直流伺服电动机知识

合集下载

直流伺服电机的工作原理

直流伺服电机的工作原理

直流伺服电机的工作原理
直流伺服电机的工作原理是通过直流电源提供的电流来产生磁场,进而实现转动。

其具体工作原理可以分为以下几个步骤:
1. 磁场产生:直流伺服电机内部配备永磁体或电磁线圈,通过通电产生磁场。

永磁体通常由稀土磁铁等材料制成,电磁线圈则通过涂布绕制或插绕在电机的转子和定子之间。

2. 当电机接通电源时,电流通过电磁线圈流过,产生磁场。

根据电磁感应定律,磁场会产生一个垂直于电流方向和磁场方向的力矩,这个力矩会使电机开始转动。

3. 电机控制:为了使电机能够实现精确的转动控制,需要使用电机控制器。

控制器通常会测量电机的速度和位置,并根据设定的目标值调整电机的输出,以便实现准确的转动。

4. 反馈控制:为了能够实现闭环控制,直流伺服电机通常会根据反馈信号进行调整。

通过使用编码器或其他类型的位置传感器来测量电机的位置和速度,控制器可以实时监控电机的运动状态,并根据需要对电机的输出进行调整。

总的来说,直流伺服电机的工作原理可以归结为通过控制电流产生磁场,利用磁场力矩驱动电机转动,并使用控制器对电机进行自动化控制。

这种工作原理使得直流伺服电机在许多自动化和精密控制应用中被广泛使用。

直流伺服电机的工作原理

直流伺服电机的工作原理

直流伺服电机的工作原理
直流伺服电机是一种利用直流电源驱动的电动机。

其工作原理基于电磁感应的原理,主要包括电磁场产生、电力转换和闭环控制三个方面。

首先是电磁场产生,直流伺服电机内部有一组永磁体和一组电磁线圈。

当电流通过电磁线圈时,会产生一个磁场,该磁场将与永磁体的磁场相互作用,从而产生一个力矩。

可以通过改变电流的大小和方向来控制电磁场的强弱和极性,进而实现力矩的调节。

然后是电力转换的过程。

直流伺服电机通常通过直流电源供电,电源提供的直流电流经过控制器进行调节和分配。

控制器根据系统需求,通过改变电流的幅值和极性来控制伺服电机的运动。

电流经过电机的线圈时,会产生电流与磁场相互作用的力矩,从而驱动电机转动。

同时,电流也会通过电机的线圈产生电阻损耗和铜损耗。

最后是闭环控制,直流伺服电机通常配备反馈装置,如编码器或霍尔传感器。

这些传感器可以实时监测电机的转动角度和速度,并将信息反馈给控制器。

控制器通过对反馈信号的比较和计算,实时调整电流的输出,以使得电机的位置或速度达到预定的目标。

这种闭环控制可以保证伺服电机在不同负载和工况下的稳定性和精度。

综上所述,直流伺服电机的工作原理主要包括电磁场产生、电力转换和闭环控制三个方面。

通过调节电磁场的大小和方向,
利用电力转换将电能转化为力矩,然后通过闭环控制使电机按照预定目标进行位置或速度调节。

这种原理使得直流伺服电机在许多领域中得到广泛应用,包括工业自动化、机械加工、机器人技术等。

伺服电机知识汇总(直流-交流伺服电机)

伺服电机知识汇总(直流-交流伺服电机)

伺服电机知识汇总(直流/交流伺服电机)伺服电机servomotor“伺服”一词源于希腊语“奴隶”的意思。

“伺服电机”可以理解为绝对服从控制信号指挥的电机:在控制信号发出之前,转子静止不动;当控制信号发出时,转子立即转动;当控制信号消失时,转子能即时停转。

伺服电机是自动控制装置中被用作执行元件的微特电机,其功能是将电信号转换成转轴的角位移或角速度。

伺服电机分为交流伺服和直流伺服两大类交流伺服电机的基本构造与交流感应电动机(异步电机)相似。

在定子上有两个相空间位移90°电角度的励磁绕组Wf和控制绕组WcoWf,接恒定交流电压,利用施加到Wc上的交流电压或相位的变化,达到控制电机运行的目的。

交流伺服电机具有运行稳定、可控性好、响应快速、灵敏度高以及机械特性和调节特性的非线性度指标严格(要求分别小于10%~15%和小于15%~25%)等特点。

直流伺服电机基本构造与一般直流电动机相似。

电机转速n=E/K1j=(Ua-IaRa)/K1j,式中E 为电枢反电动势,K为常数,j为每极磁通,Ua、Ia为电枢电压和电枢电流,Ra为电枢电阻,改变Ua或改变φ,均可控制直流伺服电动机的转速,但一般采用控制电枢电压的方法,在永磁式直流伺服电动机中,励磁绕组被永久磁铁所取代,磁通φ恒定。

直流伺服电动机具有良好的线性调节特性及快速的时间响应。

直流伺服电机的优点和缺点优点:速度控制精确,转矩速度特性很硬,控制原理简单,使用方便,价格便宜。

缺点:电刷换向,速度限制,附加阻力,产生磨损微粒(无尘易爆环境不宜)交流伺服电机的优点和缺点优点:速度控制特性良好,在整个速度区内可实现平滑控制,几乎无振荡,90%以上的高效率,发热少,高速控制,高精确度位置控制(取决于编码器精度),额定运行区域内,可。

简述直流伺服电动机的工作原理

简述直流伺服电动机的工作原理

简述直流伺服电动机的工作原理直流伺服电动机是一种常见的电机类型,广泛应用于工业自动化控制、机器人、汽车、医疗设备等领域。

本文将简述直流伺服电动机的工作原理,包括电机结构、电机控制系统、编码器反馈系统等方面。

一、电机结构直流伺服电动机的基本结构包括转子、定子、永磁体、电刷等部分。

其中,永磁体是电机的核心部件,它产生磁场,使得电机可以转动。

电刷则起到输送电能的作用,通过与转子接触,将电能传递给转子。

在直流伺服电动机中,转子通过电磁感应原理产生转矩,从而带动负载旋转。

同时,电机控制系统可以通过改变电流的方向和大小来控制电机的转速和转向。

二、电机控制系统直流伺服电动机的控制系统主要包括功率放大器、控制器和编码器反馈系统。

功率放大器是直流伺服电动机的重要组成部分,它负责将控制信号转换为电流信号,并将其提供给电机。

控制器则负责处理控制信号,将其转换为电机可以理解的信号。

编码器反馈系统则用于检测电机的转速和位置,并将其反馈给控制器,从而实现闭环控制。

在控制系统中,控制器通常采用PID控制算法,通过调节控制信号,使得电机的转速和位置达到预定的目标值。

同时,电机的速度和位置可以通过编码器反馈系统进行实时监测和调整,从而保证电机的精准控制。

三、编码器反馈系统编码器反馈系统是直流伺服电动机的重要组成部分,它用于检测电机的转速和位置,并将其反馈给控制器。

编码器通常分为增量式编码器和绝对式编码器两种类型。

增量式编码器可以检测电机的转速和位置变化,但无法确定电机的绝对位置。

绝对式编码器则可以确定电机的绝对位置,但通常比增量式编码器更昂贵。

在编码器反馈系统中,编码器通过检测电机的转子和定子之间的相对位置来确定电机的转速和位置。

控制器可以根据编码器反馈的信息进行实时调整,从而保证电机的精准控制。

四、总结直流伺服电动机是一种重要的电机类型,具有精准控制、高效能、高速度等优点。

其工作原理主要包括电机结构、电机控制系统和编码器反馈系统等方面。

直流伺服电动机

直流伺服电动机
直流伺服电动机
一、直流伺服电动机的结构和分类
直流伺服电动机实质上就是一台他励式直流电动机。
分类: ㈠ 传统型直流伺服电动机:普通型直流伺服电机,分为电
磁式和永磁式两种。 ㈡ 低惯量型直流伺服电动机 ⑴ 盘形电枢直流伺服电动机; ⑵ 空心杯电枢直流伺服电动机; ⑶ 无槽电枢直流伺服电动机。
图7.2.1 盘形电枢直流伺服电动机结构
当转矩为零时,电机转速仅与电枢电压有关,此时的转速
称为理想空载转速。
n
n0
U ke
当转速为零时,电机转矩仅与电枢电压有关,此时的转矩 称为堵转转矩。
U TD Ra kT
直流伺服电动机的机械特性如图7.2.4所示:
图7.2.4 电枢控制的直流伺服电机机械特性
图7.2.5 直流伺服电机调节特系。
图7.2.2 空心杯电枢直流伺服电动机结构
图7.2.3 无槽电枢直流伺服电动机结构
二、直流伺服电动机的运行特性
转速关系式:
n
U ke
Ra kekT
Tem
1、机械特性:指在控制电压保持不变的情况下,直流伺服
电动机的转速n随转矩变化的关系。
n n0 kTem
式中:
n0
U ke
,k
Ra kekT
控制方式:电枢控制和磁极控制,实际中主要采用电枢控制方式。
直流伺服电动机的调节特性如图7.2.5所示。

伺服电机 基础知识

伺服电机 基础知识

伺服电机基础知识
伺服电机是一种能够将输入的脉冲信号转换为相应的角位移或线性位移的装置,具有快速响应、精确控制和稳定性高等特点。

以下是伺服电机的基础知识:
1. 工作原理:伺服电机内部通常包括一个电机(如直流或交流电机)和一个编码器。

当输入一个脉冲信号时,电机会产生一定的角位移或线性位移,同时编码器会反馈电机的实际位置。

驱动器根据反馈值与目标值进行比较,调整电机转动的角度或距离,以达到精确控制的目的。

2. 分类:伺服电机主要分为直流伺服电机和交流伺服电机两大类。

此外,根据有无刷之分,直流伺服电机又可以分为有刷伺服电机和无刷伺服电机。

3. 特点:
精确控制:伺服电机能够精确地跟踪和定位目标值,实现高精度的位置和速度控制。

快速响应:伺服电机具有快速的动态响应,能够在短时间内达到设定速度并快速停止。

稳定性高:伺服电机具有较高的稳定性,能够连续工作而不会出现较大的误差。

噪声低:交流伺服电机通常采用无刷设计,运行时噪声较低。

维护方便:伺服电机的结构和维护都比较简单,便于使用和维护。

4. 应用领域:伺服电机广泛应用于各种需要精确控制和快速响应的场合,如数控机床、包装机械、纺织机械、机器人等领域。

5. 选型原则:在选择伺服电机时,需要考虑电机的规格、尺寸、转速、负载等参数,以及实际应用场景和工作环境等因素。

6. 日常维护:为了保持伺服电机的良好性能和使用寿命,需要定期进行清洁和维护,如检查电机表面是否有灰尘、油污等,检查电机的接线是否牢固等。

以上是关于伺服电机的基础知识,如需了解更多信息,建议咨询专业人士。

第一章-直流伺服电机

第一章-直流伺服电机

图1-1 电枢控制原理图
控制方式
2.磁场控制
电枢绕组电压保持不变,变化励磁回路旳电压。若电 动机旳负载转矩不变,当升高励磁电压时,励磁电流 增长,主磁通增长,电机转速就降低;反之,转速升 高。变化励磁电压旳极性,电机转向随之变化。 尽管磁场控制也可到达控制转速大小和旋转方向旳目 旳,但励磁电流和主磁通之间是非线性关系,且伴随 励磁电压旳减小其机械特征变软,调整特征也是非线 性旳,故少用。
1.2.2 运营特征
(2)电枢电压对机械特征旳影响
n0和Tk都与电枢电压成正比,而斜率k则与电枢电压无关。 相应于不同旳电枢电压能够得到一组相互平行旳机械特征曲线。
直流伺服电动机由放大器供电时, 放大器能够等效为一种电动势源 与其内阻串联。内阻使直流伺服 电动机旳机械特征变软。
图 1-3 不同控制电压时旳机械特征
较小、 电枢电阻 Ra 较大、转动惯量 J 较大
时是这种情况。
图1-6 在 4 e m 时, n、ia 旳过渡过程
过渡过程曲线
(2)

4 e
m
时,由
p1,.2
1 2 e
1
1 4 e m
, p1 和
p2
两根是共轭复数。
在过渡过程中,转速和电流随时间旳变化是周期性旳。
由e
La Ra
和m
2JRa 60CeCt
2
可知,电枢
电感 La 较大、 电枢电阻 Ra 较小、转动
惯量 J 较小时,就会出现这种振荡现象。
图1-7 在 4 e m 时, n、ia 旳过渡过程
过渡过程曲线
⑶ 当4 e m 时(多数情况满足这一条件), e 很小能够忽视不计。
于是式
m e

(完整版)《直流伺服电动机》PPT课件

(完整版)《直流伺服电动机》PPT课件

第二章 直流伺服电动机
3.4 直流电动机的使用
3.4.1 直流电动机的启动
启动要求:
①启动时电磁转矩要大,以利于克服启动时阻转矩,包括总
阻转矩
Ts
和惯性转矩J
dΩ dt

②启动时电枢电流不要太大,一般把启动电流限制在允许电 流值的 1.5~2 倍以内。
③要求电动机有较小的转动惯量和加速过程中保持足够大的 电磁转矩,以利于缩短启动时间。
第二章 直流伺服电动机
1) 负载为常数时的调节特性
电动机的负载转矩主要是动摩擦转矩TL加上电机本 身的阻转矩T0, 所以电动机的总阻转矩Ts=TL+T0。 在 转速比较低的条件下, 总阻转矩Ts是一个常数。
由式: n Ua TsRa
Ce CeCT 2
表征调节特性两个量
①始动电压——Ua0,是电动机处于待动而未动这种临界状 态时的控制电压。
作为控制信号, 实现电动机的转速控制。
第二章 直流伺服电动机
电枢电压Ua,转速n 以及电磁转矩T 的关系:
Ua
移项后,得到
Cen
TRa
CT
n
Ua Ce
TRa CeCT 2
在稳态时,电动机的电磁转矩与轴上的阻转矩相平衡, 即
T=Ts。所以稳态时,上式可以写成
n
Ua
Ce
Ts Ra
CeCT 2
第二章 直流伺服电动机
第二章 直流伺服电动机
第 3章 直流伺服电动机
3.1 直流电动机 3.2 电磁转矩和转矩平衡方程式 3.4 直流电动机的使用 3.5 直流伺服电动机及其控制方法 3.6 直流伺服电动机的稳态特性 3.9 直流力矩电动机 习题
第二章 直流伺服电动机

直流伺服电机原理

直流伺服电机原理

直流伺服电机原理直流伺服电机是一种广泛应用于工业自动化领域的电机,其原理和工作方式具有一定特点和优势。

本文将介绍直流伺服电机的原理及其工作过程。

原理介绍直流伺服电机是一种能够根据外部控制信号调整输出角位置的电机。

其基本原理是利用电磁感应产生的磁场与永久磁铁的磁场相互作用,从而产生转矩。

直流伺服电机通过控制电压大小和方向,可以实现精确的位置控制。

工作过程1.电磁感应原理直流伺服电机的转子上有导线绕组,当通入电流时,导线中会产生磁场。

这个磁场与永久磁铁之间的相互作用产生了转矩,从而驱动电机运转。

2.控制回路直流伺服电机通常配备有控制回路,用于接收外部控制信号并调整电机的转速和位置。

控制回路可以根据不同的控制算法来实现位置闭环或速度闭环控制,以保证电机的准确性和稳定性。

3.编码器反馈为了实现更精确的位置控制,直流伺服电机通常会配备编码器模块,用于实时反馈电机的位置信息。

控制回路通过读取编码器信号,可以及时调整电机的输出,实现精确的位置控制。

4.功率驱动电机通常需要配备功率驱动模块,用于根据控制信号调整电机的电压和电流输入。

功率驱动模块可以根据电机的负载情况和运行要求来动态调整电机的输出功率,以确保电机的稳定性和可靠性。

应用领域直流伺服电机广泛应用于机械臂、自动化设备、数控机床等领域,其高精度、高效率的特点使其成为自动化领域的重要组成部分。

通过合理的控制和设计,直流伺服电机可以实现机械系统的高速、高精度运动,大大提高生产效率和产品质量。

总的来说,直流伺服电机通过电磁感应原理、控制回路、编码器反馈和功率驱动等模块的相互配合,实现了高精度、高效率的位置控制,为工业自动化带来了重大的便利和优势。

第6章 直流伺服电动机

第6章 直流伺服电动机

第6章 直流伺服电动机
根据转矩平衡方程式,当负载转矩不变时,电磁
转矩T=CTΦIa不变;又If不变,Φ不变,所以电枢电流Ia 也不变。再由电动机电压平衡方程式Ea=Ua-IaRa可以看
出,由于IaRa不变,感应电势Ea将随Ua的降低而减小;
又Φ不变,故转速要相应减小。若电压改变后的感应电 势、转速、 电流用Ea′、n′、Ia′表示,则Ua′=55 V时的
第6章 直流伺服电动机
第6章 直流伺服电动机
1 直流电动机的工作原理 2 电磁转矩和转矩平衡方程式
3 直流电动机的反电势和电压平衡方程式
4 直流电动机的使用 5 直流伺服电动机及其控制方法 6 直流伺服电动机的稳态特性
第6章 直流伺服电动机
7 直流伺服电动机在过渡过程中的工作状态 8 直流伺服电动机的过渡过程
的方向一致时, 数值为正; 反之, 数值为负。
第6章 直流伺服电动机
由于现在主要研究电机的工作状态, 为了分析简 便, 可先不考虑放大器的内阻, 这时电枢回路的电压 平衡方程式为 Ua1 =Ea1 +Ia1 Ra 式中, Ua1 >Ea1 。
第6章 直流伺服电动机
负载为常数时的调节特性
仍以直流电动机带动天线旋转为例来说明电动机的 调节特性。 在不刮风或风力很小时, 电动机的负载转矩主要是 动摩擦转矩TL加上电机本身的阻转矩T0。 在转速比较低的条件下, 可以认为
动摩擦转矩和转速无关,是不变的。 因此, 总阻转矩Ts 是一个常数。
负载转动惯量的影响当电机在系统中带动负载时其转动惯量应该包括负载通过传动比折合到电动机轴上的转动惯量j放大器内阻的影响当电机是由直流放大器提供控制信号时如同在分析放大器内阻对机械特性的影响一样这时电枢回路的电阻中应包括放大器的内阻r即总的电枢回路电阻为r这样一来电机机电时间常数表示式32可以看出负载惯量越大或放大器内阻越大则机电时间常数亦越大过渡过程的时间就越长

直流伺服电动机工作原理

直流伺服电动机工作原理

直流伺服电动机工作原理直流伺服电动机是一种能够通过控制系统来精确控制转速和位置的电动机。

其工作原理可以概括为以下几个步骤:1. 电源供电:直流伺服电动机首先需要通过电源来提供电能。

电源会提供直流电压,通常是以可调节的方式供应。

2. 电动机转子:直流伺服电动机内部有一个转子,它由一组线圈和永磁体组成。

转子可以自由地旋转。

3. 电机驱动器:为了控制电动机的转速和位置,需要一个电机驱动器。

电机驱动器主要由功率放大器和控制电路组成。

控制电路通常接收来自控制系统的信号,并根据信号来调整电机的转速和位置。

4. 控制信号:控制信号可以来自于传感器或控制程序。

传感器可以测量电动机的转速和位置,并将信息传送给控制系统。

控制程序可以根据需求来将电动机的转速和位置设置为特定的数值。

5. 调整电压:根据控制信号,控制电路会调整电机驱动器的输出电压。

输出电压的改变会导致电动机的转速和位置相应地变化。

6. 转矩产生:当电机驱动器输出电压改变时,通过控制线圈通入不同的电流。

电流通过线圈时会在线圈和永磁体之间产生磁场。

根据电流的方向和大小,磁场的极性和强度也会相应改变。

这个磁场会与永磁体的磁场相互作用,产生力矩,进而驱动转子转动。

7. 反馈回路:为了确保电动机的准确控制,通常会设置一个反馈回路。

反馈回路可以监测电动机的实际转速和位置,并将信息反馈给控制系统。

控制系统通过与期望值进行比较,可以及时调整控制信号,从而保持电动机的精确控制。

通过以上的工作原理,直流伺服电动机可以在控制系统的指导下,实现精确的转速和位置控制,广泛应用于机器人、自动化设备和工业生产线等领域。

直流伺服电动机结构与工作原理

直流伺服电动机结构与工作原理

直流伺服电动机结构与工作原理一、引言直流伺服电动机是一种能够精确控制位置、速度和加速度的电机,它在工业自动化、机器人技术、航空航天等领域有着广泛的应用。

了解直流伺服电动机的结构和工作原理对于掌握其控制技术和应用具有重要意义。

在本文中,将从深度和广度两个方面对直流伺服电动机的结构和工作原理进行全面探讨,并带您深入理解这一主题。

二、直流伺服电动机的结构1. 电机主体部分直流伺服电动机通常由电机主体部分、编码器、控制器和驱动器等组成。

电机主体部分包括定子和转子两部分。

其中,定子上绕有电磁线圈,而转子则由永磁体构成。

这种结构使得直流伺服电动机在工作时能够产生稳定的磁场,并具有较高的效率和响应速度。

2. 编码器编码器是直流伺服电动机的重要组成部分,它能够实时反馈电机转子的位置和速度信息,为电机控制提供准确的反馈信号。

常见的编码器类型包括绝对值编码器和增量编码器,它们各自具有不同的优势和适用场景。

3. 控制器和驱动器控制器是直流伺服电动机系统的“大脑”,负责接收输入信号并根据编码器反馈信息控制电机动作。

而驱动器则是控制器和电机之间的桥梁,将控制信号转化为电机驱动信号,从而实现对电机的精确控制。

三、直流伺服电动机的工作原理1. 电机控制直流伺服电动机的控制采用闭环控制系统,即通过控制器不断调整电机的输入信号,使得电机能够精确地跟踪设定的位置和速度。

在控制过程中,编码器实时反馈电机的状态信息,控制器根据反馈信息调整输出信号,实现对电机的精准控制。

2. 电机特性直流伺服电动机具有较高的动态响应能力和速度调节范围,能够在短时间内实现高速运动和精确停止。

这使得直流伺服电动机在要求较高的位置和速度控制场景中有着广泛的应用。

3. 工作原理总结直流伺服电动机在工作时,电机主体部分产生稳定的磁场,编码器实时反馈电机状态信息,控制器根据反馈信息调整电机控制信号,驱动器将控制信号转化为电机驱动信号,从而实现对电机的高精度控制。

四、个人观点和理解直流伺服电动机作为一种精密控制设备,具有高效、高精度、高可靠性的特点,被广泛应用于工业生产和自动化设备中。

控制电机 第一章 直流伺服电机 1 原理与运行特性

控制电机 第一章 直流伺服电机 1 原理与运行特性

直流伺服电动机的调节特性
1.3 运行特性
斜率k1:
k1 1 C e
是由电机本身参数决定的常数,与负载无关。
直流伺服电动机的调节特性
1.3 运行特性
(2)总阻转矩对调节特性的影响
总阻转矩Ts变化时,Ua0∝Ts ,斜率k1保持不变。
因此对应于不同的总阻转矩Ts1 、 Ts2 、Ts3 、… ,可以 得到一组相互平行的调节特性。
n
Ua0 k1 –

始动电压 特性斜率
直流伺服电动机的调节特性
1.3 运行特性
(1) Ua0和k1的物理意义
始动电压Ua0 :电动机处在待动而又未动临界状态时的电压。 Ua Ts Ra 由 n ,当n=0时,便可求得: 2 C e C e C t Ra U a U a0 Ts C t 由于Ua0∝Ts ,即负载转矩越大,Ua0越高。 控制电压从0到Ua0范围内,电机不转动,称为电动机的死区。
1.1 伺服电动机概述
自动控制系统对伺服电动机的基本要求: (1) 宽广的调速范围。伺服电动机的转速随着控制电 压的改变能在宽广的范围内连续调节。 (2) 机械特性和调节特性均为线性。线性的机械特性 和调节特性有利于提高自动控制系统的动态精度。 机械特性:控制电压一定时,转速随转矩的变 化关系; 调节特性:电动机转矩一定时,转速随控制电 压的变化关系。 (3) 无“自转”现象。伺服电动机在控制电压为零时 能立自行停转。 (4) 快速响应。电动机的机电时间常数要小,相应地 伺服电动机要有较大的培转转矩和较小的转动惯量。 这样,电动机的转速便能随着控制电压的改变而迅 速变化。
第1章 直流伺服电动机
1.1 伺服电动机概述 1.2 直流伺服电动机的原理 1.3 直流伺服电动机运行特性 1.4 直流伺服电动机的控制方式 1.5 直流伺服电动机的动态特性与特种电机 1.6 直流伺服电动机的PWM控制 1.7 直流伺服电动机的应用

直流伺服电动机的技术参数与特性参数,直流伺服电动机的特点特性及种类

直流伺服电动机的技术参数与特性参数,直流伺服电动机的特点特性及种类

直流伺服电动机的技术参数与特性参数,直流伺服电动机的特点特性及种类导语:直流伺服电动机是自动控制系统中具有特殊用途的直流电动机,又称执行电机,它能够把输入的电压信号变换成轴上的角位移和角速度等机械信号。

直流伺服电动机是自动控制系统中具有特殊用途的直流电动机,又称执行电机,它能够把输入的电压信号变换成轴上的角位移和角速度等机械信号。

直流伺服电动机的工作原理、基本结构及内部电磁关系与一般用途的直流电动机相同。

直流伺服电动机的控制电源为直流电压,分普通直流伺服电动机、盘形电枢直流伺服电机、空心杯直流伺服电机和无槽直流伺服电机等。

普通直流伺服电动机有永磁式和电磁式两种基本结构类型。

电磁式又分为他励、并励、串励和复励四种,永磁式可看作是他励式。

特点:转子直径较小、轴向尺寸大;转动惯量小,因此响应时间快。

但额定扭矩较小,一般必须与齿轮降速装置相匹配。

用于高速轻载的小型数控机床中。

1、直流伺服电动机的基本结构图为直流伺服电动机的结构,主要包括定子、转子、电刷与换向片三个部分2.直流伺服电动机的分类(1)根据电动机本身结构的不同,可分为以下几类:改进型直流伺服电动机转子的转动惯量较小,过载能力较强,且具有较好的换向性能。

小惯量直流电动机最大限度地减少了转子的转动惯量,能获得最好的快速特性。

永磁直流伺服电动机能在较大过载转矩下长期地工作,转动惯量较大,无励磁回路损耗,可在低速下运转。

无刷直流电动机由同步电动机和逆变器组成,而逆变器是由装在转子上的转子位置传感器控制。

(2)根据直流电动机对励磁绕组的励磁方式不同,可分为他励式、并励式、串励式和复励式四种。

直流伺服电动机的特点种类直流伺服电动机的结构和一般直流电动机一样,只是为了减小转动惯量而做得细长一些。

它的励磁绕组和电枢分别由两个独立电源供电。

也有永磁式的,即磁极是永久磁铁。

通常采用电枢控制,就是励磁电压f一定,建立的磁通量Φ也是定值,而将控制电压Uc加在电枢上,其接线图如下图所示。

直流电机伺服系统

直流电机伺服系统

第四节 直流电机伺服系统伺服电机是转速及方向都受控制电压信号控制的一类电动机,常在自动控制系统用作执行元件。

伺服电机分为直流、交流两大类。

直流伺服电机在电枢控制时具有良好的机械特性和调节特性。

机电时间常数小,起动电压低。

其缺点是由于有电刷和换向器,造成的摩擦转矩比较大,有火花干扰及维护不便。

直流伺服电动机的结构与一般的电机结构相似,也是由定子、转子和电刷等部分组成,在定子上有励磁绕组和补偿绕组,转子绕组通过电刷供电。

由于转子磁场和定子磁场始终正交,因而产生转矩使转子转动。

由图6-30可知,定子励磁电流产生定子电势F s ,转子电枢电流αi 产生转子磁势为F r ,F s 和F r 垂直正交,补偿磁阻与电枢绕组串联,电流αi 又产生补偿磁势F c ,F c 与F r 方向相反,它的作用是抵消电枢磁场对定子磁场的扭斜,使电动机有良好的调速特性。

永磁直流伺服电动机的转子绕组是通过电刷供电,并在转子的尾部装有测速发电机和旋转变压器(或光电编码器),它的定子磁极是永久磁铁。

我国稀土永磁材料有很大的磁能积和极大的矫顽力,把永磁材料用在电动机中不但可以节约能源,还可以减少电动机发热,减少电动机体积。

永磁式直流伺服电动机与普通直流电动机相比有更高的过载能力,更大的转矩转动惯量比,调速范围大等优点。

因此,永磁式直流伺服电动机曾广泛应用于数控机床进给伺服系统。

由于近年来出现了性能更好的转子为永磁铁的交流伺服电动机,永磁直流电动机在数控机床上的应用才越来越少。

二、直流伺服电机的调速原理和常用的调速方法由电工学的知识可知:在转子磁场不饱和的情况下,改变电枢电压即可改变转子转速。

直流电机的转速和其它参量的关系可用式6-19表示:φe K IRU n -=(6-19) 式中:n ——转速,单位为rpm ;U ——电枢电压,单位为V ; I ——电枢电流,单位为A ;R ——电枢回路总电压,单位为Ω; φ——励磁磁通,单位为Wb (韦伯); K e ——由电机结构决定的电动势常数。

直流伺服电机

直流伺服电机

2.宽调速直流伺服电机
1、结构
2.宽调速直流伺服电机
1、特点(5)
(1)高转矩 (3)动态响应好 (5)易于调试
(2)过载能力强
(4)调速范围宽,运行平稳
直流伺服电机
什么叫伺服电动机?
在伺服机构的末端,根据输入 信号来操纵或驱动负载机械的动力元件 直流伺服电动机具有起动转矩大、调速 范围宽、机械特性和调节特性线性度好、控制 方便等优点,被广泛应用在闭环或半闭环控制 的伺服系统中。
直流伺服电机
直流伺服电动机的分类
1、按结构分:永磁式和电磁式
2、 按 励 磁 分
直流伺服电机
目的:
1、了解伺服电机的结构与原理;
2、掌握直流伺服电机的特点。
内容:
一、小惯量直流伺服电机;
二、宽调速直流伺服电机。
直流伺服电机
直流电机因调速方便,较硬机械持性,所以 数控伺服系统中早有使用,但由于数控机床的特 殊要求,如:高位移精度,宽调速范围,带负载 能力强,运动稳定等,一般的直流电机不能满足 要求。因为,一般直流电机的转动惯量过大,而 其输出力矩则相对地过小,这样它的动态特性就 比较差,尤其是在低速运转条件下,这个缺点就 更为突出。因此,目前在进给伺服系统中使用的 都是近年发展起来的大功率直流伺服电机。
组或电枢绕组的接线端对调就可改变转向。
1.小惯量直流伺服电机
七、直流伺服电机驱动器
1.小惯量直流伺服电机
七、直流伺服电机驱动器
直流伺服电机 驱动器主要用于接收编 码器的反馈信号和主机 给定的速度信号,实时 地控制伺服电机电枢电 压。驱动器与伺服电机 配套使用.
驱动器的型号为:DA0D020DT64S00。
1.小惯量直流伺服电机

直流伺服电机的工作原理

直流伺服电机的工作原理

直流伺服电机的工作原理
直流伺服电机是一种常用的电动机类型,其工作原理基于直流电流的传递和反馈控制。

以下为直流伺服电机的工作原理描述。

1. 电源供电:直流伺服电机通过外部电源供电,通常是直流电源。

2. 电机驱动:伺服电机中的电机部分由电枢和永磁体组成。

电枢和永磁体之间通过电刷和集电环连接。

当电流通过电枢,电枢产生的磁场与永磁体的磁场相互作用,产生转矩,从而驱动电机转动。

3. 反馈装置:直流伺服电机通常配备了反馈装置,用于测量电机的实际转速或角度。

常用的反馈装置包括编码器、霍尔效应传感器等。

4. 控制器:伺服电机的控制器对反馈信号进行处理和比较,将所需的转速或角度与实际转速或角度进行比较,并根据比较结果来调整输出给电机的电流信号。

5. 反馈控制:控制器通过调整输出给电机的电流信号来控制电机的速度或位置。

当实际转速或角度与所需的转速或角度不一致时,控制器将调整电流信号的大小或方向,以实现实时精确的控制。

6. 稳定性:通过不断的反馈和调整,直流伺服电机实现了稳定的速度或位置控制。

控制器不断监测反馈信号,并根据差异进
行调整,以保持所需的运动状态。

总结:直流伺服电机通过电源供电,电机驱动产生转矩,反馈装置测量实际转速或角度,控制器对反馈信号进行处理和比较,调整输出信号,实现精确的速度或位置控制。

这种工作原理使得直流伺服电机广泛应用于自动化系统中,如机械臂、自动化设备和工业机械等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(一)结构
直流伺服电动机结构和原理与普通直流电动机的结构和原理没有根本区别。

按照励磁方式的不同,直流伺服电动机分为永磁式直流伺服电动机和电磁式直流伺服电动机。

永磁式直流伺服电动机的磁极由永久磁铁制成,不需要励磁绕组和励磁电源。

电磁式直流伺服电动机一般采用他励结构,磁极由励磁绕组构成,通过单独的励磁电源供电。

按照转子结构的不同,直流伺服电动机分为空心杯形转子直流伺服电动机和无槽电枢直流伺服电动机。

空心杯形转子直流伺服电动机由于其力能指标较低,现在已很少采用。

无槽电枢直流伺服电动机的转子是直径较小的细长型圆柱铁芯,通过耐热树脂将电枢绕组固定在铁芯上,具有散热好、力能指标高、快速性好的特点。

(二)控制方式
直流电动机的控制方式有两种:一种称为电枢控制,在电动机的励磁绕组上加上恒压励磁,将控制电压作用于电枢绕组来进行控制;一种称为磁场控制,在电动机的电枢绕组上施加恒压,将控制电压作用于励磁绕组来进行控制。

由于电枢控制的特性好,电枢控制中回路电感小,响应快,在自动控制系统中多采用电枢控制。

1.电枢控制方式下的工作原理与特性
在电枢控制方式下,作用于电枢的控制电压为Uc,励磁电压Uf保持不变,如图4-1所示。

图4-1 电枢控制的直流伺服电动机原理图
直流伺服电动机的机械特性表达式为:
(4—1)
式中,Ce为电势常数;CT为转矩常数;Ra为电枢回路电阻。

由于直流伺服电动机的磁路一般不饱和,我们可以不考虑电枢反应,认为主磁通
Φ大小不变。

伺服电动机的机械特性,指控制电压一定时转速随转矩变化的关系。

当作用于电枢回路的控制电压Uc不变时,转矩T增大时转速n降低,转矩的增加与电动机的转速降成正比,转矩T与转速n之间成线性关系,不同控制电压作用下的机械特性如图4-2a所示。

a) b)
图4-2 直流伺服电动机的特性
a)机械特性;b)调节特性
伺服电动机的调节特性是指在一定的负载转矩下,电动机稳态转速随控制电压变化的关系。

当电动机的转矩T不变时,控制电压的增加与转速的增加成正比,转速n与控制电压Uc也成线性关系。

不同转矩时的调节特性如图4—2b所示。

由图可知,当转速n=0时,不同转矩T所需要的控制电压Uc也是不同的,只有当电枢电压大于这个电压值,电动机才会转动,调节特性与横轴的交点所对应的电压值称始动电压。

负载转矩TL不同时,始动电压也不同,TL越大,始动电压越高,死区越大。

负载越大,死区越大,伺服电机不灵敏,所以不可带太大负载。

直流伺服电动机的机械特性和调节特性的线性度好,调整范围大,起动转矩大,效率高。

缺点是电枢电流较大;电刷和换向器维护工作量大;接触电阻不稳定;电刷与换向器之间的火花有可能对控制系统产生干扰。

相关文档
最新文档