B. A =C. P(A B )≠ 0D. P(AB) = P(A) P(B)知识点: 阶段作业三学生答案: [C;]得分: [0] 试题分值: 10.0提示:7.设A与B互不相容,且P(A)>0,P(B) >0,则().A. P(AB) = P(A) P(B)B. P(A��B ) = P(A)C. P(B��A) = 0D. P(B��) ≥P(B)知识点: 阶段作业三学生答案: [C;]得分: [10] 试题分值: 10.0提示:8.9.一、判断题(共5道小题,共50.0分)1. 设A、B都为n阶矩阵,则.A. 正确B. 错误知识点: 阶段作业一学生答案: [B;]得分: [10] 试题分值: 10.0提示:2. 如果n阶矩阵A可逆,则=.A. 正确B. 错误知识点: 阶段作业一学生答案: [A;]得分: [10] 试题分值: 10.0提示:3. 设A、B都为n阶矩阵,若 AB = 0,则|A| = 0或|B| = 0.A. 正确B. 错误知识点: 阶段作业一学生答案: [A;]得分: [10] 试题分值: 10.0提示:4. 设A为n阶矩阵,则必有.A. 正确B. 错误知识点: 阶段作业一学生答案: [A;]得分: [10] 试题分值: 10.0提示:5. (错误)二、单项选择题(共5道小题,共50.0分)1. (错误)设A为4阶矩阵,且,则( ).A. 4B. 3C. 2D. 1知识点: 阶段作业一学生答案: [A;]得分: [0] 试题分值: 10.0提示:2. (错误)设A为m×n矩阵,如果Rank (A) = r (< min( m, n )),则().A. A有一个r阶子式不等于零,一个r + 1阶子式等于零.B. A有一个r阶子式不等于零,所有r + 1阶子式都等于零.C. A的所有r阶子式都不等于零,一个r + 1阶子式等于零.D. A的r阶子式不全为零,一个r + 1阶子式等于零.知识点: 阶段作业一学生答案: [A;]得分: [0] 试题分值: 10.0提示:3. 当k = ( )时,矩阵不可逆.A. 4B. 2C.D. 0知识点: 阶段作业一学生答案: [C;]得分: [10] 试题分值: 10.0提示:4. (错误)设3阶行列式,则().A. 2kB. 6kC. 18kD.知识点: 阶段作业一学生答案: [B;]得分: [0] 试题分值: 10.0提示:5. 已知4阶行列式D中的第2行的元素依次为1,0,-1,2,它们的余子式依次为3,8,5,4,则D =().A. 6一、判断题(共5道小题,共50.0分)1. 若线性方程组的系数矩阵A满足Rank(A) < n,则此方程组有非零解.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:2. 若线性方程组的系数矩阵A和增广矩阵满足Rank()=Rank(A),则此方程组有唯一解.A. 正确B. 错误知识点: 阶段作业二学生答案: [B;] 标准答案: B得分: [10] 试题分值: 10.0提示:3. 若是向量组的一个极大无关组,与等价.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:4. 若存在使式子成立,则向量组线性无关.A. 正确B. 错误知识点: 阶段作业二学生答案: [B;] 标准答案: B得分: [10] 试题分值: 10.0提示:5. 若存在一组不全为零的数使,则向量组线性无关.A. 正确B. 错误知识点: 阶段作业二学生答案: [B;] 标准答案: B得分: [10] 试题分值: 10.0二、单项选择题(共5道小题,共50.0分)1. (错误)当k =()时,线性方程组有非零解.A. 0或1B. 1或-1C. -1或-3D. -1或3知识点: 阶段作业二学生答案: [A;] 标准答案: C得分: [0] 试题分值: 10.0提示:2. (错误)设向量组,,,则当实数k = ( )时,,,是线性相关的.A. -2或3B. 2或-3C. 2或3D. -2或-3知识点: 阶段作业二学生答案: [B;] 标准答案: A得分: [0] 试题分值: 10.0提示:3. (错误)设矩阵的行向量组,,线性无关,则( ).A. 0B. 1C. 2D. 3知识点: 阶段作业二学生答案: [C;] 标准答案: D得分: [0] 试题分值: 10.0提示:4. (错误)向量组(m ³ 2)线性相关的充分必要条件是().A. 中至少有一个向量可以用其余向量线性表示.B. 中有一个零向量.C. 中的所有向量都可以用其余向量线性表示.D. 中每一个向量都不能用其余向量线性表示.知识点: 阶段作业二学生答案: [D;] 标准答案: A得分: [0] 试题分值: 10.0提示:5. (错误)若( )的数使,则向量组线性无关.A. 存在一组不全为零B. 存在一组全不为零C. 仅存在一组全为零D. 存在一组全为零知识点: 阶段作业二学生答案: [A;] 标准答案: C得分: [0] 试题分值: 10.0提示:一、判断题(共5道小题,共50.0分)1. (错误)若线性方程组的系数矩阵A满足Rank(A) < n,则此方程组有非零解.A. 正确B. 错误知识点: 阶段作业二学生答案: [B;] 标准答案: A得分: [0] 试题分值: 10.0提示:2. 任何一个齐次线性方程组都有基础解系,它的解都可由其基础解系线性表示.A. 正确B. 错误知识点: 阶段作业二学生答案: [B;] 标准答案: B得分: [10] 试题分值: 10.0提示:3. (错误)若向量组中的可用线性表示,则线性相关.A. 正确B. 错误知识点: 阶段作业二学生答案: [B;] 标准答案: A得分: [0] 试题分值: 10.0提示:4. 若向量组线性相关,则一定可用线性表示.A. 正确B. 错误知识点: 阶段作业二学生答案: [B;] 标准答案: B得分: [10] 试题分值: 10.0提示:5. 若存在使式子成立,则向量组线性无关.A. 正确B. 错误知识点: 阶段作业二学生答案: [B;] 标准答案: B得分: [10] 试题分值: 10.0提示:二、单项选择题(共5道小题,共50.0分)1. 三元线性方程组的全部解为().A.B.C.D. (为任意常数)知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:2. (错误)若线性方程组的系数矩阵A和增广矩阵满足Rank()=Rank(A) = n,则此方程组( ).A. 无解B. 有唯一解C. 有无穷多解D. 不能确定是否有解知识点: 阶段作业二学生答案: [A;] 标准答案: B得分: [0] 试题分值: 10.0提示:3. (错误)若线性方程组的系数矩阵A和增广矩阵满足Rank()=Rank(A) < n,则此方程组( ).A. 无解B. 有唯一解C. 有无穷多解D. 不能确定是否有解知识点: 阶段作业二学生答案: [A;] 标准答案: C得分: [0] 试题分值: 10.0提示:4. (错误)当()时,线性方程组仅有零解.A. 且B. 且C. 且D. 且知识点: 阶段作业二学生答案: [A;] 标准答案: D;得分: [0] 试题分值: 10.0提示:5. 设向量组,,,则当实数k = ( )时,,,是线性相关的.A. -2或3B. 2或-3C. 2或3D. -2或-3知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:6.一、判断题(共5道小题,共50.0分)1. 若线性方程组的系数矩阵A满足Rank(A) < n,则此方程组有非零解.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:2. 若线性方程组的系数矩阵A和增广矩阵满足Rank()=Rank(A),则此方程组有唯一解.A. 正确B. 错误知识点: 阶段作业二学生答案: [B;] 标准答案: B得分: [10] 试题分值: 10.0提示:3. 任何一个齐次线性方程组都有解.A. 正确B. 错误知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:4. 任何一个齐次线性方程组都有基础解系,它的解都可由其基础解系线性表示.A. 正确B. 错误知识点: 阶段作业二学生答案: [B;] 标准答案: B得分: [10] 试题分值: 10.0提示:5. (错误)若是向量组的一个极大无关组,与等价.A. 正确B. 错误知识点: 阶段作业二学生答案: [B;] 标准答案: A得分: [0] 试题分值: 10.0提示:二、单项选择题(共5道小题,共50.0分)1. 当k =()时,线性方程组有非零解.A. 0或1B. 1或-1C. -1或-3D. -1或3知识点: 阶段作业二学生答案: [C;] 标准答案: C得分: [10] 试题分值: 10.0提示:2. 设向量组,,,则当实数k = ( )时,,,是线性相关的.A. -2或3B. 2或-3C. 2或3D. -2或-3知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:3. 设向量,,,,则向量 b 可由向量线性表示的表达式为( ).A.B.C.D.知识点: 阶段作业二学生答案: [D;] 标准答案: D得分: [10] 试题分值: 10.0提示:4. 设A为4阶矩阵,为它的行向量组,如果,则( ).A. 秩{}=3且向量组线性相关.B. 秩{}=4且向量组线性无关.C. 秩{}=3且向量组线性无关.D. 秩{}=4且向量组线性相关.知识点: 阶段作业二学生答案: [A;] 标准答案: A得分: [10] 试题分值: 10.0提示:5. (错误)若( )的数使,则向量组线性相关.A. 存在一组不全为零B. 对任意一组全不为零C. 仅存在一组全为零D. 存在一组全为零知识点: 阶段作业二学生答案: [C;] 标准答案: A得分: [0] 试题分值: 10.0提示:。
工程数学I(离线作业)
工程数学I第一次作业三、主观题(共9道小题)22.参考答案:t=523.参考答案:2424.参考答案:-325.参考答案:26.参考答案:x= -4 , y= 227.参考答案:428.参考答案:相关29.参考答案:1=2= 0 ,3=230.参考答案:3二次作业三、主观题(共6道小题)13.参考答案:a=614.参考答案:4815.参考答案:-216.参考答案:或不定17.参考答案:a=b=c=118.参考答案:4第三次作业三、主观题(共6道小题)13.参考答案:令,则A的阶梯形有零行,所以向量组线性相关。
14.求解齐次方程组参考答案:对方程组的系数矩阵作初等行变换化成简单阶梯形矩阵15.已知四元线性方程组参考答案:16.设,求A的特征值和特征向量。
参考答案:17.求一个正交矩阵P,将对称矩阵化为对角矩阵。
参考答案:18.设二次型经过正交变换化为求参数a、b及所用的正交变换矩阵。
参考答案:变换前后的两个二次型的矩阵分别为第四次作业三、主观题(共7道小题)13.计算行列式参考答案:容易发现D的特点是:每列(行)元素之和都等于6,那么,把二、三、四行同时加到第一行,并提出第一行的公因子6,便得到由于上式右端行列式第一行的元素都等于1,那么让二、三、四行都减去第一行得14.求行列式中元素a和b的代数余子式。
参考答案:行列式展开方法==15.设,判断A是否可逆?若可逆,求出参考答案:即所以16.求矩阵X使之满足参考答案:17.用初等行变换求矩阵的逆矩阵参考答案:于是同样道理,由算式可知,若对矩阵(A,B)施行初等行变换,当把A 变为E时,B就变为18.讨论向量组,,的线性相关性。
参考答案:即19.用正交变换把二次型化为标准型。
参考答案:二次型的矩阵正交化得位化得第五次作业三、主观题(共7道小题)14.参考答案:15.参考答案:16.参考答案:17.参考答案:18.计算四阶行列式参考答案:将行列式D按第三行展开得19.求方程组的一个基础解系并求其通解。
工程数学4
u 2 x(1 y ) v x2 y2 2 y u v u v 2(1 y ) , 2 x x y y x
由于偏导数处处存在,且满足C-R方程,因此,处处解析
12
3、函数解析的充分必要条件
(b) f ( z ) z x iy ux v y
18
2、已知实部或虚部的解析函数的表达式
• 解析函数中:
– v是u的共轭调和函数
– -u是v的共轭调和函数 – 已知v,也可求出u
19
• (1)利用C-R方程来求
ux vy
u y v x
– 例:
v x y 2y
2 2
解:
vx 2 x u y
v y 2 y 2 u x
0 0
c为任意实数
使函数 f ( z ) u iv 在D内解析
• 同理:
x, y u ( x, y ) x , y u x dx u y dy c 0 0 x, y x , y v y dx vx dy c 0 0
21
2、已知实部或虚部的解析函数的 表达式
8
1、解析函数的概念
• 解析和可导的关系
– 函数在区域D内解析
– 函数在某点解析
函数在区域D内可导
函数在某点可导
– 函数在某点可导,但不一定在该点解析
9
2、解析函数的性质
• 若函数在某区域上解析,则在该区域上:
– (1)解析函数的加减乘除仍然解析;
– (2)解析函数的复合函数仍然解析; – (3)解析函数的单值反函数仍然解析。
第二章 解析函数
1
主要内容
• 2.1 复变函数的极限 • 2.2 复变函数的连续性 • 2.3 导数 • 2.4 解析函数
工程数学(本科)形考任务答案解析
_工程数学作业(一)答案第 2 章矩阵(一)单项选择题(每小题 2 分,共 20 分)⒈设,则( D ).A. 4B. - 4C. 6D. - 6⒉若,则( A ).A. B. - 1 C. D. 1⒊乘积矩阵中元素( C ).A. 1B. 7C. 10D. 8⒋设均为阶可逆矩阵,则下列运算关系正确的是( B ).A. B.C. D.⒌设均为阶方阵,且,则下列等式正确的是( D ).A. B.C. D._⒍下列结论正确的是( A ).A. 若是正交矩阵,则也是正交矩阵B. 若均为阶对称矩阵,则也是对称矩阵C. 若均为阶非零矩阵,则也是非零矩阵D. 若均为阶非零矩阵,则⒎矩阵的伴随矩阵为( C ).A. B.C. D.⒏方阵可逆的充分必要条件是( B ).A. B. C. D.⒐设均为阶可逆矩阵,则( D ).A. B.C. D.⒑设均为阶可逆矩阵,则下列等式成立的是( A ).A. B.C. D.(二)填空题(每小题 2 分,共 20 分)⒈7 .⒉是关于的一个一次多项式,则该多项式一次项的系数是 2 .⒊若为矩阵,为矩阵,切乘积有意义,则为 5 × 4 矩阵.⒋二阶矩阵.⒌设,则⒍设均为 3 阶矩阵,且,则72 .⒎设均为 3 阶矩阵,且,则- 3 .⒏若为正交矩阵,则 0 .⒐矩阵的秩为 2 .⒑设是两个可逆矩阵,则.(三)解答题(每小题 8 分,共 48 分)⒈设,求⑴;⑵;⑶;⑷;⑸;⑹.答案:⒉设,求.解:⒊已知,求满足方程中的.解:⒋写出 4 阶行列式中元素的代数余子式,并求其值.答案:⒌用初等行变换求下列矩阵的逆矩阵:⑴;⑵;⑶.解:( 1 )( 2 )( 过程略 ) (3)⒍求矩阵的秩.解:(四)证明题(每小题 4 分,共 12 分)⒎对任意方阵,试证是对称矩阵.证明:是对称矩阵⒏若是阶方阵,且,试证或.证明:是阶方阵,且或⒐若是正交矩阵,试证也是正交矩阵.证明:是正交矩阵即是正交矩阵工程数学作业(第二次)第 3 章线性方程组(一)单项选择题 ( 每小题 2 分,共 16 分 )⒈用消元法得的解为( C ).A. B.C. D.⒉线性方程组( B ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组的秩为( A ).A. 3B. 2C. 4D. 5⒋设向量组为,则(B )是极大无关组.A. B. C. D.⒌与分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则( D ).A. 秩秩B. 秩秩C. 秩秩D. 秩秩⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组( A ).A. 可能无解B. 有唯一解C. 有无穷多解D. 无解⒎以下结论正确的是( D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组线性相关,则向量组内( A )可被该向量组内其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量9 .设 A ,B为阶矩阵,既是A又是B的特征值,既是A又是B的属于的特征向量,则结论()成立.A.是 AB 的特征值B.是 A+B 的特征值C.是 A - B 的特征值D.是 A+B 的属于的特征向量10 .设A,B,P为阶矩阵,若等式(C)成立,则称A和B相似.A.B.C.D.(二)填空题 ( 每小题 2 分,共 16 分 )⒈当1时,齐次线性方程组有非零解.⒉向量组线性相关.⒊向量组的秩是3.⒋设齐次线性方程组的系数行列式,则这个方程组有无穷多解,且系数列向量是线性相关的.⒌向量组的极大线性无关组是.⒍向量组的秩与矩阵的秩相同.⒎设线性方程组中有 5 个未知量,且秩,则其基础解系中线性无关的解向量有2个.⒏设线性方程组有解,是它的一个特解,且的基础解系为,则的通解为.9 .若是A的特征值,则是方程的根.10 .若矩阵A满足,则称A为正交矩阵.(三)解答题 ( 第 1 小题 9 分,其余每小题 11 分 )1 .用消元法解线性方程组解:方程组解为2.设有线性方程组为何值时,方程组有唯一解 ? 或有无穷多解 ?解:]当且时,,方程组有唯一解当时,,方程组有无穷多解3.判断向量能否由向量组线性表出,若能,写出一种表出方式.其中解:向量能否由向量组线性表出,当且仅当方程组有解这里方程组无解不能由向量线性表出4.计算下列向量组的秩,并且( 1 )判断该向量组是否线性相关解:该向量组线性相关5.求齐次线性方程组的一个基础解系.解:方程组的一般解为令,得基础解系6.求下列线性方程组的全部解.解:方程组一般解为令,,这里,为任意常数,得方程组通解7.试证:任一4维向量都可由向量组,,,线性表示,且表示方式唯一,写出这种表示方式.证明:任一4维向量可唯一表示为⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解.证明:设为含个未知量的线性方程组该方程组有解,即从而有唯一解当且仅当而相应齐次线性方程组只有零解的充分必要条件是有唯一解的充分必要条件是:相应的齐次线性方程组只有零解9 .设是可逆矩阵A的特征值,且,试证:是矩阵的特征值.证明:是可逆矩阵A的特征值存在向量,使即是矩阵的特征值10 .用配方法将二次型化为标准型.解:令,,,即则将二次型化为标准型工程数学作业(第三次)第 4 章随机事件与概率(一)单项选择题⒈为两个事件,则( B )成立.A. B.C. D.⒉如果( C )成立,则事件与互为对立事件.A. B.C. 且D. 与互为对立事件⒊ 10 张奖券中含有 3 张中奖的奖券,每人购买 1 张,则前 3 个购买者中恰有 1 人中奖的概率为( D ).A. B. C. D.4. 对于事件,命题( C )是正确的.A. 如果互不相容,则互不相容B. 如果,则C. 如果对立,则对立D. 如果相容,则相容⒌某随机试验的成功率为, 则在 3 次重复试验中至少失败 1 次的概率为( D ).A. B. C. D.6. 设随机变量,且,则参数与分别是( A ).A. 6, 0.8B. 8, 0.6C. 12, 0.4D. 14, 0.27. 设为连续型随机变量的密度函数,则对任意的,( A ).A. B.C. D.8. 在下列函数中可以作为分布密度函数的是( B ).A. B.C. D.9. 设连续型随机变量的密度函数为,分布函数为,则对任意的区间,则( D ).A. B.C. D.10. 设为随机变量,,当( C )时,有.A. B.C. D.(二)填空题⒈从数字 1,2,3,4,5 中任取 3 个,组成没有重复数字的三位数,则这个三位数是偶数的概率为.2. 已知,则当事件互不相容时, 0.8 ,0.3 .3. 为两个事件,且,则.4. 已知,则.5. 若事件相互独立,且,则.6. 已知,则当事件相互独立时, 0.65 ,0.3 .7. 设随机变量,则的分布函数.8. 若,则 6 .9. 若,则.10. 称为二维随机变量的协方差.(三)解答题1. 设为三个事件,试用的运算分别表示下列事件:⑴中至少有一个发生;⑵中只有一个发生;⑶中至多有一个发生;⑷中至少有两个发生;⑸中不多于两个发生;⑹中只有发生.解 : (1) (2) (3)(4) (5) (6)2. 袋中有 3 个红球, 2 个白球,现从中随机抽取 2 个球,求下列事件的概率:⑴ 2 球恰好同色;⑵ 2 球中至少有 1 红球.解 : 设= “ 2 球恰好同色”, = “ 2 球中至少有 1 红球”3. 加工某种零件需要两道工序,第一道工序的次品率是 2% ,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是 3% ,求加工出来的零件是正品的概率.解:设“第 i 道工序出正品”( i=1,2 )4. 市场供应的热水瓶中,甲厂产品占 50% ,乙厂产品占 30% ,丙厂产品占20% ,甲、乙、丙厂产品的合格率分别为 90%,85%,80% ,求买到一个热水瓶是合格品的概率.解:设5. 某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是,求所需设计次数的概率分布.解:……………………故 X 的概率分布是6. 设随机变量的概率分布为试求.解:7. 设随机变量具有概率密度试求.解:8. 设,求.解:9. 设,计算⑴;⑵.解:10. 设是独立同分布的随机变量,已知,设,求.解:工程数学作业(第四次)第 6 章统计推断(一)单项选择题⒈设是来自正态总体(均未知)的样本,则(A )是统计量.A. B. C. D.⒉设是来自正态总体(均未知)的样本,则统计量( D )不是的无偏估计.A. B.C. D.(二)填空题1 .统计量就是不含未知参数的样本函数.2 .参数估计的两种方法是点估计和区间估计.常用的参数点估计有矩估计法和最大似然估计两种方法.3 .比较估计量好坏的两个重要标准是无偏性,有效性.4 .设是来自正态总体(已知)的样本值,按给定的显著性水平检验,需选取统计量.5 .假设检验中的显著性水平为事件( u 为临界值)发生的概率.(三)解答题1 .设对总体得到一个容量为 10 的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,5.0, 3.5, 4.0试分别计算样本均值和样本方差.解:2 .设总体的概率密度函数为试分别用矩估计法和最大似然估计法估计参数.解:提示教材第 214 页例 3矩估计:最大似然估计:,3 .测两点之间的直线距离 5 次,测得距离的值为(单位: m ):108.5 109.0 110.0 110.5 112.0测量值可以认为是服从正态分布的,求与的估计值.并在⑴;⑵未知的情况下,分别求的置信度为 0.95 的置信区间.解:( 1 )当时,由 1 -α= 0.95 ,查表得:故所求置信区间为:( 2 )当未知时,用替代,查 t (4, 0.05 ) ,得故所求置信区间为:4 .设某产品的性能指标服从正态分布,从历史资料已知,抽查10 个样品,求得均值为 17 ,取显著性水平,问原假设是否成立.解:,由,查表得:因为> 1.96 ,所以拒绝5 .某零件长度服从正态分布,过去的均值为 20.0 ,现换了新材料,从产品中随机抽取 8 个样品,测得的长度为(单位: cm ):20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5问用新材料做的零件平均长度是否起了变化().解:由已知条件可求得:∵ | T | < 2.62 ∴接受 H 0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程数学I第4次作业客观题本次作业是本门课程本学期的第4次作业,注释如下:
一、判断题(判断正误,共33道小题)
1.
你选择的答案: [前面作业中已经做正确] [正确]
正确答案:说法正确
解答参考:
2.
你选择的答案: [前面作业中已经做正确] [正确]
正确答案:说法正确
解答参考:
3.
你选择的答案: [前面作业中已经做正确] [正确]
正确答案:说法错误
解答参考:
4.
你选择的答案: [前面作业中已经做正确] [正确]
正确答案:说法错误
解答参考:
5.
你选择的答案: [前面作业中已经做正确] [正确]
正确答案:说法正确
解答参考:
6.
你选择的答案:说法正确 [正确]
正确答案:说法正确
解答参考:
7.
你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法错误
解答参考:
8.
你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法错误
解答参考:
9.
你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法错误
解答参考:
10.
你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法错误
解答参考:
11.
你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法错误
解答参考:
12.
你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法错误
解答参考:
13.
你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法错误
解答参考:
14.
你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法正确
解答参考:
15.
你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法错误
解答参考:
16.
你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法错误
解答参考:
17.
你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法错误
解答参考:
18.
你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法正确
解答参考:
19.
你选择的答案: [前面作业中已经做正确] [正确]
正确答案:说法错误
解答参考:
20.
你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法正确
解答参考:
21.
你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法错误
解答参考:
22.
你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法正确
解答参考:
23.
你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法正确
解答参考:
24.
你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法正确
解答参考:
25.
你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法正确
解答参考:
26.
你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法错误
解答参考:
27.
你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法正确
解答参考:
28.
你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法正确
解答参考:
29.
你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法错误
解答参考:
30.
你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法错误
解答参考:
31.
你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法正确
解答参考:
32.
你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法正确
解答参考:
33.
你选择的答案: [前面作业中已经做正确] [正确]正确答案:说法错误
解答参考:。