《高等代数与解析几何(下) 》期末考试试卷(B 卷)
11-12(下)高数B参考答案及评分标准
高数期末试题B 参考答案及评分标准一、判断题二、填空题(本大题共10小题,每小题2分,共20分)(6) 2 (7)x z y 522=+(8) -1 (9)9122≤+<y x (10)2ln 162(11) 6 (12)yPx Q ∂∂=∂∂ (13) 右手 (14)⎰20)2sin(21πdt t (15) 偶(16)求曲面42222=++z y x 在点(1,1,1)处的切平面方程,并求过原点与该切平面垂直的直线方程。
()())2(112)3(042111)2()2,2,4(|),,(11142),,()1,1,1(222分直的直线方程为:通过原点与该切平面垂分点处的切平面方程为,,曲面在分点处的法向量,,则曲面在解:记 zy x z y x F F F z y x z y x F z y x ===-++∴==-++=(17)设函数),(y x z z =由方程23222320x z y z x y +-+=所确定,求全微分dz 。
)1(43344322)3(4334)3(43222),,(222222223222222223322232分分分则解:记 dy zy z x y yz dx z y z x x xz dz zy z x y yz F F y z zy z x xxz F F x z y x z y z x z y x F z y z x ++-+--=∴++-=-=∂∂+--=-=∂∂+-+=(18)计算Ω⎰⎰⎰,其中Ω是由0,1z z ==和222x y x +=围成的区域。
)1(9163238cos 38cos 34)1(21)2(21)1(21)2()1)1(D (203223cos 202222221222212222分分分分分:其中解: =⋅=====+=+=≤+-+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰--Ωπππθππθθθθρρθθρρd d d d d d dxdy y x zdz dxdy y x y x dz y x z dxdy dv y x z DDDD(19)计算,)536()24(L⎰+++-+dy y x dx y x 其中L 为三角形(3,0),(3,2),(0,0)的正向边界。
高代2期末考试试题及答案
高代2期末考试试题及答案# 高代2期末考试试题及答案一、选择题(每题2分,共10分)1. 线性空间中,向量组的线性相关性意味着:- A. 向量组中至少有一个向量可以由其他向量线性表示- B. 向量组中所有向量都是零向量- C. 向量组中任意向量都可以由其他向量线性表示- D. 向量组中存在非零向量可以由其他向量线性表示答案:A2. 设矩阵A是n阶方阵,如果存在一个非零向量x,使得Ax=0,则称x为矩阵A的:- A. 特征向量- B. 零空间向量- C. 特征值- D. 逆矩阵答案:B3. 矩阵的秩是指:- A. 矩阵中非零行的最大数目- B. 矩阵中非零列的最大数目- C. 矩阵的行向量组的秩- D. 矩阵的列向量组的秩答案:D4. 对于线性变换T: V → W,如果存在矩阵P,使得P^(-1)AP=B,则称矩阵A和B是:- A. 相似矩阵- B. 等价矩阵- C. 合同矩阵- D. 正交矩阵答案:B5. 线性变换的核是指:- A. 线性变换的值域- B. 线性变换的零空间- C. 线性变换的逆映射- D. 线性变换的映射集合答案:B二、填空题(每题2分,共10分)1. 线性空间V的基是一组向量,使得V中任意向量都可以唯一地表示为这组向量的________。
答案:线性组合2. 设A是m×n矩阵,B是n×p矩阵,则矩阵乘积AB的秩r(AB)满足:________。
答案:r(AB) ≤ min(r(A), r(B))3. 矩阵的特征值是指使得方程________的λ的值。
答案:det(A - λI) = 04. 线性变换的线性组合可以表示为________。
答案:T1 + λT25. 对于线性空间的子空间U和W,它们的和U+W是________。
答案:U和W中所有向量的集合三、简答题(每题5分,共15分)1. 解释什么是线性空间的基,并给出一个例子。
答案:线性空间的基是一组向量,它们线性无关且能生成整个线性空间。
2020-2021某大学《高等代数》期末课程考试试卷合集(含答案)
【解】
(1) 方法一:数学归纳法证明 Dn = (n +1)an . k = 1时, D1 = 2a ,
假设 k n −1时, Dk = (n +1)ak .则当 k = n 时,
Dn = 2aDn−1 − a2Dn−2 = 2anan−1 − a2 (n −1)an−2 = (n +1)an.
方法二:递推法.
5、在
中,
是 的维数 则 在基
下的矩阵为_________________。
6. 元实二次型
是正定的充分必要条件是它的正惯
性指数等于___________________.
7.对于线性空间 V 中向量
,若在数域 P 中有 个
不全为零的数
,使
,则向量
称为_________.
8.相似矩阵的特征值__________.
(D) 1 + 22 ,2 + 23,3 + 21 . 3 线性方程组 Ax = b 的系数矩阵式 45 矩阵,且 A 的行向量线性无关,则错误的命题是
( D ).
(A) 齐次方程组 AT x = 0 只有零解;
(B)齐次方程组 AT Ax = 0 必有非零解; (C) 对任意的 b ,方程组 Ax = b 必有无穷多解; (D) 对任意的 b ,方程组 AT x = b 必有唯一解.
考试日期:
考试时间:120 分钟
试卷总分:100 分
一、填空(共 50 分,每小题 5 分)
1、设矩阵
与
相似,则
。
2、已知
是矩阵
的一个特征向量,则
特征向量 对应的特征值
。
3、 满足________时,二次型
《高等代数与解析几何(下) 》期末考试试卷(A 卷)
6.(10 分) 用非退化线性替换将二次型
化为标准型.
q(x1, x2 , x3 ) = x12 − 2x1x3 + x22 + 2x2 x3 − x32
7.(13 分)设V1 与V2 分别是齐次线性方程组 x1 + x2 + + xn = 0 与 x1 = x2 = = xn
的解空间,证明 K n = V1 ⊕V2 .
5 5 λ+7 5 5 λ+7故特征向量为 Nhomakorabea2 和 3.
………………5 分
⎛ −1⎞ ⎛ −1⎞
当 λ1
=
−2 时,特征向量η1
=
⎜ ⎜
1
⎟ ⎟
,η2
=
⎜ ⎜
0
⎟ ⎟
.
⎜⎝ 0 ⎟⎠
⎜⎝ 1 ⎟⎠
………………2 分
⎛ −1⎞
当 λ2
=
3 时,特征向量η3
=
⎜ ⎜
−1⎟⎟ .
⎜⎝ 1 ⎟⎠
………………2 分
命题共 2 页第 1 页
三.解答题:(共 80 分)
⎛3 5 5⎞
1.(15 分)
设
A
=
⎜ ⎜ ⎜⎝
5 −5
3 −5
5
⎟ ⎟
,问矩阵
A 是否可以相似于一个对角矩阵,若可
−7 ⎟⎠
以,求一个可逆矩阵T ,使T −1AT 为对角形矩阵.
2.(10 分) 求单叶双曲面 x2 + y2 − z2 = 1上过点(-3,-2,4)的直母线的方程. 9 4 16
矩
阵.
4. n 维线性空间V 的线性变换 A 在某个基下的矩阵为对角矩阵的充要条件是 A
高代下试卷期末
2014-2015学年第二学期《几何与高等代数(下)》期末试卷(2014级数学类专业)班级 学号 姓名 得分一、判断题(每小题3分,满分15分)1.线性变换A )(V End K ∈可对角化,当且仅当V 是A 的特征子空间的 直和。
( )2.n 阶多项式矩阵)(λA 可逆的充分必要条件是)(λA 满秩。
( )3.设A 为欧氏空间V 上的对称变换,则A 的特征值都为实数,且属于A 的不同特征值的特征向量必正交。
( )4.设⎪⎪⎪⎭⎫ ⎝⎛=111111111A ,⎪⎪⎪⎭⎫ ⎝⎛=000000003B ,则A 与B 相合且相似。
( ) 5.设n 阶矩阵B A 、相似,则B A 、具有相同的不变因子组,但反之 不成立。
( )二、填空题(每小题3分,满分15分)1.以原点为顶点,准线为⎩⎨⎧0102=--=--z y z y x 的锥面方程是 。
2.设()()3213213,,,,,,y y y x x x R V ===βα,则V 上双线性函数3323322111322),(y x y x y x y x y x f +-+-=βα关于自然基321,,εεε的度量矩阵为 。
3.设3阶方阵A 的三个特征值为1,3,31, 则=+*||E A ____ 。
4.设1)(23-+-=x x x x f ,1)(4-=x x g ,则它们的最大公因式 ()=)(),(x g x f 。
5. ⎪⎪⎪⎭⎫ ⎝⎛++=32)1(0000001)(λλλλA 的初等因子组为。
三、计算题(每小题10分,共40分)1. 化简二次曲线方程:012241254222=+--++y x y xy x , 并写出对应的坐标变换公式。
2.设实对称矩阵⎪⎪⎪⎭⎫ ⎝⎛=1010111tt A 与⎪⎪⎪⎭⎫ ⎝⎛=000020001B 相似,(1)求t 的值;(2)求正交矩阵T,使得BT=AT-1。
3.设对称多项式:322232321221231221321),,(x x x x x x x x x x x x x x x f +++++=(1)将),,(321x x x f 按字典序重新排列;(2)用初等对称多项式表示),,(321x x x f 。
高等代数期末试题及答案
高等代数期末试题及答案1. 选择题1.1 题目:解线性方程组已知线性方程组:\[\begin{cases}2x - 3y + z = 7 \\4x + y - 2z = -1 \\3x - 2y + 2z = 5\end{cases}\]其中,x、y、z为实数。
求解该线性方程组的解。
1.1 答案:解线性方程组的步骤如下:通过高斯消元法,将方程组化为行简化阶梯形式:\[\begin{cases}x - \frac{12}{7}z = 5 \\y - \frac{5}{7}z = 2 \\0 = 0\end{cases}\]由最后一行可以看出,方程存在自由变量z。
令z为任意实数,可以得到:\[\begin{cases}x = 5 + \frac{12}{7}z \\y = 2 + \frac{5}{7}z \\z = z\end{cases}\]因此,该线性方程组的解为:\[\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 5 +\frac{12}{7}z \\ 2 + \frac{5}{7}z \\ z \end{pmatrix}\]2. 填空题2.1 题目:求行列式的值计算行列式的值:\[D = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}\]2.1 答案:计算行列式的值,可以通过按任意行或列展开的方法来求解。
选择第一行进行展开计算:\[D = 1 \cdot \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 2 \cdot\begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \cdot \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}\]计算上述三个二阶行列式的值,得到:\[D = 1 \cdot (5 \cdot 9 - 6 \cdot 8) - 2 \cdot (4 \cdot 9 - 6 \cdot 7) + 3\cdot (4 \cdot 8 - 5 \cdot 7) = 0\]因此,行列式的值为0。
(完整word版)高等代数(二)期末考试样卷
《高等代数(二)》期末考试样卷一、选择题(本大题有一项是符合题目要求的)1. 若σ是F 上向量空间V 的一个线性变换,则下列说法∙∙误错的是( )A.)()()(,,βσασβασβα+=+∈∀VB.0)0(=σC.)()(,,ασασαk k F k V =∈∈∀D.0)0(≠σ2.若},,{21s ααα 和},,{21t βββ 是两个等价的线性无关的向量组,则( ) A.t s > B. t s < C. t s = D.以上说法都不对 3.向量空间2F [x]的维数是( )A. 0B. 1C. 2D. 3 4.一个线性变换关于两个基的矩阵是( )A.正定的B.相似的C.合同的D.对称的 5.如果两个向量βα与正交,则下列说法正确的是( ) A. ><βα, > 0 B. ><βα, < 0 C. ><βα, = 0 D. ><βα, ≠ 06.设σ是欧氏空间V 的正交变换, 任意α,β∈V, 下列正确的是( ) A.<α,β > = <σ(α),β> B.<α,β> = <α,σ(β)> C.<α,β> = <σ(α), σ(β)> D. <α,β> = -<σ(α),σ(β)>7.如果n 元齐次线性方程组AX =0的系数矩阵的秩为r,那么它的解空间的 维数为( )A 、n-rB 、nC 、rD 、n+r 8.设21,W W 是向量空间V 的两个子空间,则下列说法正确的是( ) ①21W W +是向量空间V 的子空间 ②21W W +不是向量空间V 的子空间③21W W 是向量空间V 的子空间 ④21W W 不是向量空间V 的子空间 ⑤21W W 是向量空间V 的子空间 ⑥21W W 不一定是向量空间V 的子空间 A. ①③⑤ B. ②④⑥ C. ①③⑥ D. ②④⑤ 9.设σ是数域F 上向量空间V 的线性变换,W 是V 的子空间,如果对于W 中的任意向量ξ,有W ∈)(ξσ,则称W 是σ的 ( )A.非平凡子空间B.核子空间C.不变子空间D.零子空间10.欧氏空间的度量矩阵一定是( )A.正交矩阵B.上三角矩阵C. 下三角矩阵D. 正定矩阵 二、填空题(共10小题,每小题3分,共30分。
高等代数下期终考试题及答案B卷
高等代数(下)期末考试试卷及答案(B 卷)一.填空题(每小题3分,共21分)1. 223[]-2-31,(-1),(-1)P x x x x x 在中,在基下的坐标为2. 设n 阶矩阵A 的全体特征值为12,,,n λλλ,()f x 为任一多项式,则()f A 的全体特征值为 .3.'=n 在数域P 上的线性空间P[x]中,定义线性变换:(,则的值域())()A A f x f x A()-n P[x]=,的核(0)=1A A A4.已知3阶λ-矩阵A (λ)的标准形为21 0 00 00 0λλλ⎛⎫⎪⎪ ⎪+⎝⎭,则A (λ)的不变因子________________________;3阶行列式因子D 3 =_______________.5. 若4阶方阵A 的初等因子是(λ-1)2,(λ-2),(λ-3),则A 的若当标准形J=6.在n 维欧氏空间V 中,向量ξ在标准正交基12,,,n ηηη下的坐标是12(,,,)n x x x ,那么(,)i ξη=7. 两个有限维欧氏空间同构的充要条件是.二. 选择题( 每小题2分,共10 分)1.( ) 已知{(,),,,}V a bi c di a b c d R =++∈为R 上的线性空间, 则dim(V)为(A) 1; (B) 2; (C) 3; (D) 42. ( ) 下列哪个条件不是n 阶复系数矩阵A 可对角化的充要条件 (A) A 有n 个线性无关的特征向量; (B) A 的初等因子全是1次的; (C)A 的不变因子都没有重根; (D) A 有n 个不同的特征根; 3.( ) 设三阶方阵A 的特征多项式为322)(23+--=λλλλf ,则=||A(A) 1; (B) 2; (C) 3; (D) -34.( )设2121),2,1,2(),1,1,0(ααβαα+=-=-=k ,若β与2α正交,则 (A) k=1; (B) k=4; (C) k= 3; (D) k=2 5.( )下列子集哪个不是R 3的子空间(A) }1|),,{(233211=∈=x R x x x w (B) }0|),,{(333212=∈=x R x x x w (C) }|),,{(32133213x x x R x x x w ==∈=(D) }|),,{(32133214x x x R x x x w -=∈=三.判断题(对的打”√”,错的打”X ”,每小题2分,共12分)1.( )设n n V P ⨯=,则{,0}n n W A A P A ⨯=∈=是V 的子空间.2.( )12,,,n εεε是n 维欧氏空间的一组基,矩阵()ijn nA a ⨯=,其中(,)ij i j a εε=,则A 是正定矩阵.3.( ) 若n 维向量空间P n 含有一个非零向量,则它必含有无穷多个向量.4.()在线性空间R 2中定义变换σ:(,)(1,)x y x y σ=+,则σ是R 2的一个线性变换. 5.( )设V 是一个欧氏空间,,V αβ∈,并且αβ=,则αβ+与αβ-正交。
高等代数与空间解析几何期末试卷
诚信应考 考出水平 考出风格浙江大学城市学院2010 — 2011 学年第 二 学期期末考试试卷 《 高等代数与空间解析几何(II ) 》答题卷开课单位: 计算分院 ;考试形式:闭卷;考试时间:_2011_年_6_月_26_日; 所需时间: 120 分钟 一.___填空题__(本大题共___10__空,每空___2__分,共___20__分。
)1. 2.3. 4. 5.二.问答题(本大题共_ 4_题,每题_5_分,共_20_分。
)2.3.4.2.五.__证明题_(本题6分。
)浙江大学城市学院2010 — 2011 学年第 二 学期期末考试试卷 《 高等代数与空间解析几何(II ) 》试题卷注:答案及过程写入答题卷中才有效。
一.___填空题__(本大题共___10__空,每空___2__分,共___20__分。
)1.σ是3R 上的一个线性变换,则σ保持向量的 运算和 运算. 2.设[][][]123131,251,26TTTαααλ===, 则λ=时,123,,ααα线性相关,且极大无关组可以取为 ,其余向量被此极大无关组线性表示的表示式为 .3.设矩阵01000100A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,那么齐次线性方程组0A X=的通解为.4.已知3阶方阵A 的特征值为1,3,a ,且9A =,则,a=224A A E --=.5. 矩阵10002003A ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦所对应的二次型为,且此二次型的秩为.二.问答题(本大题共_ 4_题,每题_5_分,共_20_分。
)1.集合{}123123123,,1,,,TV x x x x x x x x x =++=⎡⎤⎣⎦其中均为实数是线性空间吗?请说明理由.2.已知向量组[][][]12311,121,31,2,4T TTααα=-=-=,,,,以及[]3,5,2Tβ=,则β能否由123,,ααα线性表示,请说明理由.3.请写出一个与[]3P x 同构的线性空间并说明理由.4.若矩阵1232103x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦能对角化,则x 取何值?请说明理由.三.__简单计算题_(本大题共_6_题,每题均5分,共_30_分。
高等代数期末考试题库及答案解析
高等代数期末考试题库及答案解析第一部分:选择题(共10题,每题2分,总分20分)1.高等代数是一门研究什么的数学学科?a.研究高等数学b.研究代数学c.研究线性代数d.研究数论–答案:b2.什么是矩阵的秩?a.矩阵中非零行的个数b.矩阵中非零列的个数c.矩阵中线性无关的行向量或列向量的最大个数d.矩阵的行数与列数的乘积3.给定一个方阵A,如果存在非零向量x使得Ax=0,那么矩阵A的秩为多少?a.0b.1c.方阵A的行数d.方阵A的列数–答案:a4.什么是特征值和特征向量?a.矩阵A与它的转置矩阵的乘积b.矩阵A的负特征值和负特征向量的乘积c.矩阵A与它的逆矩阵的乘积d.矩阵A与一个非零向量的乘积等于该向量的常数倍,并且这个向量成为特征向量,该常数成为特征值。
5.什么是行列式?a.矩阵A所有元素的和b.矩阵A中所有元素的乘积c.矩阵A的转置矩阵与它自身的乘积d.矩阵A的行列式是一个标量,表示矩阵A所表示的线性变换的倍数比例。
–答案:d6.什么是矩阵的逆?a.矩阵的行向量与列向量交换位置b.矩阵A的转置矩阵c.存在一个矩阵B,使得矩阵AB=BA=I(单位矩阵)d.矩阵的所有元素取倒数7.给定一个2x2矩阵A,当且仅当什么时候矩阵A可逆?a.矩阵A的行列式为0b.矩阵A的行列式不为0c.矩阵A的特征值为0d.矩阵A的特征值不为0–答案:b8.什么是矩阵的转置?a.矩阵的行与列互换b.矩阵的行与行互换c.矩阵的列与列互换d.矩阵的所有元素取相反数–答案:a9.对于矩阵A和B,满足AB=BA,则矩阵A和B是否可逆?a.可逆b.不可逆c.只有A可逆d.只有B可逆–答案:b10.什么是矩阵的秩-零空间定理?a.矩阵中非零行的个数加上零行的个数等于行数b.矩阵中非零列的个数加上零列的个数等于列数c.矩阵的秩加上矩阵的零空间的维数等于列数d.矩阵的秩加上矩阵的零空间的维数等于行数–答案:c第二部分:计算题(共4题,每题15分,总分60分)1.计算矩阵的秩: A = \[1, 2, 3; 4, 5, 6; 7, 8, 9\]–答案:矩阵A的秩为22.计算特征值和特征向量: A = \[1, 2; 3, 4\]–答案:矩阵A的特征值为5和-1,对应的特征向量分别为\[1; 1\]和\[-2; 1\]3.计算行列式: A = \[3, 1, 4; 1, 5, 9; 2, 6, 5\]–答案:矩阵A的行列式为-364.计算逆矩阵: A = \[1, 2; 3, 4\]–答案:矩阵A的逆矩阵为\[-2, 1/2; 3/2, -1/2\]第三部分:证明题(共2题,每题25分,总分50分)1.证明:当矩阵A为可逆矩阵时,有出现在矩阵A的行列式中的每个元素,将该元素与其对应的代数余子式相乘之后的结果,再求和得到的值等于矩阵A的行列式的值。
(完整word版)高等代数期末试卷
高等代数课程期末试卷命题人:审题人:姓名数学系班学号:题号一二三四五总分得分一、是非题(每小题2分,共10分)1.f(x)=ax+b (a≠0)在任意数域上不可约。
()2.行列式D=0,则行列式定有两行成比例。
()3.两个n 元实二次型能够用满秩线性变换互相转化的充要条件是它们有相同的正惯性指数和负惯性指数。
()4.若对于方阵A,存在0021≠≠αα,满足2211αααα-==A A ,,则21αα、线性无关.()5.设δ是n 维欧氏空间V 的一个正交变换,则δ关于V 的任一基的矩阵都为正交矩阵.()二、选择题(每小题3分,共18分)1.设f(x)∈R[x],若对任意的首项系数为1的g(x)∈R[x],都有(f(x),g(x))=g(x),则f(x)必为()A.零次多项式B.零多项式C.f(x)≡1D.不存在得分得分2.记D=ba c a cb cb a ,A=a+b+c,B=a 2+b 2+c 2,C=ab+bc+ca ,如果D=0,那么必有()A.A=0B.B-C=0C.A=0或B-C=0D.A,B,C 不确定3.若21,W W 都是n 维线性空间V 的子空间,那么()A.维()1W +维()21W W =维()2W +维()21W W +;B.维()21W W +=维()1W +维()2W ;C.维()1W +维()21W W +=维()2W +维()21W W ;D.维()1W -维()21W W =维()21W W +-维()2W 。
4.同一个线性变换在不同基下的矩阵是()A.合同的;B.相似的;C.相等的;D.正交的。
5.设V 是n 维欧氏空间,那么V 中的元素具有如下性质()A 若()()γβγαβα=⇒=,,;B 若βαβα=⇒=;C 若()11,=⇒=ααα;D 若()βα,>βα=⇒0。
6、设u 是正交矩阵,则()A u 的行列式等于1B u 的行列式等于-1C u 的行列式等于±1D u 的行列式等于0三、填空题(每小空3分,共21分)1.2i 是多项式f(x)=x 7+x 5+2x 4-8x 3+8x 2-12x+8的二重根,f(x)的其他根是。
2020-2021大学《高等代数》期末课程考试试卷B1(含答案)
2020-2021《高等代数》期末课程考试试卷B1专业: 考试日期: 所需时间:120分钟 总分:100分 闭卷一、选择题(5分×5)1设A 为型矩阵,B 为型矩阵,E 为m 阶单位矩阵,若AB=E ,则( )AA 、秩r(A)=m, 秩r(B)=mB 、秩r(A)=m, 秩r(B)=nC 、秩r(A)=n, 秩r(B)=mD 、秩r(A)=n, 秩r(B)=n2设向量组123,,ααα线性无关,则下列向量组线性相关的是(A ).(A ) 122331,,αααααα---; (B ) 122331,,αααααα+++; (C ) 1223312,2,2αααααα---; (D ) 1223312,2,2αααααα+++.3线性方程组Ax b =的系数矩阵式45⨯矩阵,且A 的行向量线性无关,则错误的命题是( D ).(A) 齐次方程组0TA x =只有零解; (B )齐次方程组0T A Ax =必有非零解; (C) 对任意的b ,方程组Ax b =必有无穷多解; (D) 对任意的b ,方程组TA x b =必有唯一解.4 设102011101A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,矩阵B 满足2AB A B E =--,则()B E -=.B(A )17;(B )97-;(C )97;(D )1-.5 设,A B 是满足0AB =的任意两个非零矩阵,则( A ). (A )A 的列向量组线性相关,B 的行向量组必线性相关; (B )A 的列向量组线性相关,B 的列向量组必线性相关; (C )A 的行向量组线性相关,B 的行向量组必线性相关; (D )A 的行向量组线性相关,B 的行向量组必线性相关.二、填空题 (5分×5)6 设A 为3阶矩阵,2A =-,把A 按行分块为123A A A A ⎛⎫⎪= ⎪ ⎪⎝⎭,则行列式312123___.A A A A -= ——67设1231212011311042025kA ⎛⎫⎪- ⎪⎪=⎪- ⎪ ⎪⎝⎭,且A 得秩为3,k =___1___.8 设()1,,(1,,,)Ti i in a a i r r n α==<是n 维实向量,且1,,r αα线性无关,已知()1,,T n b b β=是线性方程组11110n r rn a a x a a ⎛⎫ ⎪=⎪ ⎪⎝⎭的非零解,判断向量组1,,,r ααβ的线性相关性.___________【解】根据定义来判断.设()1,,,0r s ααβ=,这里()11,,Tr s s s +=.由题意,0T i αβ=,则0T i βα=.由()1,,,0r s ααβ=得()1110T r r r s s s βααβ++++=,即()1110T T T r r r s s s βαβαββ++++=.所以10T r s ββ+=,10r s +=.又因为1,,r αα线性无关,10r s s ===.所以向量组1,,,r ααβ的线性无相关.院系:—————— 专业班级:——————— 姓名:——————— 学号:——————装 订 线9 判断二次型()222123123121323,,55484f x x x x x x x x x x x x =+++--是否正定_______.【解】f 所对应的矩阵为524212425-⎛⎫ ⎪- ⎪ ⎪--⎝⎭,它的顺序主子式5245250,0,2120.21425->>->--所以 f 正定.10已知平面上三条不同直线的方程分别为230,230,ax by c bx cy a ++=++=230,cx ay b ++=试证明这三条直线交于一点的充要条件是0a b c ++=.三、解答题. (10分×5)11设n 元线性方程组Ax b =,其中2222212121212a a a a a A a a a a ⎛⎫⎪ ⎪⎪ ⎪= ⎪⎪ ⎪⎪⎝⎭,12n x x x x ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,100x b ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭.(1) 证明行列式(1)nA n a =+;(2) 当a 为何值时,该方程组有唯一解,并求1x ; (3) 当a 为何值时,该方程组有无穷多解,并求通解.【解】(1) 方法一:数学归纳法证明(1)nn D n a =+.1k =时,12D a =,假设1k n ≤-时,(1)kk D n a =+.则当k n =时,21221222(1)(1).n n n n n n D aD a D ana a n a n a ----=-=--=+方法二:递推法.由2122n n n D aD a D --=-,得到211212222321()()().n n n n n n n nn n D aD aD a D a D aD a D aD aD aD a ---------=-=-=-==-=所以,()122221212(2)(1)(1).n n n n n n nn n n nD a a a aD a a D n a aD n a aD n a -----=++=+==-+=-+=+(2) 当0a ≠时,0n D ≠,方程组有唯一解.11(1)(1)n nna nx n a n a-==++. (3) 当0a =时,()1r A n =-,(|)1r A b n =-,所以方程组有无穷多解,通解为01100000x k ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.12246123__4812n A A -⎛⎫⎪=-= ⎪ ⎪-⎝⎭已知,则.【解】()()()()212123422212312381238444(8)n n A A A A A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=--=--=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-1,故111,所以。
高等代数与解析几何期末测试题
1.设,A B 均为n 阶可逆矩阵,则1()-=AB .2.4阶行列式中含有因子1123a a 的项为 和 .3.设矩阵200038025⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,则1A -= .4.当k 满足条件 时,向量组12(,3,0), (1,,1),=-=--k k αα3(0,2,1)α=-线性相关.5.设A 是3阶方阵,2A =,则2-=A . 6.若242(1)|1,x Ax Bx -++ 则A = ,B = . 7. 计算下列n 阶行列式123123123123n n n n n x m x x x x x m x x D x x x m x x x x x m--=--.8. 设212134212A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,2AX A X =+,求X .9. 设123221343A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求(1)A ; (2)1A -.10. 设非齐次线性方程组123231231,63, 54,x x x x x x x bx a ++=⎧⎪+=⎨⎪++=⎩当b a ,为何值时,此方程组(1) 无解;(2) 有唯一解;(3) 有无穷多解,并在有无穷多解时,写出其通解. 11. 求向量组12(1,0,2,1),(1,2,0,1),αα==3(2,5,1,4),α=-4(2,1,3,0)α=的秩及一个极大无关组,并用此极大无关组来线性表示其余的向量. 12. 设向量组123,,ααα线性无关,令1123,βααα=++213 23,βαα=+31233βααα=++,证明向量组123,,βββ线性无关. 13. 求经过直线120,:4320,+-+=⎧⎨-++=⎩x y z L x y z 且与直线212,:1=-+⎧⎨=⎩y x L z x平行的平面方程.14. 求解线性方程组12341234123431231/2 x x x xx x x xx x x x--+=⎧⎪-+-=⎨⎪--+=-⎩共2页,第2页。
(完整word版)高等代数第二学期试题
第二学期期末考试《高等代数》试题一、填空:(每空2分,共30分)1、n 元二次型正定的充分必要条件是它的正惯性指数______________。
2、A 为正定矩阵,则A _______。
3、),(21s L αααΛ的维数__________向量组s αααΛ21,的秩。
4、1V ,2V 都是线性空间V 的子空间,则维1V +维2V =______________。
5、和1V +2V 是直和的充要条件为=⋂21V V ___________。
6、数域P 上两个有限维线性空间同构的充要条件是______________。
7、A ,B 是两个线性变换,它们在基n εεεΛ,,21下的矩阵分别为A ,B ,则A+B 在基n εεεΛ,,21下的矩阵为______________。
8、A 是n 维线性空间V 的线性变换,则A 的秩+A 的零度=______________。
9、在欧几里德空间中,α=_______。
><βα,=_______。
10、欧几里德空间的一组标准正交基的度量矩阵为_______。
11、A 为正交矩阵,则A =_______,1-A =_______。
二、判断(每题2分,共10分)1、A 的值域是A 的不变子空间,但A 的核不是A 的不变子空间( )。
2、两个子空间的交还是线性空间V 的子空间( )。
3、线性变换在不同基下所对应的矩阵是相似的( )。
4、线性变换把线性无关的向量变为线性无关的向量( )。
5、度量矩阵是正定矩阵( )。
三、t 取什么值时,二次型3231212322214225x x x x x tx x x x +-+++正定?(10分)四、在4P 中,求向量ξ在基4321,,,εεεε下的坐标,其中=1ε(1,1,1,1),=2ε(1,1,-1,-1),=3ε(1,-1,1,-1)=4ε(1,-1,-1,1),ξ=(1,2,1,1)(10分)五、3P 中,令),4,2(),,(213131321a a a a a a a a a -+-=σ,求σ在基},,{321εεε下的矩阵。
2020-2021大学《高等代数》期末课程考试试卷B(含答案)
2020-2021《高等代数》期末课程考试试卷B适用专业: 考试日期: 试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一、填空(共50分,每小题5分)1、设矩阵与相似,则。
2、已知是矩阵的一个特征向量,则特征向量对应的特征值。
3、满足________时,二次型是正定的。
4、向量空间的子空间的维数为________,它的一组基为_______________。
5、在中,则在基下的矩阵为_________________。
6.元实二次型是正定的充分必要条件是它的正惯性指数等于___________________. 7.对于线性空间V 中向量,若在数域P 中有个不全为零的数,使,则向量称为_________.8.相似矩阵的特征值__________.9.向量,则内积 ___________.10.若A 是实对称矩阵,则 A 的特征值为____________.二、(15分)用非退化线性替换化二次型为标准型。
三、(10分)设是级实对称矩阵,证明: 正定的充分必要条件是的特征多项式的根全大于零。
院系_____________专业班级__________姓名____________序号___________―――――――装―――――――订―――――――线―――――――――四、(15分)求由向量生成的子空间与由向量生成的子空间的交的基和维数,已知。
五、(10分)设是四维线性空间的一组基,已知线性变换在这组基下的矩阵为1)求的特征值与特征向量;2)求一可逆矩阵,使成对角形2020-2021《高等代数》期末课程考试试卷B答案适用专业: 考试日期: 试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一、填空(共25分,每小题5分) 1、设矩阵20022311A x -⎛⎫ ⎪= ⎪⎪⎝⎭与10002000B y -⎛⎫⎪= ⎪⎪⎝⎭相似,则___0______,__2______x y ==-。
高等代数期末考试题库及答案解析 (2)
高等代数期末考试题库及答案解析1. 矩阵运算1.1 矩阵加法考察矩阵的相加,要求加法可交换。
题目:已知矩阵 A = \(\begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}\),矩阵 B = \(\begin{bmatrix} 5 & 2 \\ 1 & 3 \end{bmatrix}\)。
求 A + B 的结果。
答案解析:根据矩阵加法的定义,对应位置的元素相加,即有:\[ A + B = \begin{bmatrix} 3+5 & 1+2 \\ 2+1 & 4+3 \end{bmatrix} =\begin{bmatrix} 8 & 3 \\ 3 & 7 \end{bmatrix} \]1.2 矩阵乘法考察矩阵的相乘,要求乘法满足结合律。
题目:已知矩阵 A = \(\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}\),矩阵 B = \(\begin{bmatrix} 5 & 2 \\ 3 & 1 \end{bmatrix}\)。
求 A * B 的结果。
答案解析:根据矩阵乘法的定义,对应位置元素相乘并求和,即有:\[ A \times B = \begin{bmatrix} 2 \cdot 5 + 3 \cdot 3 & 2 \cdot 2 + 3 \cdot 1 \\ 1 \cdot 5 + 4 \cdot 3 & 1 \cdot 2 + 4 \cdot 1 \end{bmatrix} = \begin{bmatrix} 19 & 8 \\ 17 & 6 \end{bmatrix} \]2. 矩阵的特征值和特征向量2.1 特征值和特征向量的定义考察特征值和特征向量的定义和性质。
题目:设矩阵 \(A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}\),求 A 的特征值和特征向量。
《高等代数》(下)课程期末试卷
莆田学院2002―2003学年第一学期数学2001级数学专业《高等代数》(下)课程期末试卷一、完成下列计算(30分)1. 设)(ij a A =是n 级正定矩阵,而),,,(21'=n x x x α,),,,(21'=n y y y β在n R 中定义内积),(βα为 ),(βαβαA '=.(1) 求基)0,,0,1(1 =ε,)0,,0,1,0(2 =ε,, )1,0,,0,0( =n ε的度量矩阵;(2) 求基)1,,1,1(1 =η,)1,,1,1,0(2 =η,, )1,0,,0,0( =n η的度量矩阵.2.求复矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=111122254A 的若当标准形,确定其最小多项式. 3设f 是数域P 上3维线性空间),,(321εεεL V =的一个线性函数, 如果1)(31=+εεf ,1)2(32-=-εεf ,3)(21-=+εεf ,求).(332211εεεx x x f ++二、用正交线性替换化二次型212x x 312x x +412x x -322x x -422x x +432x x +为标准形,现已知矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----0111101111011110的所有不同的特征值为1和3-. (20分) 三、设σ是数域P 上线性空间V 的线性变换且=2σσ,证明 (20分) 1.σ的核}|)({)(V Ker ∈∀-=αασασ;2.σ的值域)Im(σ}|)({V ∈==αασα;3. σ的特征值为1或1-;4.若τ也是数域P 上线性空间V 的线性变换, 则)(σKer 和)Im(σ都是τ的不变子空间的充要条件为τσστ=.四、设)(ij a A =是n 级实矩阵,且其行列式0det ≠A . (20分)1 证明存在正交矩阵Q 和每个对角元素皆为正的上三角矩阵T 使得QT A =;2.上述分解是否具有唯一性?为什么?3.证明对n 级正定矩阵S 来说, 必有每个对角元素皆为正的上三角矩阵T 使得T T S '=.五、设m εεε,,,21 是n 维欧氏空间)(R V n 的一个标准正交组, (10分)1. 证明 对任意)(R V n ∈α总有221||),(αεα≤∑=m i i;2.对一般的欧氏空间来说,上述不等式是否总成立?为什么?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三.解答题:(共 80 分)
1.(15 分)
λ − 3 −2 1 解: χA (λ) = λE − A = 2 λ + 2 −2 = (λ − 2)2 (λ + 4) ,
−3 −6 λ +1
故特征向量为 2 和-4.
………………5 分
⎛ 2 ⎞ ⎛1⎞
当 λ1
=
2 时,特征向量η1
=
⎜ ⎜
−1⎟⎟
,η2
三.解答题:(共 80 分)
⎛ 3 2 −1⎞
1.(15 分)
设
A
=
⎜ ⎜⎜⎝
−2 3
−2 6
−21⎟⎟⎟⎠ ,问矩阵 A 是否可以相似于一个对角矩阵,若可
以,求一个可逆矩阵T ,使T −1AT 为对角形矩阵.
命题共 2 页第 1 页
2.(10
分)求圆
⎧⎪ x 2
⎨ ⎪⎩
x
2
+ +
y2 y2
+ +
《高等代数与解析几何(下)》期末考试试卷(B 卷)
一.填空题:(每小题 2 分,共 10 分)
1. 线性变换σ 的属于不同特征值的特征向量是
.
2. 如果 (x − 3) | f (x), 则 f (3) =
.
3. 实二次型正定的充分必要条件是它的矩阵 A
.
4. 在实数域上, 不可约多项式有
.
5.在几何空间中,一个不含 y 的方程 F (x, z) = 0 表示的曲面是
⎜ ⎜
−1
0
−2
⎟ ⎟
,使
T
−1
AT
=
⎜ ⎜
0
2
0 ⎟⎟.
⎜⎝ 0 1 3 ⎟⎠
⎜⎝ 0 0 −4⎟⎠
………………4 分
2.(10 分) 解:两方程相减,得 x + y + z − 3 = 0 ,故已知圆是球面 S1 : x2 + y2 + z2 = 4
答案共 3 页第 1 页
与平面 Π1 : x + y + z − 3 = 0 .球面半径 R1 = 2 ,球心 0 到 Π1 的距离
d=
−3 = 1+1+1
3 , 故圆半径 …5 分
过球心 O 且垂直于 Π1 的直线 L:x = y = z ,它与平面 Π1 的交点即为圆心(1,1,1). …………5 分
3.(12 分) 解:原点 O 在旋转轴上,且轴的方向向量是ξ = (1,1,1) .可得方程组:
………………6 分
令
⎧ ⎪ ⎨
y1 y2
= =
x1 + 2 x2
x2 − + x3
2
x3
,
⎪⎩ y3 = 3x3
答案共 3 页第 2 页
⎧ ⎪
x1
⎪
=
y1
−
1 2
y2
+
5 6
y3
即
⎪ ⎨
x2
⎪
=
1 2
y2
−
1 6
y3
.
⎪ ⎪⎩ x3
=
1 3
y3
………………5 分
则有: q(x1, x2 , x3 ) = y12 + y2 2 − y32 .
=
⎜ ⎜
0
⎟⎟ .
⎜⎝ 0 ⎟⎠
⎜⎝ 1 ⎟⎠
………………2 分
⎛1⎞
当 λ2
=
−4 时,特征向量η3
=
⎜ ⎜
−2 ⎟⎟ .
⎜⎝ 3 ⎟⎠
………………2 分
∵dim(V2 ) + dim(V−4 ) = 3,故A可以相似于一个对角矩阵.
………………2 分
⎛2 1 1⎞
⎛2 0 0 ⎞
取可逆矩阵 T
=
………………2 分
7.(10 分)证明:(反证)如果ξ1 + ξ2 是σ 的属于某个特征值 λ0 的特征向量,则
σ (ξ1 + ξ2 ) = λ0 (ξ1 + ξ2 ) .
………4 分
又σ (ξ1 + ξ2 ) = σξ1 + σξ2 = λ1ξ1 + λ2ξ2 ,所以 (λ1 − λ0 )ξ1 + (λ2 − λ0 )ξ2 = 0 .
(A) π ; 2
(B) π ; 4
(C) π ; 3
(D) π . 6
5. 直线 x −1 = y +1 = z + 2 与平面 4x + 5y − 3z − 7 = 0 的交点坐标为( ). 3 −4 −2
(A) (−2,3, 0) ; (B) (2,3, 0) ; (C) (−2,3,1) ; (D) (1,3, −2) .
z2 z2
= +
4 x+
y
+
z
−
7
=
0
的圆心及半径.
3.(12 分) 求直线 x = y = z −1 绕直线 x = y = z 旋转所得旋转曲面的方程. 21 0
4.(10 分) λ 取何值时,下列二次型是正定的:
f (x1, x2 , x3 ) = 5x12 + x22 + λ x32 + 4x1x2 − 2x1x3 − 2x2 x3 . 5.(10 分)证明:如果 (x2 + x +1) | f (x3 ) + xg(x3 ) ,则 f (1) = g(1) = 0 .
⎛ 5 2 −1⎞
4.(10 分)
解:二次型的矩阵
A
=
⎜ ⎜⎜⎝
2 −1
1 −1
−λ1⎟⎟⎟⎠ ,
………………3 分
它的顺序主子式 D1 = 5 > 0, D2 = 1 > 0, D3 = λ − 2 . 故当 λ > 2 时原二次型正定.
………………4 分 ………………3 分
5.(10 分)解:设 ε = −1+ 3i ,则 ε ,ε 都是 x2 + x +1的根. 2
3. 设 3 阶方阵 A 的特征值为1, 1 , 1 , 则 A−1 等于( ). 23
(A) 9;
(B) 1 ; 9
(C) 6;
(D) 1 . 6
∫ 4. 在 R[x] 中,定义内积 ( f (x), g(x)) =
1
f (x)g(x)dx,
则 f (x) = 1, g(x) = x 的夹角
0
是( ).
由 λ1 ≠ λ2 可得ξ1,ξ2 线性无关,因此 (λ1 − λ0 ) = 0, (λ2 − λ0 ) = 0 .
………4 分
得到 λ1 = λ0 = λ2 ,矛盾.故ξ1 + ξ2 不是σ 的特征向量.
………2 分
答案共 3 页第 3 页
6.(13 分) 用非退化线性替换将二次型
化为标准型.
q(x1, x2 , x3 ) = x12 + 5x22 − 4x32 + 2x1x2 − 4x1x3
7.(10 分)设 λ1, λ2 是线性变换σ 的两个不同的特征值,ξ1,ξ2 分别是σ 的属于特 征值 λ1, λ2 的特征向量. 证明:ξ1 + ξ2 不是σ 的特征向量.
命题共 2 页第 2 页
参考答案及评分细则
一.填空题:(每小题 2 分,共 10 分)
1. 线性无关的
2. 0 3. 的所有顺序主子式全大于 0
4. 一次多项式与部分二次多项式
5. 母线平行于 y 轴的柱面
二、单项选择题:(每小题 2 分,共 10 分)
1. B 2. D 3. C 4. D 5. A
………3 分
由于 (x2 + x +1) | f (x3 ) + xg(x3 ) ,所以 f (1) + ε g(1) = 0, f (1) + ε g(1) = 0 .
…………5 分
因此得 f (1) = g(1) = 0 .
………………2 分
6.(13 分) 解:
q(x1, x2 , x3 ) = x12 + 5x22 − 4x32 + 2x1x2 − 4x1x3 = ( x1 + x2 − 2x3 )2 + (2x2 + x3 )2 − (3x3 )2 .
⎧⎪(x − x′) + ( y − y′) + (z − z′) = 0 ,
⎪ ⎨
x
2
+
y2
+
z2
=
x′2
+
y′2
+
z′2 ,
⎪ ⎪
x′
=
y′
=
z′ −1.
⎩2 1 0
在方程组中消去 x′, y′, z′ ,可得
……………7 分
2(x2 + y2 + z2 ) − 5(xy + xz + yz) + 5(x + y + z) − 7 = 0. ……………5 分
.
二、单项选择题:(每小题 2 分,共 10 分)
1. 设方阵 A 满足 A2 = 4A ,则 A 的特征值为( ).
(A) 0 或 1; (B) 0 或 4;
(C) 1 或 4;
(D) 无法确定.
2. 在下列曲面中,( )是直纹面.
(A) 椭球面; (B) 椭圆抛物面; (C) 双叶双曲面; (D) 双曲抛物面.