2013年全国各地高考文科数学试题分类汇编:不等式 学生版

合集下载

2013年全国大纲高考数学文科试卷带详解

2013年全国大纲高考数学文科试卷带详解

2013年普通高等学校招生全国统一考试数学(文科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}1,2,3,4,5,1,2,U U A A ===集合则ð ( )A.{}1,2B.{}3,4,5C.{}1,2,3,4,5D.∅ 【测量目标】集合的补集.【考查方式】直接给出集合,用列举法求集合补集. 【参考答案】B【试题解析】依据补集的定义计算. {}1,2,3,4,5U =,{}1,2A =,∴ U A =ð{3,4,5}. 2.已知α是第二象限角,5sin ,cos 13αα==则 ( ) A.1213- B.513- C.513 D.1213【测量目标】同角三角函数基本关系.【考查方式】直接给出角的象限和正弦值,求余弦值. 【参考答案】A【试题解析】利用同角三角函数基本关系式中的平方关系计算.因为α为第二象限角,所以12cos .13α==-3.已知向量()()()()1,1,2,2,,=λλλ=+=++⊥-若则m n m n m n ( )A.-4B.-3C.-2D.1- 【测量目标】平面向量的坐标运算与两向量垂直的坐标公式等.【考查方式】给出两向量的坐标表示,两向量坐标运算的垂直关系,求未知数.λ 【参考答案】B【试题解析】利用坐标运算得出+-与m n m n 的坐标,再由两向量垂直的坐标公式求λ, 因为()()23,3,1,1,λ+=+-=--m n m n 由()(),+⊥-m n m n 可得()()()()23,31,1260,λλ+-=+--=--= m n m n (步骤1)解得 3.λ=- (步骤2)4.不等式222x -<的解集是 ( )A.()1,1-B.()2,2-C.()()1,00,1-D.()()2,00,2- 【测量目标】含绝对值的一元二次不等式的解.【考查方式】给出绝对值不等式,求出满足不等式的解集. 【参考答案】D【试题解析】将绝对值不等式转化为一元二次不等式求解.由222,x -<得2222,x -<-<即204,x <<(步骤1)所以20x -<<或02,x <<故解集为()()2,00,2.- (步骤2)5.()862x x +的展开式中的系数是 ( )A.28B.56C.112D.224 【测量目标】二项式定理.【考查方式】由二项式展开式,求满足条件的项的系数. 【参考答案】C【试题解析】写出二项展开式的通项,从而确定6x 的系数.该二项展开式的通项为88188C 22C ,r r r r r r r T x x --+==(步骤1)令2,r =得2266382C 112,T x x ==所以6x 的系数是112. (步骤2)6.函数()()21log 10f x x x ⎛⎫=+> ⎪⎝⎭的反函数1()f x -= ( ) A.()1021x x >- B.()1021xx ≠- C.()21x x -∈R D.()210x x -> 【测量目标】反函数的求解方法,函数的值域求法. 【考查方式】给出函数的解析式,求它的反函数.. 【参考答案】A【试题解析】由已知函数解出,x 并由x 的范围确定原函数的值域,按照习惯把,x y 互换,得出反函数. 由21log 1y x ⎛⎫=+⎪⎝⎭得112,yx ⎛⎫+= ⎪⎝⎭故1.21yx =-(步骤1)把x 和y 互换,即得()11.21x f x -=-(步骤2) 由0,x >得111,x+>可得0.y > 故所求反函数为()11(0).21xf x x -=>-(步骤3) 7.已知数列{}n a 满足{}12430,,103n n n a a a a ++==-则的前项和等于 ( )A.()10613---B.()101139-- C.()10313-- D.()1031+3-【测量目标】等比数列的定义及等比数列前n 项和.【考查方式】给出一个数列{n a }、它的前后项的关系,判断是否为特殊数列,从而求出它的前n 项和. 【参考答案】C【试题解析】先根据等比数列的定义判断数列{}n a 是等比数列,得到首项与公比,再代入等比数列前n 项和公式计算. 由130,n n a a ++=得11,3n n a a +=-故数列{}n a 是公比13q =-的等比数列. (步骤1)又24,3a =-可得1 4.a =(步骤2)所以()1010101413313.113S -⎡⎤⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦==-⎛⎫-- ⎪⎝⎭(步骤3)8.()()1221,0,1,0,F F C F x -已知是椭圆的两个焦点过且垂直于轴的直线交于A B 、两点,且3AB =,则C 的方程为 ( )A.2212x y += B.22132x y += C.22143x y += D.22154x y += 【测量目标】椭圆的标准方程及简单几何性质.【考查方式】给出椭圆焦点,由椭圆与直线的位置关系,利用待定系数法求椭圆的标准方程. 【参考答案】C【试题解析】设出椭圆的方程,依据题目条件用待定系数法求参数.由题意知椭圆焦点在x 轴上,且1,c =可设C 的方程为()22221,1x y a a a +>-(步骤1)由过2F 且垂直于x 轴的直线被C 截得的弦长3,AB =知点21,3⎛⎫ ⎪⎝⎭必在椭圆上,(步骤2)代入椭圆方程化简得4241740,a a -+=所以24a =或214a =(舍去). (步骤3) 故椭圆C 的方程为221.43x y +=(步骤4) 9.若函数()()sin 0=y x ωϕωω=+>的部分图像如图,则 ( ) A.5 B.4 C.3 D.2第9题图【测量目标】根据函数的部分图象确定函数解析式.【考查方式】给出正弦函数的未知解析式及正弦函数的部分图象.根据图象求出T ,确定ω的值.【参考答案】B【试题解析】根据图象确定函数的最小正周期,再利用2πT ω=求.ω设函数的最小正周期为T ,由函数图象可知0ππ=,244T x x ⎛⎫+-= ⎪⎝⎭所以π.2T =(步骤1)又因为2π,T ω=可解得 4.ω=(步骤2)10.已知曲线()421128=y x ax a a =++-+在点,处切线的斜率为, ( )A.9B.6C.9-D.6- 【测量目标】导数的几何意义及求导公式等知识.【考查方式】已知曲线在未知点处的切线斜率,利用导数的几何意义求未知数a . 【参考答案】D【试题解析】先对函数求导,利用导数的几何意义得出点()1,2a -+处的切线斜率,解方程所得.342,y x ax '=+由导数的几何意义知在点(1,2)a -+处的切线斜率1|428,x k y a =-'==--=解得 6.a =-11.已知正四棱柱1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于 ( )A.23 D.13 【测量目标】直线与平面所成角和线面垂直的判定.【考查方式】已知正四棱柱,利用其性质和几何体中的垂直关系求线面角的正弦值. 【参考答案】A【试题解析】利用正四棱柱的性质,通过几何体中的垂直关系,判断点C 在平面1BDC 上的射影位置,确定线平面角,并划归到直角三角形中求解.如图,连接AC ,交BD 于点O ,由正四棱柱的性质,有.AC BD ⊥ 因为1CC ⊥平面ABCD ,所以 BD ⊥(步骤1)又1,CC AC C = 所以BD ⊥平面 O (步骤2) 在平面1CC O 内作1,CH C O ⊥垂足为H ,则.BD CH ⊥又1,BD C O O = 所以CH ⊥平面1,BDC (步骤3) 第11题图 连接DH ,则DH 为CD 在平面1BDC 上的射影,所以CDH ∠为CD 与1BDC 所成的角.(步骤4)设12 2.AA AB ==在1Rt COC △中,由等面积变换易求得2,3CH =在Rt CDH △中,2sin .3CH CDH CD ∠==(步骤5) 12.已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若0MA MB =,则k = ( )A .12 D.2 【测量目标】直线与抛物线的位置关系,平面向量的坐标运算等知识.【考查方式】已知抛物线标准方程,利用抛物线性质及直线与抛物线的位置关系求解过焦点的直线的斜率. 【参考答案】D【试题解析】联立直线与抛物线的方程,消元得一元二次方程并得两根之间的关系,由0MA MB =进行坐标运算解未知量k .抛物线C 的焦点为()2,0,F 则直线方程为()2,y k x =-与抛物线方程联立,消去y 化简得()22224840.k x k x k -++=(步骤1)设点()()1122,,,,A x y B x y 则1212284, 4.x x x x k +=+=所以()121284,y y k x x k k+=+-=()21212122416.y y k x x x x =-++=-⎡⎤⎣⎦(步骤2) ()()()()()()112212122,22,22222MA MB x y x y x x y y =+-+-=+++--()()121212122280,x x x x y y y y =+++-++=(步骤3)将上面各个量代入,化简得2440,k k -+=所以 2.k =(步骤4)二、填空题:本大题共4小题,每小题5分.13.设()[)()21,3=f x x f x ∈是以为周期的函数,且当时, . 【测量目标】函数周期的应用及根据函数解析式求值.【考查方式】给出函数()f x 的周期及取值范围,代入解析式求函数值.【参考答案】1-【试题解析】利用周期将自变量转化到已知解析式中x 的范围内,代入解析式计算 . 由于()f x 的周期为2,且当[)1,3x ∈时,()2,f x x =-(步骤1)()2,f x x =-()()()112112 1.f f f -=-+==-=-(步骤2)14.从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有 种.(用数字作答)【测量目标】简单的排列组合知识的应用. 【考查方式】直接利用排列组合知识列式求解. 【参考答案】60【试题解析】利用排列组合知识列式求解. 由题意知,所有可能的决赛结果有12365354C C C 61602⨯=⨯⨯=(种).15.若x y 、满足约束条件0,34,34,x x y x y ⎧⎪+⎨⎪+⎩………则z x y =-+的最小值为 .【测量目标】二元线性规划求目标函数最值.【考查方式】直接给出函数的约束条件,利用线性规划性质及借助数形结合思想求z 的最小值.【参考答案】0【试题解析】作出定义域,借助数形结合寻找最优解.由不等式组作出可行域,如图阴影部分所示()包括边界,且()()41,1040,.3A B C ⎛⎫⎪⎝⎭,,,,由数形结合知,直线y x z =+过点()1,1A 时,min 110.z =-+= 16.已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,3602OK O K = ,且圆与圆所在的平面所成角为,则球O 的表面积等于 .【测量目标】球的大圆、小圆及球的截面性质,二面角的平面角,球的表面积公式等知识. 【考查方式】已知二面角的平面角,根据球的截面性质,直角三角形的性质,求出球的半径,并由球的表面积公式求球的表面积. 【参考答案】16π 【试题解析】根据球的截面性质以及二面角的平面角的定义确定平面角,把球的半径转化到三角形中计算,进而求得球的表面积.如图所示,公共弦为AB ,设球的半径为R ,则,AB R =取AB 为中点M ,连接OM 、,KM由圆的性质知,,OM AB KM AB ⊥⊥ 所以KMO ∠为圆O 与圆K 所在平面所成的一个二面角的平面角,则60.KOM ∠=(步骤1)Rt KOM △中,3,2OK =所以sin 60OK OM == (步骤2) 在Rt OMA △中,因为222,OA OM AM =+所以2213,4R R =+解得24,R =(步骤3)所以球O 的表面积为24π16π.R =(步骤4)三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)等差数列{}n a 中,71994,2,a a a ==(I )求{}n a 的通项公式; (II )设{}1,.n n n nb b n S na =求数列的前项和 【测量目标】等差数列的通项公式、裂项相消法求数列的前n 项和.【考查方式】(1)根据等差数列的通项公式求出首项和公差,进而求出等差数列的通项公式.(2)已知通项公式,利用裂项相消法求和.【试题解析】(1)设等差数列{}n a 的公差为d ,则()11.n a a n d =+-因为71994,2,a a a =⎧⎨=⎩所以()11164,1828.a d a d a d +=⎧⎨+=+⎩(步骤1)解得11,1.2a d =⎧⎪⎨=⎪⎩所以{}n a 的通项公式为1.2n n a +=(步骤2) (2)因为()222,11n b n n n n ==-++所以2222222.122311n n S n n n ⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+-=⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭(步骤3) 18.(本小题满分12分)设ABC △的内角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=.(I )求B(II)若1sin sin 4A C =,求C . 【测量目标】余弦定理解三角形,三角恒等变换公式及其应用.【考查方式】已知三角形的三边及三边关系.(1)由已知关系式展开,利用余弦定理求角. (2)三角形内角和得出A C +,由给出的sin sin A C 的形式,联想构造与已知条件相匹配的余弦公式,求出角C .【试题解析】(1)因为()(),a b c a b c ac ++-+=所以222.a c b ac +-=-(步骤1)由余弦定理得2221cos ,22a cb B ac +-==-因此120.B =(步骤2)(2)由(1)知60,A C +=所以()cos cos cos sin sin A C A C A C -=+cos cos sin sin 2sin sin A C A C A C =-+()11cos 2sin sin 2242A C A C =++=+⨯=(步骤1) 故30A C -=或30,A C -=- 因此15C =或45.C =(步骤2) 19.(本小题满分12分)如图,四棱锥P-ABCD 中,==90ABC BAD ∠∠,BC =2AD ,△P AB 与△PAD 都是边长为2的等边三角形. 图(1)(I )证明:;PB CD ⊥(II )求点.A PCD 到平面的距离【测量目标】空间垂直关系的证明和点到平面距离的求解.第19题图【考查方式】已知四棱锥,底面为特殊的直角梯形,侧面为特殊三角形(1)借助线线、线面垂直求解.(2)通过做辅助线将点面距离转化为图形中的线段,再求解.【试题解析】(1)证明:取BC 的中点E ,连接DE ,则四边形ABCD 为正方形. 过点P 作PO ABCD ⊥平面,垂足为O .连接OA ,OB,OD ,OE . 图(2) 由PAB △和PAD △都是等边三角形知,PA PB PD ==(步骤1)所以,O A O B O D ==即O 为正方形ABED 对角线的交点,故 ,OE BD ⊥从而.P B O E ⊥(步骤2)因为O 是BD 的中点,E 是BC 的中点,所以OE //CD .因此.PB CD ⊥(步骤3)(2)解:取PD 的中点F ,连接OF ,则//.OF PB 由(1)知,,PB CD ⊥故.OF CD ⊥(步骤4)又12OD BD ==OP ==故POD △为等腰三角形,(步骤5) 因此.OF PD ⊥又,PD CD D = 所以.OF PCD ⊥平面(步骤6)因为//,AE CD CD PCD ⊂平面,,AE PCD ⊄平面所以//.AE PCD 平面(步骤7) 因此点O 到平面PCD 的距离OF 就是点A 到平面PCD 的距离,(步骤8) 而112OF PB ==,所以点A 到平面PCD 的距离为1. (步骤9) 20.(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,2各局比赛的结果都相互独立,第1局甲当裁判.(I )求第4局甲当裁判的概率;(II )求前4局中乙恰好当1次裁判概率. 【测量目标】相互独立事件同时发生的概率,互斥事件概率加法公式的应用.【考查方式】(1)直接利用独立事件的概率公式求解.(2)由已知,直接利用互斥事件的加法公式求解.【试题解析】(1)记1A 表示事件“第2局结果为甲胜”,2A 表示“第3局甲参加比赛时,结果为甲负”,A 表示事件“第4局甲当裁判”.则12.A A A = ()()()()12121.4P A P A A P A P A === (步骤1)(2)记1B 表示事件“第1局比赛结果为乙胜”,2B 表示事件“第2局乙参加比赛,结果为乙胜”,3B 表示事件“第3局中乙参加比赛时,结果为乙胜”,B 表示事件“前4局中乙恰好当1次裁判”, 则1312312.B B B B B B B B =++ (步骤2)()()1312312P B P B B B B B B B =++=()()()1312312P B B P B B B P B B ++=()()()()()()()1312312P B P B P B P B P B P B P B ++=111+484+ =5.8(步骤3) 21.(本小题满分12分)已知函数()32=33 1.f x x ax x +++(I )求();a f x =的单调性; (II )若[)()2,0,x f x ∈+∞时,…求a 的取值范围. 【测量目标】导数在研究函数中的应用.【考查方式】已知含未知数a 的函数()f x (1)对()f x 求导,得出()f x =0时的根,根据导数性质讨论函数单调性.(2)利用特殊值法和放缩法求a 的范围.【试题解析】(1)当a =()3231,f x x x =-++()23 3.f x x '=-+(步骤1)令()0,f x '=得121, 1.x x ==(步骤2)当()1x ∈-∞时,()0,f x '>()f x 在()1-∞上是增函数;当)1x ∈时,()0,f x '<()f x 在)1上是减函数;当)1,x ∈+∞时,()0,f x '>()f x 在)1,+∞上是增函数. (步骤3) (2)由()20f …得4.5a -…当45a -…,()2,x ∈+∞时, ()()225321312f x x ax x ⎛⎫'=++-+ ⎪⎝⎭… =()1320,2x x ⎛⎫--> ⎪⎝⎭所以()f x 在()2,+∞上是增函数,(步骤4)于是当[)2+x ∈∞,时,()()20f x f 厖.综上,a 的取值范围是4,.5⎡⎫-+∞⎪⎢⎣⎭(步骤5) 22.(本小题满分12分) 已知双曲线()221222:10,0x y C a b F F a b-=>>的左、右焦点分别为,,离心率为3,直线2y C =与(I )求,;a b(II )2F l C A B 设过的直线与的左、右两支分别相交于、两点,且11,AF BF = 证明:22AF AB BF 、、成等比数列.【测量目标】双曲线的方程、性质,直线与双曲线的位置关系,等比中项等性质.【考查方式】(1)由双曲线与直线的位置关系、双曲线的几何性质求出a,b 值.(2)由直线方程和双曲线方程,利用双曲线与直线的位置关系及两点间距离公式证明线段的等比关系.【试题解析】(1)解:由题设知3,c a =即2229,a b a+=故228.b a = 所以C 的方程为22288.x y a -=(步骤1)将y=2代入上式,求得x =(步骤2)由题设知,=解得2 1.a =所以1,a b ==(步骤3)(2)证明:由(1)知,()()123,0,3,0,F F -C 的方程为2288.x y -=○1(步骤4)由题设可设l 的方程为()3,y k x k =-<将其代入○1并化简,得 ()222286980.k x k x k --++=(步骤5)设()1122,,(,),A x y B x y 则22121212226981,1,,.88k k x x x x x x k k +-+==--剠(步骤6)于是()1131,AF x ==-+123 1.BF x ==+(步骤7)由11,AF BF =得()123131,x x -+=+(步骤8) 即2122262,,383k x x k +=-=--故 解得212419,.59k x x ==-从而(步骤9)由于2113,AF x ===-2231,BF x ===- 故()2212234,AB AF BF x x =-=-+=(步骤10)()221212=39116,AF BF x x x x +--= 因而222,AF BF AB = 所以22AF AB BF 、、成等比数列(步骤11).。

2013年高考数学各地名校文科不等式试题解析汇编

2013年高考数学各地名校文科不等式试题解析汇编

2013年高考数学各地名校文科不等式试题解析汇编各地解析分类汇编:不等式1.【天津市耀华中学2013届高三第一次月考文科】若x≥0,y≥0且,那么2x+3y2的最小值为A、2B、C、D、0【答案】B【解析】由得得,,所以,因为,所以当时,有最小值,选B.2【山东省烟台市2013届高三上学期期中考试文】下列命题中,正确的是A.若,则B.若,则C.若,则D.若,则【答案】C【解析】由不等式的性质知C正确.故选C.3【山东省师大附中2013届高三12月第三次模拟检测文】下列三个不等式中,恒成立的个数有①②③.A.3B.2C.1D.0【答案】B【解析】当时,①不成立。

由,得所以成立,所以②横成立。

③恒成立,所以选B.4.【北京市东城区普通校2013届高三11月联考数学(文)】某企业投入100万元购入一套设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业()年后需要更新设备.A.10B.11C.13D.21【答案】A【解析】由题意可知年的维护费用为,所以年平均污水处理费用为,由均值不等式得,当且仅当,即时取等号,所以选A.5.【天津市天津一中2013届高三上学期一月考文】,,则与的大小关系为()A.B.C.D.【答案】D【解析】,因为,,所以,,所以,所以,选D.6.【云南省玉溪一中2013届高三第四次月考文】设变量x,y满足约束条件则目标函数的最大值为()A.0B.1C.D.2【答案】D【解析】在坐标系中做出可行域如图,由得,平移直线,由图象可知,当直线经过点时,直线的截距最大,此时也最大,最大为,选D.7.【山东省师大附中2013届高三12月第三次模拟检测文】设变量,满足约束条件,则目标函数的最小值为A.B.C.D.【答案】B【解析】做出可行域如图,设,即,平移直线,由图象可知当直线经过点C时,直线的截距最小,此时最小。

2013各地高考数学试题集锦(文科)

2013各地高考数学试题集锦(文科)

2013年普通高等学校招生全国统一考试(天津卷)文 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么 )()()(B P A P A P B ⋃=+·棱柱的体积公式V = Sh , 其中S 表示棱柱的底面面积, h 表示棱柱的高. ·如果事件A , B 相互独立, 那么 )()(()B P A A P P B =·球的体积公式34.3V R π= 其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知集合A = {x ∈R | |x |≤2}, B = {x ∈R | x ≤1}, 则A B ⋂= (A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1] (2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y -2x的最小值为 (A) -7 (B) -4 (C) 1 (D) 2(3) 阅读右边的程序框图, 运行相应的程序, 则输出n 的值为(A) 7 (B) 6(C) 5(D) 4(4) 设,a b ∈R , 则 “2()0a b a -<”是“a b <”的 (A) 充分而不必要条件 (B) 必要而不充分条件(C) 充要条件(D) 既不充分也不必要条件(5) 已知过点P (2,2) 的直线与圆225(1)x y +=-相切, 且与直线10ax y -+=垂直, 则a = (A) 12-(B) 1(C) 2(D)12(6) 函数()sin 24f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值是(A) 1-(B)(C)(D) 0 (7) 已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞上单调递增. 若实数a 满足212(log )(log )2(1)f a f f a ≤+, 则a 的取值范围是(A) [1,2] (B) 10,2⎛⎤ ⎥⎝⎦(C) 1,22⎡⎤⎢⎥⎣⎦(D) (0,2](8) 设函数22,()ln )3(x x g x x x x f e +-=+-=. 若实数a , b 满足()0,()0f a g b ==, 则 (A) ()0()g a f b << (B) ()0()f b g a << (C) 0()()g a f b <<(D) ()()0f b g a <<2013年普通高等学校招生全国统一考试(天津卷)文 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分. (9) i 是虚数单位. 复数(3 + i )(1-2i ) = .(10) 已知一个正方体的所有顶点在一个球面上. 若球的体积为92π, 则正方体的棱长为 .(11) 已知抛物线28y x =的准线过双曲线22221(0,0)x y a b a b-=>>的一个焦点, 且双曲线的离心率为2, 则该双曲线的方程为 .(12) 在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AC BE =, 则AB 的长为 .(13) 如图, 在圆内接梯形ABCD 中, AB //DC , 过点A 作圆的切线与CB 的延长线交于点E . 若AB = AD = 5, BE = 4, 则弦BD 的长为 .(14) 设a + b = 2, b >0, 则1||2||a a b+的最小值为 .三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤. (15) (本小题满分13分)某产品的三个质量指标分别为x , y , z , 用综合指标S = x + y + z 评价该产品的等级. 若S ≤4, 则该产品为一等品. 现从一批该产品中, 随机抽取10件产品作为样本, 其质量指标列表如下:产品编号 A 1 A 2 A 3 A 4 A 5 质量指标(x , y , z ) (1,1,2) (2,1,1) (2,2,2) (1,1,1) (1,2,1) 产品编号A 6A 7A 8A 9A 10质量指标(x , y , z ) (1,2,2) (2,1,1) (2,2,1) (1,1,1) (2,1,2)(Ⅰ) 利用上表提供的样本数据估计该批产品的一等品率; (Ⅱ) 在该样品的一等品中, 随机抽取2件产品,(⒈) 用产品编号列出所有可能的结果;(⒉) 设事件B 为 “在取出的2件产品中, 每件产品的综合指标S 都等于4”, 求事件B 发生的概率.(16) (本小题满分13分)在△ABC 中, 内角A , B , C 所对的边分别是a , b , c . 已知sin 3sin b A c B =, a = 3, 2cos 3B =. (Ⅰ) 求b 的值;(Ⅱ) 求sin 23B π⎛⎫- ⎪⎝⎭的值.(17) (本小题满分13分)如图, 三棱柱ABC -A 1B 1C 1中, 侧棱A 1A ⊥底面ABC ,且各棱长均相等. D , E , F 分别为棱AB , BC , A 1C 1的中点. (Ⅰ) 证明EF //平面A 1CD ;(Ⅱ) 证明平面A 1CD ⊥平面A 1ABB 1;(Ⅲ) 求直线BC 与平面A 1CD 所成角的正弦值.(18) (本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F , 离心率为33, 过点F 且与x 轴垂直的直线被椭圆截得的线段长为433. (Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左,右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB +=, 求k 的值.(19) (本小题满分14分)已知首项为32的等比数列{}n a 的前n 项和为(*)n S n ∈N , 且234,2,4S S S -成等差数列. (Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 证明13*)61(n n S n S +≤∈N .(20) (本小题满分14分)设[2,0]a ∈-, 已知函数332(5),03,0(,).2x f a x x a x x x x x a -+≤+-+>⎧⎪=⎨⎪⎩(Ⅰ) 证明()f x 在区间(-1,1)内单调递减, 在区间(1, + ∞)内单调递增;(Ⅱ) 设曲线()y f x =在点(,())(1,2,3)i i i x f x i P =处的切线相互平行, 且1230,x x x ≠ 证明12313x x x ++>.2013年普通高等学校招生全国统一考试(北京卷)数学(文)C1A1C 本试卷共5页,150分.考试时长120分钟。

2013年全国高考文科数学试题及答案汇编9套(下)

2013年全国高考文科数学试题及答案汇编9套(下)

2
2
x
( B)
y
1
32
2
x
( C)
4
2
y1 3
9.若函数 y sin x
0 的部分图像如图,则 =
( A) 5
( B) 4 ( C) 3 ( D) 2
2
2
x
(D)
y
1
54
10.已知曲线 y x4 ax2 1在点 -1,a 2 处切线的斜率为 8,a=
( A) 9
( B) 6 ( C) -9 ( D) -6
5 , 则cosa
13
12
( A)
13
5
(B)
13
5
( C)
13
3.已知向量 m
1,1 , n
2,2 , 若 m n
12
( D)
13
m n ,则 =
( A) 4
( B) 3
4.不等式
2
x
2
2的解集是
( C) -2
( D) -1
( A) -1,1
( B) -2,2
( C) -1,0 0,1
( D) -2,0 0,2
2013 年普通高等学校招生全国统一考试(辽宁卷) 数 学(供文科考生使用)
第I卷
一、选择题:本大题共 12 小题,每小题 5 分,共 40 分 .在每小题给出的四个选项中,只有一项是符合题目 要求的 .
( 1)已知集合 A 1,2,3,4 , B x | x 2 , 则A B
( A) 0
( B) 0,1
(x1 3)2 8 x12 8 1 3 x1,
| BF2 | ( x2 3)2 y22
( x2 3)2 8 x22 8 3x2 1 ,

2013年全国各地高考文科数学试卷及答案

2013年全国各地高考文科数学试卷及答案

2013年普通高等学校招生统一考试(上海卷)数学(文科)考生注意:1.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.2.本试卷共有23道试题,满分150分,考试时间120分钟.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.不等式12-x x <0的解为 )21,0( . 【答案】 )21,0(【解析】)21,0(0)12(∈⇒<-x x x2.在等差数列{}n a 中,若a 1+ a 2+ a 3+ a 4=30,则a 2+ a 3= 15 . 【答案】 15【解析】 1530)(232324321=+⇒=+=+++a a a a a a a a3.设m ∈R,m 2+m-2+( m 2-1)i 是纯虚数,其中i 是虚数单位,则m= . 【答案】 -2【解析】 20102)1(22222-=⇒⎪⎩⎪⎨⎧≠-=-+⇒-+-+m m m m i m m m 是纯虚数4.已知1x 12=0,1x 1y=1,则y= 1 .【答案】 1 【解析】111 2021 12 =-==⇒=-=y x yx x x x ,又已知,1,2==y x 联立上式,解得5. 已知∆ABC 的内角A 、B 、C 所对的边分别是a 、b 、c.若a 2+ab+b 2-c 2=0,则角C 的大小是π32. 【答案】 π32【解析】π32212- cos 0- 222222=⇒-=+=⇒=++C ab c b a C c b ab a6. 某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别是75、80,则这次考试该年级学生平均分数为 78 . 【答案】 78【解析】 7880100607510040=⋅+⋅=平均成绩7. 设常数a ∈R.若52x ⎪⎭⎫ ⎝⎛+x a 的二项展开式中x 7项的系数为-10,则a= -2 .【答案】 -2 【解析】10,110)()()(15752552-==⇒-=⇒+-a C r x xa x C x a x r r r 2,105-=-=⇒a a 8. 方程x 31139x=+-的实数解为 4log 3 . 【答案】 4log 3 【解析】⇒>+±=⇒±=-⇒-=-⇒=+-01333131313931139x x x xxx 4log 433=⇒=x x9. 若cosxcosy+sinxsiny=31,则cos(2x-2y)= 97- . 【答案】 97- 【解析】971)(cos 2)(2cos 31)cos(sin sin cos cos 2-=--=-⇒=-=+y x y x y x y x y x10. 已知圆柱Ω的母线长为l ,底面半径为r,O 是上底面圆心,A 、B 是下底面圆周上的两个不同的点,BC 是母线,如图,若直线OA 与BC 所成角的大小为6π,则r l3 .【答案】3【解析】 3336tan =⇒==rll r π由题知,11. 盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是75(结果用最简分数表示).【答案】75 【解析】考查排列组合;概率计算策略:正难则反。

2013年高考试题分项版解析数学(文) 专题07 不等式(Word精析版)

2013年高考试题分项版解析数学(文) 专题07 不等式(Word精析版)

一.基础题组1.【2013年普通高等学校统一考试试题大纲全国文科】不等式222x -<的解集是( )(A )()-1,1 (B )()-2,2 (C )()()-1,00,1 (D )()()-2,00,22.【2013年普通高等学校招生全国统一考试(北京卷)文】设,,a b c R ∈,且a b >,则( ) (A )ac bc >(B )11a b<(C )22a b > (D )33a b >3.【2013年普通高等学校招生全国统一考试(上海卷)文】设常数a ∈R ,集合()(){}|10A x x x a =--≥,{}|1B x x a =≥-.若A B =R ,则a 的取值范围为( )(A )(),2-∞(B )(],2-∞(C )()2,+∞(D )[)2,+∞4.【2013年全国高考统一考试天津数学(文)卷】设,a b ∈R , 则 “2()0a b a -<”是“a b <”的( ) (A) 充分而不必要条件 (B) 必要而不充分条件(C) 充要条件 (D) 既不充分也不必要条件5.【2013年普通高等学校招生全国统一考试(陕西卷) 文科】若点(x,y)位于曲线y = |x|与y = 2所围成的封闭区域, 则2x -y 的最小值为 (A) -6(B) -2(C) 0(D) 26.【2013年高考新课标Ⅱ数学(文)卷】 设x ,y 满足约束条件错误!未找到引用源。

,则z=2x-3y 的最小值是( )(A ) 7- (B )-6 (C )5-错误!未找到引用源。

(D )9-【考点定位】本小题考查线性规划的基础知识,难度不大,线性规划知识在高考中一般以小题的形式出现,是高考的重点内容之一,几乎年年必考.7.【2013年普通高等学校招生全国统一考试(江西卷)文科】下列选项中,使21x x x<<成立的x 的取值范围是( )A .(,1)-∞-B .(1,0)-C . (0,1)D .(1,)+∞8.【2013年全国高考统一考试天津数学(文)卷】设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y-2x 的最小值为( )(A) -7(B) -4 (C) 1(D) 29.【2013年普通高等学校招生全国统一考试(上海卷)文】不等式021xx <-的解为 .10.【2013年普通高等学校招生全国统一考试(安徽卷文科)】若非负数变量,x y 满足约束条件124x y x y -≥-⎧⎨+≤⎩,则x y +的最大值为__________.10.【2013年普通高等学校招生全国统一考试(四川卷)文科】已知函数()4(0,0)af x x x a x=+>>在3x =时取得最小值,则a =____________.11.【2013年普通高等学校招生全国统一考试(上海卷)文】.设常数0a >,若291a x a x+≥+对一切正实数x 成立,则a 的取值范围为 .12.【2013年普通高等学校招生全国统一考试(浙江卷)文科】设zkx y =+,其中实数,x y 满足2240240x x y x y ≥⎧⎪-+≥⎨⎪--≤⎩, 若z 的最大值为12,则实数k =________ . 13.【2013年普通高等学校招生全国统一考试(广东卷)文科】已知变量,x y 满足约束条件⎪⎩⎪⎨⎧≥≤≤-≥+-11103y x y x ,则z x y =+的最大值是.14.【2013年全国高考新课标(I )文科】设,x y 满足约束条件 13,10x x y ≤≤⎧⎨-≤-≤⎩,则2z x y =-的最大值为______.15.【2013年普通高等学校招生全国统一考试(湖南卷)文科】若变量,x y 满足约束条件28,04,03,x y x y +≤⎧⎪≤≤⎨⎪≤≤⎩则x y+的最大值为________.16.【2013年普通高等学校统一考试试题大纲全国文科】若x y 、满足约束条件0,34,34,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩则z x y =-+的最小值为. 二.能力题组17.【2013年普通高等学校招生全国统一考试(四川卷)文科】若变量,x y满足约束条件8, 24,0,0,x yy xxy+≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩且5z y x=-的最大值为a,最小值为b,则a b-的值是()(A)48(B)30(C)24(D)16【答案】C18.【2013年普通高等学校招生全国统一考试(湖北卷)文科】某旅行社租用A、B两种型的客车安排900名客人旅行,A、B两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400 元/辆,旅行社要求租车总数不超过21辆,且B型车不多于A型车7辆.则租金最少为()A.31200元B.36000元C.36800元D.38400元19.【2013年普通高等学校招生全国统一考试(福建卷)文科】若变量,x y 满足约束条件21,20,x y x z x y y +≤⎧⎪≥=+⎨⎪≥⎩则的最大值和最小值分别为( ) A .43和 B .42和 C .32和 D .20和20.【2013年普通高等学校统一考试江苏卷】抛物线2y x =在1x =处的切线与两坐标轴围成的三角形区域为D (包含三角形内部和边界).若点(,)P x y 是区域D 内任意一点,则2x y +的取值范围是 . [答案] 1[2,]2-[解析]∵2y x =,∴2y x '=,1|2x y ='=,而当1x =时1y =,即切点为(1,1),切线方程为21.【2013年普通高等学校招生全国统一考试(北京卷)文】设D 为不等式组0,20,30x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为__.22.【2013年普通高等学校招生全国统一考试(陕西卷) 文科】 在如图所示的锐角三角形空地中, 欲建一个面积最大的内接矩形花园(阴影部分), 则其边长x 为(m).23.【2013年普通高等学校招生全国统一考试(山东卷)文科】在平面直角坐标系xOy 中,M 为不等式组2360200x y x y y +-≤⎧⎪+-≥⎨⎪≥⎩所表示的区域上一动点,则直线OM 的最小值为____.三.拔高题组24.【2013年普通高等学校招生全国统一考试(福建卷)文科】若221,x yx y +=+则的取值范围是( )A .[]0,2B .[]2,0-C .[]2,-+∞D .[],2-∞-25.【2013年普通高等学校招生全国统一考试(山东卷)文科】 设正实数z y x ,,满足04322=-+-z y xy x ,则当z xy取得最大值时,2x y z +-的最大值为( ) A.0 B.98 C.2 D.9427.【2013年普通高等学校招生全国统一考试(浙江卷)文科】设,a b R ∈,若0x ≥时恒有 43220(1)x x ax b x ≤-++≤-,则ab 等于______________.【答案】-1法四:由已知得到:当0x ≥时,32210x x ax b ---+≥恒成立,所以令1x =得到:0a b +≤.令0x =,所以1b ≤.再由当0x ≥时,430x x ax b -++≥,所以令1x =得到0a b +≥成立,令0x =,所以0b ≥成立.所以0a b +=,10b ≥≥,当0b =时,0a =,当0x ≥时,430x x ax b -++≥不一定恒成立,所以当1,1b a ==-时。

2013年全国高考数学试题分类解析——不等式部分

2013年全国高考数学试题分类解析——不等式部分

4),
(
2
3t 4
,
3t 4
4)
当 t R 时,考虑把t 按照t 4k,t 4k 1,t 4k 2,t 4k 3 及在期区间上取值进行分
类讨论:(1)当t 4k 时,在每条直线上均有三个整点,共 9 个整点;(2)当 t 4k 1时,在每条直线上均有 4 个整点,共 12个整点;(3)当t 4k 2 时,
11.(湖北理科 8)已知向量 a (x z,3), b (2, y z) ,且 a b .若 x, y 满足不等式
x y 1,则 z 的取值范围为
A. 2,2
B. 2,3
C. 3,2
D. 3,3
【答案】D
解析:因为 a b , 2 x z 3 y z 0 , 则 z 2x 3y , x, y 满足不等式 x y 1, 则点 x, y 的可行域如图所示,
2013 年全国高考数学试题分类解析——不等式部分
1.(安徽理科第 4 题)设变量 x, y 满足 x y 1, 则 x 2 y 的最大值和最小值分别为
(A)1,-1
(B)2,-2 (C)1,-2 (D)2,-1
答案:B
解: x y 1是由点 (1,0),( 1,0), (0,1),(0, 1) 四点为顶点的正方形及其内部,当直线
z x 2 y 经过 (0,1),(0, 1) 时, z 分别取到最大值和最小值 2 和 2 。
(本小题满分 12分) 2.(安徽理科第 19题)
(Ⅰ)设 x 1, y 1, 证明
x y 1 1 1 xy xy x y
(Ⅱ)1 a b c ,证明 loga b logb c logc a logb a logc b loga c .
2

2013高考数学真题分类汇编—不等式模块 2

2013高考数学真题分类汇编—不等式模块 2

高一升高二7.30晚上六点半一对一两份2013高考数学—不等式一:选择题1.(2013北京卷文2)设R c b a ∈,,,且b a >,则 .A bc ac > .B ba 11< 22.b a C > 33.b a D >2.(2013安徽卷理6)已知一元二次不等式0)(<x f 的解集}211|{>-<x x x 或,则0)10(>x f 的解集为.A }2lg 1{->-<x x x 或 .B }2lg 1{-<<-x x .C }2lg {->x x .D }2lg {-<x x3.(2013新课标2卷12)若存在正数x 使1)(2<-a x x 成立,则a 的取值范围是 .A ),(+∞-∞ .B ),2(+∞- .C ),0(+∞ .D ),1(+∞-4.(2013江西卷文6)下列选项中,不等式21x xx<<成立的x 的取值范围.A )1,(--∞ .B )0,1(- .C )1,0( .D ),1(+∞ 5.(2013大纲卷文4)不等式222<-x 的解集是.A )1,1(- .B )2,2(- .C )1,0()0,1( - .D )2,0()0,2( -.6(2013山东卷理6)在平面直角坐标系xOy 中,M 为不等式组⎪⎩⎪⎨⎧≤-+≥-+≥--083012022y x y x y x 所表示的平面区域上一动点,则OM 斜率的最小值为 .A 2 .B 1 .C 31-.D 21-7(2013新课标2卷理5)已知0>a ,y x ,满足约束条件⎪⎩⎪⎨⎧-≥≤+≥)3(31x a y y x x ,若y x z +=2的最小值为1,则=a .A 41 .B 21.C 1 .D 2 8.(2013北京卷理8)设关于y x ,的不等式组⎪⎩⎪⎨⎧>-<+≥+-0012m y m x y x 表示的平面区域内存在点),(00y x P ,满足2200=-y x ,求m 的取值范围是.A )34,(--∞ .B )31,(-∞ .C )32,(--∞ .D )35,(--∞ 9.(2013四川卷文8)若变量,x y 满足约束条件8,24,0,0,x y y x x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩且5zy x =-的最大值为a ,最小值为b ,则a b -的值是( )(A )48 (B )30 (C )24 (D )16 10(2013福建卷文7)若221,x y x y +=+则的取值范围是A .[]0,2B .[]2,0-C .[]2,-+∞D .[],2-∞-填空题1.(2013广东卷理9)不等式022<-+x x 的解集为 .2.(2013浙江卷理13)设y kx z +=,其中实数y x ,满足⎪⎩⎪⎨⎧≤--≥+-≥-+04204202y x y x y x ,若z 的最大值为12,则实数=k ________。

2013届全国各地高考押题数学(文科)精选试题分类汇编6:不等式含答案

2013届全国各地高考押题数学(文科)精选试题分类汇编6:不等式含答案

2013届全国各地高考押题数学(文科)精选试题分类汇编6:不等式一、选择题1 .(2013届辽宁省高考压轴卷数学文试题)已知正数x 、y 满足20350{x y x y -≤-+≥,则y xz -•=4)21(的最小值为 )(A 1)(B 14)(C116)(D 132【答案】D2 .(2013届辽宁省高考压轴卷数学文试题)设变量x ,y 满足约束条件3,1,1,x y x y y +≤⎧⎪-≥-⎨⎪≥⎩则目标函数z=4x+2y 的最大值为 ( )A .12B .10C . 8D .2【答案】B【解析】本题主要考查目标函数最值的求法,属于容易题,做出可行域,如图由图可知,当目标函数过直线y=1与x+y=3的交点(2,1)时z 取得最大值10。

3 .(2013届天津市高考压轴卷文科数学)三个数0.760.760.7log 6,,的大小顺序是( )A .0.76〈log 0。

76<60。

7B .0.76〈60。

7<log 0.76C .log 0.76<60。

7<0.76D .60.70.7log 60.76<<【答案】D【解析】0.761>,600.71<<,0.7log 60<,所以60.70.7log 60.76<<,选 D .4 .(2013届湖北省高考压轴卷 数学(文)试题)已知变量,x y 满足240,2,20,x y x x y -+≥⎧⎪≤⎨⎪+-≥⎩则32x y x +++的取值范围是5.2,2A ⎡⎤⎢⎥⎣⎦55.,42B ⎡⎤⎢⎥⎣⎦45.,52C ⎡⎤⎢⎥⎣⎦5.,24D ⎡⎤⎢⎥⎣⎦【答案】B 【解析】:根据题意作出不等式组所表示的可行域如图阴影部分所示,即ABC ∆的边界及其内部,又因为31122x y y x x +++=+++,而12y x ++表示可行域内一点(),x y 和点()2,1P --连线的斜率,由图可知12PB PC y k k x +≤≤+,根据原不等式组解得()()2,0,0,2B C ,所以0112111322202422y y x x ++++≤≤⇒≤≤++++535422x y x ++⇒≤≤+。

2013年高考试题分类汇编(不等式选讲)

2013年高考试题分类汇编(不等式选讲)

2013年高考试题选(不等式选讲)1.(2013·全国卷Ⅰ)已知函数()212f x x x a =-++,()3g x x =+. (Ⅰ)当2a =-时,求不等式()()f x g x <的解集;(Ⅱ)设1a >-,且当1[,)22a x ∈-时,()()f x g x ≤,求a 的取值范围. 2.(2013·全国卷Ⅱ)设,,abc 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤ (Ⅱ)2221a b c b c a++≥ 3.(2013·山东卷理科)在区间[]3,3-上随机取一个数x ,使得121x x +--≥成立的概率为____.4.(2013·福建卷理科)设不等式2()x a a N +-<∈的解集为A 且A A ∉∈21,23(Ⅰ)求a 的值;(Ⅱ)求函数()2f x x a x =-+-的最小值.5.(2013·辽宁卷)已知函数()f x x a =-,其中1a >.(Ⅰ)当=2a 时,求不等式()44f x x ≥--的解集;(Ⅱ)已知关于x 的不等式(2)2()2f x a f x +-≤的解集为{}12x x ≤≤,求a 的值.6.(2013·陕西卷理科)已知,,,a b m n 均为正数, 且1a b +=,2mn =, 则 ()()am bn bm an ++的最小值为 .7.(2013·湖南卷理科)已知,,,236a b c R a b c ∈++=,则22249a b c ++的最小值为 .8.(2013·陕西卷文科)设,a b R ∈,2a b ->, 则关于实数x 的不等式2x a x b -+->的解集是 .9.(2013·重庆卷理科)若关于实数x 的不等式53x x a -++<无解,则实数a 的取值范围是 .10. (2013·湖北卷理科)设,,x y z R ∈,且满足2221x y z ++=,23x y z ++=则x y z ++= .。

2013年全国各地高考数学试题及解答分类大全(不等式)

2013年全国各地高考数学试题及解答分类大全(不等式)
ቤተ መጻሕፍቲ ባይዱ
y 2x
6. (2013 湖南理)
若变量
x,
y
满足约束条件
x
y 1, 则x 2y的最大值是
y 1
A. - 5 2
B. 0
C. 5 3
D. 5 2
【答案】 C
【解析】 区域为三角形,直线 u = x + 2y 经过三角形顶点 (1 , 2)时,u 5 最大 。 选 C
33
3
7. (2013 江西文) 下列选项中,使不等式 x< 1 < x2 成立的 x 的取值范围是(
的最大值为
(A)0 (B)1
(C)
(D)3
【答案】 B
【解析】由
,得

第 3页 (共 11页)
所以
号此时

.
,故选 B.
,当且仅当
,即
时取等
13.(2013 山东理) 在平面直角坐标系 xOy 中,M 为不等式组:
动点,则直线 OM 斜率的最小值为
(A)2
(B)1 (C)
(D)
【答案】 C 【解析】作出可行域如图,由图象可知当 M 位于点 D 处时,OM 的斜
2013 年全国各地高考数学试题及解答分类大全 (不等式)
一、选择题:
1.(2013 北京文)设 a,b,c∈R,且 a>b,则( ).
A.ac>bc
B.1<1 ab
C.a2>b2
D.a3>b3
答案 D
解析 当 a>b 时,a3>b3 成立.A 中对 c=0 不成立.B 项取 a=1,b=-1,则1<1不成立;C 项取 a ab
5.(2013 湖北文) 某旅行社租用 A 、B 两种型号的客车安排 900 名客人旅行, A 、 B 两种车辆的载客

2013年全国各地高考文科数学试题分类汇编1:集合

2013年全国各地高考文科数学试题分类汇编1:集合

2013 年全国各地高考文科数学试题分类汇编1:会合一、选择题1.( 2013 年上海高考数学试题(文科))设常数 a R,会合A x | x 1x a0, B x | x a 1 .若 A B R ,则a的取值范围为()A .,2B.,2C.2,D.2,【答案】 B2.( 2013年高考重庆卷(文))已知会合 U{1,2,3,4} ,会合 A={1,2} , B={2,3}, 则e U( A B)()A .{1,3, 4}B.{3, 4}C.{3}D.{4}[ 根源 :Zxxk.]【答案】 D3.( 2013年高考浙江卷(文))设会合 S={x|x>-2},T={x|-4≤x≤1}, 则 S∩T=()A.[- 4,+ ∞)B.(- 2, + ∞)C. [-4,1]D. (-2,1]【答案】 D4.( 2013年高考天津卷(文))已知会合 A = { x∈ R| | x|≤2},B= { x∈ R|x≤1},则 A B()A . (,2]B. [1,2]C. [-2,2]D. [-2,1]【答案】 D5.( 2013年高考四川卷(文))设会合 A {1,2,3} ,会合 B{2,2},则A B ()A .B.{2}C.{2,2}D.{2,1,2,3}【答案】 B6.( 2013年高考山东卷(文))已知会合 A、B均为全集U{1,2,3,4}的子集,且e U ( A B){4},B{1,2} ,则A e U B()A.{3}B. {4}C. {3,4}D.【答案】 A7.( 2013年高考辽宁卷(文))已知会合 A1,2,3,4 , B x | x 2 , 则A B()[根源 :学 |科|Z|X|X|K]A .0B.0,1C.0,2D.0,1,2 [ 根源 :Zxxk.]【答案】 B[根源 : 学§科§ Z§X§X§K]8.( 2013年高考课标Ⅱ卷(文))已知会合 M={x|-3<X<1},N={-3,-2,-1,0,1},则 M∩N= ()A . {-2,-1,0,1}B. {-3,-2,-1,0}C. {-2,-1,0}D. {-3,-2,-1 }【答案】 C9.( 2013年高考课标Ⅰ卷(文))已知会合 A {1,2,3, 4} ,B{ x | x n2 , n A},则A B()A.{0}B. {-1,,0}C. {0,1}D. {-1,,0,1}【答案】 A10.( 2013年高考江西卷(文))若会合 A={x ∈R|ax 2+ax+1=0} 此中只有一个元素, 则 a=()A . 4B. 2C. 0D.0或4【答案】 A11.( 2013 年高考湖北卷(文))已知全集U{ 1,2,3,4,5},会合 A{1,2} , B {2,3,4} , 则 B e U A ()A. {2}B. {3,4}C. {1,4,5}D. {2,3,4,5}【答案】 B [ 根源 : 学。

2013年高考试题分类汇编(不等式)

2013年高考试题分类汇编(不等式)

2013年高考试题分类汇编(不等式)考点1 不等式的基本性质1.(2013·北京卷·文科)设,,a b c R ∈,且a b <,则 A.ac bc > B.11a b< C.22a b > D.33a b > 4.(2013·天津卷·文科)设,a b R ∈,则“2()0a b a -<”是“a b <”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件考点2 解不等式或证明不等式考法1 一元二次不等式1.(2013·广东卷·理科)不等式220x x +-<的解集为 .2.(2013·全国卷Ⅰ·理科)已知集合2{20}A x x x =->,{B x x =<<, 则A.A B =∅B.A B R =C.B A ⊆D.A B ⊆ 3.(2013·全国卷Ⅱ·理科)已知集合2{(1)4,}M x x x R =-<∈,{}1,0,1,2,3N =- ,则MN =A.{}0,1,2B.{}1,0,1,2-C.{}1,0,2,3-D.{}0,1,2,3 4.(2013·重庆卷·文科)关于x 的不等式22280x ax a --<(0a >)的解集为12(,)x x ,且2115x x -=,则a =A.52B.72C.154D.1525.(2013·安徽卷·理科)已知一元二次不等式()<0f x 的解集为{|<1x x -或1>}2x ,则(10)>0x f 的解集为 A.{|<1,>lg2}x x x - B.{|1<<lg2}x x - C.{|>lg2}x x - D.{|<lg2}x x -6.(2013·安徽卷·文科)函数1ln(1)y x=++的定义域为_______.7.(2013·陕西卷·理科)设全集为R , 函数()f x =M ,则U C M 为A.[1,1]-B.(1,1)-C.(,1][1,)-∞-+∞D.(,1)(1.)-∞-+∞ 8.(2013·重庆卷·文科)设0απ≤≤,不等式28(8sin )cos20x x αα-+≥对x R ∈恒成立,则a 的取值范围为 . 考法2 分式不等式1.(2013·江西卷·文科)下列选项中,使不等式21x x x<<成立的x 的取值范围是A.(,1)-∞-B.(1,0)-C.(0,1)D.(1)+∞,考法3 含有绝对值符号的不等式1.(2013·山东卷·理科)在区间[]3,3-上随机取一个数x ,使得121x x +--≥成立的概率为____.2.若关于实数x 的不等式53x x a -++<无解,则实数a 的取值范围是 . 考法4 数的的大小比较1.(2013·重庆卷·理科)(2013·全国卷Ⅱ·理科)设3log 6a =,5log 10b =,7log 14c =,则A.c b a >>B.b c a >>C.a c b >>D.a b c >> 2.(2013·全国卷Ⅱ·文科)设3log 2a =,5log 2b =,2log 3c =,则A. a c b >>B.b c a >>C. c b a >>D.c b a >>考点3 基本不等式1.(201363a -≤≤)的最大值为A.9B.92 C.3 D.22.(2013·山东卷·文科)设正实数z y x ,,满足04322=-+-z y xy x ,则当zxy取得最大值时,2x y z +-的最大值为A.0B.98C.2D.943.(2013·山东卷·理科)设正实数,,x y z 满足22340x xy y z -+-=.则当xy z取得最大值时,212x y z++的最大值为A.0B.1C.94D.3 4.(2013·天津卷·理科)设2a b +=,0b >,则当a = 时,12a a b+取得最小值.5.(2013·陕西卷·理科)已知,,,a b m n 均为正数,且1a b +=,2mn =,则()()am bn bm an ++的最小值为 .6.(2013·四川卷·理科)已知函数()4(0,0)af x x x a x=+>>在3x =时取得最小值,则a =_ _ __.考点4 线性规划考法11.(2013·四川卷·理科)若变量,x y 满足约束条件82400x y y x x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩且5z y x =-的最大值为a ,最小值为b ,则a b -的值是A.48B.30C.24D.162.(2013·陕西卷·理科)若点(),x y 位于曲线|1|y x =-与2y =所围成的封闭区域,则2x y -的最小值为 .3.(2013·天津卷·理科)设变量,x y 满足约束条件3602030x y x y y +-≥⎧⎪--≤⎨⎪-≤⎩,则目标函数2z y x =-的最小值为A.-7B.-4C.1D.24.(2013·全国卷Ⅰ·文科)设,x y满足约束条件1310xx y≤≤⎧⎨-≤-≤⎩,则2z x y=-的最大值为______.5.(2013·全国卷Ⅱ·文科)设,x y满足约束条件10103x yx yx-+≥⎧⎪+-≥⎨⎪≤⎩,则23z x y=-的最小值是A.-7B.-6C.-5D.-36.(2013·大纲全国卷·文科)若x y、满足约束条件0,34,34,xx yx y≥⎧⎪+≥⎨⎪+≤⎩则z x y=-+的最小值为 .7.(2013·天津卷·理科)设变量,x y满足约束条件360,20,30,x yyx y≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数2z y x=-的最小值为A.-7B.-4C.1D.2 考法21.(2013·福建卷·文科)若变量,x y满足约束条件21,0,x yxy+≤⎧⎪≥⎨⎪≥⎩,则2z x y=+的最大值和最小值分别为A.4和3 B.4和2 C.3和2 D.2和04.(2013·湖南卷·理科)若变量,x y满足约束条件211y xx yy≤⎧⎪+≤⎨⎪≥-⎩,则2x y+的最大值是A.52- B.0 C.53D.523.(2013·湖南卷·文科)若变量,x y满足约束条件280403x yxy+≤⎧⎪≤≤⎨⎪≤≤⎩,则x y+的最大值为________.4.(2013·全国卷Ⅱ·理科)已知0a >,,x y 满足约束条件()1 3 3x x y y a x ⎧≥⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a =A.14B.12C.1D.2 5.(2013·安徽卷·文科)若非负数变量,x y 满足约束条件124x y x y -≥-⎧⎨+≤⎩,则x y +的最大值为_______ . 考法31.(2013·大纲全国卷·理科)记不等式组0,34,34,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域为.D 若直线()1y a x =+与D 有公共点,则a 的取值范围是 .2.(2013·山东卷·理科)在平面直角坐标系xoy 中,M 为不等式组220210380x y x y x y --≥⎧⎪+-≥⎨⎪+-≤⎩所表示的区域上一动点,则直线OM 斜率的最小值为 A.2 B.1 C.13- D.12-3.(2013·浙江卷·文科)设z kx y =+,其中实数,x y 满足2240240x x y x y ≥⎧⎪-+≥⎨⎪--≤⎩若z 的最大值为12,则实数k =____.4.(2013·浙江卷·理科)设z kx y =+,其中实数,x y 满足20240240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩若z 的最大值为12,则实数k =____.5.(2013·北京卷·理科)设关于,x y 的不等式组21000x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点P 00(,)x y 满足0022x y -=,求得m 的取值范围是A.4(,)3-∞-B.1(,)3-∞C.2(,)3-∞-D.5(,)3-∞-6.(2013·北京卷·文科)设D 为不等式组02030x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.考点5 柯西不等式1.(2013·湖南卷·理科)已知,,,236a b c R a b c ∈++=,则22249a b c ++的最小值为 .。

2013文科数学高考题汇编2013文科数学高考题汇编

2013文科数学高考题汇编2013文科数学高考题汇编

2013年全国各地高考文科数学试题分类汇编16:选修部分一、选择题1 .(2013年高考大纲卷(文))不等式222x -<的解集是 ( )A .()-1,1B .()-2,2C .()()-1,00,1D .()()-2,00,2【答案】D二、填空题 2 .(2013年高考陕西卷(文))(几何证明选做题) 如图, AB 与CD 相交于点E , 过E 作BC 的平行线与AD 的延长线相交于点P . 已知A C ∠=∠, PD = 2DA = 2, 则PE = ______. DBCE P A【答案】 .63 .(2013年高考广东卷(文))(坐标系与参数方程选做题)已知曲线C 的极坐标方程为2cos ρθ=.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为____________.【答案】1cos sin x y θθ=+⎧⎨=⎩(θ为参数)4 .(2013年高考陕西卷(文))A . (不等式选做题) 设a , b ∈R , |a -b |>2, 则关于实数x 的不等式||||2x a x b -+->的解集是______. 【答案】A:R5 .(2013年高考天津卷(文))如图, 在圆内接梯形ABCD 中, AB //DC , 过点A 作圆的切线与CB 的延长线交于点E . 若AB = AD = 5, BE = 4, 则弦BD 的长为______.【答案】1526 .(2013年高考湖南(文))在平面直角坐标系xOy 中,若直线121,:x s l y s =+⎧⎨=⎩(s 为参数)和直线2,:21x at l y t =⎧⎨=-⎩(t 为参数)平行,则常数a 的值为_____【答案】47 .(2013年高考陕西卷(文))(坐标系与参数方程选做题) 圆锥曲线22x t y t ⎧=⎨=⎩(t 为参数)的焦点坐标是____________ .【答案】(1, 0)8 .(2013年高考广东卷(文))(几何证明选讲选做题)如图3,在矩形ABCD 中,3,AB =3BC =,BE AC ⊥,垂足为E ,则ED =_______.图 3ECB D A【答案】2129 .(2013年上海高考数学试题(文科))若2011x =,111x y =,则x y +=________.【答案】1三、解答题10.(2013年高考辽宁卷(文))选修4-1:几何证明选讲如图,.AB O CD O E AD CD D 为直径,直线与相切于垂直于于,BC 垂直于CD 于C EF ,,垂直于F ,连接,AE BE .证明:(I);FEB CEB ∠=∠ (II)2.EF AD BC =【答案】11.(2013年高考课标Ⅱ卷(文))选修4—1几何证明选讲:如图,CD 为△ABC 外接圆的切线,AB 的延长线交直线CD 于点D ,,E F 分别为弦AB 与弦AC 上的点,且BC AE DC AF ⋅=⋅,,,,B E F C 四点共圆.(Ⅰ)证明:CA 是△ABC 外接圆的直径;(Ⅱ)若DB BE EA ==,求过,,,B E F C 四点的圆的面积与△ABC 外接圆面积的比值. 【答案】12.(2013年高考课标Ⅰ卷(文))选修4—4:坐标系与参数方程 已知曲线1C 的参数方程为45cos ,55sin x t y t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=.CA B FE(Ⅰ)把1C 的参数方程化为极坐标方程;(Ⅱ)求1C 与2C 交点的极坐标(0,02ρθπ≥≤<).【答案】解:(1)将45cos 55sin x t y t =+⎧⎨=+⎩,消去参数t,化学普通方程22(4)(5)25x y -+-=, 即 1C : 22810160x y x y +--+=,将22cos ,810160sin x p x y x y y p θθ=⎧+--+=⎨=⎩代入得28cos 10sin 160ρρθρθ--+=;所以1C 极坐标方程为28cos 10sin 160ρρθρθ--+=.(2)2C 的普通方程为2220x y y +-=,2222810160=1=0y=2y=2.20x y x y x x x y y ⎧+--+=⎧⎧⎪⎨⎨⎨+-=⎪⎩⎩⎩,,,解得或, 所以12C C 与交点的极坐标为(2,),(2,)42ππ. 13.(2013年高考课标Ⅱ卷(文))选修4—4;坐标系与参数方程已知动点,P Q 都在曲线2cos :2sin x C y ββ=⎧⎨=⎩(β为参数)上,对应参数分别为βα=与)20(2πααβ<<=,M 为PQ 的中点.(Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.【答案】14.(2013年高考课标Ⅰ卷(文))选修4—1:几何证明选讲 如图,直线AB 为圆的切线,切点为B ,点C 在圆上,ABC ∠的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D .(Ⅰ)证明:DB DC =;(Ⅱ)设圆的半径为1,3BC =,延长CE 交AB 于点F ,求BCF ∆外接圆的半径.【答案】解:(1)连接DE,交BC 为G,由弦切角定理得,ABE BCE ∠=∠,而,,ABE CBE CBE BCE BE CE ∠=∠∠=∠=故.又因为DB BE ⊥,所以DE 为直径,∠DCE=90°,由勾股定理可得DB=DC.(II)由(1),CDE BDE ∠=∠,DB DC =,故DG 是BC 的中垂线,所以3BG =,圆心为O,连接BO,则060BOG ∠=,030ABE BCE CBE ∠=∠=∠=,所以CF BF ⊥,315.(2013年高考课标Ⅰ卷(文))选修4—5:不等式选讲已知函数()|21||2|f x x x a =-++,()3g x x =+.(Ⅰ)当2a =-时,求不等式()()f x g x <的解集;(Ⅱ)设1a >-,且当1[,)22a x ∈-时,()()f x g x ≤,求a 的取值范围 【答案】解:(I)当2()a f x =-时,不等式<g(x)化为21223x x x -+---<0. 设函数y=21223x x x -+---,则15,212,1,236, 1.x x y x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示从图像可知,当且仅当x (0,2)∈时,y<0,所以原不等式的解集是{}02x x <<; (II)当)1,,()1.22a x f x a ⎡∈-=+⎢⎣ 不等式()f x ≤g(x)化为1+a≤x+3.所以x≥a -2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立,故22a a -≥-,即43a ≤, 从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.16.(2013年高考课标Ⅱ卷(文))选修4—5;不等式选讲设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥.【答案】17.(2013年高考辽宁卷(文))选修4-5:不等式选讲已知函数()f x x a =-,其中1a >.(I)当=2a 时,求不等式()44f x x ≥=-的解集; (II)已知关于x 的不等式()(){}222f x a f x +-≤的解集为{}|12x x ≤≤,求a 的值.[来源:学&科&网]【答案】18.(2013年高考辽宁卷(文))选修4-4:坐标系与参数方程在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 2 2.4πρθρθ⎛⎫==-= ⎪⎝⎭.(I)求1C 与2C 交点的极坐标;(II)设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.已知直线PQ 的参数方程为()3312x t a t R b y t ⎧=+⎪∈⎨=+⎪⎩为参数,求,a b 的值. 【答案】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4
2013年全国各地高考文科数学试题分类汇编6:不等式
一、选择题
1 .(2013年高考四川卷(文))若变量,x y 满足约束条件8,24,0,0,
x y y x x y +≤⎧⎪-≤⎪
⎨≥⎪⎪≥⎩且5z y x =-的最大值为a ,
最小值为b ,则a b -的值是
( )
A .48
B .30
C .24
D .16
2 .(2013年高考福建卷(文))若变量y x ,满足约束条件⎪⎩

⎨⎧≥≥≤+012
y x y x ,则y x z +=2的最大值和最小值
分别为
( )
A .4和3
B .4和2
C .3和2
D .2和0
3 .(2013年高考课标Ⅱ卷(文))设x,y 满足约束条件
,则z=2x-3y 的最小值是
( )
A .
B .-6
C .
D .-3
4 .(2013年高考福建卷(文))若122
=+y x
,则y x +的取值范围是
( )
A .]2,0[
B .]0,2[-
C .),2[+∞-
D .]2,(--∞
5 .(2013年高考江西卷(文))下列选项中,使不等式x<Error! Digit expected.<2
x 成立的x 的取值范
围是
( )
A .(
,-1)
B .(-1,0)
C .0,1)
D .(1,+)
6 .(2013年高考山东卷(文))设正实数z y x ,,满足04322
=-+-z y xy x
,则当
z
xy
取得最大值时,2x y z +-的最大值为
( )
A .0
B .
98
C .2
D .
94
7 .(2013年高考课标Ⅱ卷(文))若存在正数x 使2x (x-a)<1成立,则a 的取值范围是 ( )
A .(-∞,+∞)
B .(-2, +∞)
C .(0, +∞)
D .(-1,+∞)
8 .(2013年高考天津卷(文))设变量x , y 满足约束条件360,
20,30,x y y x y ≥--≤+-⎧-≤⎪
⎨⎪⎩
则目标函数2z y x =-的最
小值为
( )
4
A .-7
B .-4
C .1
D .2
9 .(2013年高考湖北卷(文))某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为 ( )
A .31200元
B .36000元
C .36800元
D .38400元 10.(2013年高考陕西卷(文))若点(x ,y )位于曲线y = |x |与y = 2所围成的封闭区域, 则2x -y 的最小值为 ( )
A .-6
B .-2
C .0
D .2
11.(2013年高考重庆卷(文))关于x 的不等式22280x ax a --<(0a >)的解集为12(,)x x ,
且:2115x x -=,则a =
( )
A .
52
B .
72
C .
154
D .
152
12.(2013年高考课标Ⅱ卷(文))设a=log 32,b=log 52,c=log 23,则
( )
A .a>c>b
B .b>c>a
C .c>b>a
D .c>a>b
13.(2013年高考北京卷(文))设,,a b c R ∈,且a b >,则
( )
A .ac bc >
B .
11
a b
< C .22a b >
D .33a b >
二、填空题
14.(2013年高考大纲卷(文))若x y 、满足约束条件0,34,34,x x y x y ≥⎧⎪
+≥⎨⎪+≤⎩

z x y =-+的最小值为____________.
15.(2013年高考浙江卷(文))设a,b ∈R,若x≥0时恒有0≤x 4-x 3+ax+b≤(x 2-1)2,则ab 等于______________.
16.(2013年高考湖南(文))若变量x,y 满足约束条件28,
04,03,x y x y +≤⎧⎪
≤≤⎨⎪≤≤⎩
则x+y 的最大值为______
17.(2013年高考重庆卷(文))设0απ≤≤,不等式2
8(8sin )cos 20x x αα-+≥对x R ∈恒成立,
则a 的取值范围为____________.
18.(2013年高考山东卷(文))在平面直角坐标系xOy 中,M 为不等式组2360
200x y x y y +-≤⎧⎪
+-≥⎨⎪≥⎩
所表示的
区域上一动点,则直线OM 的最小值为_______
19.(2013年高考四川卷(文))已知函数()4(0,0)a
f x x x a x
=+
>>在3x =时取得最小值,则a =__________.
4
20.(2013年高考课标Ⅰ卷(文))设,x y 满足约束条件
13,
10x x y ≤≤⎧⎨
-≤-≤⎩
,则2z x y =-的最大值为______.
21.(2013年高考浙江卷(文))设z kx y =+,其中实数,x y 满足2
240240x x y x y ≥⎧⎪
-+≥⎨⎪--≤⎩
,若z 的最大值为
12,则实数k =________ .
22.(2013年上海高考数学试题(文科))不等式
021
x
x <-的解为_________. 23.(2013年高考北京卷(文))设D 为不等式组02030x x y x y ≥⎧⎪
-≤⎨⎪+-≤⎩
,表示的平面区域,区域D 上的点与点
(1,0)之间的距离的最小值为___________.
24.(2013年高考陕西卷(文))在如图所示的锐角三角形空地中, 欲建一个面积最大的内接矩形花园(阴影部分), 则其边长x 为___(m ).
25.(2013年高考天津卷(文))设a + b = 2, b >0, 则
1||
2||a a b
+的最小值为______. 26.(2013年上海高考数学试题(文科))设常数0a >,若2
91a x a x
+≥+对一切正实数x 成立,则a 的取值范围为________.
27.(2013年高考广东卷(文))已知变量,x y 满足约束条件⎪⎩⎪
⎨⎧≥≤≤-≥+-11103y x y x ,则z x y =+的最大值是___.
28.(2013年高考安徽(文))若非负数变量,x y 满足约束条件1
24x y x y -≥-⎧⎨+≤⎩
,则x y +的最大值为
__________.
三、解答题
29.(2013年上海高考数学试题(文科))本题共有2个小题.第1小题满分6分,第2小题满分8分.
甲厂以x 千米/小时的速度匀速生产某种产品(生产条件要求110x ≤≤),每小时可获得的利润是
3
100(51)x x
+-元.
(1)求证:生产a 千克该产品所获得的利润为2
13100(5)a x x +
-;
(2)要使生产900千克该产品获得的利润最大,问:甲厂应该如何选取何种生产速度?并求此最大利润.
4。

相关文档
最新文档