微电网保护方法及策略报告

合集下载

微电网2024年微电网发展战略

微电网2024年微电网发展战略
02
节能减排
通过新能源微电网系统实现节能减排
03
推动绿色低碳发展
Unified fonts make reading more fluent.
Theme color makes PPT more convenient to change.
Adjust the spacing to adapt to Chinese typesetting, use the reference line in PPT.
● 03
第3章 微电网发展战略
政策支持
为了推动微电网发展,政府应该 制定更加完善的政策法规,为微 电网的发展提供更好的政策支持。 这包括激励政策、补贴政策等方 面的支持措施,以吸引更多的企 业和投资者参与微电网建设和运 营。
技术创新
01 研发投入
增加对微电网技术研发的投入
02 技术应用
推动微电网技术的创新和应用
Theme color makes PPT more convenient to change.
Adjust the spacing to adapt to Chinese typesetting, use the reference line in PPT.
行业机会
微电网发展将带来新的行业机遇,促进电 力行业的转型升级。这将为企业带来更多 创新和发展的空间,同时也为消费者提供 更优质和环保的能源选择。
第2章 微电网2024年发展目 标
可再生能源利用率提 升至80%
01 技术创新
引入新型太阳能板和风力发电设备
02 政策支持
制定更加有利于可再生能源发展的政策
03 能源存储技术
提升电池储能效率
增加微电网覆盖率
地区扩展 民众参与 政府支持 规模扩大

微电网的协调控制与能量管理策略

微电网的协调控制与能量管理策略

微电网的协调控制与能量管理策略前言:在当代社会,能源危机和环境问题愈发突出,推动着新能源的发展与普及。

微电网作为一种新兴的能源系统,具备可靠性高、灵活性强、环境友好等优势,被广泛应用于小区、工业园区等场景。

然而,微电网的协调控制和能量管理策略是实现其优化运行的关键。

本文将探讨微电网在协调控制和能量管理策略上的相关问题和解决方案。

一、微电网协调控制1. 分布式能源资源管理微电网中各种分布式能源资源(如太阳能、风能、蓄电池等)分布广泛,接入方式多样,如何协调和管理这些分布式能源资源成为一个亟待解决的问题。

可以通过建立优化模型,考虑系统的经济性、可靠性、环境友好性等因素,以实现分布式能源的最优分配和管理。

2. 多能流之间的协调与转换微电网内有多种能流之间需要协调与转换,包括电能、热能和气能等。

为了实现各种能流之间的高效利用,可以引入多能流集成技术,将不同能源互补和转化,提高能源的利用效率。

同时,通过智能开关、电力电子器件等控制手段,实现能流的高效、无损转换。

3. 网联与脱离运行模式切换微电网可以与公共电网相互连接,实现网联运行;也可以脱离公共电网,实现独立运行。

在不同的运行模式之间切换时,需要实现平稳过渡和无缝切换,确保微电网的稳定运行。

可以通过引入能量存储系统、智能控制算法等手段,提高微电网的运行模式切换能力。

二、微电网能量管理策略1. 优化能源的供需关系微电网中多种能源的供需关系需要进行动态管理和优化,以尽量减少能源的浪费和排放。

可以通过预测用户的用能需求和能源的产生情况,预测微电网的能源供需状况,进而采取相应的调整措施,以实现能源的有效利用。

2. 能量存储与分配机制能量存储是微电网能量管理的重要手段之一,可以通过蓄电池、储热系统等方式进行能量存储。

通过优化能量的存储和分配机制,可以提高微电网的自供能力和供能可靠性。

同时,合理利用能量存储系统的剩余能量,参与电力市场的调度,实现电力的双向流动。

3. 能量的系统调度和控制微电网中的能量管理需要进行系统调度和控制。

微电网保护方法及策略报告

微电网保护方法及策略报告

保护方案研究报告题目:多微电网关键技术研究指导人:报告人:摘要:本文主要就基于区域纵联保护原理的保护方案进行了详述。

关键词:保护区域纵联1、概述同大电网一样,微网内部发生故障时,通常不希望直接切掉电源,而是通过保护装置的选择性将故障部分切除,保障微网正常部分的稳定运行。

微网除供电负荷外,还有一些其他的负荷,例如热负荷;因此更不能轻易切掉电源[1]。

故障按照微网的运行方式可以分为联网运行方式下的故障和孤岛运行方式下的故障;按照故障类型可以分为线路故障,负荷故障,变压器故障;按照故障位置可以分为位于分布式电源下游的故障和位于分布式电源上游的故障。

图1 微网可能发生的故障位置评价一种运行方式是否合理,主要是看其能否提高系统的供电可靠性,所以需要对于上述各种运行方式进行可靠性评估,衡量电力系统的可靠性,主要是依据停电时间和停电次数。

文献[2]指出可以直接利用微型开关或者熔断器(保险丝)对低压侧负荷故障进行切除;并且提到在孤岛运行方式下,电压降落来源于故障,而这个故障导致的电压降落可能会传递到整个网络,所以使用不能使用电压水平作为协调保护装置,使用方向元件是最佳选择。

文献[3]提出利用先进的通信技术,将安装在断路器上的方向元件的状态信息传输个微网控制中心,微网控制中心对于各个继电器进行设置。

2、包含有DG的配网保护中出现的新问题多微网配电系统的保护主要包括并网模式与孤岛模式下配网保护与孤岛保护。

配电网系统接入DG以后,改变了原有的网络结构,原系统的潮流分布和短路电流的大小随之改变。

这些改变对过流保护的整定、配置和动作特性都有影响,而影响的大小取决于保护的位置、故障点和DG接入的位置。

带来的问题主要包括[4]:(1)DG降低所在线路保护的灵敏度或缩小保护范围;如图所示,DG接在线路末端,当DG下游出现故障时,由于DG向故障点送出短路电流,DG上游的线路保护R1感受到的故障电流将变小,从而降低了Rl的灵敏度,缩小了保护范围。

微电网控制与保护学习心得

微电网控制与保护学习心得

微电网控制与保护学习心得摘要:本文介绍了文献查阅后总结的微电网的基本知识和微电网控制与保护相关的一些问题。

微电网的出现协调了大电网与分布式电源的矛盾,对大电网表现为单一的受控单元,对用户则表现为可定制的电源,可以提高本地供电可靠性,降低馈线损耗。

但是目前我国微电网的发展尚处于起步阶段,还有很多问题有待研究。

微电网的保护和控制问题是目前分布式发电供能系统广泛应用的主要技术瓶颈之一。

微电网的保护既要克服微电网接入对传统配电系统保护带来的影响,又要满足含微网配电系统对保护提出的新要求,这方面的研究是保证分布式发电供能系统可靠运行的关键。

文中提出了一些现有的文献中提及的微电网继电保护方法和保护方案。

关键词:微电网;控制;保护;分布式发电Abstracts:This article describes the literature review after the conclusion of the basics of micro grid and micro grid control and protection-related problems. The emergence of micro-coordination of a large power grid and distributed power conflicts, the performance of a single large power controlled unit, users can customize the performance of the power supply, can improve local supply reliability and reduce feeder loss. But at present, the development of micro-grid is still in its infancy, there are many problems to be studied. Microgrid protection and control of distributed power generation is widely used for energy systems one of the main technical bottlenecks. Microgrid protection is necessary to overcome the Microgrid access to protect the traditional distribution system impact, but also to meet with micro network distribution system to protect the new requirements, this research is to ensure that distributed generation energy supply system reliable operation of the key. This paper presents some of the existing literature mentioned methods and microgrid relay protection scheme.Key Words:Microgrid; Control; Protection; Distributed Power Generation一、微电网基本知识当前电力系统已成为集中发电、远距离高压输电的大型互联网络系统。

《2024年微电网运行策略及优化方法研究》范文

《2024年微电网运行策略及优化方法研究》范文

《微电网运行策略及优化方法研究》篇一一、引言随着社会对可再生能源的依赖性日益增强,微电网作为一种新型的能源供应模式,其运行策略及优化方法的研究显得尤为重要。

微电网能够整合分布式能源资源,如风能、太阳能等,并通过智能控制技术实现能源的高效利用和供应。

本文将针对微电网的运行策略及优化方法进行深入研究,旨在为微电网的可持续发展提供理论支持和实践指导。

二、微电网的基本概念及组成微电网是指通过先进的电力电子技术,将分布式能源、储能系统、负荷等有机结合,形成一个能够自我控制、管理和优化的独立电力系统。

其基本组成包括分布式发电系统、储能装置、能量转换装置以及监控管理系统等。

三、微电网的运行策略1. 能源调度策略:根据微电网内各分布式电源的出力特性及负荷需求,制定合理的能源调度策略。

通过实时监测各电源的出力情况及负荷需求,进行动态调整,确保微电网的稳定运行。

2. 优化配置策略:根据微电网的实际情况,制定合理的设备配置方案,包括分布式电源、储能系统等。

同时,结合经济性、环保性等因素,进行设备选型和配置优化。

3. 保护控制策略:为确保微电网的安全稳定运行,制定完善的保护控制策略。

包括故障诊断、隔离及恢复供电等措施,确保在发生故障时能够及时处理,降低损失。

四、微电网的优化方法1. 能量管理优化:通过引入智能控制技术,实现微电网内能量的优化管理。

包括需求响应、能量预测、储能系统的调度等,以提高能源利用效率。

2. 分布式电源的优化:针对不同分布式电源的特性,制定相应的优化措施。

如通过优化风力发电和光伏发电的并网运行策略,提高其发电效率。

3. 通信网络的优化:通过建立高效稳定的通信网络,实现微电网内各设备之间的信息共享和协同控制。

这有助于提高微电网的运行效率和管理水平。

五、实例分析以某地区微电网为例,通过引入先进的能量管理技术和优化方法,实现了微电网的高效运行和能源的充分利用。

具体措施包括:建立完善的能量管理系统,实现需求响应和能量预测;优化风力发电和光伏发电的并网运行策略;建立高效稳定的通信网络,实现各设备之间的信息共享和协同控制等。

微电网解决方案 四方

微电网解决方案 四方

微电网解决方案四方《微电网解决方案四方》随着能源需求的增长和可再生能源的普及,全球范围内对微电网解决方案的需求也在不断增加。

微电网是指利用多种能源和先进的能源管理技术集成在一起的电力系统,可以在局部范围内实现可靠的供电。

在微电网解决方案中,四个方面至关重要。

首先是多能互补。

微电网中的能源来源可以包括太阳能、风能、生物质能等多种可再生能源,通过互补利用不同的能源,可以提高供电的可靠性和稳定性。

例如,在太阳能资源充足的地区,可以利用太阳能发电,而在太阳能不足或风能资源丰富的时候,可以通过风能发电来弥补能源缺口,从而实现多能互补,确保不间断的供电。

其次是智能能源管理。

微电网解决方案需要智能的能源管理系统,能够根据实际的能源供需情况进行灵活调整,最大程度地提高能源利用效率。

通过智能能源管理系统,可以实现对能源的实时监测和精准控制,从而更好地平衡供需关系,避免能源浪费,提高微电网的整体效益。

再者是储能设备的应用。

微电网解决方案需要配备一定规模的储能设备,以应对能源波动和尖峰时段的需求。

通过储能设备,可以在能源充裕时进行储存,在需求高峰时释放能源,从而平衡供需关系,确保微电网的稳定供电。

目前,常见的储能设备包括锂离子电池、超级电容等,它们具有高效、高密度和长寿命的特点,可以为微电网提供可靠的能源储备。

最后是智能微网运行管理。

微电网解决方案还需要智能的微网运行管理系统,能够实现对微网的实时监测、故障诊断和远程控制。

通过智能微网运行管理系统,可以发现并修复微网的故障,提高微网的可靠性和稳定性,确保微网能够在各种情况下保持正常运行。

同时,可以通过智能微网运行管理系统实现对微网的优化调度,最大程度地提高微网的整体运行效率。

综上所述,《微电网解决方案四方》中的多能互补、智能能源管理、储能设备的应用和智能微网运行管理是构建微电网的关键环节,它们共同作用,可以实现微电网的可靠供电和高效运行,为推动清洁能源转型和提高能源利用效率做出重要贡献。

电网安全保护保证措施

电网安全保护保证措施

电网安全保护保证措施1. 系统安全监控与维护电网作为关系国家安全和民生的重要组成部分,其安全保护至关重要。

首先,建立完善的系统安全监控与维护机制是保障电网安全的关键措施。

通过引入先进的监控技术,如智能感应系统和无线网络连接,可以实时监测电网的运行状态、异常情况和潜在风险。

同时,加强对系统的定期维护和巡检,及时修复漏洞和故障,确保电网的连续运行和安全性。

2. 认证与访问控制第二个重要的措施是建立严格的认证与访问控制机制。

通过使用高级身份验证技术,如双因素身份验证、指纹识别和虹膜扫描等,可以确保只有授权人员能够访问电网控制系统。

此外,采用强密码策略和定期更换密码的措施,能有效防止未经授权的访问和恶意攻击。

3. 物理安全措施针对电网的物理保护,我们需要采取一系列措施来保障其安全。

首先,在关键设施周边建立完善的围墙、防护隔离区和重要设备防护措施,防止非法入侵和破坏。

其次,安装闭路电视监控系统和入侵报警系统,监测周边环境并及时报警。

此外,建立访客登记制度,对于来访人员进行身份核实并限制其活动范围,以减少潜在威胁。

4. 信息安全保护在电网的安全保护中,信息安全也是不可忽视的一环。

首先,加强对关键信息的保密措施,建立起完善的信息备份系统和访问权限体系,防止敏感信息的泄露。

其次,采用加密技术对传输的数据进行保护,确保数据在传输过程中不会被窃取或篡改。

此外,进行网络防火墙和入侵检测系统的部署,能够有效阻止恶意攻击和未授权的访问。

5. 人员培训与意识教育最后一个重要的措施是加强人员培训与意识教育。

电网安全保护需要全体从业人员的共同努力,只有做好每个人的工作,才能保障整个系统的安全。

因此,培训工作应包括对工作人员的技术培训、安全意识培训和紧急处置演练等。

通过定期举办培训和教育活动,提高从业人员对电网安全保护的认知,增强他们的安全意识和应对能力。

综上所述,电网安全保护保证措施的实施离不开系统安全监控与维护、认证与访问控制、物理安全措施、信息安全保护以及人员培训与意识教育等措施的综合运用。

微电网设计及其控制策略

微电网设计及其控制策略

微电网设计及其控制策略随着人类社会的不断发展,能源的使用也日益增长。

传统的大型电力系统在满足人们用电需求的同时,也存在着能源浪费和环境污染等问题。

为了解决这些问题,微电网(Microgrid)作为一种新型的能源供应模式,逐渐引起了人们的关注。

微电网是由多种能源(如太阳能、风能、燃料电池等)和多种负载(如住宅、商业、工业等)组成的小型电力系统,能够自主运行,也能与主电网连接。

与传统的大型电力系统相比,微电网具有高度的灵活性、可靠性和可持续性。

微电网的设计涉及到多方面的问题,其中最关键的要素是控制策略。

微电网的控制策略应该满足以下几个方面的要求:一、保证微电网的安全运行。

微电网的控制策略需要保证系统的稳定性和可靠性。

在微电网中,各种能源和负载之间的匹配关系非常重要。

控制策略需要对电网中的各种元器件进行合理的配置和优化,以保证微电网的安全稳定运行。

二、提高微电网的经济性。

微电网的控制策略应该考虑如何最大程度地利用各种能源,并通过优化调度来降低电力成本。

此外,微电网的控制策略还需要合理分配各种负载,使能源利用效率最大化。

三、提高微电网的灵活性。

微电网的控制策略应该能够自适应各种能源和负载的变化,确保微电网能够灵活应对各种情况。

此外,控制策略还应该考虑微电网与主电网的连接和断开问题,以保证在需求过大时,微电网能够自主切换到主电网运行。

在微电网的控制策略中,能源管理是其中的核心问题。

能源管理的主要任务就是对微电网中的各种能源进行合理调度,以满足各种负载的需求。

在能源管理中,需要考虑各种因素,包括天气、负载、电能储存等。

在微电网中,太阳能和风能是最为常见的能源。

为了充分利用这些能源,需要将它们与电池等能量储存设备结合起来,形成一个完整的能源系统。

在能源管理中,需要根据天气预报等信息,提前制定合理的调度方案,以使能源利用效率最大化。

此外,在微电网的控制策略中,还需要考虑各种负载需求的变化情况。

例如,在白天餐厅的负载需求比较大,而晚上客房等负载需求则相应降低。

《2024年微电网运行策略及优化方法研究》范文

《2024年微电网运行策略及优化方法研究》范文

《微电网运行策略及优化方法研究》篇一一、引言随着可再生能源的快速发展和智能电网技术的不断进步,微电网作为一种新型的能源供应模式,正逐渐成为电力系统的重要组成部分。

微电网能够有效地整合分布式能源资源,提高能源利用效率,减少能源损耗,并增强电网的可靠性和稳定性。

因此,对微电网的运行策略及优化方法进行研究,对于推动微电网的广泛应用和智能电网的建设具有重要意义。

二、微电网的基本构成与特点微电网主要由分布式电源、储能装置、负荷以及监控和控制系统等部分组成。

其中,分布式电源包括风能、太阳能、燃气轮机等可再生能源设备;储能装置则用于平衡微电网内部的能量供需;负荷则是微电网所服务的电力消费端;而监控和控制系统则负责整个微电网的协调运行和优化调度。

微电网具有以下特点:一是能够有效地整合和利用分布式能源资源;二是能够提高供电的可靠性和稳定性;三是能够减少能源损耗,提高能源利用效率;四是具有智能化的管理和控制系统。

三、微电网运行策略研究微电网的运行策略主要包括能量管理策略、优化调度策略和故障应对策略等。

1. 能量管理策略:能量管理策略是微电网运行的核心,其目的是在满足负荷需求的前提下,实现能量的优化分配。

这需要综合考虑微电网内部的能源供需情况、能源价格、储能装置的状态等因素,通过智能化的管理和控制系统进行决策。

2. 优化调度策略:优化调度策略主要是针对微电网内部的电源和负荷进行优化调度,以实现能源的高效利用和供电的可靠性。

这需要建立相应的数学模型和算法,通过计算和分析,得出最优的调度方案。

3. 故障应对策略:微电网在运行过程中可能会遇到各种故障和异常情况,因此需要建立完善的故障应对策略。

这包括故障检测、故障隔离、故障恢复等步骤,以保证微电网在故障发生后能够快速恢复供电。

四、微电网优化方法研究微电网的优化方法主要包括数学优化方法、人工智能方法等。

1. 数学优化方法:通过建立微电网的数学模型,运用线性规划、非线性规划、动态规划等数学优化方法,对微电网的能量管理、优化调度等问题进行求解,得出最优的解决方案。

《2024年微电网运行策略及优化方法研究》范文

《2024年微电网运行策略及优化方法研究》范文

《微电网运行策略及优化方法研究》篇一一、引言随着全球能源需求的持续增长和传统能源的逐渐枯竭,微电网技术因其具有环保、高效、稳定等特点,越来越受到国内外研究者的关注。

微电网能够通过优化本地资源的使用和运行策略,有效提升电力系统的可靠性、稳定性和经济性。

本文将就微电网的运行策略及优化方法展开深入研究。

二、微电网概述微电网是指由分布式电源、储能系统、能量转换设备、监控和保护装置等组成的独立电力系统。

其核心优势在于能够根据实际需求灵活调整运行策略,实现能源的高效利用和优化配置。

微电网的组成主要包括风力发电、太阳能发电、储能电池等可再生能源设备。

三、微电网运行策略微电网的运行策略主要涉及到电力分配、负荷管理以及可再生能源的优化配置等方面。

首先,微电网需要综合考虑不同时间段的负荷需求和电力生成能力,进行电力分配,确保电力的稳定供应。

其次,负荷管理是微电网运行策略的重要一环,通过合理调度不同设备的运行状态,减少不必要的能源浪费。

最后,可再生能源的优化配置也是微电网运行策略的关键,通过科学合理的配置,提高可再生能源的利用率。

四、微电网优化方法(一)智能调度算法智能调度算法是微电网优化的重要手段之一。

通过引入先进的智能算法,如模糊控制、神经网络等,对微电网的各个设备进行智能调度,实现电力的供需平衡。

此外,还可以根据实时数据对未来一段时间内的电力需求进行预测,提前进行设备的调度和优化。

(二)储能技术储能技术是提高微电网运行效率的关键技术之一。

通过合理配置储能设备,可以有效平衡电力的供需关系,降低能源的浪费。

此外,储能技术还可以在电力短缺时提供备用电源,保证电力供应的稳定性。

(三)可再生能源优化配置对于可再生能源的优化配置,首先需要对不同类型的可再生能源进行性能评估和经济性分析,然后根据微电网的实际需求进行合理配置。

同时,还需要考虑不同设备之间的相互影响以及运行效率等问题,实现微电网的整体优化。

五、实践应用与前景展望微电网的运行策略及优化方法在国内外得到了广泛应用。

《2024年自治微电网中分布式电源的控制策略研究》范文

《2024年自治微电网中分布式电源的控制策略研究》范文

《自治微电网中分布式电源的控制策略研究》篇一一、引言随着能源结构的转型和可持续发展理念的深入人心,微电网技术逐渐成为电力领域的研究热点。

在微电网中,分布式电源作为其核心组成部分,其控制策略的优劣直接关系到微电网的稳定运行和能源的高效利用。

本文将针对自治微电网中分布式电源的控制策略进行深入研究,旨在为微电网的优化运行提供理论支持和实践指导。

二、自治微电网概述自治微电网是指能够在离网或并网状态下独立运行,具有自我调节、自我保护能力的电力系统。

其核心组成部分为分布式电源,如风力发电、太阳能发电、储能装置等。

这些分布式电源通过相互协调、互补供电,保证微电网的稳定运行。

三、分布式电源控制策略研究1. 分布式电源的并网与离网控制策略在并网状态下,分布式电源需与主电网保持同步,确保电力供应的稳定性和可靠性。

此时,控制策略应注重分布式电源的优化调度和功率分配,以降低对主电网的冲击。

在离网状态下,分布式电源需独立承担电力供应任务,此时的控制策略应注重各电源之间的协调配合,保证电力供应的连续性和稳定性。

2. 分布式电源的功率控制策略功率控制是分布式电源控制策略的核心。

针对不同类型的分布式电源,应制定相应的功率控制策略。

例如,对于风力发电和太阳能发电等可再生能源,应充分考虑其出力的波动性,采用最大功率点跟踪、预测控制等方法,确保其出力的最大化。

对于储能装置,应根据微电网的电力需求和供电状况,进行充放电控制,以实现能量的优化利用。

3. 分布式电源的故障诊断与保护策略为保证微电网的安全稳定运行,需对分布式电源进行故障诊断与保护。

通过实时监测各电源的运行状态,及时发现并处理故障。

同时,制定相应的保护策略,如过流保护、过压保护、欠压保护等,以防止故障对微电网造成损害。

四、实践应用与优化改进在实际应用中,应根据微电网的具体情况,制定合适的分布式电源控制策略。

同时,不断对控制策略进行优化改进,以适应微电网的发展需求。

例如,可以引入人工智能技术、大数据分析等技术手段,对微电网的运行状态进行实时监测和预测,为控制策略的制定和优化提供支持。

可再生能源微电网并网稳定性实验报告

可再生能源微电网并网稳定性实验报告

可再生能源微电网并网稳定性实验报告一、实验背景随着全球对环境保护和可持续发展的重视不断提高,可再生能源的开发和利用成为了能源领域的重要发展方向。

微电网作为一种能够整合多种可再生能源、提高能源供应可靠性和灵活性的技术,受到了广泛的关注。

然而,可再生能源的间歇性和不确定性给微电网的并网稳定性带来了挑战。

为了深入研究可再生能源微电网的并网稳定性问题,我们进行了本次实验。

二、实验目的本实验的主要目的是研究可再生能源微电网在并网运行时的稳定性表现,分析影响稳定性的因素,并提出相应的改进措施,为可再生能源微电网的实际应用提供参考。

三、实验设备与系统(一)可再生能源发电设备包括太阳能光伏板、风力发电机等。

(二)储能装置选用了锂离子电池组作为储能设备。

(三)电力电子变换装置用于实现电能的变换和控制,如逆变器、整流器等。

(四)监测与控制系统由传感器、数据采集设备和控制软件组成,用于实时监测微电网的运行参数,并对系统进行控制和调节。

(五)主电网接口用于实现微电网与主电网的连接和能量交换。

四、实验方法与步骤(一)实验准备1、安装和调试实验设备,确保各设备正常运行。

2、设定实验参数,如可再生能源发电功率、储能装置的充放电策略、负荷大小等。

(二)实验启动1、依次启动可再生能源发电设备、储能装置和电力电子变换装置,使微电网进入初始运行状态。

2、逐步增加负荷,观察微电网的运行情况。

(三)数据采集与记录1、在实验过程中,通过监测与控制系统实时采集微电网的电压、电流、频率、功率等参数。

2、每隔一定时间记录一次数据,以便后续分析。

(四)实验工况调整1、改变可再生能源发电功率,观察微电网的稳定性变化。

2、调整储能装置的充放电策略,研究其对微电网稳定性的影响。

3、模拟主电网故障,考察微电网在离网和重新并网过程中的性能。

(五)实验结束1、逐步减小负荷,关闭各设备。

2、整理和保存实验数据。

五、实验结果与分析(一)电压稳定性1、在可再生能源输出功率波动时,微电网的电压出现了一定程度的波动。

微电网运行控制与保护技术

微电网运行控制与保护技术

第一章引言随着电力需求的不断增长,集中式大电网存在一些弊端:成本高,运行难度大,难以满足越来越高的安全性和可靠性要求,尤其是近几年来世界范围内接连几次发生大面积停电事故以后,大电网的脆弱性充分暴露出来,国际上的专家得出一个结论——发展分布式电源比通过改造电网来加强更加简洁、快捷。

分布式发电具有污染少,能源利用率高、安装地点灵活等优点,与集中式发电相比,节省了输配电资源和运行费用,减少了集中输电的线路损耗。

随着分布式发电渗透率的增加,其本身存在的问题也凸显出来,分布式电源单机接入成本高、控制困难。

一方面,分布式电源相对大电网来说是一个不可控源,在分布式电源并网标准中规定:当电力系统发生故障时,分布式电源必须马上退出运行,这就大大限制了分布式能源效能的充分发挥;另一方面,目前配电系统所具有的无源辐射状运行结构以及能量流动的单向、单路径特征,使得分布式发电必须以负荷形式并入和运行,即发电量必须小于安装地用户负荷,导致分布式发电能力在结构上受到很大限制。

随着新型技术的应用,尤其是电力电子接口和现代控制理论的发展,微电网的概念出现了。

微电网充分发挥了分布式发电的优势、消除分布式发电对电网的冲击和负面影响,是一种新的分布式能源组织方式和结构。

微电网将额定功率为几十千瓦的发电单元——微源(MS)、负荷、储能装置及控制装置等结合,形成一个可控单一的单元,同时向用户提供电能和热能。

总之,对于电力企业,微电网可视为一个简单的可调度负荷,可以在数秒内做出响应以满足传输系统的需要;对于用户,微电网可以作为一个可定制的电源,以满足用户多样化的需求。

由于世界各国发展微电网的侧重点不同,所以对微电网的定义也有所差别。

以(CERTS)为例,微电网是一种由负荷和微型电源共同组成的系统,它可同时提供电能和热量;微电网内部的电源主要由电力电子器件负责能量的转换,并提供必需的控制;微电网相对于外部大电网表现为单一的受控单元,并同时满足用户对电能质量和供电安全等要求。

《微电网运行策略及优化方法研究》范文

《微电网运行策略及优化方法研究》范文

《微电网运行策略及优化方法研究》篇一一、引言随着全球能源结构的转变和可再生能源的快速发展,微电网作为一种新型的能源供应模式,已经引起了广泛的关注。

微电网能够有效地整合分布式能源资源,包括风能、太阳能、储能系统等,通过智能化的管理和控制,实现对电力的高效、安全、环保供应。

因此,微电网运行策略及优化方法的研究具有重要的现实意义和应用价值。

二、微电网概述微电网是指由分布式电源、储能系统、能量转换设备、负荷等组成的局部电力系统。

其特点包括灵活性高、可扩展性强、环保节能等。

微电网的运行策略主要涉及电源调度、能量管理、保护控制等方面。

优化方法则主要关注如何提高微电网的运行效率、降低运行成本、提高供电可靠性等。

三、微电网运行策略3.1 电源调度策略电源调度是微电网运行策略的核心。

在微电网中,不同类型的分布式电源具有不同的发电特性和运行成本。

因此,需要根据实时电价、能源供需情况、设备运行状态等因素,制定合理的电源调度策略。

具体而言,应优先调度可再生能源发电设备,如风能、太阳能等,然后考虑使用储能系统进行调峰和备用,最后考虑使用化石能源等高成本电源进行补充。

3.2 能量管理策略能量管理是微电网运行策略的另一个重要方面。

它主要关注如何合理分配和调度微电网内的能量资源,以满足不同负荷的需求。

能量管理应基于实时监测的电力需求和供给信息,采用智能化的算法和模型进行预测和优化。

具体而言,应通过预测负荷需求、预测可再生能源的发电量等因素,制定合理的调度计划,以实现能量的最优分配和利用。

四、微电网优化方法4.1 优化调度算法优化调度算法是提高微电网运行效率的关键。

常用的优化调度算法包括线性规划、非线性规划、动态规划等。

这些算法可以根据微电网的运行情况和目标函数,制定出最优的调度方案。

在制定调度方案时,应考虑多种因素,如电力需求、电力供给、设备运行状态、经济成本等。

通过优化调度算法,可以实现微电网的高效、安全、经济运行。

4.2 储能系统优化储能系统是微电网的重要组成部分,对于提高微电网的运行效率和供电可靠性具有重要意义。

微电网运行控制策略

微电网运行控制策略

微电网运行控制策略截至目前,国内已开展微电网试点工程30个,既有安装在海岛孤网运行的微电网,也有与配电网并网运行的微电网。

“十三五”期间,我国将在太阳能、风能占优势的地区建设微电网示范区,还将推动建设100座新能源示范城市。

为进一步保障微电网的安全、可靠、经济运行,结合我国微电网发展的实际情况,一些新的微电网技术需求有待进一步研究。

微电网研究领域,最为关键的技术是微电网的运行控制,微电网控制的基本要求是:任一微电网的接入,不对既有微电网系统造成明显影响;能协调微电网的发电与负荷,自主选择运行点;能稳定的在并网和孤岛两种模式下运行,并在两种模式间平滑切换;可以对有功、无功进行独立控制,具有自主校正电压跌落和系统不平衡的能力。

微电网控制功能基本要求是新的微电源接入时不改变原有设备,微电网解、并列时是快速无缝的,无功功率、有功功率要能独立进行控制,电压暂降和系统不平衡可以校正,要能适应微电网中负荷的动态需求。

微电网控制功能如下:(1)基本的有功和无功功率控制由于微电源大多为电力电子型的,有功功率和无功功率的控制、调节科分别进行,可通过调节逆变器的电压幅值来控制无功功率,调节逆变器电压和网络电压的相角来控制用功功率。

(2)基于调差的电压调节在有大量微电源接入是用P-Q控制是不适宜的,若不进行就地电压控制,就坑内产生电压或无功振荡。

而电压控制要保证不会产生电源间的无功环流。

在大电网中,由于电源间的阻抗相对较大,不会出现这种情况。

微电网中只要电压整定值有小的误差,就可能产生大的无功环流,使微电源的电压值超标。

要根据微电源所发电流是容性还是感性来决定电压的整定值,发容性电流时电压整定值要降低,发感性电流时电压整定值要升高。

(3)快速负荷跟踪和储能在大电网中,当一个新的负荷接入时最初的能量平衡依赖于系统的惯性,主要为大型发电机是惯性,此时仅系统频率略微降低而已。

由于微电网中发电及的惯量较小,有些电源是响应时间常数又很长,因此当微电网与主网解列成孤岛运行时,必须提供蓄电池、超级电容器、飞轮等储能设备,相当于增加一些系统的惯性,才能维持电网的正常运行。

电力系统微网所面临的挑战与策略

电力系统微网所面临的挑战与策略

电力系统微网所面临的挑战与策略随着电力系统的不断发展,越来越多的微电网开始出现,成为了电力系统中的重要组成部分。

微网作为一种新型的电力独立、可再生的本地能源系统,拥有灵活性高、响应速度快、能源利用率高等优势,得到了人们的广泛关注。

然而,微网在发展的过程中也面临了一些挑战。

本文将从微网的定义、微网面临的挑战和应对策略等方面进行探讨。

一、微网的定义微电网即微型电力系统,通常由多种能源(如太阳能、风能、燃料电池等)组成,具有可以独立运行或与主电网联网并行运行的特点。

微网能够为用户提供可靠、高效的电力服务,减少对主电网的依赖,改善能源的可持续性和稳定性。

二、微网面临的挑战1.控制与管理难题微网内部的能源系统较为复杂,需要对各种资源进行协调和控制,确保系统的安全稳定。

微网管理和控制系统的能力,对于提高微网的运行水平和管理效率至关重要。

同时,微网具有大量的分布式发电、存储设施、电动车辆等,这些设备的并网控制与管理存在一定难度。

2.能源管理难题微电网中存在多种能源设备,如太阳能发电、小型风力发电、储能装置等,能源类型多样,难以实现大规模的经济性和有效性。

同时,能源的需求、波动性等因素也给微网管理带来了很大的挑战,如何实现微网能源的可持续性和系统的平衡性是微网发展中必须要面对的问题。

3.经济效益问题微网的建设和运行成本较高,而且存在一定的运营风险,因此,如何在保证微网安全稳定运行的前提下,最大程度的实现经济效益就成为了微网面临的挑战之一。

三、微网的应对策略1.优化微网控制系统微网控制系统的调节和管理对于微网的运行至关重要,有效的控制和管理系统可以帮助微网减少能源浪费、降低成本、提高供电可靠性等。

因此,微网要加强对微网控制系统的优化和改进,提高控制效率和管理能力。

2.提高资源利用效率为了实现能源的可持续性,微网需要有效的利用可再生能源。

对于微电网中的太阳能、风力等资源,应通过技术手段来最大化利用其产生的电力,在增加微网的经济效益的同时,提高能源的利用效率。

微网电力系统的协调控制策略研究

微网电力系统的协调控制策略研究

微网电力系统的协调控制策略研究随着能源需求的增加和传统能源资源的枯竭,新能源技术的发展迅猛。

微网电力系统作为一种新型能源系统,在能源转型和可持续发展方面具有重要意义。

微网电力系统由分布式电源、储能设备、智能电表和配电网等组成,能够实现与传统电力系统互联互通,同时具备自给自足的能源供应能力。

然而,微网电力系统在实际应用中面临着一些问题,如分布式电源的不稳定性、能源管理的复杂性、负荷控制的难度等。

因此,研究其协调控制策略成为提高微网电力系统运行效率和可靠性的关键。

一、能源管理策略能源管理是微网电力系统协调控制的核心。

合理的能源管理策略可以最大限度地提高能源利用效率,降低能源消耗。

能源管理策略主要包括能源供应、能量转换和能源分配三个方面。

在能源供应方面,微网电力系统通常依靠分布式电源进行能源供应。

而分布式电源的可靠性和稳定性对整个系统的运行至关重要。

因此,合理选择分布式电源,并采用适当的控制策略,能够提高微网电力系统的运行效率和可靠性。

能量转换是实现不同能源之间互相转化和互相传输的关键环节。

不同能源的转换需要通过适当的设备和技术来实现。

例如,太阳能和风能可以通过光伏发电和风力发电技术转化为电能,而电能可以通过储能设备储存起来,以备不时之需。

能源分配是微网电力系统协调控制的另一个重要方面。

合理分配能源能够最大程度地满足用户的需求,提高电力系统的供电质量。

在能源分配方面,可以采用智能电表来监测和调控用户的能源消耗,通过动态定价和能源优先级管理等方式来实现能源的合理分配。

二、负荷管理策略负荷管理是微网电力系统协调控制的另一个关键环节。

合理的负荷管理能够有效平衡供求关系,保证电力系统的稳定运行。

负荷管理的目标是根据用户的需求和电力系统的供应情况,实现负荷与供应的平衡。

在微网电力系统中,负荷管理一般包括负荷调度和负荷控制两个方面。

负荷调度是指通过合理安排用户的用电时间和用电量,实现电力系统负荷的均衡分配。

通过分析用户用电数据和预测负荷变化趋势,可以制定合理的负荷调度策略,以优化负荷的分布。

微网的控制与保护策略研究

微网的控制与保护策略研究

微网的控制与保护策略研究一、本文概述随着科技的飞速发展和人类对电力能源需求的日益增长,微网作为一种新型、分布式的发电和供电系统,其重要性和应用前景日益凸显。

微网集成了多种分布式电源、储能装置、负荷以及相应的保护和控制设备,可在大电网出现故障时孤岛运行,提供电力支持,提高供电的可靠性和灵活性。

然而,微网的复杂性和多样性也带来了诸多控制与保护方面的挑战。

因此,对微网的控制与保护策略进行深入研究和探讨,具有重要的理论和实践意义。

本文旨在全面分析微网的控制与保护策略,首先概述微网的基本概念、特点及其发展趋势,然后重点探讨微网的控制策略,包括中央控制、分布式控制和分层控制等,并对比各种控制策略的优缺点。

接着,本文将深入研究微网的保护策略,包括孤岛检测、过电流保护、低电压穿越等关键技术,并提出相应的优化方案。

通过案例分析,验证所提控制与保护策略的有效性和可行性。

本文期望能为微网的控制与保护提供有益的参考和指导,推动微网技术的进一步发展和应用。

二、微网的基本结构与组成微网(Microgrid)作为一种新型的分布式能源系统,其基本结构与组成对于理解其控制与保护策略至关重要。

微网主要由分布式电源(Distributed Generation,DG)、能量转换与存储系统、负荷、保护与控制装置以及相关的配电设施组成。

分布式电源是微网的核心部分,包括风力发电、光伏发电、小型燃气轮机、燃料电池等多种可再生能源发电技术,也可以是传统的小型火电机组或水电站。

这些电源可以根据当地能源资源的实际情况进行选择和配置,以实现能源的多元化和可持续利用。

能量转换与存储系统用于将分布式电源产生的电能进行转换和存储,以满足微网内部负荷的供电需求。

常见的能量转换设备包括逆变器、整流器等,而储能装置则主要包括电池、超级电容器、飞轮储能等。

这些设备可以有效地平滑微网的功率波动,提高电能质量和供电可靠性。

负荷是微网中的用电设备,包括居民用电、商业用电、工业用电等多种类型。

智能微电网的保护和控制技术研究

智能微电网的保护和控制技术研究

智能微电网的保护和控制技术研究摘要:智能微电网作为新一代的分布式能源系统,在解决能源供应不足、能源管理方式落后、能源浪费等问题方面具有重要的作用。

但是其面临着复杂多变的运行环境和安全风险,因此保护和控制技术成为智能微电网设计的重点和难点。

本文从智能微电网的保护和控制需求入手,分析了智能微电网的保护和控制技术应用现状和发展趋势,探讨了目前面临的挑战和主要解决方案,并对未来的发展方向进行了展望。

关键词:智能微电网;保护;控制;技术正文:一、智能微电网的保护需求智能微电网是由多种类型的电源、储能装置和负荷组成的多能源、多元化的能源系统。

它的运行环境复杂,受到天气、负荷变化、电网故障等多种因素的影响。

因此,保护是智能微电网必不可少的一部分,它能够保证智能微电网在各种异常情况下的安全稳定运行,避免损失和事故的发生。

智能微电网的保护需求包括:过电流保护、过电压保护、欠电压保护、过负荷保护、短路保护、开路保护等。

其中,过电流保护是智能微电网最常见的保护方式,它能够及时切断失控的电流,保护设备不受过电流的损害。

欠电压保护与过电流保护相似,它可以避免设备运行时出现电压不足的情况。

过负荷保护则是针对负荷运行时所承受的电流或功率过大的情况,它可以切断电路,保护设备的安全运行。

二、智能微电网的控制需求智能微电网不仅需要合理的保护措施,还需要有效的控制技术。

智能微电网的控制需求包括:调度控制、电能管理和负载均衡等方面。

其中,调度控制可以实现对电源、负荷和储能装置的有效调度,使得各种能源之间协调工作,避免能源浪费,提高能源利用效率。

电能管理则是指通过对电能的收集、处理和传输等方式,对智能微电网的电力产生、消耗和储存进行有效的管理。

负载均衡则可以解决智能微电网中负载不均匀的问题,使得各个电源能够充分利用,并保证负载平衡。

三、智能微电网的保护和控制技术现状与发展趋势目前,智能微电网的保护和控制技术已经得到了广泛应用。

智能微电网的保护和控制系统主要分为硬件和软件两个层面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

保护方案研究报告题目:多微电网关键技术研究指导人:报告人:摘要:本文主要就基于区域纵联保护原理的保护方案进行了详述。

关键词:保护区域纵联1、概述同大电网一样,微网部发生故障时,通常不希望直接切掉电源,而是通过保护装置的选择性将故障部分切除,保障微网正常部分的稳定运行。

微网除供电负荷外,还有一些其他的负荷,例如热负荷;因此更不能轻易切掉电源[1]。

故障按照微网的运行方式可以分为联网运行方式下的故障和孤岛运行方式下的故障;按照故障类型可以分为线路故障,负荷故障,变压器故障;按照故障位置可以分为位于分布式电源下游的故障和位于分布式电源上游的故障。

图1 微网可能发生的故障位置评价一种运行方式是否合理,主要是看其能否提高系统的供电可靠性,所以需要对于上述各种运行方式进行可靠性评估,衡量电力系统的可靠性,主要是依据停电时间和停电次数。

文献[2]指出可以直接利用微型开关或者熔断器(保险丝)对低压侧负荷故障进行切除;并且提到在孤岛运行方式下,电压降落来源于故障,而这个故障导致的电压降落可能会传递到整个网络,所以使用不能使用电压水平作为协调保护装置,使用方向元件是最佳选择。

文献[3]提出利用先进的通信技术,将安装在断路器上的方向元件的状态信息传输个微网控制中心,微网控制中心对于各个继电器进行设置。

2、包含有DG的配网保护中出现的新问题多微网配电系统的保护主要包括并网模式与孤岛模式下配网保护与孤岛保护。

配电网系统接入DG以后,改变了原有的网络结构,原系统的潮流分布和短路电流的大小随之改变。

这些改变对过流保护的整定、配置和动作特性都有影响,而影响的大小取决于保护的位置、故障点和DG接入的位置。

带来的问题主要包括[4]:(1)DG降低所在线路保护的灵敏度或缩小保护围;如图所示,DG接在线路末端,当DG下游出现故障时,由于DG向故障点送出短路电流,DG上游的线路保护R1感受到的故障电流将变小,从而降低了Rl的灵敏度,缩小了保护围。

当保护Relayl采用反时限过流特性时,还会增加其动作的延时。

图2 DG所在线路故障对于保护的影响(2)相邻线路故障时,DG引起所在线路保护误动作当故障发生在图3中母线(K1处)或相邻线路(K2处)时,DG将提供短路电流,有可能导致DG所在线路的保护R2误动作。

这种情况一般可以通过在保护中增加方向元件来解决。

图3 相邻线路故障,DG所在的线路保护误动作(3)线路故障时,DG侧(弱馈电源侧)保护因灵敏度不足可能拒动。

目前解决弱馈侧灵敏度不足的问题,主要采用联锁跳闸的方法。

如图所示,一种是保护Rl跳开断路器B1的同时,联跳并网线对侧的断路器BZ;另一种是保护R1跳开B1的同时,联跳DG侧解列开关或微电源出口开关B3,将所有下级的DG与系统分离。

图4 DG侧保护灵敏度不够,连锁跳闸允许DG孤岛运行后,微网的结构和运行方式会与传统配网有很大区别,也会带来一些新的问题:(1)孤岛形成过程中,有可能失去接地点,孤岛成为小电流接地系统,威胁某些设备的绝缘安全。

(2)孤岛设备故障时,可能因DG提供的短路电流过小使保护拒动。

微网大多采用电力电子接口和电力电子控制器件,所提供的故障电流很小,有时DG甚至只能提供两倍或小于两倍负荷电流的故障电流。

传统的过流保护往往需长时间延时才能动作,有些甚至根本无法动作。

(3)并网模式和孤岛模式转换时,系统结构发生了变化,同一套保护定值和配合逻辑往往不能适应运行方式的变化,容易造成误动作。

3、多微网保护系统的结构DG的并网和孤岛运行给配电网的继电保护带来了很多的问题,传统的线路保护模式己经不能满足电网的要求。

而应用于多微网配电系统的继电保护系统要遵循如下几个原则:(l)灵活地适应各种运行方式,如并网运行、单元孤岛运行、组合孤岛运行等,实现无缝转换。

(2)涵盖整个多微网配电系统,包括孤岛的元件和孤岛外的元件。

(3)保护原理和逻辑简单明了,算法快速可靠。

(4)能应对各种非正常情况,如IED拒动和误动、断路器失灵等。

(5)比现有的保护算法在性能上更优越,能够解决某些常规保护算法难以解决的问题,如弱馈侧保护问题等。

基于被保护设备各侧信息的纵联比较保护或纵联差动保护,能够可靠地区分区、区外故障,且无需与其他保护装置进行定值和时限上的配合,具备良好的选择性,已在输电系统中获得了广泛应用[5]。

纵联保护原理完全可应用到配电系统中,但要考虑配电系统的特点。

由于多微网的配系统结构比较复杂,包括多个分段和分支,每个分段或分支都可能包含微网,这样纵联保护应该是多端纵联,不像高压线路那样通常是两端纵联;考虑到配电系统故障一般不会引起大系统之间的失稳、大面积停电等恶性事故,所以对主保护的快速性、可靠性等方面的要求可以稍低[6]。

结合上述特点,本文提出了一种主从式的区域纵联比较保护方案,结合配电系统的特点研究保护工作原理和故障检测算法,为包含多微网的配电系统提供性能优良的快速保护功能。

现以图5所示系统为例说明区域纵联保护系统的构成和工作原理。

M、N 分别为2 个变电站的母线,S1~ S12表示断路器、并网开关和分段开关,假设均具有切断短路电流的能力,开关附近箭头指示的方向为故障正方向。

本文规定:故障的正方向为由主电源指向负荷或微网的方向,这样能够确保方向元件有足够的灵敏度和可靠性,基本不受微网容量和并网位置的影响[7]。

MG1~MG6表示微网。

以母线M 侧变电站虚线框包含的线路为例说明该系统的构成和工作原理。

图5 包含多微网的配电网物理结构图在母线M 侧变电站设置一台保护主机,在线路各测量点处安装保护从机。

从机负责采集安装点的电气量和开关量信息,当有故障发生时判断故障方向,并将故障方向判断结果通过通信网络传送给保护主机。

主机收集到各从机的故障方向信息后,结合当前网络拓扑结构对故障所在区段进行判断,做出跳闸策略,将跳闸命令通过通信通道下发至相应的保护从机,由保护从机跳开所在的断路器以隔离故障。

发生馈线故障时,位于该馈线出口处的保护从机会感受到正向过流,并启动保护主机查询该馈线上其他保护从机的故障判断结果。

显然,正常情况下位于变电站母线和故障点之间的保护从机都会感受到正向过流,而位于故障点下游的保护从机要么会感受到反向过流(与微网相连),要么会感受到低电压、低电流(与负荷相连),总之不会感受到正向过流。

保护主机根据从机的判断信息,结合当前网络拓扑结构,就能够确定故障区段的位置。

配电网正常运行时,手拉手开关(图5 中S7)一般都断开,但是当馈线失去原有供电电源时,需要闭合手拉手开关由另一侧变电站继续供电。

因此不同的变电站对手拉手开关处正方向的定义也不同的,在图中用双向箭头表示。

4、基于扩展纵联比较原理的区域保护4.1、区域纵联保护的特点综合考虑输电系统中广泛应用的。

点对点。

纵联比较式原理,以及含有多微网的配电系统自身的特点,文献[8]提出“一主多从”的主从式区域纵联比较的保护方案。

这种方案的优点是简化了保护的算法和设备的配置,降低了维护成本;缺点是保护通信需要花费的时间比其他的时间稍长,从而导致保护动作时间延长以及保护对于主机的依赖性较强。

但是由于配电系统对于保护时间的要求不是很严格,所以动作时间稍长并不会带来严重问题;保护主机一旦故障,整个保护装置无常运行,一般不会出现问题,为了保险起见,在各从机中配备方向过电流原理的后备保护功能,则整个系统的可靠性大大增强,能够满足包含多微网的配电系统对于继电保护的基本性能要求。

主从式区域纵联保护方案以一个包含分布式电源的配电变电站及其所有出线作为基本的保护区域,在变电站中设置一个站级保护主机,在其每条出线的每一个有切断短路电流能力的开关设备处均安装一个保护从机。

位于站的保护从机通过站通信网络与保护主机保持通信,位于站外的保护从机则通过站外通信网络与主机通信,如图6所示。

保护主机主要负责根据从机上传信息实现故障的判断和定位,从机则负责向主机提供其安装点处故障方向等方面的信息,并根据当地检测的结果及主机发来的信息,决定是否将相应开关设备跳开。

图6 区域纵联保护通信原理图4.2、区域纵联保护方案的工作流程[7]区域纵联保护方案由一套保护系统作为变电站所有设备及馈出线的主保护,同时利用安装在保护从机中的方向元件完成后备保护功能。

由于配电网的保护对动作时间的要求相对较低,为了简化算法和保护逻辑,将采用分层纵联比较的思路,保护的工作流程如下:(l)提取变电站各出线电流、变压器高低压侧电流和母线电压进行分析判断,根据分析结果判断系统是否发生故障。

若判断结果为正常运行状态,则区域纵联保护系统不动作。

保护继续数据采集和分析运行状态的循环运行,一旦发现系统中发生故障,则区域纵联保护立即动作。

保护判断出配电系统发生故障后,再分析是否为本站围之的故障。

分析的依据是根据变电站与外网连接点处(如图6中的PCC处)方向元件的动作情况。

若该方向元件动作,则故障在本站围之,本保护系统将继续下一步的判断;若该方向元件不动作,则故障在本站围之外,本保护系统不动作。

若为本站围之的故障,需判断该故障是变压器部故障还是变压器下游的故障。

判断的依据是变压器低压侧方向元件的动作状态。

若方向元件不动作,则为变压器部故障,保护将故障变压器跳开;若该方向元件动作,则故障在变压器下游,保护将继续下一步的判断。

(2)判断母线故障。

判断依据为母线分段开关处及各馈出线出口处方向元件的动作状态。

若变压器低压侧方向元件动作且母线分段处及各馈线出口处的方向元件均不动作,则为母线故障;若母线分段处方向元件同时动作,则为另外一条母线故障;若某条馈线出口处的方向元件动作,则为该出线发生故障。

(3)若判断为某一馈线故障,保护主机通过分析本馈线上各保护从机处方向元件的动作状态,判断出故障所在的区段。

若某个区段的上游分段开关的方向元件动作,而其下游分段开关的方向元件不动作,则本区段就是故障区段;若某区段的上、下游分段开关的方向元件均动作或均不动作,则相应的区段就不是故障区段。

(4)在故障区段的保护从机方向元件动作时,说明一定是该保护的下游发生了故障,主机向该保护从机发出允许跳闸的命令,仅将其下游的微网或负荷与主网隔离,而电网的其他部分继续并网运行。

通过上面分析的工作流程,可以准确快捷地确定出故障的位置,进而在不影响其他无故障设备正常运行的情况下,快速、灵敏!有选择性地将故障设备可靠切除。

保护的工作流程示意框图如图7所示:图7 区域纵联保护方案的流程如图8所示,在下游K1故障的情况下,方向元件KW处所检测到的故障电流包括了系统主电网提供的短路电流和方向元件安装处上有所以DG所提供的电流。

由于系统主电源的容量较大,能提供足够的短路电流,所以方向元件的灵敏度较高;一般情况下,KW上游的DG容量相对于主网较小,所以其运行方式的变化对于KW的检测灵敏度影响不大。

相关文档
最新文档