公平的席位分配问题建模作业
席位分配问题数学建模

席位分配问题是一个常见的实际问题,涉及到资源的分配和管理。
为了解决这个问题,我们可以使用数学建模的方法,通过建立数学模型来分析和优化席位的分配方案。
一、问题描述假设有一个大型会议,需要分配给不同的参与者席位。
每个参与者可能有不同的资格和需求,我们需要根据一定的规则来分配席位。
具体问题包括:1. 参与者数量和席位数量2. 参与者的资格和需求3. 席位分配的规则和标准二、数学建模为了解决席位分配问题,我们可以使用以下数学模型:1. 参与者集合P:表示所有的参与者。
2. 席位集合S:表示所有的席位。
3. 资格矩阵A:表示每个参与者的资格情况,每一行表示一个参与者,每一列表示一个资格类型(例如,专业、身份等)。
4. 需求矩阵D:表示每个参与者对席位的需求情况,每一行表示一个参与者,每一列表示一个席位类型(例如,地点、时间等)。
5. 分配规则R:表示席位的分配规则和标准,如按照资格优先、按照需求优先、按照公平分配等。
根据以上描述,我们可以建立如下的数学模型:目标函数:最小化席位浪费(即席位数与参与者需求之差)约束条件:1. 资格约束:每个参与者的资格必须满足分配规则的要求。
2. 需求约束:每个参与者所需席位类型必须得到满足。
3. 数量约束:总的席位数必须不超过总席位数量。
4. 可行性约束:分配的席位必须是有效的,即不存在冲突和重复的情况。
三、求解方法根据上述数学模型,我们可以使用以下方法进行求解:1. 枚举法:逐个尝试所有可能的席位分配方案,找到满足约束条件的方案。
这种方法需要大量的计算时间和空间,但在某些情况下可能找到最优解。
2. 优化算法:使用优化算法如遗传算法、粒子群算法等,通过不断迭代找到最优解。
这种方法需要一定的编程知识和技能,但通常能够快速找到满意的解。
3. 启发式算法:使用启发式算法如模拟退火、蚁群算法等,通过不断尝试找到满意解。
这种方法相对简单易行,但可能无法找到最优解。
4. 数学软件求解:使用专门的数学软件如Matlab、Python等,通过编程求解上述数学模型。
公平的席位分配等四个数学模型例子

补例2 洗衣节水问题
因为lim n
1
1 n
n
e,所以当n趋于无穷大时,(7)式分母
趋于e AW。
当n趋于无穷大时,N
的极限存在,并有
n
A
lim
n
Nn
N0
eW
(8)
(8)式说明了当水的总量一定的时候,无论你怎样洗涤,不 管次数多少,最后的结果是不可能一点污物都不残留的。
18 8 4+3+2+2+2+4=17
A7 13 23 10 7 28 18
4 2+2+2+4+4+4=18
A8 17 11 27 22 14 8 4
3+2+2+2+4+4=17
由以上表格可知该安排是合理的
作业:当7支队参加单循环赛的排球比赛时,试 合理的安排其赛程。
补例2 洗衣节水问题
问题提出: 我国淡水资源有限,节约用水势在必行。那么如何在洗衣 服中合理地用水,使得既能把衣服洗干净,又能节约用水 的问题就摆在我们的面前。一般洗衣服的过程是先将衣服 用洗涤剂浸泡,然后一次次地用水漂洗。洗衣机的运行过 程分别为加水—>漂洗—>脱水—>加水—>漂洗—>脱 水……这么一个循环过程。我们的问题是在保证一定洗涤 效果下,洗衣服分成多少次(或在洗衣机中应循环几次), 每一次的用水量是否一致,使得总的用水量最为节省?
补例2 洗衣节水问题
进一步讨论:
如何确定洗涤的次数 n 。
先引入一个清洁度 的定义。设 是洗净衣服上的污物量与
第一次浸泡后残留在衣服上的污物量之比,即 Nn N0
数学建模对公平的席位分配问题的一点补充

对公平的席位分配问题解法的一点补充222008314011010 刘欢08数统一班为叙述简单,仍然采用书中的例子如下一.提出问题:某学校有3个系共200名学生,其中甲系100名,乙系60名,丙系40名。
若学生代表会议设20个席位,公平而又简单的席位分配办法是按学生人数的比例分配,显然甲、乙、丙三系分别应占有10,6,4个席位。
现在丙系有3名学生转入甲系, 3名学生转入乙系,仍按比例分配席位出现了小数,三系同意,在将取得整数的19席位分配完毕后,剩下的1席位参照所谓惯例分给比例中小数最大的丙系,于是三系仍分别占有10,6,4个席位。
按比例并参照惯例的席位分配。
由于20个席位的代表会议在表决时可能出现10∶10的局面,会议决定下一届增加1席,按照上述方法重新分配席位,计算结果是甲、乙、丙三系分别应占有11,7,3个席位。
显然这个结果对丙系太不公平了,因总席位增加1席,而丙系却由4席减为3席。
请问:如何分配才算是公平?二.书中模型 用Q 值法求解如下设A ,B 两方,人数分别为1p 和2p ,占有席位分别是1n 和2n ,当1122=p n p n 时席位的分配公平。
但人数为整数,通常1122≠p n p n 。
这时席位分配不公平,且/p n 较大的一方吃亏。
当1122>p n p n 时,定义11221222-=(,)A p n p n r n n p n (1)为对A 的相对不公平值。
当1122<p n p n 时,定义22111211-=(,)B p n p n r n n p n (2)为对B 的相对不公平值。
要使分配方案尽可能公平,制定席位分配方案的原则是使12(,)A r n n 和12(,)B r n n 都尽可能小. 假设,A B 两方分别占有1n 和2n 席,利用相对不公平值A r 和B r 讨论,当总席位增加1席时,应该分配给A 还是B 。
不妨设1122>p n p n ,即对A 不公平,当再分配一个席位时,有以下三种情况:(1) 当221>+11p pn n 时,说明即使给A 增加1席,仍然对A 不公平,所以这一席显然应给A 方. (2)当221<+11p pn n 时,说明给A 增加1席后,变为对B 不公平,此时对B 的相对不公平值为 21121211-1 ++=()(,)B p n r n n p n (3)(3)当221>+11p pn n 时,这说明给B 增加1席,将对A 不公平,此时对A 的相对不公平值为12122111-1 ++=()(,)A p n r n n p n (4)因为公平分配席位的原则是使相对不公平值尽可能小,所以如果121211 +<+(,)(,)B A r n n r n n (5)则这1席给A 方,反之这1席给B 方.由(3)(4)可知,(5)等价于21222211<11++()()p p n n n n (6)不难证明上述的第(1)种情况221>+11p pn n 也与(6)式等价,于是我们的结论是当(6)式成立时,增加的1席应给A 方,反之给B 方。
数学建模论文-席位公平分配问题

数学建模论文-席位公平分配问题数学建模论文(席位公平分配问题)席位公平分配问题摘要本文讨论了席位公平分配问题以使席位分配方案达到最公平状态。
我主要根据了各系人数因素对席位获得的影响,首先定义了公平的定义及相对不公平的定义,采用了比例模型、汉丁顿模型和Q值模型制定了一个比较合理的分配方案。
首先,我根据相关资料的查阅,定义了公平的定义和不公平的定义以及不公平程度的定义和相对不公平数的定义以便来检验模型的公平性程度。
其次,我建立了一个比例模型,采用了比例相等的方法,列出一个关于所获席位与总席位数和各系人数与各系总人数的等式,进而求得所获席位数。
同时我建立了一D+Q值模型,通过汉丁顿模型和Q值模型的结合,最终得出一个比较合理的分配方案。
最后,我用相对不公平数来检验两个模型的公平性程度。
关键词:数学建模公平定义 Q值模型 d'Hondt(汉丁顿)模型1目录一、问题重述与分析: ................................... 3 1.1问题重述: ........................................ 3 1.2问题分析: ........................................ 3 二、模型假设 .......................................... 4 三、符号说明 .......................................... 4 四、模型建立: ........................................ 5 4.1公平的定义: ...................................... 5 4.2不公平程度的表示: ................................ 5 4.3相对不公平数的定义: .............................. 5 4.4模型一的建立:(比例分配模型) ...................... 6 4.5模型二的建立:(d'hondt模型和Q值模型) (6)五、模型求解 .......................................... 8 5.1模型一求解: ...................................... 8 5.2模型二的求解: .................................... 8 六、模型分析与检验 ..................................... 9 七、模型的评价: ...................................... 11 7.1、优点: ......................................... 11 7.2、缺点: ......................................... 11 7.3、改进方向: ..................................... 11 八、模型优化 ......................................... 11 九、参考文献 (12)2一、问题重述与分析:1.1问题重述:三个系学生共200名(甲系100,乙系60,丙系40),代表会议共20席,按比例分配,三个系分别为10,6,4席。
公平席位分配问题

200
学生人数比例 103/200 63/200 34/200
按比例分配席位 10.3
6.3
3.4
20
按惯例席位分配 10
6
4
20
惯例席位分配方法为:比例分配出现小数时,先按整数 分配席位,余下席位按小数的大小依次分配之
为改变总席位为偶数出现表决平局现象,决定增加一 席,总席位变为21个学生代表席位,还按惯例分配席位, 有
1032 1011
96.4
Q2
632 67
94.5
应该将席位分给甲
Q3
342 3 4
96.3
第21席的分配由Q值决定为
1032
632
Q1 1112 80.4 Q2 6 7 94.5
应该将席位分给丙
342 Q3 3 4 96.3
最后的席位分配 为:
Qi
pi2 ni (ni 1)
于是增加的席位分配由Qi的最小值决定,它可 以推广到一般情况,即n个组
模型求解
先按应分配的整数部分分配,余下的部分按Q值分配。
本问题的整数名额共分配了19席,具体 为
甲
10.815 n1=10
乙
6.615 n2=6
丙
3.570 n3=3
第20席的分配由Q值决定
Q1
1、 p1 p2 说明此一席给 A,对A还不公平,应给 A n1 1 n2
2、 p1 p2 说明此一席给A,对B不公平, n1 1 n2
不公平值为rB (n1
1, n2 )
(n1 1) p2 p1n2
1
3、p1 p2 说明此一席给B,还对A不公平, n1 n2 1
数学建模论文 - 席位公平分配问题1

数学建模论文(席位公平分配问题)席位公平分配问题摘要本文讨论了席位公平分配问题以使席位分配方案达到最公平状态。
我主要根据了各系人数因素对席位获得的影响,首先定义了公平的定义及相对不公平的定义,采用了比例模型、汉丁顿模型和Q值模型制定了一个比较合理的分配方案。
首先,我根据相关资料的查阅,定义了公平的定义和不公平的定义以及不公平程度的定义和相对不公平数的定义以便来检验模型的公平性程度。
其次,我建立了一个比例模型,采用了比例相等的方法,列出一个关于所获席位与总席位数和各系人数与各系总人数的等式,进而求得所获席位数。
同时我建立了一D+Q值模型,通过汉丁顿模型和Q 值模型的结合,最终得出一个比较合理的分配方案。
最后,我用相对不公平数来检验两个模型的公平性程度。
关键词:数学建模公平定义 Q值模型 d'Hondt(汉丁顿)模型目录一、问题重述与分析: (3)1.1问题重述: (3)1.2问题分析: (3)二、模型假设 (4)三、符号说明 (4)四、模型建立: (5)4.1公平的定义: (5)4.2不公平程度的表示: (5)4.3相对不公平数的定义: (5)4.4模型一的建立:(比例分配模型) (6)4.5模型二的建立:(d'hondt模型和Q值模型) (6)五、模型求解 (8)5.1模型一求解: (8)5.2模型二的求解: (8)六、模型分析与检验 (9)七、模型的评价: (11)7.1、优点: (11)7.2、缺点: (11)7.3、改进方向: (11)八、模型优化 (11)九、参考文献 (12)一、问题重述与分析:1.1问题重述:三个系学生共200名(甲系100,乙系60,丙系40),代表会议共20席,按比例分配,三个系分别为10,6,4席。
现因学生转系,三系人数为103, 63, 34, 问20席如何分配。
若增加为21席,又如何分配。
因此存在席位公平分配问题,以下针对各系自身人数对所获席位数目的影响建立相关模型,解得最优的席位公平分配方案。
公平的席位分配模型

公平的席位分配模型《数学模型》实验报告实验名称:公平的席位分配成绩:___________ 实验日期 : 2009 年 5 月 4 日实验报告日期: 2009 年 5 月 18 日一、实验目的制定相对公平的席位分配方案~使席位分配尽可能的公平~此为设计型实验。
解决一些实例~比如:甲系同学103名~乙系同学63名~丙系同学34名~共200名同学~有21个席位需进行分配~求方案如何时才最为公平, 二、实验内容根据席位的相对不公平度Qi,pi^2 /ni(ni+1),i=1,2……~席位应分配给Q值较大的一方~按此方法进行分配可以求出各个系所得的席位ni。
三、实验环境MATLAB6.5四、实验步骤为了实现多方的席位分配利用了多重循环的方法~程序如下: p=input('输入各系人数:');N=input('输入总席位数:');[x,y]=size(p);n=ones(1,y);while(N>sum(n))for i=1:yQ(i)=p(i)*p(i)/(n(i)*(n(i)+1));end[i,j]=max(Q);n(j)=n(j)+1;endn五、实验结果结果为n=11,6,4。
六、实验讨论、结论寻求公平分配席位方法的关键~是建立衡量公平程度的即合理又简明的数量指标~此模型提出的指标是相对不公平度~在这个前提下得到的Q值方法应该是公平的~实验结果是成功的。
七、参考资料20个席位的分配 21个席位的分配学生人数系别学生人数的比例比例分参照惯比例分参照惯,,, 配的席位例的结果配的席位例的结果甲 103 51.5 10.3 10 10.81511 乙 63 31.5 6.3 6 6.615 7 丙 34 17.0 3.4 4 3.570 3 总和 200 100.0 20.0 20 21.000 21。
【数学建模】公平席位的分配问题

【数学建模】公平席位的分配问题基础案列某展会,AB双⽅根据⼈数分配席位:衡量公平的数量指标: p1/n1=p2/n2。
此时对AB均公平。
p1/n1>p2/n2。
此时对A不公平,因为对A放来说,每个席位相对应的⼈数⽐率更⼤。
绝对不公平度定义: p1/n1-p2/n2 = 对A的绝对不公平度问题:/*情况1*/p1=150, n1=10, p1 /n1=15 p2=100, n2=10, p2 /n2=10/*情况2*/ p1=1050, n1=10, p1 /n1=105 p2=1000, n2=10, p2 /n2=100两者对A的不公平度相同,但是很明显后者对A的不公平成都已经⼤⼤降低。
相对不公平度定义:说明:由定义知对某⽅的不公平值越⼩,某⽅在席位分配中越有利,因此可以⽤使不公平值尽量⼩的分配⽅案来减少分配中的不公平使⽤不公平值的⼤⼩确定分配⽅案: 设A, B已分别有n1 , n2 席,若增加1席,问应分给A, 还是B 不妨设分配开始时 p1 /n1> p2 /n2 ,即对A不公平。
分情况讨论: 1. 2.,说明此以⼀席给A后,对B不公平,则计算对B的不公平度。
rB(n1+1,n2). 3.,说明此⼀席给B后,对A不公平,不公平值为,rA(n1,n2+1). 4.p1/n1<p2/n2+1,这种情况不可能出现。
上⾯的分配⽅法在第1和第3种情况可以确定新席位的分配,但在第2种情况时不好确定新席位的分配。
⽤不公平值的公式来决定席位的分配,对于新的席位分配,若有则应该增加给A⼀席,否则则应该增加给B⼀席。
提炼模型: ————>引⼊公式: 于是知道增加的席位分配可以由Qk的最⼤值决定,且它可以推⼴到多个组的⼀般情况。
⽤Qk的最⼤值决定席位分配的⽅法称为Q值法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公平的席位分配问题
——数学建模报告
20094865,陈天送
20094862,陈铁忠
20094854,朱海
公平的席位分配问题
席位分配在社会活动中经常遇到,如:人大代表或职工学生代表的名额分配和其他物质资料的分配等。
通常分配结果的公平与否以每个代表席位所代表的人数相等或接近来衡量。
符号设定:
N :总席位数 i n :分配给第i 系席位数 (1,2,3i =分别为甲,乙,丙系)
P :总人数 i P :第i 系数 (1,2,3i =分别为甲,乙,丙系)
i
Q :第i 系Q 值 (1,2,3i =分别为甲,乙,丙系)
Z :目标函数
方法一,比例分配法:即:
某单位席位分配数 = 某单位总人数比例⨯总席位
如果按上述公式参与分配的一些单位席位分配数出现小数,则先按席位分配数的整数分配席位,余下席位按所有参与席位分配单位中小数的大小依次分配之。
这种分配方法公平吗?由书上给出的案例,我们可以很清楚的知道该方法是有缺陷的,是不公平的。
方法二,Q 值法: 采用相对标准,定义席位分配的相对不公平标准公式:若
22
11n p n p > 则称 1122122
2211-=-n p n p n p n p n p 为对A 的相对不公平值, 记为 ),(21n n r A ,若
2211n p n p < 则称 1211
21
1
11
22-=-n p n p n p n p n p 为对B 的相对不公平值 ,记为 ),(21n n r B 由定义有对某方的不公平值越小,某方在席位分配中越有利,因此可以用使不公平值尽量小的
分配方案来减少分配中的不公平。
确定分配方案:
使用不公平值的大小来确定分配方案,不妨设11n p >
22
n p ,即对单位A 不公平,再分配一个席
位时,关于11n p ,22n p 的关系可能有
1. 111+n p >22
n p ,说明此一席给A 后,对A 还不公平;
2. 111+n p <22n p ,说明此一席给A 后,对B 还不公平,不公平值为 1)1(11),1(21211111222
1-⋅+=++-=+n p p n n p n p
n p n n r B 3. 11n p >122
+n p ,说明此一席给B 后,对A 不公平,不公平值为
1
)1(11)1,(121
22222
1121-⋅+=++-=+n p p n n p n p n p n n r A
4.11n p <122
+n p ,不可能
上面的分配方法在第1和第3种情况可以确定新席位的分配,但在第2种情况时不好确定新席位的分配。
用不公平值的公式来决定席位的分配,对于新的席位分配,若有
)1,(),1(2121+<+n n r n n r A B
则增加的一席应给A ,反之应给B 。
对不等式 r B (n 1+1,n 2)<r A (n 1,n 2+1)进行简单处理,可以得出对应不等式
)
1()1(112
12222+<
+n n p n n p 引入公式
k k k
k n n p Q )1(2+=
于是知道增加的席位分配可以由Q k 的最大值决定,且它可以推广到多个组的一般情况。
用
Q k 的最大值决定席位分配的方法称为Q 值法。
对多个组(m 个组)的席位分配Q 值法可以描述为:
1.先计算每个组的Q 值:Q k , k =1,2,…,m
2.求出其中最大的Q 值Q i (若有多个最大值任选其中一个即可) 3.将席位分配给最大Q 值Q i 对应的第i 组。
这种分配方法很容易编程处理。
用Q 值法解书上的案例如下,先按应分配的整数部分分配,余下的部分按Q 值分配。
本问题的整数名额共分配了19席,具体为: 甲 10.815 n 1 =10 乙 6.615 n 2 =6 丙 3.570 n 3 =3 对第20席的分配,计算Q 值
Q 1=1032/(10⨯11) = 96.45 ; Q 2=632/(6⨯7)= 94.5; Q 3 =342/(3⨯4)=96.33
因为Q 1最大,因此第20席应该给甲系; 对第21席的分配,计算Q 值
Q 1=1032/(11⨯12)=80.37 ; Q 2 =632/(6⨯7)=94.5; Q 3 =342/(3⨯4)=96.33
因为Q 3最大,因此第21席应该给丙系
最后的席位分配为:甲 11席 乙 6席 丙 4席
方法三,d ’Hondt 法:
将甲,乙,丙各系的人数用正整数n=1,2,3,…相除,即一次随自然数列求商,将
所得商数从小到大取前十个,分别统计各系入围个数,即是最终学生代表名额分配结果。
将甲,乙,丙各系的人数用正整数n=1,2,3,…相除,其商数如下表:
将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中甲,乙,丙横线的数分别为5,3,2是3个系分配席位。
最小方差原则的资(席位)公平分配整数:
min 2
()i i P P Z N n =∑- 1m
i n N =∑
(11) 其中
i
n 为整数,i=1,2,…,m
可以认为最小方差原则是希望各单位每个席位代表的人数差异不要太大,特别地应该与整个分配方案中平均每个席位所代表的人数P/N 差异不要太大。
因而对模型(11)的约束条件做进一步的合理限制,构成模型:
i n
为int (i P N P ⨯)或int (i P N
P ⨯)+1,i=1,2,…,m (12)
即
i
n 只能取
i
n 和
i
n +1其中之一,如此可以避免出现席位名额
i
n 过分偏离
i
n 的不合理状
况。
在模型中可将目标函数Z 改写为
222(
)[()()]1i i i i i i P P P
P P P Z N n N n N n =∑-+∑---+
令
2
0(
)i i P P Z N n =∑-
221[(
)()]1i i i i P P P P Z N n N n =∑---+
于是
01Z Z Z =+,
Z 是一常数,要求Z 最小也就是求
1
Z 最小,
6.3 模型求解
席位分配模型中,按比例分配法存在较大缺陷,Q 值法不能解决“分配资格”问题,D'Hondt 法不能解决不公平的大小问题。
最后一种则比较理想。