风荷载作用下排架内力分析

风荷载作用下排架内力分析
风荷载作用下排架内力分析

风荷载作用下排架内力分析

1.左吹风时计算简图如图(1)所示

q 2

(1)

对于A 柱: λ=0.288 n=0.15

411311113110.34218111.8614.60.3429.287()

A n C n R q HC KN λλ????+- ???????==????+- ???????=-=-??=-←

对于C 柱;

λ=0.288 n=0.244

411321113110.35718110.9314.60.357 4.847()C n C n R q HC KN λλ????+- ???????==????+- ??????

?=-=-??=-←

A C W R R R F =+-=-9.287-4.847-9.54=-23.674KN (←)

各柱顶的剪力分别为: A η=0.361 B η=0.545 C η=0.094 A A A V R R η=-=-9.287+0.361×23.674=-0.741KN(←)

B B V R η=-=0.545×23.647=12.902KN(→)

C C C V R R η=-=-4.847+0.094×23.674=-2.622KN(←)

排架内力如下图:

A B

C

A

B

C

2.右吹风时计算简图如图(2)所示 F w

(2)

对于A 柱: n=0.146 11C =0.342

A R =-2q H 11C =0.93×14.6×0.342=4.644KN ( )

对于C 柱: n=0.244 11C =0.357

111C R q HC =-=-1.86×14.6×0.357=9.695KN(→)

A C W R R R F =+-=4.644+9.695+9.54=23.879KN(→)

各柱顶的剪力分别为 A η=0.361 B η=0.545 C η=0.094 A A A V R R η=-=4.644-0.361×23.879=-3.976KN(←)

B B V R η=-=-0.545×23.879=13.014KN(→)

C C C V R R η=-=9.695-0.094×23.879=7.450KN(→)

排架内力图如下所示

A

B C

A B C

5. Max T 作用于AB 跨柱: 当AB 跨作用吊车横向水平荷载时,排架计算简图如下图( )所示

1.当Max T 向右作用时对于A 柱n=0.146 λ=0.288 , 得a=(4.2m-1.2m)/4.2m=0.714 ,

()()235321231211a a a n C n λλλ??+--+??????=????+- ??????

?=0.624 5A Max R T C =-=-20.6×0.624=-12.854KN(←)

同理对于B 柱 n=0.171 , λ=0.288 , a=0.714 , 5C =0.635

5B Max R T C =-=-20.6×0.635=-13.081KN(←) 排架柱顶总反力为:

A B R R R =+=-12.854-13.081=--25.935KN(←)

各柱顶剪力为:

A A A V R R η=-=-12.854+0.361×25.935=-3.491KN(←)

B B B V R R η=-=-13.081+0.545×25.935=1.054KN(→)

C C V R η=-=0.094×25.935=2.438KN(→)

排架各柱的弯矩图及柱底剪力图如图( )所示当Max T 向左作用时,弯矩图和剪力图只改变符号,方向不变。

6. Max T 作用于BC 跨柱:

当BC 跨作用吊车横向水平荷载时,排架计算简图如下图( )所示

1.当Max T 向右作用时对于B 柱n=0.171 λ=0.288 , 得a=(4.2m-0.9m)/4.2m=0.786,

()()235321231211a a a n C n λλλ??+--+??????=????+- ??????

?=0.604 5B Max R T C =-=-8.98×0.604=-5.424KN(←)

同理对于C 柱 n=0.244 , λ=0.288 , a=0.786 , 5C =0.625 5C Max R T C =-=-8.98×0.625=-5.613KN(←) 排架柱顶总反力为

B C R R R =+=-5.424-5.613= -11.037KN(←) 各柱顶剪力为:

A A V R η=-=0.361×11.037=3.984KN (→)

B B B V R R η=-=-5.424+0.545×11.037=0.591KN(→)

C C C V R R η=+=-5.613+0.094×11.037=-4.576KN(←) 排架各柱的弯矩图及柱底剪力图如图( )所示当Max T 向左作用时,弯矩图和剪力图只改变符号,方向不变。

等效风荷载计算方法分析

等效静力风荷载的物理意义 从风洞试验获取屋面风荷载气动力信息,到得到结构的风振响应整个过程来看,计算过程中涉及到风洞试验和随机振动分析等复杂过程,不易为工程设计人员所掌握,因此迫切需要研究简便的建筑结构抗风设计方法。 等效静力风荷载理论 就是在这一背景下提出的。其基本思想是将脉动风的 动力效应以其等效的静力形式表达出来,从而将复杂的动力分析问题转化为易于被设计人员所接受的静力分析问题。等效静力风荷载是联系风工程研究和结构设计的纽带[3] ,是结构抗风设计理论的 核心内容,近年来一直是结构风工程师研究的热点之一。 等效静力风荷载的物理意义可以用单自由度体系的简谐振动来说明 [45, 108] 。 k c P(t) x(t) 图1.3 气动力作用下的单自由度体系 对如图1.3的单自由度体系,在气动力 P t 作用下的振动方程为: mx cx kx P t (1.4.1) 考虑粘滞阻尼系统,则振动方程可简化为: 2 00 2 22P t x f x f x m (1.4.2) 式中 12 f k m 为该系统的自振频率, 2c km 为振动系统的临界阻尼比。 假设气动力为频率为 f 的简谐荷载,即 20i ft P t F e ,那么其稳态响应为: 202 00 1 2i ft F k x t e f f i f f (1.4.3) 进一步化简有: 2 i ft x t Ae (1.4.4) 其中 02 2 2 1 2F k A f f f f , 2 2arctan 1 f f f f , A 为振幅, 为气动力和 位移响应之间的相位角。 现在假设该系统在某静力 F 作用下产生幅值为A 的静力响应,那么该静力应该为:

多层钢筋混凝土框架设计(7 风荷载内力计算)

七风荷载内力计算 基本风压w0=0.4kN/m2,地面粗糙度为B类。本章计算以左风为例。(一)风荷载计算 w k=βzμsμz w0,建筑物高度<30m,故βz=1.0 迎风时μs1=+0.8,背风时μs2=-0.5,则μs=0.8+0.5=1.3 计算过程见下表 计算简图(单位:kN) 14.60 15.44 16.85 13.98 17.04

(二)内力计算 1.抗侧刚度和反弯点高度确定 计算过程见下表 2.剪力在各层分配(单位:kN ) ∑ == 5 n i i Pi P V ,Pi k ik V D D V ?= ∑ V P5V P4V P3V P2V P1

3.柱端弯矩计算(单位:kN?m ) 4.风荷载作用下的内力图 M 图(单位:kN ?m ) 62.98 51.34 32.5132.51 24.71 24.71 14.826.27 19.12 8.67 7.77 4.73 3.95 2.181.11 42.16 41.69 28.77 28.45 19.88 19.65 12.77 12.624.36 4.3157.21 57.21 57.23 34.9522.2837.9 15.6222.289.2818.26 27.54 16.98 3.69 13.296.536.5357.23 22.28 15.62 27.5416.9837.99.283.6934.95 22.28 18.26 6.53 13.29 6.53

V N V ,N 图(单位:kN ) 5.梁端柱边弯矩(单位:kN?m ) 28.11 19.18 13.25 8.51 2.91 35.13 36.8321.39 22.46 12.17 12.5 5.62 5.8 13.74 21.57 9.22 18.06 6.55 13.73 4.11 9.43 1.51 1.4 4.15 17.39 12.38 1.51 2.84 6.27 9.41

风荷载例题

风荷载例题 下面以高层建筑为例,说明顺风向结构风效应计算。 由0k z s z W W βμμ=知,结构顺风向总风压为4个参数的乘积,即基本风压0W 、风压高度变化系数z μ、风荷载体型系数s μ、风振系数z β。因基本风压与风压高度变化系数与结构类型和体型无关,以下主要讨论高层建筑体型系数和风振系数的确定,然后通过实例说明高层建筑顺风向风效应的计算。 1.高层建筑体型系数 高层建筑平面沿高度一般变化不大,可近似为等截面,且平面以矩形为多。根据风洞试验及实验结果,并考虑到工程应用方便,一般取矩形平面高层建筑迎风面体型系数为+(压力),背风面体型系数为(吸力),顺风向总体型系数为1.3s μ=。 根据《高层建筑混凝土结构技术规程》JGJ 3-2002第3.2.5条:

2.高层建筑风振系数 高层建筑风振系数可根据《高层建筑混凝土结构技术规程》JGJ 3-2002进行计算,也可参考《建筑结构荷载规范》。 3.实例 【例1】已知一矩形平面钢筋混凝土高层建筑,平面沿高度保持不变,质量和刚度沿竖向均匀分布。100H m =,33B m =,地面粗糙度指数s α=,基本风压按粗糙度指数为0.16s α=的地貌上离地面高度s z =10m 处的风速确定,基本风压值为200.44/w kN m =。结构的基本自振周期1 2.5T s =。求风产生的建筑底部弯矩。 解: (1) 为简化计算,将建筑沿高度划分为5个计算区段,每个区段20m 高,取其中点位置的风载值作为该区段的平均风载值,。 (2) 体型系数 1.3s μ=。 (3) 本例风压高度变化系数 在各区段中点高度处的风压高度变化系数值分别为 10.62z μ= 21z μ= 3 1.25z μ= 4 1.45z μ= 5 1.62z μ= (4) 风振系数的确定,由 201a w T =××2=221.71/kN s m ? 查表得脉动增大系数 1.51ξ= 计算各区段中点高度处的第1振型相对位移 11?= 12?= 13?= 14?= 15?= 因建筑的高度比/3H B =,查表得脉动影响系数0.49ν=。 将上式数据代入风振系数的计算公式,得到各区段中点高度处的风振系数: 1β= 2β= 3β= 4β= 5β= (5) 计算各区段中点高度处的风压值 21 1.12 1.30.620.440.40/w kN m =???=

风荷载 的统计与分析

Undergraduate Course "Loads & Structural Design Methods" Project #3 风荷载的基本原理与统计调查 杨冬冬,陈钿渊,王富洋,董文晨,葛文泽,赵远征 摘要:随着经济的发展,世界上出现了越来越多的高层、超高层建筑。在对这些建筑进行设计时,结构的抗风设计占着极其重要的地位。作为一种动荷载,作用到结构上时,风荷载将引发结构相应的动反应,使结构发生振动,这时需确定结构的最大动反应,以便做出合理的动力分析。而作为一种可变作用,风荷载的统计规律与时间有关,需采用合适的随机过程概率模型(如平稳二项随机过程)进行描述,进而根据相应的统计数据确定风荷载的代表值和荷载系数,然后便可以应用结构动力学和结构可靠性的相关知识对建筑结构的抗风进行科学而又经济的设计了。 1.引言 作为一种可变的动荷载,风荷载将引发结构很大的动反应。因为其统计随机性,需应用平稳二项随机过程进行描述,然后经过统计,得到荷载的代表值和相应系数,进而对结构进行抗风设计。 2.风荷载的基本原理 风是空气相对于地面的运动。由于太阳对地球上大气加热和温度上升的不均匀性,从而在地球相同高度的两点之间产生压力差,这样,在不同压力差的地区产生了趋于平衡的空气流动,就形成了风。从实测记录可以看出,可将风速看作为由两部分组成:第一部分是长周期部分,其周期大小一般在10min 以上,称为平均风;另一部分是短周期部分,是在平均风基础上的波动,其周期常常只有几秒至几十秒,称为脉动风。平均风的变化周期远离一般结构物的自振周期,对结构的作用属于静力作用。而脉动风的变化周期则与结构物的自振周期较为接近,对结构的作用属于随机的动力作用。风对结构的作用作为静力风和动力风的共同作用,是一个随机作用。 A)平均风描述 地面的摩擦对空气水平运动产生阻力,从而使气流速度减慢。该阻力对气流的作用随高度的增加而减弱,当超过了某一高度之后,就可以忽略这种地面摩擦的影响,气流将沿等压线以梯度风速流动,称这一高度为大气边界层高度。在边界层以上的大气称为自由大气,边界层以下的平均风速沿高度变化可以用指数率和对数率描述,指数率表示如下:

风荷载计算

4.2风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑所受的风荷载。 4.2.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值按下式计算:(-1) 式中: 1.基本风压值Wo 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的 值确定的风速V0(m/s)按公式确定。但不得小于0.3kN/m2。 对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏感主要与高层建筑的自振特性有关,目前还没有实用的标准。一般当房屋高度大于60米时,采用100年一风压。 《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。 2.风压高度变化系数μs 《荷载规范》把地面粗糙度分为A、B、C、D四类。 A类:指近海海面、海岸、湖岸、海岛及沙漠地区; B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区; C类:指有密集建筑群的城市市区; D类:指有密集建筑群且房屋较高的城市市区; 书P55页表4.2给出了各类地区风压沿高度变化系数。位于山峰和山坡地的高层建筑,其风压高系数还要进行修正,可查阅《荷载规范》。 3.风载体型系数μz 风荷载体型系数是指建筑物表面实际风压与基本风压的比值,它表示不同体型建筑物表面风力的小。一般取决于建筑建筑物的平面形状等。 计算主体结构的风荷载效应时风荷载体型系数可按书中P57表4.2-2确定各个表面的风载体型或由风洞试验确定。几种常用结构形式的风载体型系数如下图

排架计算

§12.2 排架计算 12.2.1排架计算简图 1.计算单元 作用在厂房排架上的各种荷载,如结构自重、雪荷载、风荷载等(吊车荷载除外),沿厂房纵向都是均匀分布的;横向排架的间距一般都是相等的。在不考 虑排架间的空间作用的情况下,每一中间的横向排架所承担的荷载及受力情况是完全相同的。计算时,可通过任意两相邻排架的中线,截取一部分厂房作为计算单元。 第三章单层厂房结构 3.5 横向排架结构内力分析 1 排架计算简图 (1)计算单元:可在结构平面图上由相邻柱距的中线截出一个典型的区段,作为排架的计算单元。 计算单元和计算模型 第三章单层厂房结构 3.5 横向排架结构内力分析 (2)基本假定和计算简图:为了简化计算,对于钢筋混凝土排架结构通常作如下假定: 柱下端与基础顶面为刚接; 柱顶与排架横梁(屋架或屋面梁)为铰接; 横梁(即屋架或屋面梁)为轴向刚度很大的刚性连杆。根据上述假定,可得到横向排架的计算简图。 1 排架计算见图 第三章单层厂房结构 3.5 横向排架结构内力分析 横向排架的计算简图 1 排架计算见图

12.2.2 荷载计算 第三章单层厂房结构 3.5 横向排架结构内力分析 2 排架结构上的荷载 作用在横向排架结构上的荷载有 恒载、屋面活荷载、雪荷载、积灰荷载、吊车荷载和 风荷载等,除吊车荷载外,其它荷载均取自计算单元范围内。 (1)恒载: 屋盖自重G 1:屋盖自重包括屋架或屋面梁、屋面板、天沟板、天窗架、屋面构造层以及屋盖支撑等重力荷载。 悬墙自重G2 :当设有连系梁支承围护墙体时,排架柱承受着计算单元范围内连系梁、墙体和窗等重力荷载。 吊车梁和轨道及连接件自重G3 。柱自重G4( G5): 第三章单层厂房结构 3.5 横向排架结构内力分析 恒载作用位置及相应的排架计算简图 2 排架结构上的荷载 第三章单层厂房结构 3.5 横向排架结构内力分析 (2)屋面活荷载:包括屋面均布活荷载、屋面雪荷载和屋面积灰荷载 三部分。其荷载分项系数均为1.4。 屋面均布活荷载:屋面水平投影面上的屋面均布活荷载标准值,按下列情况取:不上人的屋面为0.5kN/m 2;上人的屋面为2.0kN/m 2。屋面雪荷载:屋面水平投影面上的雪荷载标准值(kN/m 2) 式中: 为基本雪压(kN/m 2);为屋面积雪分布系数。k s k r 0 μ=s s 0s r μ屋面积灰荷载:对设计生产中有大量排灰的厂房及其临近建筑时,应考虑屋面积灰荷载的影响。 屋面均布活荷载不与雪荷载同时考虑,取两者中的较大值;当有屋面积灰荷载时,积灰荷载应与雪荷载或不上人的屋面均布活荷载两者中的较大值同时考虑。 注: 2 排架结构上的荷载

风荷载作用下排架内力分析

风荷载作用下排架内力分析 1.左吹风时计算简图如图(1)所示 q 2 (1) 对于A 柱: λ=0.288 n=0.15 411311113110.34218111.8614.60.3429.287() A n C n R q HC KN λλ????+- ???????==????+- ???????=-=-??=-← 对于C 柱; λ=0.288 n=0.244 411321113110.35718110.9314.60.357 4.847()C n C n R q HC KN λλ????+- ???????==????+- ?????? ?=-=-??=-← A C W R R R F =+-=-9.287-4.847-9.54=-23.674KN (←) 各柱顶的剪力分别为: A η=0.361 B η=0.545 C η=0.094 A A A V R R η=-=-9.287+0.361×23.674=-0.741KN(←) B B V R η=-=0.545×23.647=12.902KN(→) C C C V R R η=-=-4.847+0.094×23.674=-2.622KN(←)

排架内力如下图: A B C A B C 2.右吹风时计算简图如图(2)所示 F w (2) 对于A 柱: n=0.146 11C =0.342 A R =-2q H 11C =0.93×14.6×0.342=4.644KN ( )

对于C 柱: n=0.244 11C =0.357 111C R q HC =-=-1.86×14.6×0.357=9.695KN(→) A C W R R R F =+-=4.644+9.695+9.54=23.879KN(→) 各柱顶的剪力分别为 A η=0.361 B η=0.545 C η=0.094 A A A V R R η=-=4.644-0.361×23.879=-3.976KN(←) B B V R η=-=-0.545×23.879=13.014KN(→) C C C V R R η=-=9.695-0.094×23.879=7.450KN(→) 排架内力图如下所示 A B C A B C 5. Max T 作用于AB 跨柱: 当AB 跨作用吊车横向水平荷载时,排架计算简图如下图( )所示 1.当Max T 向右作用时对于A 柱n=0.146 λ=0.288 , 得a=(4.2m-1.2m)/4.2m=0.714 ,

风荷载标准值计算方法

按老版本规范风荷载标准值计算方法: 1.1风荷载标准值的计算方法 幕墙属于外围护构件,按建筑结构荷载规范(GB50009-20012006年版)计算: w k =B gz u z y si W 0 ……7.1.1-2[GB50009-2001 2006 年版] 上式中: w k :作用在幕墙上的风荷载标准值(MPa); Z :计算点标高:15.6m ; B gz :瞬时风压的阵风系数; 根据不同场地类型,按以下公式计算(高度不足5m 按5m 计算): 1. 正压区 2. 负压区 - 对墙面, - 对墙角边, 二、内表面 对封闭式建筑物,按表面风压的正负情况取 -0.2或0.2 本计算点为大面位置 按JGJ102-2003第5.3.2条文说明:风荷载在建筑物表面分布是不均匀的, 在檐口附近、边角部位较大。根据风洞试验结果和国外的有关资料, 在上述区域 B gz =K(1+2 卩 f ) 其中K 为地面粗糙度调整系数, 1 f 为脉动系数 A 类场地: B gz =0.92 X (1+2 卩 f ) 其中: ■0 12 1 f =0.387 X (Z/10). B 类场地: B gz =0.89 X (1+2 [1 f ) 其中: 1 f =0.5(Z/10) -0.16 C 类场地: B gz =0.85 X (1+ 2 1 f ) 其中: 1 f =0.734(Z/10) -0.22 D 类场地: B gz =0.80 X (1+2 1 f ) 其中: 1 f =1.2248(Z/10) -0. 3 对于B 类地形, B gz =0.89 X (1+2 X (0.5(Z/10) 卩Z :风压咼度变化系数; 根据不同场地类型,按以下公式计算: 类场地: ))=1.7189 类场地: 类场地: 类场地: 0 24 卩 z =1.379 X (Z/10). 当 Z>300m 时,取 Z=300m 当 Z<5m 时,取 Z=5m 0.32 卩 z =(Z/10) 当 Z>350m 时,取 Z=350m 当 Z<10ni 时,取 Z=10m 卩 z =0.616 X (Z/10) 0.44 当 Z>400m 时,取 Z=400m 当 Z<15ni 时,取 Z=15m 卩 z =0.318 X (Z/10) 0.60 当 Z>450m 时,取 Z=450m 当 Z<30ni 时,取 Z=30m 15.6m 高度处风压高度变化系数: 对于B 类地形, 卩 z =1.000 X (Z/10) 卩S1:局部风压体型系数; 按《建筑结构荷载规范》GB50009-2001(2006年版)第7.3.3条:验算围护 构 件及其连接的强度时,可按下列规定采用局部风压体型系数卩 一、外表面 S1 : 按表7.3.1采用; 取-1.0 取-1.8 15.6m 高度处瞬时风压的阵风系数:

第六章风荷载内力计算

陈群 阳光小区6号楼设计 63 2.6 横向风荷载计算 2.6.1 自然情况 地区基本风压 W 0=0.70kN/m 2,地面粗糙程度B 类。 2.6.2 风荷载计算 (1) 风荷载标准值 0w w z s z k ???=μμβ,风荷载标准值见表2-6-1 表2-6-1 风荷载标准值 层数 β Z μ S μ Zi W 0 W k F Wki V i 6 1 1.3 1.19 0.70 1.083 8.87 8.87 5 1.14 1.037 1 2..40 21.27 4 1.063 0.965 11.71 32.98 3 1.00 0.910 10.97 4 3.95 2 1.00 0.910 10.65 5 4.60 1 1.00 0.910 12.24 66.84 注:(1)在实际工程中,对于高度不大于30M ,高宽比小于 1.5的高建筑,取风振系数βZ =1.0。(2) A w F ki w ki ?=。 1K F =0.910×3.9×(3.3+0.6)/2+0.910×3.9×1.5=12.24KN 2K F =0.910×3.9×1.5+0.910×3.9×1.5=10.65KN 3K F =0.910×3.9×1.5+0.965×3.9×1.5=10.97KN 4K F =0.965×3.9×1.5+1.037×3.9×1.5=11.711KN 5K F =1.037×3.9×1.5+1.083×3.9×1.5=12.24KN 6K F =1.083×3.9×1.5+1.083×3.9×0.6=8.87KN (2)风荷载作用分布图,见图2-6-1

风荷载标准值计算方法

按老版本规范风荷载标准值计算方法: 1.1风荷载标准值的计算方法 幕墙属于外围护构件,按建筑结构荷载规范(GB50009-2001 2006年版)计算: w k =β gz μ z μ s1 w ……7.1.1-2[GB50009-2001 2006年版] 上式中: w k :作用在幕墙上的风荷载标准值(MPa); Z:计算点标高:15.6m; β gz :瞬时风压的阵风系数; 根据不同场地类型,按以下公式计算(高度不足5m按5m计算): β gz =K(1+2μ f ) 其中K为地面粗糙度调整系数,μ f 为脉动系数 A类场地:β gz =0.92×(1+2μ f ) 其中:μ f =0.387×(Z/10)-0.12 B类场地:β gz =0.89×(1+2μ f ) 其中:μ f =0.5(Z/10)-0.16 C类场地:β gz =0.85×(1+2μ f ) 其中:μ f =0.734(Z/10)-0.22 D类场地:β gz =0.80×(1+2μ f ) 其中:μ f =1.2248(Z/10)-0.3 对于B类地形,15.6m高度处瞬时风压的阵风系数: β gz =0.89×(1+2×(0.5(Z/10)-0.16))=1.7189 μ z :风压高度变化系数; 根据不同场地类型,按以下公式计算: A类场地:μ z =1.379×(Z/10)0.24 当Z>300m时,取Z=300m,当Z<5m时,取Z=5m; B类场地:μ z =(Z/10)0.32 当Z>350m时,取Z=350m,当Z<10m时,取Z=10m; C类场地:μ z =0.616×(Z/10)0.44 当Z>400m时,取Z=400m,当Z<15m时,取Z=15m; D类场地:μ z =0.318×(Z/10)0.60 当Z>450m时,取Z=450m,当Z<30m时,取Z=30m; 对于B类地形,15.6m高度处风压高度变化系数: μ z =1.000×(Z/10)0.32=1.1529 μ s1 :局部风压体型系数; 按《建筑结构荷载规范》GB50009-2001(2006年版)第7.3.3条:验算围护 构件及其连接的强度时,可按下列规定采用局部风压体型系数μ s1 : 一、外表面 1. 正压区按表7.3.1采用; 2. 负压区 -对墙面,取-1.0 -对墙角边,取-1.8 二、内表面 对封闭式建筑物,按表面风压的正负情况取-0.2或0.2。 本计算点为大面位置。 按JGJ102-2003第5.3.2条文说明:风荷载在建筑物表面分布是不均匀的,在檐口附近、边角部位较大。根据风洞试验结果和国外的有关资料,在上述区域风吸力系数可取-1.8,其余墙面可考虑-1.0,由于围护结构有开启的可能,所以

风荷载计算书

七、水平荷载(风荷载)计算 1、设计资料 基本风压: 2 /35.0m KN =ωο ,地面粗糙度类别为C 类。房屋高度H=21.9m 。 2、荷载计算 风荷载近似按阶梯形分布,首先应将其简化为作用在框架节点上的节点荷载。 作用在屋面梁和楼面梁节点处的集中风荷载标准值: 0k z s z ωβμμω= 式中 K W ——风荷载标准值(KN/m 2); z β——高度z 处的风振系数,结构高度H=21.9m <30m ,故取βZ =1.0; s μ——风荷载体型系数,对于矩形截面s μ=1.3; z μ——风压高度变化系数(地面粗糙度类别为C 类); 0w ——基本风压(KN/m 2); 风压高度变化系数z μ可查荷载规范取得。将风荷载换算成作用与框架每层节点上的集中荷载,计算过程如下表所示。表中z 为框架节点至室外地面的高度,A 为一榀框架各层节点的受风面积 表4.1 层次 z β s μ 0w Z μ k z s z ωβμμω= A(m 2) P K (kN)= A ×k ω 6 1.0 1.3 0.35 1.00 0.46 5.85 2.69 5 1.0 1.3 0.35 0.84 0.38 14.63 5.56 4 1.0 1.3 0.35 0.84 0.38 16.88 6.41 3 1.0 1.3 0.35 0.74 0.34 16.2 5.51 2 1.0 1.3 0.35 0.74 0.34 16.2 5.51 1 1.0 1.3 0.35 0.74 0.34 24.3 8.26 2 1 3.245.4)2/6.36.3(m A =?+= 2 2 2.165.46.3m A =?= 2 3 2.165.46.3m A =?= 2 4 88.165.4)2/6.32/9.3(m A =?+=

单层工业厂房排架柱内力计算

单层工业厂房排架柱内力计算 摘要:主要讲述排架结构的计算原理、过程以及结合实例计算排架柱内力, 了解厂房使用功能对厂房立面的影响以及单层厂房立面处理常采用的手法。 关键词:厂房排架柱内力计算 在石油化工生产中,经常会有大跨度的单层工业厂房。由于工艺要求不同,厂房的高度、跨度、跨数和吊车起重量等因素,使厂房柱定型化和标准化的工作很难进行。目前虽然有一些单层厂房柱的标准图,但大多数单层工业厂房柱仍然需要设计者自行设计。单层工业厂房的横向结构体系可分为:排架结构和刚架结构。按材料性质可分为:单层钢筋混凝土柱厂房、单层钢结构厂房以及单层砖柱厂房。本文主要讲述单层钢筋混凝土柱厂房排架柱的计算方法。 一.排架柱计算步骤及假定 1.1 计算步骤主要如下: 1.1.1根据厂房平、剖面布置图确定排架计算简图。 1.1.2计算作用在排架柱上的各项荷载。 1.1.3分别对各项荷载作用下排架柱进行内力计算,求出各控制截面的内力值。 1.1.4对各控制截面进行最不利荷载作用下内力组合,求出最不利内力。 1.1.5验算刚度(水平位移值)。 排架结构上作用的荷载除吊车等移动荷载之外,一般沿厂房的纵向是均匀布置的,各横向排架的刚度基本相同。为简化计算,将厂房按横向平面排架进行内力分析计算。 1.2平面排架内力计算时需做以下基本假定: 1.2.1柱子顶端与屋架(或屋面梁)为铰接(一般屋架或屋面梁端部和上柱用预埋钢板焊接,抵抗弯矩的能力很小,只能有效地传递竖向力和水平力,所以假定为铰接)。 1.2.2柱子下端与基础顶面为刚接。 1.2.3屋架或屋面梁为没有轴向变形的刚性杆(对屋面梁或刚度较大的屋架,受力后轴向变形很小,可视为无轴向变形的刚性杆即EA=+∞)。

风荷载取值规范

3.1.3 风荷载 建筑物受到的风荷载作用大小,与建筑物所处的地理位置、建筑物的形状和高度等多种因素有关,具体计算按照《荷载规范》第7章执行。 1、风荷载标准值计算 垂直于建筑物主体结构表面上的风荷载标准值W K ,按照公式(3.1-2)计算: βz ——高度Z 处的风振系数,主要是考虑风作用的不规则性,按照《荷载规范》7.4要求取值。多层建筑,建筑物高度<30m ,风振系数近似取1。 (1)风荷载体型系数μS 风荷载体型系数,不但与建筑物的平面外形、高宽比、风向与受风墙面所成的角度有关,而且还与建筑物的立面处理、周围建筑物的密集程度和高低等因素有关,一般按照《荷载规 表3.1.10 建筑物体型系数取值表 注1:当计算重要且复杂的建筑物、及需要更细致地进行风荷载作用计算的建筑物,风荷载体型系数可按照《高层规程》中附录A 采用、或由风洞试验确定。 注4:当多栋或群集的建筑物相互间距离较近时,宜考虑风力相互干扰的群体作用效应。一般可将单体建筑的体型系数乘以相互干扰增大系数,该系数可参考类似条件的试验资料确定,必要时宜通过风洞试验确定。 注3:檐口、雨蓬、遮阳板、阳台等水平构件,计算局部上浮风荷载作用时,体型系数不宜小于2.0。 W W z s z k μμβ=)21.3(-

注4:验算表面围护结构及其连接的强度时,应按照《荷载规范》7.3.3规定,采用局部风压力体型系数。 (2)风压高度变化系数μz 设置风压高度变化系数,主要是考虑建筑物随着高度的增加风荷载的增大作用。 对于位于平坦或稍有起伏地形上的建筑物,其风压高度变化系数应根据场地粗糙程度按《荷载规范》7.2要求选用,表3.1.11中列出了常用风压高度变化系数的取值要求。 表3.1.11 风压高度变化系数 关于地面粗糙程度的分类: A类:近海海面、海岛、海岸、湖岸及沙漠地区; B类:田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区; C类:有密集建筑群的城市市区; D类:有密集建筑群和且房屋较高的城市市区。 (3)基本风压值W0 基本风压值W0,单位kN/m2,以当地比较空旷平坦场地上离地10m高、统计所得50年一遇10分钟平均最大风速为标准确定的风压值,各地的基本风压可按照《荷载规范》附录D 中的全国基本风压分布图查用,表3.1.12为浙江省主要城镇基本风压取值参考表。 2、基本风压的取值年限 《荷载规范》在附录D中分别给出了n=10年、n=50年、n=100年一遇的基本风压标准值,工程设计中根据建筑物的使用性质与功能要求,一般按照下列方法选用风压标准值的取值年限: ①临时性建筑物:取n=10年一遇的基本风压标准值; ②一般的工业与民用建筑物:取n=50年一遇的基本风压标准值; ③特别重要的建筑物、或对风压作用比较敏感的建筑物(建筑物高度大于60m):取 表3.1.12 浙江省主要城镇基本风压(kN/m2)取值参考表

关于风荷载体型系数取用-2

关于门式刚架单层房屋体型系数的选用,目前国内主要有两种,一种是按照《门式刚架轻型房屋钢结构技术规程》CECS102:2002,一种是按照《建筑结构荷载规范》GB50009-2001(2006年版)。如何选用这两种规范的体型系数和在结构设计软件PKPM中的具体应用成了结构设计人员必须解决的问题,本文就两种规范体型系数的区别和各自的适用范围通过算例进行验证,并提出笔者的看法。 在《建筑结构荷载规范》(以下简称GB50009)中,7.1.1条明确指出,计算主要承重结构和围护结构时,分别采用7.1.1-1式和7.1.1-2式,体型系数分别采用主体结构体型系数和围护结构的局部风压体型系数。主体结构体型系数根据7.3.1条取用,而围护结构局部风压体型系数按照7.3.3条规定,考虑边角区的影响和有效受风面积的修正。在《门式刚架轻型房屋钢结构技术规程》(以下简称CECS102)中,主体结构和围护结构均采用相同的公式附录A.0.1式。刚架和围护结构等的体型系数按照表A.0.2中的相应数据。其中区分端区、中间区、边角区等,同样也有有效受风面积的修正。 GB50009已在我国沿用了50多年,积累了丰富的实际工程经验,它是面对所有结构形式的建筑房屋,因此具有通用性,也是工程设计和软件应用的主要参考依据。CECS102是参考美国金属房屋制造商协会MBMA的相关试验数据和资料编制的,主要针对门式刚架低矮房屋,已为世界多个国家采用。CSCE102有其相对较强的针对性,也就有其特定的适用范围,关于风荷载计算适用范围在CECS102附录A.0.2中已有明确表述,对于门式刚架轻型房屋,当其屋面坡度不大于10度、屋面平均高度不大于18m、房屋高宽比不大于1、檐口高度不小于房屋的最小水平尺寸时,风荷载体型系数可以按照CECS102附录A的规定进行取用。此时的风荷载计算结果是比较接近相关的试验数据的,用于工程设计是没有问题的。而试验分析同时也表明,当柱脚铰接且刚架的L/H大于2.3和柱脚刚接且L/H大于3.0时,按《荷规》风荷载体型系数计算所得控制截面的弯矩已经偏离试验数据较多,再按此风荷载体型系数取用已经严重不安全。因此,在工程设计中对于房屋高宽比不大于1的,应该严格按照CECS102的体型系数进行取用。 下面通过算例比较《荷载规范》和《门规》的风荷载体型系数的计算结果,对于主体结构,封闭式房屋中间区的体型系数: 算例一,跨度L=24m,高度H=8m,L/H=3.0, 50年一遇基本风压W0= 0.50KN/m2,地面粗糙度B类,恒载0.30KN/m2,活载0.50KN/m2。 1、按GB50009取用风荷载体型系数: 左风左柱弯矩图:

(完整版)单层工业厂房排架结构设计复习习题库2

单层工业厂房排架结构设计 预习自测题题库 一、单项选择题(本大题共20小题,每小题2分,共40分) 3 关于变形缝,下列不正确 ...的说法是(C ) A.伸缩缝应从基础顶面以上将缝两侧结构构件完全分开 B.沉降缝应从基础底面以上将缝两侧结构构件完全分开 C.伸缩缝可兼作沉降缝 D.地震区的伸缩缝和沉降缝均应符合防震缝的要求 7 下列关于影响温度作用大小的主要因素中,不正确 ...的是( D ) A.结构外露程度 B.楼盖结构的刚度 C.结构高度 D.混凝土强度等级 8 关于伸缩缝、沉降缝、防震缝,下列说法中,不正确 ...的是( C ) A.伸缩缝之间的距离取决于结构类型和温度变化情况 B.沉降缝应将建筑物从基顶到屋顶全部分开 C.非地震区的沉降缝可兼作伸缩缝 D.地震区的伸缩缝和沉降缝均应符合防震缝要求 12关于单层厂房排架柱的内力组合,下面说法中不正确的是( D ) A.每次内力组合时,都必须考虑恒载产生的内力 B.同台吊车的D max和D min,不能同时作用在同一柱上 C.风荷载有左吹风或右吹风,组合时只能二者取一 D.同一跨内组合有T max时,不一定要有D max或D min 17 单层厂房预制柱进行吊装阶段的裂缝宽度验算时,柱自重应乘以( A )A.动力系数B.组合值系数 C.准永久值系数D.频遇值系数

21 单层厂房排架结构由屋架(或屋面梁)、柱和基础组成,(D ) A.柱与屋架、基础铰接 B.柱与屋架、基础刚接 C.柱与屋架刚接、与基础铰接 D.柱与屋架铰接、与基础刚接 24 下列结构状态中,不属于 ...正常使用极限状态验算内容的是(A ) A.疲劳破坏B.裂缝宽度超过规范要求C.构件挠度超过规范要求D.产生了使人不舒服的振动 25 单层厂房排架考虑整体空间作用时,下列说法中不正确 ...的是(B ) A.无檩屋盖比有檩屋盖对厂房的整体空间作用影响大 B.均布荷载比局部荷载对厂房的整体空间作用影响大 C.有山墙比无山墙对厂房的整体空间作用影响大 D.在设计中,仅对吊车荷载作用需要考虑厂房整体空间工作性能的影响 26 下列关于荷载代表值的说法中,不正确 ...的是(D ) A.荷载的主要代表值有标准值、组合值和准永久值 B.恒荷载只有标准值 C.荷载组合值不大于其标准值 D.荷载准永久值用于正常使用极限状态的短期效应组合 28 单层厂房预制柱吊装验算时,一般情况下柱自重应乘以动力系数(A )A.1.2 B.1.4 C.1.5 D.1.7

风荷载计算方法与步骤

1风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建 筑物所受的风荷载。 1.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值ω(KN/m2)按下式计算: ω 风荷载标准值(kN/m2)=风振系数×风荷载体形系数×风压高度变化系数×基本风压 1.1.1基本风压 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速v0(m/s),再考虑相应的空气密度通过计算确定数值大小。 按公式确定数值大小,但不得小于0.3kN/m2,其中的单位为t/m3,单位为kN/m2。也可以用公式计算基本风压的数值,也不得小于0.3kN/m2。 1.1.2风压高度变化系数 风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。规范以B类地面粗糙程度作为标准地貌,给出计算公式。 粗糙度类别 A B C D 300 350 450 500 0.12 0.15 0.22 0.3 场地确定之后上式前两项为常数,于是计算时变成下式: 1.1.3风荷载体形系数 1)单体风压体形系数 (1)圆形平面;

(2)正多边形及截角三角平面,n为多边形边数; (3)高宽比的矩形、方形、十字形平面; (4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比的十字形、高宽比,长宽比 的矩形、鼓形平面; (5)未述事项详见相应规范。 2)群体风压体形系数 详见规范规程。 3)局部风压体形系数 檐口、雨棚、遮阳板、阳台等水平构件计算局部上浮风荷载时,不宜小于 2.0。未述事项详见相应规范规程。 1.1.4风振系数 对于高度H大于30米且高宽比的房屋,以及自振周期的各种高耸结构都应该考虑脉动风压对结构发生顺向风振的影响。(对于高度H大于30米、高宽比且可忽略扭转的高层建筑,均可只考虑第一振型的影响。) 结构在Z高度处的风振系数可按下式计算: ○1g为峰值因子,去g=2.50;为10米高度名义湍流强度,取值如下: 粗糙度类别 A B C D 0.12 0.14 0.23 0.39 ○2R为脉动风荷载的共振分量因子,计算方法如下: 为结构阻尼比,对钢筋混凝土及砌体结构可取; 为地面粗糙修正系数,取值如下: 粗糙度类别 A B C D 1.28 1.0 0.54 0.26 为结构第一阶自振频率(Hz); 高层建筑的基本自振周期可以由结构动力学计算确定,对于较规则的高层建筑也可采用 下列公式近似计算: 钢结构 钢筋混凝土框架结构

风荷载例题

例题1:某三层钢筋混凝土框架结构,平面为矩形,纵向各轴线间距离为4.2m ,层高为3.6m ,室内外高差0.6m ,地貌为B 类,所在地区基本风压值w 0为0.55kN/m 2 。求,顺风向风对一榀横向中框架各层节点产生的风荷载标准值。 风压高度变化系数μz (z)(老规范) 离地面高度(m ) 地面粗糙度B 5 1.00 10 1.00 15 1.14 解:建筑总高h <30m ,取βz =1.0 层数 βz μs z μz w 0 w z 1 1.0 1.3 4.2 1.00 0.55 0.715 2 7.8 1.00 0.715 3 11.4 1.04 0.744 一榀横向中框架各层节点产生的风荷载标准值为: ()1 1 4. 2 3.60.715 4.211.71kN 2P =?+??= ()21 3.6 3.60.715 4.210.81kN 2P =?+??= 31 3.60.744 4.2 5.62kN 2 P =???= 例题2:某金工车间,外形尺寸及部分风载体型系数如图所示,基本风压2 00.45kN /m ω=, 柱顶标高为10m +,室外天然地坪标高为0.30m -,1=2.1m h ,2=1.2m h ,地面粗糙类别为B ,排架计算宽度6m B =。求作用在排架上的顺风向风荷载标准值。 .解:(1)求21,q q ,

离地10m 时,0.1=z μ,离地15m 时,14.1=z μ,当离地10.3m 时, ()1.141 110.3101 .011510 z μ-=+ ?-=- ()10.8 1.010.456 2.18/k q kN m =???=→ ()20.5 1.010.456 1.36/k q kN m =???=→ (2)求w 屋顶与檐口风压高度变化系数均按檐口离室外地坪的高度10.3+2.1=12.4 ()1.141 112.410 1.071510 z μ-=+ ?-=- ()()0.80.5 2.10.50.6 1.2 1.070.4567.54k w kN =+?+-????=????

风荷载作用下排架内力分析(精)

风荷载作用下排架内力分析 1. 左吹风时计算简图如图(1所示 q 2 (1 对于 A 柱: λ=0.288 n=0.15 411311113110.34218111.8614.60.3429.287( A n C n R q HC KN λλ????+- ???????==????+- ???????=-=-??=-← 对于 C 柱; λ=0.288 n=0.244 411321113110.35718110.9314.60.3574.847( C n C n R q HC KN λλ????+- ???????==????+- ?????? ?=-=-??=-← A C W R R R F =+-=-9.287-4.847-9.54=-23.674KN(←

各柱顶的剪力分别为: A η=0.361 B η=0.545 C η=0.094 A A A V R R η=-=- 9.287+0.361×23.674=-0.741KN(← B B V R η=-=0.545×23.647=12.902KN(→ C C C V R R η=-=-4.847+0.094×23.674=-2.622KN(← 排架内力如下图: 2. 右吹风时计算简图如图(2所示 F w (2 对于 A 柱: n=0.146 11C =0.342 A R =-2q H 11C =0.93× 14.6×0.342=4.644KN ( 对于 C 柱: n=0.244 11C =0.357 111C R q HC =-=-1.86× 14.6×0.357=9.695KN(→ A C W R R R F =+-=4.644+9.695+9.54=23.879KN(→

5风荷载计算

5 风荷载计算 风荷载标准值 主体结构计算时,为了简化计算,作用在外墙面上的风荷载可近似作用在屋面梁和楼面梁处的等效集中荷载替代,垂直于建筑物表面的风荷载标注值按公式5-1计算。 0k z s z ωβμμω???= (5-1) 式中:k ω——风荷载标准值; s μ——风荷载体型系数; z μ——风压高度变化系数; 0ω——基本风压值,本设计中的基本风压取30.00=ω; z β——高度z 处的风振系数; 根据《建筑结构荷载规范》(GB50009—2012)第条规定:地面粗糙度可分为四类:A 类指近海海面和海岛、海岸、湖岸及沙漠地区;B 类指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇;C 类指有密集建筑群的城市市区;D 类指有密集建筑群且房屋较高的城市市区。本设计中地面粗糙度取C 类。 高度z 处的风振系数z β的计算式见公式5-2。 1z z z ξν?βμ=+ (5-2) ξ——脉动增大系数; ν——脉动影响系数; z ?——振型系数; z μ——风压高度变化系数。 根据《建筑结构荷载规范》(GB50009—2012)第节可知:对于框架结构的基本自振周期可以近似按照()10.08~0.10T n n =(n 为建筑层数)估算,应考虑风压脉动对结构发生顺风向风振的影响,本设计中自振周期取10.090.0960.54T n s ==?=,经过计算, 2 1200.300.54=0.087T ω=?。风载体型系数由《建筑结构荷载规范》(GB50009—2012)第节续表可以查得:8.0=s μ(迎风面)和5.0-=s μ(背风面)。 根据《建筑结构荷载规范》(GB50009—2012)第条规定:当结构基本自振周期s T 25.0≥时,以及对于高度超过30m 且高宽比大于1. 5 的高柔房屋,由风引起的结构振动比较明显,而且随着结构自振周期的增长,风振也随之增强。因此在设计中应考虑风振的影响,而且原则上还应考虑多个振型的影响。 由于本工程总高度为,自振周期虽已超过,但不属于高耸结构和大跨度结构,所以根据荷载规范,本工程不考虑顺风向风振的影响。即本工程在高度z 处的风振系数z β近

相关文档
最新文档