零点、极点和偶极子对系统性能的影响

合集下载

闭环零极点及偶极子对系统性能的影响

闭环零极点及偶极子对系统性能的影响

闭环零极点及偶极子对系统性能的影响1. 综述在自动控制系统中,对系统各项性能如稳定性,动态性能和稳态性能等有一定的要求,稳定性是控制系统的本质,指的是控制系统偏离平衡状态后自动恢复到平衡状态的能力。

系统动态性能是在零初始条件下通过阶跃响应来定义的,对于稳定的系统,动态性能一般指系统的超调量、超调时间、上升时间、调整时间,描述的是系统的最大偏差以及反应的快速性;稳态性能指的是系统的稳态误差,描述的是系统的控制精度。

在本文中,采用增加或减少零极点以及高阶零极点的分布来研究高阶系统的各项性能指标,并借助工程软件matlab通过编程来绘制系统的冲激响应、阶跃响应、斜坡响应及速度响应曲线,研究系统的零极点及偶极子对系统性能的影响。

2. 稳定性分析稳定性是指控制系统偏离平衡状态后,自动恢复到平衡状态的能力。

系统稳定是保证系统能正常工作的首要条件。

稳定性是控制系统最基本的性质。

线性定常系统稳定的充分必要条件:闭环系统特征方程的所有根都具有负实部,或者说闭环传递函数的所有极点均位于为S平面的左半部分(不包括虚轴)。

因此研究零极点及偶极子对系统稳定性的影响即研究系统的极点是否都具有负实部,而不必关心系统的零点情况。

若系统的极点都具有负实部,则系统是稳定的。

否则,系统就不稳定。

为了用matlab对上述结论进行验证并根据上述稳定性的定义,下面用 ,(t)函数作为扰动来讨论系统的稳定性。

如果当t趋于?时,系统的输出响应c(t) lim()0ct,收敛到原来的零平衡状态,即,该系统就是稳定的。

t,,设系统的闭环传递函数为: s10, ,=2 (1)(22)sss,,,当系统分别增加(s+5),(s-5),1/(s+2),1/(s-2),(s+3)/(s+3.01),(s-3)/(s-3.01)等环节时,画出各自的冲激响应曲线如图1.注:matlab源程序见附录1.图1由以上matlab仿真结果可以看出,当增加(s+5),(s-5),1/(s+2),(s+3)/(s+3.01)等环节时,c(s)最终能收敛到原来的零平衡状态,系统稳定。

分析零点,极点,偶极子对系统性能的影响

分析零点,极点,偶极子对系统性能的影响
分析零点,极点,偶极子对系统性能的影响
一. 高阶系统暂态性能分析
1.1.当闭环系统的零极点都位于 s 平面的左半部分时,则闭 环系统是稳定的。但当闭环极点距离虚轴的距离不同时,对系 统的暂态性能影响不同 高阶系统闭环传递函数:
高阶系统单位阶跃响应:
高阶系统单位阶跃响应:
1.2 设闭环传递函数 原闭环传递函数 1.1 φ s = 5/(s ∗ s + 2 ∗ s + 2)(s + 3) 增加零点传递函数 1.2 φ1 s = 5(s + 1)/(s ∗ s + 2 ∗ s + 2)(s + 3) 增加极点传递函数 1.3 φ2 s = 5/(s ∗ s + 2 ∗ s + 2)(s + 10)(s + 3) 增加偶极子传递函数 1.4 φ3 s = 5(s + 0.95)/(s ∗ s + 2 ∗ s + 2)(s + 1)(s + 3) 1.3 系统单位阶跃响应曲线如图 1-1 所示 实线������(������ ) 虚线 -----------------������1(������ ) 点画线 ������2(s ) 1.4 1.3 1.2����� ������������ 主要取决这些极点所对应的分量。
增加较远的零点图 1-2 1.4.2 增加极点 对比图 1-1 中������(������ ) ,������2(������ ) 对应的响应曲线,发现二者十分接近, 其暂态性能指标 ������������ 2 = 2.85������������ 2 = 3.66������������2 = 4.45 与������1(������ ) 的性能指标几乎相等。增加的极点为 s=-10,离虚轴较远,对系 统的暂态性能较小。 增加极点的距离虚轴的距离不同对系统的动态性 能影响也不同。图 1-3 增加的极点为 s=-1,离虚轴较近,对系统的暂态 性能影响较大。其动态性能指标如下

传递函数极点和零点的意义

传递函数极点和零点的意义

传递函数极点和零点的意义在探讨传递函数极点和零点的意义前,我们首先需要了解什么是传递函数。

传递函数,又称为系统函数,是描述线性时不变系统输入与输出之间关系的函数。

它是系统理论中的一个重要概念,用于研究信号在系统中的传输规律及其影响。

接下来,我们分别来讨论传递函数中的“极点”和“零点”,并探讨它们在工程上的应用。

一、极点极点,也叫阻尼点或“瞬态谐振点”,指的是传递函数分母中的因式,当其为0时,会使得系统响应变得不稳定或发生异常波动,被称为系统的“瓶颈”。

在控制系统中,极点是非常重要的参数,通过极点的位置,我们可以决定系统的稳定性、调节速度和峰值响应等性能指标。

通常情况下,我们希望系统的极点位于左半s平面内,这样可以保证系统稳定可控,并减小系统响应时的震荡和延迟。

另一方面,如果出现极点位于右半s平面内的情况,则应采取积极措施通过控制参数等手段移动其位置或者消除其影响,以保证系统的稳定性和性能。

二、零点零点,指的是传递函数分子中的因式,当其为0时,输出为0。

也就是说,当输入信号经过传递函数时,处于零点位置的频率分量成分不会引起系统响应。

在控制系统中,零点的位置对系统的动态特性和频率特性有着直接的影响。

比如,在控制系统的设计中,通过精心调节零点的位置,可以有效提高系统对不同频率信号的响应速度和灵敏度,这对于高速、高精度的控制系统是非常重要的。

另外,零点还可以调节系统的截止频率和幅频特性等性能指标,通过有效地调节零点的位置,可以优化系统的控制性能,提高系统的鲁棒性和减小系统的灵敏度。

总之,在掌握传递函数极点和零点的意义之后,我们能更深刻地理解和反映控制系统性能。

在实际工程中,要合理分析和设计传递函数的极点和零点,以实现系统的优化和提高。

零极点对系统的影响

零极点对系统的影响

MATLAB各种图形结论1对稳定性影响错误!增加零点不改变系统的稳定性;错误!增加极点改变系统的稳定性,不同的阻尼比下即使增加的是平面左侧的零点系统也有可能不稳定。

2对暂态性能的影响错误!增加的零点离虚轴越近,对系统暂态性影响越大,零点离虚轴越远,对系统的影响越小。

分析表1可以发现,增加零点会对系统的超调量、调节时间、谐振峰值和带宽产生影响,且增加的零点越大,对系统的暂态性能影响越小。

当a增加到100时,系统的各项暂态参数均接近于原系统的参数。

增加的极点越靠近虚轴,其对应系统的带宽越小.同时还可以发现,时域中的超调量和频域中的谐振峰值在数值上亦存在一定的关系。

具体表现为超调量减小时,谐振峰值也随之减小。

错误!增加的极点离虚轴越近,对系统暂态性影响越大,极点离虚轴越远,对系统的影响越小。

①增加零点,会使系统的超调量增大,谐振峰值增大,带宽增加。

②增加极点,会使系统的超调量减小,谐振峰值减小,带宽减小.③增加的零极点离虚轴越近,对系统暂态性影响越大;零极点离虚轴越远,对系统的暂态性影响越小。

3 对稳态性能的影响①当增加的零极点在s的左半平面时,不改变系统的类型,使系统能跟踪的信号类别不变,但跟踪精度会有差别。

②当增加的零点在s的虚轴上时,系统的型别降低,跟踪不同输入信号的能力下降。

③当增加的极点在s的虚轴上时,系统的型别升高,跟踪不同输入信号的能力增强。

1、绘制G1(s)的根轨迹曲线(M2_1.m)%画G1(s)的根轨迹曲线n=[1,0]; %分子d=[1,1,2]; %分母figure1 = figure(’Color’,[1 1 1]);%将图形背景改为白色rlocus(n,d); %画G1(s)根轨迹曲线title('G1(s)的根轨迹’); %标题说明2、绘制G1(s)的奈奎斯特曲线(M2_2.m)%画G1(s)的奈奎斯特曲线figure1 = figure(’Color',[1 1 1]); %将图形背景改为白色for a=1:10 %a取1,2,3……10,时,画出对应的奈奎斯特曲线G=tf([1/a,1],[1,1,1]);nyquist(G);hold onendtitle('G1(s)的奈奎斯特曲线’);%标题说明3、绘制G2(s)的根轨迹曲线(M2_3.m)%画G2(s)的根轨迹曲线n=[1,1,1,0] ; %分子d=[1,1,2] ; %分母figure1 = figure('Color',[1 1 1]);%将图形背景改为白色g2=tf(n,d) %求G2(s)的传递函数rlocus(g2); %画G2(s)根轨迹曲线title(’G2(s)的根轨迹'); %标题说明4、绘制ξ=0.1,0.3,1,1。

闭环系统零、极点位置对时间响应性能指标的影响

闭环系统零、极点位置对时间响应性能指标的影响

闭环系统零、极点位置对时间响应性能指标的影响
稳定性:
如果闭环极点全部位于s左半平⾯。

则系统⼀定稳定;
运动形式:
如果闭环系统⽆零点,且闭环极点均为实数极点,则时间响应⼀定是单调的;如果闭环系统极点均为复数极点,则时间响应⼀般是震荡的。

超调量:
超调量主要取决于闭环复数主导极点的衰减率,并与其它闭环零极点接近坐标原点的程度有关。

调节时间:
调节时间主要取决于最靠近虚轴的闭环复数极点的复数的实部绝对值;如果实数极点距离虚轴最近,并且它没有实数零点,则调节时间主要取决于该实数的模值。

实数零极点的影响:
零点减⼩系统阻尼,使峰值时间提前,超调量增⼤;极点增⼤系统阻尼,使峰值之间迟后,超调量减⼩,它们的作⽤,随着它们本⾝接近坐标原点的程度⽽增强。

偶极⼦及其处理:
远离原点的偶极⼦,其影响可忽略;接近原点的偶极⼦其影响必须考虑
主导极点:
在s平⾯上,最靠近虚轴⽽附近有闭环零点的⼀些闭环极点,对系统的影响最⼤。

结合偶极⼦的处理原则,将⾼阶系统简化为⼆、三个主导极点和⼀两个零点,然后估算系统的单位阶跃响应的性能指标。

系统函数零极点分布对系统时域特性的影响

系统函数零极点分布对系统时域特性的影响

, 极点在实轴上,
h(t) tet u(t), 0, t , h(t) 0
H(s)
(s2
2s
2
)2
,在虚轴上,
h(t) t sintu(t), t , h(t) 增幅振荡
有实际物理意义的物理系统都是因果系统,即随 t ,
ht ,0 这H (表s)明的极点位于左半平面,由此可知,收敛 域包括虚轴, Fs均和存F在( j, )两者可通用,只需 将
(自由/强迫,瞬态/稳态);
3.可以用来说明系统的正弦稳态特性。
1
二.H(s)零、极点与h(t)波形特征的对应
1.系统函数的零、极点
H (s) A(s) K (s z1 )(s z2 ) (s z j ) (s zm ) B(s) (s p1 )(s p2 ) (s pk ) (s pn )
零输入响应/零状态响应
s2 3s 2Rs s 3Es sr0 r0 3r0

Rzi s
sr0 r0 3r0
s2 3s 2
零输入响应为:
Rzs
s
s 3Es
s2 3s 2
rzi (t) 4et 3e2t t 0
即零状态响应为:
rzs (t) 0.5e 2t 2e t 1.5 (t 0)
即可s 。 j 6
三.H(s) 、E(s)的极点分布与自由响应、强迫响应特性的对应
激励: e(t) E(s) u
系统函数:h(t) Hm(s)
(s zl )
(s zj )
E(s) l1 v
H (s) j1 n
(s Pk )
(s Pi )
k 1
响应: r(t) R(s)
u
m
(s zl ) (s zj )

极点对系统的性能影响分析

极点对系统的性能影响分析
set(h, 'LineWidth', 3);
图17 的阶跃响应曲线
由阶跃响应曲线分析系统暂态性能:
曲线最大峰值为,稳态值为,
上升时间tr=
超调时间tp=
调节时间ts=50s,
超调量 =%
当p=10的阶跃响应
当p=10时,对应的闭环传递函数为
Matlab指令:
num=[1];
den=[,,,];
step(num,den);
曲线最大峰值为,稳态值为,
上升时间tr=
超调时间tp=
调节时间ts=,
超调量 =%
当p=的阶跃响应
当p=时,对应的闭环传递函数为
num=[1];
den=[10,9,,];
step(num,den);
h = findobj(gcf, 'Type','line');
set(h, 'LineWidth', 3);
不可对消偶极子
取增加的极点p=和零点s=组成一对开环偶极子,那么可以得到的闭环传递函数为:
为了得到新传递函数的性能参数,画出闭环传递函数的阶跃响应曲线。
Matlab指令:
num=[1,];
den=[1,,,];
step(num,den);
h = findobj(gcf,'Type','line');
图11 超调时间与lg(a)的关系
图12调节时间与lg(a)的关系
图13 超调量与lg(a)的关系
结论:
1.增加不同的零点对系统参数有不同的影响;
2.曲线峰值与超调量受到影响后的值与原值没有重合,上升时间,超调时间与调节时间与原值有重合;

增加开环零点、极点、偶极子对系统性能的影响

增加开环零点、极点、偶极子对系统性能的影响

案例三 增加开环零点、极点对系统性能影响以典型二阶系统为例,利用自动控制理论实验箱搭建模拟电路,研究增加开环零点、极点以及偶极子对系统性能的影响。

一、原始二阶系统典型二阶系统的开环传递函数为:)12.0(1.01s +=s s G )(其结构图如图1所示。

-10.1(0.21)s s +图1 二级系统结构图根据上述结构图和传递函数,利用自动控制理论试验箱中的运放、电阻、电容等建立二阶环节的模拟电路。

传递函数对应的二阶系统模拟电路图如图2所示。

UiUo1μF1μF-100K100K200K200K100K100K+++---图2 二阶系统模拟电路图在自动控制理论试验系统中测量得到该系统的阶跃响应曲线如图3所示,记录超调量等动态性能指标。

此时二阶系统阶跃响应的超调量为%46.30%=δ,峰值时间为t p =0.481s ,调节时间为t s =2.71s 。

图3 典型二阶系统阶跃响应曲线二、增加开环零点增加开环零点即增加一个一阶微分环节,其的传递函数为:11.0+=s s G )(一阶微分环节的模拟电路如图4所示。

-+1.0K100K100K1uF图4 一阶微分环节的模拟电路增加以上开环零点后,系统的结构图如图5所示。

0.1s+1-10.1(0.21)s s +图5 增加开环零点后系统结构图根据图4和图5,利用自动控制理论实验箱单搭建增加开环零点后的二阶系统的模拟电路,并测量该系统的阶跃响应曲线,记录是与响应性能指标。

阶跃响应曲线如图6所示。

图6 增加开环零点后系统的阶跃响应曲线此时,系统阶跃响应的超调量为%29.6%=δ,峰值时间为t p =0.424s, 调节时间为t s =1.12s 。

与原系统的是与性能指标相比较,可以明显的看到系统超调量减小,峰值时间减少,系统响应速度加快,相对稳定性得到改善。

由此可以得出结论:增加开环零点可以改善系统的动态性能。

其原因在于微分环节表现出超前特性,增加微分环节会使系统阻尼系数增加,超调提前,稳定裕量增加。

开环系统零极点对系统的影响实践报告

开环系统零极点对系统的影响实践报告

物理与电气工程学院课程实践报告开环系统零极点对系统的影响姓名*** 9**********班级电气工程及其自动化1班年级 2000级指导教师 ** ** 成绩日期 2013.5.30课题:开环系统零极点对系统的影响。

实践过程:通过图书,互联网查询相关资料。

用MA TLAB进行仿真,得出效果,分析出结论。

结论:一般说来,系统的极点决定系统的固有特性,而零点对于系统的暂态响应和频率响应会造成很大影响。

以下对于零极点的分布研究均是对于开环传递函数。

零点一般是使得稳定性增加,但是会使调节时间变长,极点会使调节时间变短,是系统反应更快,但是也会使系统的稳定性变差。

在波特图上反应为,增加一个零点会在幅频特性曲线上增加一个+20db/10倍频的曲线,幅频曲线上移,增加一个极点,会在幅频特性曲线上增加一个-20db/10倍频的曲线,幅频曲线下移。

在s左半平面增加零点时,会增加系统响应的超调量,带宽增大,能够减小系统的调节时间,增快反应速度,当零点离虚轴越近,对系统影响越大,当零点实部远大于原二阶系统阻尼系数ξ时,附加零点对系统的影响减小,所以当零点远离虚轴时,可以忽略零点对系统的影响。

从波特图上来看,增加一个零点相当于增加一个+20db/10倍频的斜率,可以使的系统的相角裕度变大,增强系统的稳定性。

在s右半平面增加零点,也就是非最小相位系统,非最小相位系统的相位变化范围较大,其过大的相位滞后使得输出响应变得缓慢。

因此,若控制对象是非最小相位系统,其控制效果特别是快速性一般比较差,而且校正也困难。

对于非最小相位系统而言,当频率从零变化到无穷大时,相位角的便变化范围总是大于最小相位系统的相角范围,当ω等于无穷大时,其相位角不等于-(n-m)×90º。

非最小相位系统存在着过大的相位滞后,影响系统的稳定性和响应的快速性。

在s左半平面增加极点时,系统超调量%pσ减小,调整时间st(s)增大,从波特图上看,s左半平面增加一个极点时,会在幅频特性曲线上增加一个-20db/10倍频的曲线,也就意味着幅频特性曲线会整体下移,导致相角域度减小,从而使得稳定性下降。

传递函数零极点对系统性能的影响

传递函数零极点对系统性能的影响

现代工程控制理论实验报告学生姓名:任课老师:学号:班级:实验三:传递函数零极点对系统性能的影响一、实验内容及目的实验内容:通过增加、减少和改变高阶线性系统21.05(s+s+1)(0.5s+1)(0.125s+1)的零极点,分析系统品质的变化,从中推导出零极点和系统各项品质之间的关系,进而总结出高阶线性系统的频率特性。

实验目的:(1)通过实验研究零极点对系统品质的影响,寻找高阶线性系统的降阶方法,总结高阶系统的时域特性。

(2)练习使用MATLAB语言的绘图功能,提高科技论文写作能力,培养自主学习意识。

二、实验方案及步骤首先建立MATLAB脚本文件,使其能够绘出在阶跃输入下特征多项式能够变化的高阶线性系统的响应曲线。

之后在以下六种情况下绘出响应曲线,分别分析其对系统输出的影响。

(1)改变主导极点,增减、改变非主导极点,加入非负极点,绘出多组线性系统在阶跃信号下的响应曲线。

(2)在不引入对偶奇子的前提下,加入非负极点,绘出多组线性系统在阶跃信号下的响应曲线。

(3)引入对偶奇子,绘出多组线性系统在阶跃信号下的响应曲线。

(4)探究系统稳定条件下单调曲线、振荡曲线的形成与零极点之间的关系。

三、实验结果分析1、研究极点对系统品质的影响(1)改变主导极点,得到的输出曲线如下:将系统品质以表格方式列于下方。

从两张图片中不难发现,在极点都是负数的条件下,当主导极点出现较小变动时,整条输出曲线会出现很大的变化。

从表格中可以发现当主导极点由负半轴向原点靠近时,超调量、稳定时间逐渐增大,而且这两项指标的变化速率随着主导极点离原点的距离减小而增大。

衰减率则出现轻微的先增大后减小的趋势,猜测在主导极点由负半轴向原点靠近的过程中,衰减率存在极值。

将两幅图片中发现的规律总结如下:(1)主导极点对系统品质有很大影响。

(2)在极点都小于零的条件下,主导极点的代数值越小,系统的准确性越好、快速性也越好。

(2)增减、改变非主导极点,得到的输出曲线如下:将系统品质以表格形式列于下方:首先观察figure2,对比figure1不难发现,对于极点为-0.5、-2、-8对应的曲线,当去掉极点-8时曲线的变化程度明显没有去掉极点-2时剧烈。

s参数的零极点

s参数的零极点

在控制系统理论中,s参数(或拉普拉斯变换域中的复频率s)的零点和极点是非常重要的概念,它们对系统的稳定性和频率响应特性有着决定性的影响。

本文将详细介绍零点和极点的定义、物理意义、数学表达方式以及它们对系统性能的影响。

一、零点和极点的定义零点(Zeros)在控制系统中,零点是指使系统传递函数为零的s域值。

系统传递函数通常表示为系统输出与输入之比,形式上为一些多项式的比值。

当这个比值的分子多项式等于零时,对应的s值就是零点。

数学上,如果系统传递函数为:\[ G(s) = \frac{N(s)}{D(s)} \]其中,\( N(s) \)是分子多项式,\( D(s) \)是分母多项式,则\( N(s) \)的根就是系统的零点。

极点(Poles)相对地,极点是指使系统传递函数趋向无穷大的s域值。

在上述传递函数中,当分母多项式\( D(s) \)等于零时,对应的s值就是极点。

数学上,\( D(s) \)的根就是系统的极点。

二、零点和极点的物理意义零点和极点反映了系统在复频率域内的动态行为。

极点直接关联到系统的自然响应,而零点则影响系统的强制响应。

系统的稳定性主要由极点的位置决定,极点位于左半s平面表示系统是稳定的,若有极点位于右半s平面或者虚轴上,则系统是不稳定的。

零点虽然不直接决定系统的稳定性,但会影响系统的增益和相位,从而影响系统的频率响应。

在某些频率下,零点可以导致系统增益减小,甚至产生相位的变化,这对系统的性能有着重要的影响。

三、数学表达方式传递函数的一般形式可以通过因式分解来表示其零点和极点:\[ G(s) = K \frac{(s-z_1)(s-z_2)...(s-z_m)}{(s-p_1)(s-p_2)...(s-p_n)} \]其中,\( z_i \)表示第i个零点,\( p_j \)表示第j个极点,K是增益系数。

这种表达方式可以直观地看出系统的零点和极点的位置,以及它们对系统性能的影响。

零极点对系统的影响

零极点对系统的影响

增加零极点对系统的影响增加零点时,会增加系统响应的超调量,带宽增大,零点离虚轴越近,对系统影响越大,当零点实部远大于原二阶系统阻尼系数ξ时,附加零点对系统的影响减小,所以当零点远离虚轴时,可以忽略零点对系统的影响。

增加极点时,系统超调量%pσ减小,调整时间st(s)增大,极点离虚轴越近,当系统影响越大当极点实部远大于原二阶系统阻尼系数ξ时,附加极点对系统的影响减小,所以当极点远离虚轴时可以忽略极点对系统的影响。

最小相位系统从传递函数角度看,如果说一个环节的传递函数的极点和零点的实部全都小于或等于零,则称这个环节是最小相位环节.如果传递函数中具有正实部的零点或极点,或有延迟环节,这个环节就是非最小相位环节.对于闭环系统,如果它的开环传递函数极点或零点的实部小于或等于零,则称它是最小相位系统.如果开环传递函中有正实部的零点或极点,或有延迟环节,则称系统是非最小相位系统.因为若把延迟环节用零点和极点的形式近似表达时(泰勒级数展开),会发现它具有正实部零点. 最小相位系统具有如下性质:1,最小相位系统传递函数可由其对应的开环对数频率特性唯一确定;反之亦然.2,最小相位系统的相频特性可由其对应的开环频率特性唯返航一确定;反之亦然.3,在具有相同幅频特性的系统中,最小相位系统的相角范围最小.传递函数中至少有一个极点或零点的实部值为正值的一类线性定常系统。

反之,当系统的所有极点和零点的实部均为负值时,称为最小相位系统。

在具有相同幅频特性的系统中,最小相位系统的相角变化范围为最小。

最小相位和非最小相位之名即出于此。

最小相位系统的幅频特性和相频特性之间存在确定的对应关系。

两个特性中,只要一个被规定,另一个也就可唯一确定。

然而,对非最小相位系统,却不存在这种关系。

非最小相位系统的一类典型情况是包含非最小相位元件的系统或某些局部小回路为不稳定的系统;另一类典型情况为时滞系统。

非最小相位系统的过大的相位滞后使得输出响应变得缓慢。

系统函数零极点对系统频响的影响

系统函数零极点对系统频响的影响

系统函数零极点对系统频响的影响下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!系统函数零极点对系统频响的影响在信号处理与控制系统中,系统的频响特性直接受到系统函数的极点和零点分布影响。

零极点对系统性能的影响分析_课程设计

零极点对系统性能的影响分析_课程设计

设计任务书学生: 梅浪奇 专业班级: 自动化1002班 指导教师: 肖纯 工作单位: 自动化学院题 目: 零极点对系统性能的影响分析 初始条件:系统开环传递函数为1)s (s 1)(s/a 21+++=(s)G 或1)s 1](s [(s/p)122+++=(s)G ,其中G 1(s )是在阻尼系数5.0=ξ的归一化二阶系统的传递函数上增加了一个零点得到的,G 2(s )是在阻尼系数5.0=ξ的归一化二阶系统的传递函数上增加了一个极点得到的。

要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)(1) 当开环传递函数为G 1(s )时,绘制系统的根轨迹和奈奎斯特曲线; (2) 当开环传递函数为G 1(s )时,a 分别取0.01,1,100时,用Matlab 计算系统阶跃响应的超调量和系统频率响应的谐振峰值,并分析两者的关系; (3) 画出(2)中各a 值的波特图;(4) 当开环传递函数为G 2(s )时,绘制系统的根轨迹和奈奎斯特曲线; (5) 当开环传递函数为G 2(s )时,p 分别取0.01,1,100时,绘制不同p 值时的波特图;(6) 对比增加极点后系统带宽和原二阶系统的带宽,分析增加极点对系统带宽的影响;(7) 用Matlab 画出上述每种情况的在单位反馈时对单位阶跃输入的响应; (8) 对上述任务写出完整的课程设计说明书,说明书中必须写清楚分析计算的过程,并包含Matlab 源程序或Simulink 仿真模型,说明书的格式按照教务处标准书写。

时间安排:指导教师签名:年月日系主任(或责任教师)签名:年月日目录1综述 (1)2增加零极点对系统稳定性的影响 (1)2.1增加零点对系统稳定性的影响 (2)2.1.1开环传递函数G1(s)的根轨迹曲线 (2)2.1.2开环传递函数G1(s)的奈奎斯特曲线 (3)2.2增加极点对系统稳定性的影响 (3)2.2.1开环传递函数G2(s)的根轨迹曲线 (3)2.2.2开环传递函数G2(s)的奈奎斯特曲线 (5)3增加零极点对系统暂态性能的影响 (7)3.1增加零点对系统暂态性能的影响 (7)3.1.1零点a=0.01时的阶跃响应和伯德图 (7)3.1.2零点a= 1时的阶跃响应和伯德图 (9)3.1.3零点a= 100时的阶跃响应和伯德图 (10)3.1.4原系统的阶跃响应和伯德图 (12)3.1.5综合分析 (13)3.2增加极点对系统暂态性能的影响 (14)3.2.1极点p=0.01时的阶跃响应和伯德图 (14)3.2.2极点p=1时的阶跃响应和伯德图 (15)3.2.3极点p=100时的阶跃响应和伯德图 (17)3.2.4综合分析 (18)4增加零极点对系统稳态性能的影响 (19)4.1增加的零极点在s的左半平面 (19)4.2增加的零极点在s的虚轴上 (23)5设计心得体会 (26)6参考文献 (27)附录1:课程设计中所用到的程序 (28)附录2:本科生课程设计成绩评定表 (40)零极点对系统性能的影响分析1综述在自动控制系统中,对系统各项性能如稳定性,动态性能和稳态性能等有一定的要求,稳定性是控制系统的本质,指的是控制系统偏离平衡状态后自动恢复到平衡状态的能力。

开环系统零极点对系统的影响

开环系统零极点对系统的影响

1、增加零点对根轨迹的影响
设系统开环传递函数G(s)H(s)=K/[S(S+3)(S^2+2S+1)],利用MATLAB绘制出其闭环系统的根轨迹如下:
增加一个零点-1,
即系统开环传递函G(s)H(s)=K(S+1)/[S(S+3)(S^2+2S+1)]
根轨迹如下:

可见,当开环极点位置不变,而在系统中增加开环零点,
可是系统根轨迹向s左边平面方向弯曲,或者说,将使系统的根轨迹图趋向增加零点的方向形变,而且这种影响随开环零点接
近坐标原点的程度而加强。

因此,在s平面的左半平面适当的位
置增加开环零点,可以显著改善系统的稳定性。

2、增加极点对根轨迹的影响
设系统开环传递函数G(s)H(s)=K/[S(S+1)],利用MATLAB 绘制出其闭环系统的根轨迹如下:
增加一个极点P=-2,
即系统开环传递函G(s)H(s)=K/[S(S+1)(S+2)],利用MATLAB 绘制出其闭环系统的根轨迹如下:
如图可得出:原来的二阶系统,K从0变到无穷大时,系统总是稳定的。

增加一个开环极点后,当K增大到一定程度后,有两条根轨迹跨过虚轴进入S平面右半部,系统变为不稳定。

当轨迹仍在S平面左侧时,随着K的增大,阻尼角增大,阻尼比变小,震荡程度加剧,特征根进一步接近虚轴,衰减震荡过
程变得很缓慢。

总而言之,增加开环极点对系统动态性能是不
利的。

零点、极点和偶极子对系统性能的影响

零点、极点和偶极子对系统性能的影响

零点、极点和偶极子对系统性能的影响我们知道在系统之中,适当的加入零点,极点还有偶极子,可以在某些方面提升系统的性能。

但是加入某项时候,到底是如何提升的呢?为此,我们用matlab 软件来帮助我们分析,以方便我们进行比较。

为了方便我们的比较,我们还将零点,极点还有偶极子对系统性能的影响分开来进行一个一个的讨论。

这样我们可以更加直观的感受到他们的影响。

(在分析的时候选择稳定的原始系统)在分析的时候我们选择的原系统的闭环传递函数为:通过matlab 编程和绘图我们可以得到()s G的单位阶跃响应曲线如下图:现在我们开始分析加入零点,极点和偶极子对系统性能的影响!一、零点为了在方程之中添加一个零点,我们将系统的闭环传递函数变为:我们可以通过matlab 编程,绘出()1s G 和()s G的响应曲线,通过分析相应的响应曲线,我们就可以得出相应的结论!matlab 的编程为: n=4; d=[4,1,4]; t1=0:0.1:15; y1=step(n,d,t1); n1=[3,4]; y2=step(n1,d,t1);plot(t1,y1,'-r',t1,y2,'-g'),grid xlabel('t'),ylabel('c(t)'); title('单位阶跃响应')两者的响应曲线为:通过对两条响应曲线的分析我们不难得出以下的结论: (1)系统的稳定性没变,还是稳定系统; (2)系统的上升时间r t减小; (3)系统的超调时间pt 减小; (4)系统的超调量%p 变长;(5)系统的调节时间s t 变长;但是在某些情况下,我们增加零点,会带来某些我们所不希望带来的结线和原始闭环函数的响应曲线的异同点。

通过matlab绘制的响应曲线如下:可以看出如果添加的零点正好与原点重合的时候,系统虽然最后还是稳态系统,但是系统最后的稳态值为0,这显然不合实际的要求。

传递函数零极点对系统性能的影响

传递函数零极点对系统性能的影响

现代工程控制理论实验报告学生姓名:任课老师:学号:班级:实验三:传递函数零极点对系统性能的影响一、实验内容及目的实验内容:通过增加、减少和改变高阶线性系统21.05(s+s+1)(0.5s+1)(0.125s+1)的零极点,分析系统品质的变化,从中推导出零极点和系统各项品质之间的关系,进而总结出高阶线性系统的频率特性。

实验目的:(1)通过实验研究零极点对系统品质的影响,寻找高阶线性系统的降阶方法,总结高阶系统的时域特性。

(2)练习使用MATLAB语言的绘图功能,提高科技论文写作能力,培养自主学习意识。

二、实验方案及步骤首先建立MATLAB脚本文件,使其能够绘出在阶跃输入下特征多项式能够变化的高阶线性系统的响应曲线。

之后在以下六种情况下绘出响应曲线,分别分析其对系统输出的影响。

(1)改变主导极点,增减、改变非主导极点,加入非负极点,绘出多组线性系统在阶跃信号下的响应曲线。

(2)在不引入对偶奇子的前提下,加入非负极点,绘出多组线性系统在阶跃信号下的响应曲线。

(3)引入对偶奇子,绘出多组线性系统在阶跃信号下的响应曲线。

(4)探究系统稳定条件下单调曲线、振荡曲线的形成与零极点之间的关系。

三、实验结果分析1、研究极点对系统品质的影响(1)改变主导极点,得到的输出曲线如下:将系统品质以表格方式列于下方。

从两张图片中不难发现,在极点都是负数的条件下,当主导极点出现较小变动时,整条输出曲线会出现很大的变化。

从表格中可以发现当主导极点由负半轴向原点靠近时,超调量、稳定时间逐渐增大,而且这两项指标的变化速率随着主导极点离原点的距离减小而增大。

衰减率则出现轻微的先增大后减小的趋势,猜测在主导极点由负半轴向原点靠近的过程中,衰减率存在极值。

将两幅图片中发现的规律总结如下:(1)主导极点对系统品质有很大影响。

(2)在极点都小于零的条件下,主导极点的代数值越小,系统的准确性越好、快速性也越好。

(2)增减、改变非主导极点,得到的输出曲线如下:将系统品质以表格形式列于下方:首先观察figure2,对比figure1不难发现,对于极点为-0.5、-2、-8对应的曲线,当去掉极点-8时曲线的变化程度明显没有去掉极点-2时剧烈。

零极点对系统性能的影响分析

零极点对系统性能的影响分析

课程设计题目零极点对系统性能的影响分析学院自动化学院专业自动化班级姓名指导教师谭思云2013 年12 月27 日课程设计任务书学生姓名: 专业班级:自动化1102班 指导教师: 谭思云 工作单位: 自动化学院题 目: 零极点对系统性能的影响分析 初始条件:系统开环传递函数为1)s (s 1)(s/a 21+++=(s)G 或1)s 1](s [(s/p)122+++=(s)G ,其中G 1(s )是在阻尼系数5.0=ξ的归一化二阶系统的传递函数上增加了一个零点得到的,G 2(s )是在阻尼系数5.0=ξ的归一化二阶系统的传递函数上增加了一个极点得到的。

要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)(1) 当开环传递函数为G 1(s )时,绘制系统的根轨迹和奈奎斯特曲线; (2) 当开环传递函数为G 1(s )时,a 分别取0.01,0.1,1,10,100时,用Matlab计算系统阶跃响应的超调量和系统频率响应的谐振峰值,并分析两者的关系;(3) 画出(2)中各a 值的波特图;(4) 当开环传递函数为G 2(s )时,绘制系统的根轨迹和奈奎斯特曲线; (5) 当开环传递函数为G 2(s )时,p 分别取0.01,0.1,1,10,100时,绘制不同p 值时的波特图;(6) 对比增加极点后系统带宽和原二阶系统的带宽,分析增加极点对系统带宽的影响;(7) 用Matlab 画出上述每种情况的在单位反馈时对单位阶跃输入的响应; (8) 对上述任务写出完整的课程设计说明书,说明书中必须写清楚分析计算的过程,并包含Matlab 源程序或Simulink 仿真模型,说明书的格式按照教务处标准书写。

时间安排:(1)课程设计任务书的布置,讲解(半天)(2)根据任务书的要求进行设计构思。

(半天)(3)熟悉MATLAB中的相关工具(一天)(4)系统设计与仿真分析。

(三天)(5)撰写说明书。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

零点、极点和偶极子对系统性能的影响
我们知道在系统之中,适当的加入零点,极点还有偶极子,可以在某些方面提升系统的性能。

但是加入某项时候,到底是如何提升的呢?为此,我们用matlab 软件来帮助我们分析,以方便我们进行比较。

为了方便我们的比较,我们还将零点,极点还有偶极子对系统性能的影响分开来进行一个一个的讨论。

这样我们可以更加直观的感受到他们的影响。

(在分析的时候选择稳定的原始系统)
在分析的时候我们选择的原系统的闭环传递函数为:
通过matlab 编程和绘图我们可以得到()s G
的单位阶跃响应曲线如下图:
现在我们开始分析加入零点,极点和偶极子对系统性能的影响!
一、零点
为了在方程之中添加一个零点,我们将系统的闭环传递函数变为:
我们可以通过matlab 编程,绘出
()
1s G 和()s G
的响应曲线,通过分析相应的
响应曲线,我们就可以得出相应的结论!
matlab 的编程为: n=4; d=[4,1,4]; t1=0:0.1:15; y1=step(n,d,t1); n1=[3,4]; y2=step(n1,d,t1);
plot(t1,y1,'-r',t1,y2,'-g'),grid xlabel('t'),ylabel('c(t)'); title('单位阶跃响应')
两者的响应曲线为:
通过对两条响应曲线的分析我们不难得出以下的结论: (1)系统的稳定性没变,还是稳定系统; (2)系统的上升时间r t
减小; (3)系统的超调时间p
t 减小; (4)系统的超调量
%
p 变长;
(5)系统的调节时间
s t 变长;
但是在某些情况下,我们增加零点,会带来某些我们所不希望带来的结
线和原始闭环函数的响应曲线的异同点。

通过matlab绘制的响应曲线如下:
可以看出如果添加的零点正好与原点重合的时候,系统虽然最后还是稳态系统,但是系统最后的稳态值为0,这显然不合实际的要求。

所以在实际应用中,我们添加不能零点的时候一定要注意,添加的零点不能原点重合。

二、极点
为了在方程之中添加一个零点,我们将系统的闭环传递函数变为:
我们可以通过matlab 编程,绘出
()
2s G 和()s G
的响应曲线,通过分析相应的
响应曲线,我们就可以得出相应的结论!
matlab 的编程为: n=4; d=[4,1,4]; t1=0:0.1:15; y1=step(n,d,t1); n1=20;
d2=[4,21,9,20]; y2=step(n1,d2,t1);
plot(t1,y1,'-r',t1,y2,'-g'),grid xlabel('t'),ylabel('c(t)'); title('单位阶跃响应')
两者的响应曲线为:
通过对两条响应曲线的分析我们不难得出以下的结论: (1)系统的稳定性没变,还是稳定系统; (2)系统的上升时间r t
变长; (3)系统的超调时间p
t 变长; (4)系统的超调量
%
p 减小;
(5)系统的调节时间
s t 减小;
通过以上分析,我们不难发现:在系统中增加零点和极点的作用是相反
的。

三、偶极子
偶极子还可以根据距离虚轴的距离分为两种情况:距离虚轴远的和距离虚轴近的。

所以分两种情况进行分析。

1)在方程之中添加一对离虚轴较远的偶极子,我们将系统的闭环传递函数变为:
我们可以通过matlab 编程,绘出
()
3s G 和()s G
的响应曲线,通过分析相应的
响应曲线,我们就可以得出相应的结论!
matlab 的编程为: n=4; d=[4,1,4]; t1=0:0.1:15; y1=step(n,d,t1); n1=[4,32];
d2=[4,33.04,12.01,32.04]; y2=step(n1,d2,t1);
plot(t1,y1,'-r',t1,y2,'-g'),grid xlabel('t'),ylabel('c(t)'); title('单位阶跃响应')
两者的响应曲线为:
局部放大效果图见下图局部放大的效果图:
在添加距离远点较远的偶极子的时候,我们可以发现:添加偶极子后的系统与原来的系统一样,都是稳定的系统。

并且添加偶极子以后的系统的闭环传递函数的响应曲线与原始的闭环传递函数的响应曲线几乎是重合的,差别非常小。

通过局部放大以后,更是证明了我们的想法。

在t=3.765s 的这一时刻,二者的差距不到0.2%,几乎是相等的。

所以我们有理由认为,在添加距离虚轴较远的偶极子后的系统与对于原始系统的上升时间r t
,超调时间
p
t ,超调量
%
p ,调节时间
s t 没有影响。

2)在方程之中添加一对离虚轴较近的偶极子,我们将系统的闭环传递函数变为:
我们可以通过matlab 编程,绘出
()
3s G 和()s G
的响应曲线,通过分析相应的
响应曲线,我们就可以得出相应的结论!
matlab 的编程为: n=4; d=[4,1,4]; t1=0:0.1:15; y1=step(n,d,t1);
n1=[4,0.4];
d2=[4,1.44,4.11,0.44];
y2=step(n1,d2,t1);
plot(t1,y1,'-r',t1,y2,'-g'),grid xlabel('t'),ylabel('c(t)');
title('单位阶跃响应')
两者的响应曲线为:
在添加距离远点较近的偶极子的时候,我们可以发现:添加偶极子后的系统与原来的系统虽然都是稳定的系统。

但是在添加距离虚轴较近的偶极子后的系统相对于原来的系统的系统的上升时间r t 我们可以通过放大局部图形的方法发现,两者的上升时间只是相差0.008s ,几乎没有任何差别。

超调时间p t 也可以用相同的方法,发现也几乎是相同的。

超调量
%p 减小了,调节时间s t 增大
了。

这也说明了偶极子在位置上的区别而对系统的影响有所区别。

将所有系统的单位阶跃响应曲线画到一张图纸上可以更加清楚地看到他们
之间的关系:
用matlab编程的程序为:
n=4;d=[4,1,4];
t1=0:0.1:15;
y1=step(n,d,t1);% 原始系统
n1=[3,4];
y2=step(n1,d,t1); %加了非原点的零点的系统
n2=20;
d2=[4,21,9,20];
y3=step(n2,d2,t1); %加了原点的系统
n3=[4,32];
d3=[4,33.04,12.01,32.04];
y4=step(n3,d3,t1); %离虚轴远的偶极子
n4=[4,0.4];
d3=[4,1.44,4.11,0.44];
y5=step(n4,d3,t1); %离虚轴近的偶极子
n6=[4,0];
y6=step(n6,d,t1); %加了原点的系统
plot(t1,y1,'-r',t1,y2,'-g',t1,y3,t1,y4,'b',t1,y5,t1,y6),grid xlabel('t'),ylabel('c(t)');
title('单位阶跃响应')
所有的响应曲线之间相互对比:
局部放大效果图见下图
局部放大效果见下图局部放大效果图:。

相关文档
最新文档