2020-2021年度无锡市锡山高级中学高一数学第一学期【试卷+答案】
江苏省锡山高级中学高二2020-2021学年第一学期数学期中考试试卷
江苏省锡山高级中学2020—2021学年度第一学期期中考试高二数学试卷 (1-4,6-16班) 命题人 李金凯 何鹏 审核人 何鹏(本试卷满分150分,考试时间120分钟)一、单选题(本题共8小题,每小题5分,共计40分.在每小题给出的选项中,只有1项符合题意) 1. 命题:“,1x Z x N ∃∈-∈”的否定为 ( ) A.,1.x Z x N ∀∉-∈ B.,1.x Z x N ∀∉-∉C.,1.x Z x N ∀∈-∉D.,1.x Z x N ∃∈-∉2. 已知双曲线2221(0)x y a a-=>的离心率为3,则实数a 的值为 ( )B. 12C.1D.23. 在3和81之间插入2个数,使这4个数成等比数列,则公比q 为 ( ) A. 2± B. 2 C. 3± D.34. 已知双曲线221412y x -=右支上一点P 到右焦点的距离为4,则该点到左准线的距离为 ( ) A. 2 B. 3 C. 4 D. 55. 若直线l 过抛物线28y x =的焦点,与抛物线相交于,A B 两点,且16||=AB ,则线段AB 的中点P 到y轴的距离为 ( ) A.6 B. 8 C. 10 D.126. 为了参加学校的长跑比赛,省锡中高二年级小李同学制定了一个为期15天的训练计划.已知后一天的跑步距离都是在前一天的基础上增加相同距离.若小李同学前三天共跑了3600米,最后三天共跑了10800米,则这15天小李同学总共跑的路程为 ( )A.34000米 B .36000米 C.38000米 D.40000米 7. 数列{}n a 是等比数列,公比为q ,且01>a .则“1-<q ”是“122122,+-*<+∈∀n n n a a a N n ”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件8. 已知椭圆22143y x C +=:的右焦点为F .点,A B 为椭圆上不同的两点,且满足AF BF ⊥.过线段AB 的中点P 作椭圆C 右准线的垂线,垂足为Q .则||||AB PQ 的最小值为 ( )A.12 D. 1二、多选题(本题共4小题,每小题5分,共计20分.在每小题给出的选项中,有多项符合要求,全部选对得5分,部分选对得3分,有选错的得0分)9. 已知数列 ,2,0,2,0,2,0,则前六项适合的通项公式为 ( )A. n n a )1(1-+=B. 2cos 2πn a n = C. |2)1(sin|2π+=n a n D. )2)(1()1cos(1--+--=n n n a n π 10. 已知命题:p 不存在过点(1,1)的直线与椭圆12222=+y m x 相切.则命题p 是真命题的一个充分不必要条件是 ( ) A.2≥m B.2>m C.20<<m D.3-=m11. 意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:,13,8,5,3,2,1,1....即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是 ( ) A.5510=a B.2020a 是偶数 C.2020201820223a a a =+ D.+++321a a a (2022)2020a a =+12. 已知抛物线x y C 8:2=的焦点为F ,准线l 与x 轴交于点M . 点Q P ,是抛物线上不同的两点.下面说法中正确的是 ( ) A.若直线PQ 过焦点F ,则以线段PQ 为直径的圆与准线l 相切; B.过点M 与抛物线C 有且仅有一个公共点的直线至多两条; C.对于抛物线内的一点(1,1)T ,则||||3PT PF +≥;D.若直线PQ 垂直于x 轴,则直线PM 与直线QF 的交点在抛物线C 上.三、填空题(本题共4小题,每小题5分,共计20分.只要求直接写出结果,不必写出计算和推理过程) 13. 已知递增等差数列{}n a 满足:20,125142==+a a a a ,则4a = ▲ .14. 已知抛物线21:2(0)C x py p =>的焦点到双曲线222:1916y x C -=的渐近线的距离为,则实数p的值为 ▲ .15. 设椭圆2222:1(0)y x C a b a b+=>>的右焦点为F ,O 为坐标原点.过点F 的直线240x y +-=与椭圆的交点为Q (点Q 在x 轴上方),且||||OF OQ =,则椭圆C 的离心率为 ▲ .16. 数列{}n a 满足:1*1151,2(),22n n n a S a n N ++==--∈其中n S 为数列{}n a 的前n 项和,则=n a ▲ ,若不等式2(2)2512n t a n n -≥--对*n N ∀∈恒成立,则实数t 的最小值为 ▲ .四、解答题(本题共6小题,共计70分. 解答应写出文字说明、证明过程或演算步骤) 17. (本题满分10分)已知命题p :方程13522=-++ky k x 表示焦点在x 轴上的椭圆; 命题2:,250q x R x kx k ∀∈+++≥恒成立; 命题:11(0).r m k m m -<<+> (1)若命题p 与命题r 互为充要条件,求实数m 的值; (2)若命题q 是命题r 的必要不充分条件,求正数m 的取值范围.18. (本题满分12分)已知双曲线C 的标准方程为22136y x -=,12,F F 分别为双曲线C 的左、右焦点. (1)若点P 在双曲线的右支上,且12F PF ∆的面积为3,求点P 的坐标;(2)若斜率为1且经过右焦点2F 的直线l 与双曲线交于,M N 两点,求线段MN 的长度.19. (本题满分12分)在①321,1,a a a +成等差数列;②304=S ;③64321=a a a 三个条件中任选一个补充在下面的问题中,并作答.(注:如果选择多个条件分别作答,按第一个解答计分)已知n S 是数列}{n a 的前n 项和. 若)(21*∈-=N n a a S n n ,01≠a ,且满足(1)求数列}{n a 的通项公式;(2)设11=b ,)(*1N n a b b n n n ∈=-+,求数列}{n b 的通项公式.20. (本题满分12分)已知椭圆2222:1(0)y x C a b a b+=>>的左、右顶点分别为B A ,,4||=AB .过右焦点F 且垂直于x 轴的直线交椭圆C 于E D ,两点, 且1||=DE . (1)求椭圆C 的方程;(2)斜率大于0的直线l 经过点(4,0)P -,且交椭圆C 于不同的两点,M N (M 在点,P N 之间).记PNA ∆与PMB ∆的面积之比为λ,求实数λ的取值范围.21. (本题满分12分)已知数列}{n a 中, 11=a ,1)2()1(1=+-++n n a n a n )(*N n ∈,n S 为数列{}n a 的前n 项和.数列}{n b 满足*1()n nb n N S =∈.(1)证明:数列}{n a 是等差数列,并求出数列}{n a 的通项公式;(2)设数列}{n b 的前n 项和为n T .问是否存在正整数)3(,q p q p <<,使得q p T T T ,,3成等差数列?若存在,求出q p ,的值;若不存在,请说明理由.22. (本题满分12分)已知抛物线2:2(0)C y px p =>经过点(2,-(1)求抛物线C 的方程及其相应准线方程;(2)过点(2,0)E 作斜率为12,k k 的两条直线分别交抛物线于,M N 和,P Q 四点,其中121k k +=.设线 段MN 和PQ 的中点分别为,,A B 过点E 作,ED AB ⊥垂足为.D 证明:存在定点,T 使得线段TD 长度为定值.。
2020-2021学年第一学期期中高一数学试卷及答案
高一级期中质量测试数学科试参考答案(第1页共4页)2020-2021学年度第一学期期中高中一年级质量测试数学科试卷参考答案题号123456789101112答案A C D A B D C A AB ABD AD BCD 三、13.1214.{x |x ≥−1且x ≠0}15.5≤4a −2b ≤1016.1516;0或1312.四、解答题17.解:(1)由图象观察可知f (x )的单调增区间为(0,2];……………………………………5分(2)函数f (x )的图象如图所示:……………………………………………7分f (x )<0的解集为(−∞,−4)∪(4,+∞).………………………………………………………10分18.解:因为A ∩B ={9},故9∈A 且9∈B ,………………………………………………1分所以2m −1=9,或者m 2=9,…………………………………………………………………3分解得m =5,或者=±3,…………………………………………………………………………5分当m =5时,A ={−4,9,25},B ={0,−4,9},A ∩B ={−4,9},不合题意;……………………7分当m =3时,B ={−2,−2,9},与集合元素的互异性矛盾;…………………………………9分当m=−3时,A={−4,−7,9},B={−8,4,9},A∩B={9},符合题意;……………………11分综上所述,m=−3.……………………………………………………………………………12分19.解:(1)已知x<2,∴x−2<0.……………………………………………………………1分∴4x+1x−2=4(x−2)+1x−2+8……………………………………………………………………2分∴−4(x−2)−1x−2≥4,……………………………………………………………………………3分当且仅当−4(x−2)=−1x−2,即x=32时等号成立.………………………………………………4分∴4(x−2)+1x−2≤−4……………………………………………………………………………5分∴4x+1x−2=4(x−2)+1x−2+8≤4∴4x+1x−2的最大值为4………………………………………………………………………6分(2)解:∵x+4y+xy=5,∴5−xy=x+4y≥24xy=4xy……………………………………………………………………7分当且仅当x=4y,x+4y+xy=5即x=2,y=12时,等号成立……………………………………………………………………8分∴xy+4xy−5≤0………………………………………………………………………………9分∴xy≤1………………………………………………………………………………………11分∴xy的最大值为1……………………………………………………………………………12分20.解:(1)f(x)为R上的奇函数,……………………………………………………………1分∴f(0)=0,得b=0,…………………………………………………………………………3分又f(1)=a+b2=12,∴a=1,…………………………………………………………………5分∴f(x)=xx2+1……………………………………………………………………………………6分高一级期中质量测试数学科试参考答案(第2页共4页)(2)f(x)在[1,+∞)上为减函数,……………………………………………………………7分证明如下:在[1,+∞)上任取x1和x2,且x1<x2,……………………………………………8分则f(x2)−f(x1)=x2x22+1−x1x21+1=(x21+1)x2-(x22+1)x1(x21+1)(x22+1)=x21x2-x22x1+x2-x1(x21+1)(x22+1)=(x1-x2)(x1x2-1)(x21+1)(x22+1)……………………9分∵x2>x1≥1,∴x1x2−1>0,x1−x2<0,…………………………………………………………10分∴f(x2)−f(x1)<0,即f(x2)<f(x1),………………………………………………………………11分∴f(x)在[1,+∞)上为减函数.…………………………………………………………………12分21.解:(1)由已知条件f(x)−g(x)=x+ax−2………………①………………………………1分①式中以−x代替x,得f(−x)−g(−x)=−x−ax−2………②………………………………2分因为f(x)是奇函数,g(x)是偶函数,故f(−x)=−f(x),g(−x)=g(x),②可化为−f(x)−g(x)=−x−ax−2………③…………………………………………………3分①−③,得2f(x)=2x+2ax,……………………………………………………………………4分故f(x)=x+ax,g(x)=2,x∈(−∞,0)∪(0,+∞);…………………………………………6分(2)由(1)知,f(x)+g(x)=x+ax+2,x∈[1,+∞),……………………………………………7分当a≥0时,函数f(x)+g(x)的值恒为正;……………………………………………………8分当a<0时,函数f(x)+g(x)=x+ax+2在[1,+∞)上为增函数,…………………………9分故当x=1时,f(x)有最小值3+a,故只需3+a>0,解得−3<a<0.………………………………………………………………11分综上所述,实数a的取值范围是(−3,+∞).………………………………………………12分高一级期中质量测试数学科试参考答案(第3页共4页)【法二:由(1)知,f(x)+g(x)=x+ax+2,……………………………………………………7分当x∈[1,+∞)时,f(x)+g(x)>0恒成立,等价于a>−(x2+2x),…………………………9分而二次函数y=−(x2+2x)=−(x+1)2+1在[1,+∞)上单调递减,………………………10分x=1时,y max=−3,.…………………………………………………………………………11分故a>−3………………………………………………………………………………………12分】22.解:(1)由题意知,y−x−(10+2p),…………………………………………2分将p=3−2x+1代入化简得y=16−4x+1−x(0≤x≤a).…………………………………………5分【注:没注明定义域,扣1分】(2)当a≥1时,y=17x+−24x+1×(x+1)=13,…………………………7分当且仅当4x+1=x+1,即x=1时,上式取等号.…………………………………………8分所以当a≥1时,促销费用投入1万元时,厂家的利润最大为13万元.…………………9分当0<a<1时,y=16−4x+1−x在(0,1)上单调递增,…………………………………………11分所以当0<a<1时,促销费用投入a万元时,厂家的利润最大为4161aa-万元………12分高一级期中质量测试数学科试参考答案(第4页共4页)。
新教材2021届高一数学第一册高一数学第一册不等式及基本不等式试卷(快班提升篇)(解析版)
不等式及基本不等式测试(B 卷提升篇)数学全卷满分150分,考试时间120分钟。
★祝考试顺利★注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题作答用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试卷和草稿纸上无效。
3.非选择题作答用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。
答在试卷和草稿纸上无效。
考生必须保持答题卡的整洁。
考试结束后,只需上交答题卡第Ⅰ卷(选择题)一.选择题(共10小题,满分50分,每小题5分)1.(2020·长春市第二十九中学高二期中(文))不等式25x +≤的解集是( ) A .{}12x x x ≤≥或 B .{}73x x -≤≤ C .{}37x x -≤≤D .{}59x x -≤≤【答案】B 【解析】 因为25x +≤,525x ∴-≤+≤,解得73x -≤≤, 故选:B.2.(2020·河南省高三其他(文))“12x ≥”是“12x x +≥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】若12x ≥,则12x x +≥=,当且仅当1x =时取等号; 若12x x+≥,则0x >.所以 “12x ≥”是“12x x +≥”的充分不必要条件.故选:A.3.(2020·重庆市育才中学高一期末)已知0a b >>,R c ∈,那么下列命题正确的是( ) A .2211a b< B .11a cb c<++ C .11a c b c>++ D .11ac bc< 【答案】A 【解析】 对于选项A ,222211()()b a b a a b a b +--=,因为0a b >>,所以22()()0b a b a a b +-<,所以2211a b <,所以该选项正确; 对于选项B ,11()()b aa cbc a c b c --=++++,如:5,2,4,a b c ===-则分母小于零,如:5,2,6a b c ===,则分母大于零,所以差的符号不能确定,所以该选项不正确;对于选项C ,11()()b a ac b c a c b c --=++++,如:5,2,4,a b c ===-则分母小于零,如:5,2,6a b c ===,则分母大于零,所以差的符号不能确定,所以该选项不正确; 对于选项D ,11b aac bc abc--=,差的符号不能确定,所以该选项不正确. 故选:A.4.(2020·黑龙江省鹤岗一中高一期末(文))已知关于x 的不等式210x x a -+-≥在R 上恒成立,则实数a 的取值范围是( ) A .5,4⎛⎫-∞ ⎪⎝⎭B .5,4⎛⎤-∞ ⎥⎝⎦C .5,4⎛⎫+∞⎪⎝⎭D .5,4⎡⎫+∞⎪⎢⎣⎭【答案】D 【解析】记()21f x x x a =-+-,则原问题等价于二次函数()21f x x x a =-+-的最小值大于或等于0.而()21524f x x a ⎛⎫=-+- ⎪⎝⎭,当12x =时,()min 54f x a =-,所以504a -≥,即54a ≥. 故选:D .5.(2020·黑龙江省哈尔滨三中高三其他(文))若正实数a 、b 满足112ab a b+=,则ab 的最小值为( ) A .2 B .22C .4D .8【答案】A 【解析】利用基本不等式可得11222ab a b ab=+≥,22ab ∴≥,解得2ab ≥. 当且仅当2a b =时,等号成立,因此,ab 的最小值为2. 故选:A.6.(2020·黑龙江省鹤岗一中高一期末(文))如果关于x 的不等式34x x a -+-<的解集不是空集,则参数a 的取值范围是( ) A .()1,+∞ B .[)1,+∞ C .(),1-∞ D .(],1-∞ 【答案】A 【解析】由题得|x-3|+|x-4|<a 有解,由绝对值三角不等式得|x-3|+|x-4|≥|x-3-x+4|=1, 所以|x-3|+|x-4|的最小值为1, 所以1<a,即a >1. 故选:A7.(2020·重庆市育才中学高一期末)已知不等式210ax bx --≥的解集是11[,]23--,则不等式20x bx a --<的解集是( )A .(2,3)B .(,2)(3,)-∞⋃+∞C .11(,)32D .11(,)(,)32-∞⋃+∞【答案】A 【解析】∵不等式210ax bx --≥的解集是1123⎡⎤--⎢⎥⎣⎦,, ∴1123x x =-=-,是方程210ax bx --=的两根,∴1152361111236b a a⎧⎛⎫=-+-=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪-=-⨯-= ⎪⎪⎝⎭⎩,解得65a b =-⎧⎨=⎩.∴不等式20x bx a --<为2560x x -+<, 解得23x <<,∴不等式的解集为()23,. 故选A .8.(2020·浙江省高二月考)若40x y >>,则4y xx y y+-的最小值为( )A .54B .1C .34D .12【答案】A 【解析】 令x t y=, 因为40x y >>,所以14x y >,所以14t >; 又1144411y x x t x x y y y t y+=+=+---,所以111115141444444t t t t +=-++≥=-⎛⎫- ⎪⎝⎭, 当且仅当11=1444t t ⎛⎫- ⎪⎛⎫⎝⎭- ⎪⎝⎭,即3t 4=,即43x y =时,取等号.故选:A.9.(2020·河南省高三其他(理))关于x 的不等式()()30x a x -->成立的一个充分不必要条件是11x -<<,则a 的取值范围是( )A .1a ≤-B .0a <C .2a ≥D .1a ≥【答案】D 【解析】由题可知()1,1-是不等式()()30x a x -->的解集的一个真子集.当3a =时,不等式()()30x a x -->的解集为{}3x x ≠,此时()1,1- {}3x x ≠; 当3a >时,不等式()()30x a x -->的解集为()(),3,a -∞⋃+∞,()1,1- (),3-∞,合乎题意;当3a <时,不等式()()30x a x -->的解集为()(),3,a -∞⋃+∞, 由题意可得()1,1- (),a -∞,此时13a ≤<. 综上所述,1a ≥. 故选:D.10.(2020·安徽省初三月考)关于x 的一元二次方程20ax bx c ++=(a ,b ,c 为实数,0a ≠)有两个相等的实数根,若实数()1m m ≠满足22(2)(2)am bm a m b m +=-+-,则此一元二次方程的根是( ) A .121x x == B .121x x ==-C .122x x ==D .122x x ==-【答案】A 【解析】22(2)(2)am bm a m b m +=-+-,22442am bm a am am b bm +=-++-,2442bm a am b =-+, 22bm a am b =-+,2(1)(1)a m b m -=--(2)(1)0a b m +-=1m ≠,20a b ∴+=2b a ∴=-设1x ,2x 是方程20ax bx c ++=(a ,b ,c 为实数,0a ≠)的两个根, ∴12b x x a+=-, 12x x =,121222b a x x x a a∴+==-== 11x ∴=,121x x ∴==故选:A.第Ⅱ卷(非选择题)二.填空题(共7小题,单空每小题4分,两空每小题6分,共36分) 11.(2020·重庆高一期末)已知0x >,0y >,且182x y+=,则2x y +的最小值为_____. 【答案】9 【解析】29x y ∴+≥,等号成立时32x =,6y =. 故答案为:9.12.(2020·天津高考真题)已知0,0a b >>,且1ab =,则11822a b a b+++的最小值为_________. 【答案】4 【解析】0,0,0a b a b >>∴+>,1ab =,11882222ab ab a b a b a b a b∴++=++++842a b a b +=+≥=+,当且仅当a b +=4时取等号,结合1ab =,解得22a b ==+,或22a b =+=-. 故答案为:413.(2020·黑龙江省鹤岗一中高一期末(文))若110a b<<,则不等式(1)a b ab +<;(2)a b >;(3)a b <;(4)2b aa b+>中,正确的不等式有__________个. 【答案】2 【解析】110a b<<,则0a <,0b <,0ab ∴>. 0a b ab +<<,(1)中的不等式正确; 110ab ab a b⋅<⋅<,则0b a <<,(3)中的不等式错误; a a b b =-<-=,(2)中的不等式错误;0b a ->->,则1b b a a -=>-,由基本不等式可得2b a a b +>=,(4)中的不等式正确. 故答案为:2.14.(2020·上海高一课时练习)(1)“1>0x 且20x >”是“120x x +>且120x x >”的________条件;(2)“12x >且22x >”是“124x x +>且124x x >”的________条件. 【答案】充要 充分非必要 【解析】(1)根据不等式性质可得“1>0x 且20x >”⇒“120x x +>且120x x >”, 所以“1>0x 且20x >”是“120x x +>且120x x >”的充分条件; “120x x +>且120x x >”⇒“1>0x 且20x >”,所以“1>0x 且20x >”是“120x x +>且120x x >”的必要条件. 所以“1>0x 且20x >”是“120x x +>且120x x >”的充要条件.(2)根据不等式性质可得“12x >且22x >”⇒“124x x +>且124x x >”, 所以“12x >且22x >”是“124x x +>且124x x >”的充分条件;例如:121,5,x x ==满足“124x x +>且124x x >”,但是不满足“12x >且22x >”. “124x x +>且124x x >”不能推出“12x >且22x >”.所以“12x >且22x >”是“124x x +>且124x x >”的非必要条件.所以“12x >且22x >”是“124x x +>且124x x >”的充分非必要条件. 故答案为:充要;充分非必要.15.(2020·浙江省高二期中)若正实数a 、b 满足23ab a b =+,则ab 的最小值为_________;+a b 的最小值为_________.【答案】24 526+ 【解析】正实数a 、b 满足23ab a b =+,321a b∴+=, 由基本不等式得32322612a b a b ab=+≥⋅=,可得24ab ≥,当且仅当23a b =时,等号成立,即ab 的最小值为24.由基本不等式得()323232552526b a b a a b a b a b a b a b ⎛⎫+=++=++≥+⋅=+⎪⎝⎭,当且仅当2223a b =时,等号成立,即+a b 的最小值为526+. 故答案为:24;526+.16.(2020·全国高三其他(理))某农户建造一个室内面积为150m 2的矩形蔬菜温室.如图,在温室内,沿左、右两侧与后侧内墙各保留1m 宽的通道,沿前侧内墙保留2m 宽的空地,中间区域为菜地.当温室的长为______m 时,菜地的面积最大,最大面积是______m 2.【答案】15 96 【解析】设温室的左侧边长为()x m ,菜地的面积为2()y m ,则温室的后侧边长为150()m x, 所以()()150300231563250y x x x x x ⎛⎫⎛⎫=--=-+<<⎪ ⎪⎝⎭⎝⎭. 因为3003003360x x x x+≥⋅=,当且仅当3003x x =,即10x =时取等号,所以1566096y ≤-=,即y 的最大值为96,此时温室的长为()15015m x=. 所以当温室的长为15()m 时,菜地的面积最大,最大面积为296()m .17.(2020·嘉兴市第五高级中学高一期中)已知关于x 的不等式为()()()110-+≤∈ax x a R ,若1a =,则该不等式的解集是___________,若该不等式对任意的[]1,1x ∈-均成立,则a 的取值范围是___________. 【答案】{}11x x -≤≤ []1,1-. 【解析】当1a =时,()()110x x -+≤,解得:11x -≤≤. 故解集为{}11x x -≤≤. 令()()11y ax x =-+,[]1,1x ∈-. 当0a =时,1y x =--,为减函数,所以当1x =-时,y 取得最大值0,即0y ≤恒成立. 当0a >时,()()11y ax x =-+,如图所示:要满足[]1,1x ∈-,()()110ax x -+≤恒成立,只需满足:00111a a a>⎧⎪⇒<≤⎨≥⎪⎩. 当0a <时,()()11y ax x =-+,如图所示:要满足[]1,1x ∈-,()()110ax x -+≤恒成立,只需满足:01011a a a<⎧⎪⇒-≤<⎨≤-⎪⎩. 综上:11a -≤≤.故答案为:{}11x x -≤≤,[]1,1-三.解答题(共5小题,满分64分,18--20每小题12分,21,22每小题14分)18.(2020·安徽省怀宁县第二中学高一期中)已知不等式2520ax x +->的解集是M . (1)若2M ∈,求a 的取值范围; (2)若1|22M x x ⎧⎫=<<⎨⎬⎩⎭,求不等式22510ax x a -+->的解集. 【答案】(1)2a >-;(2)1|32x x ⎧⎫-<<⎨⎬⎩⎭. 【解析】(1)∵2M ∈,∴225220a ⨯+⨯->,∴2a >- (2)∵1|22M x x ⎧⎫=<<⎨⎬⎩⎭,∴1,22是方程2520ax x +-=的两个根,∴由韦达定理得1522{1222a a+=-⋅=-解得2a =- ∴不等式22510ax x a -+->即为:22530x x --+>其解集为1|32x x ⎧⎫-<<⎨⎬⎩⎭. 19.(2020·盘锦市第二高级中学高二月考(理))已知命题:|2|4p x -≤,:(1)(1)00)q x m x m m ---+≤>(,若p 是q 的充分不必要条件,求实数m 的取值范围. 【答案】[5,+∞).【解析】由24x -≤解得26x -≤≤,由(1)(1)00)x m x m m ---+≤>(解得11m x m -≤≤+. 根据p 是q 的充分不必要条件,∴区间[]2,6-是区间[]1,1m m -+的真子集,画图如下:利用数轴分析可得1216m m -≤-⎧⎨+≥⎩,且两处“=”不能同时取得, 解得m ≥5. 故m 的取值范围为[5,+∞).20.(2020·河南省高三三模(理))关于x 的不等式|x ﹣2|<m (m ∈N *)的解集为A ,且32∈A ,12∉A . (1)求m 的值;(2)设a ,b ,c 为正实数,且a +b +c =3m a b c【答案】(1)m =1;(2)最大值为3.【解析】(1)∵32∈A ,12∉A ,∴|32-2|<m ,|12-2|≥m , ∴12<m 32≤, ∵m ∈N*,∴m =1;(2)a ,b ,c 为正实数,且a +b +c =3,=()311133322222a b c a b c +++++++≤++===. 当且仅当a =b =c =1时取等号.3.21.(2020·陕西省高二期末(理))已知a >0,b >0,a +b =3.(1)求11+2+a b的最小值; (2)证明:92+a b b a ab【答案】(1)45;(2)证明见解析 【解析】 (1)3a b +=,()215a b ++∴=,且200a b +>>,,∴()1111112++2225252b a a b a b a b a b +⎛⎫⎛⎫=++=++ ⎪ ⎪+++⎝⎭⎝⎭14255⎛≥+= ⎝,当且仅当2=2b a a b ++即1522a b ==,时等号成立, ∴11+2+a b 的最小值为45. (2)因为a >0,b >0,所以要证92+a b b a ab ,需证2292a b +≥, 因为()222239222a b a b ++≥==, 所以92+a b b a ab ,当且仅当32a b ==时等号成立. 22.(2020·河北省唐山一中高一期中)已知不等式212x -<的解集与关于x 的不等式20x px q --+>的解集相同.(1)求实数,p q 值;(2)若实数,a b R +∈,满足4a+b =p+q ,求14a b +的最小值. 【答案】(1)31,4p q =-=(2)92 【解析】(1)212x -<,解得1322x -<<,又20x px q --+>20x px q ⇒+-<解集为:1322x -<<,故12-和32是方程的两根,根据韦达定理得到:134p q -=⎧⎪⎨-=-⎪⎩31,4p q ⇒=-=. (2)2a b +=,则14114149()()(5)222b a a b a b a b a b +=++=++≥, 当4b a a b =,即2b a =时取等号,即24,33a b ==时有最小值92.。
江苏省苏州市锡山高级中学高一数学理测试题含解析
江苏省苏州市锡山高级中学高一数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 在中,内角,,所对的边分别是,,.已知,,则().A.B.C.D.参考答案:A【考点】HQ:正弦定理的应用;GL:三角函数中的恒等变换应用.【分析】直接利用正弦定理以及二倍角公式,求出,,然后利用平方关系式求出的值即可.【解答】解:因为在中,内角,,所对的边分别是,,.已知,,所以,所以,为三角形内角,所以..所以.所以,.故选:.2. 若直线与直线平行,则的值为A.B.C.D.参考答案:A 略3. 函数的图象可能是( ) A.B.C.D.参考答案:C当时,图象可能为:当时,图象可能为:故选C。
4. 下列说法不正确的是()A、方程有实数根函数有零点B、函数有两个零点C、单调函数至多有一个零点D、函数在区间上满足,则函数在区间内有零点参考答案:D略5. 在平面上,四边形ABCD满足,,则四边形ABCD为()A. 梯形B. 正方形C. 菱形D. 矩形参考答案:C,且四边形是平行四边形,,,四边形是菱形,故选C.6. 设函数,则()A.B.3 C.D.参考答案:D7. 下列函数中为偶函数的是()A.B.C.D.参考答案:A略8. 设a=,b=,c=,则a、b、c的大小关系是( )A.a>c>b B.a>b>c C.c>a>b D.b>c>a参考答案:A略9. 在数列{a n}中,,,则()A.38 B.-38 C.18 D.-18参考答案:B10. 当时,在同一坐标系中,函数的图像可能是 ( )A B C D参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11. 已知向量,,若与垂直,则_______________.参考答案:12. 记为偶函数,是正整数,,对任意实数,满足中的元素不超过两个,且存在实数使中含有两个元素,则的值是.参考答案:4、5、6由题意得.∵为偶函数,是正整数,∴,∵对任意实数,满足中的元素不超过两个,且存在实数使中含有两个元素,∴中任意相邻的两个元素的间隔必小于1,任意相邻的三个元素的间隔之和必大于1.∴,解得,又, ∴.13. 在中,∠A:∠B=1:2,∠的平分线分⊿ACD 与⊿BCD 的面积比是3:2,则参考答案:3/4 略14. (4分)点P (x ,y )在直线x+y ﹣4=0上,则x 2+y 2的最小值是 .参考答案:8考点: 直线与圆的位置关系;两点间距离公式的应用.分析: x 2+y 2的最小值,就是直线到原点距离的平方的最小值,求出原点到直线的距离的平方即可.解答: 原点到直线x+y ﹣4=0的距离.点P (x ,y )在直线x+y ﹣4=0上,则x 2+y 2的最小值,就是求原点到直线的距离的平方,为:故答案为:8点评: 本题考查直线与圆的位置关系,考查等价转化的数学思想,是基础题.15. 函数y =sin 2x +2cos x (≤x ≤)的最小值为_______.参考答案:-2 16. 定义在上的奇函数在上的图象如右图所示,则不等式的解集是 .参考答案:略17. 已知平面向量,,若为此平面内单位向量且恒成立,则的最大值是:_______ .参考答案:三、 解答题:本大题共5小题,共72分。
2020-2021学年江苏省无锡市锡山区天一中学高一(下)期中数学试卷(解析版)
2020-2021学年江苏省无锡市锡山区天一中学高一(下)期中数学试卷一、选择题(共8小题).1.i是虚数,复数=()A.﹣1+3i B.C.1+3i D.2.在△ABC中,若||=||=|﹣|,则△ABC的形状为()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形3.已知、是不共线的向量,,(λ、μ∈R),当且仅当()时,A、B、C三点共线.A.λ+μ=1B.λ﹣μ=1C.λμ=﹣1D.λμ=14.若非零向量,满足||=3||,(2+3)⊥,则与的夹角为()A.B.C.D.5.已知2+i是关于x的方程x2+ax+5=0的根,则实数a=()A.2﹣i B.﹣4C.2D.46.当复数z满足|z+3﹣4i|=1时,则|z+2|的最小值是()A.B.C.D.7.在△ABC中,内角A、B、C所对的边分别为a、b、c,若c sin C=a sin A+(b﹣a)sin B,角C的角平分线交AB于点D,且CD=,a=3b,则c的值为()A.B.C.3D.8.以C为钝角的△ABC中,BC=3,,当角A最大时,△ABC面积为()A.3B.6C.5D.8二、选择题:本题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求。
全部选对的得5分,有选错的得0分,部分选对的得2分。
9.已知复数z=2+i,则下列结论正确的是()A.B.复数z的共轭复数为2﹣iC.zi2021=1+2i D.z2=3+4i10.下列说法中正确的为()A.已知,且与的夹角为锐角,则实数λ的取值范围是B.向量,不能作为平面内所有向量的一组基底C.非零向量,,满足且与同向,则D.非零向量和,满足,则与的夹角为30°11.△ABC的内角A、B、C的对边分别为a、b、c,则下列说法正确的是()A.若A>B,则sin A>sin BB.若A=30°,b=4,a=3,则△ABC有两解C.若△ABC为钝角三角形,则a2+b2>c2D.若A=60°,a=2,则△ABC面积的最大值为12.如图,△ABC的内角A,B,C所对的边分别为a,b,c.若a=b,且(a cos C+c cos A)=2b sin B,D是△ABC外一点,DC=1,DA=3,则下列说法正确的是()A.△ABC是等边三角形B.若AC=2,则A,B,C,D四点共圆C.四边形ABCD面积最大值为+3D.四边形ABCD面积最小值为﹣3三、填空题:本题共4小题,每小题5分,共20分。
期末测试卷(二)-2020-2021学年高一数学必修第一册单元提优卷(人教A版(2019))(含答案)
2020-2021学年高一数学第一册单元提优卷(人教A 版(2019))期末测试卷(二)(满分:150分,测试时间:120分钟)一、单选题1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .42.【2020·广东省高三月考(文)】命题“10,ln 1x x x∀>≥-”的否定是A .10ln 1x x x ∃≤≥-,B .10ln 1x x x ∃≤<-,C .10ln 1x x x∃>≥-,D .10ln 1x x x∃><-,.3.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦4.【2020·福建省福州第一中学高三其他(理)】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为A .[)(]0,11,2B .[)(]0,11,4C .[)0,1D .(]1,45.设函数要想得到函数sin21y x =+的图像,只需将函数cos2y x =的图象()A .向左平移4π个单位,再向上平移1个单位B .向右平移4π个单位,再向上平移1个单位C .向左平移2π个单位,再向下平移1个单位D .向右平移2π个单位,再向上平移1个单位6.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D .27.已知3sin(3)cos()0πθπθ-++-=,则sin cos cos 2θθθ=()A .3B .﹣3C .38D .38-8.【2020·南昌市八一中学】已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =-的图象可能A .B .C .D .9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天10.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞11.【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<012.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,))2-∞-+∞ B .1(,)(0,2-∞-C .(,0)-∞D .(,0))-∞+∞ 二.填空题13.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.14.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是____________.15.【2020·江苏省高三月考】已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫⎪⎝⎭的值是____________.16.【2020·六盘山高级中学高三其他(理)】设函数2()2cos ()sin(284f x x x ππ=+++,(0,3π)∈x 则下列判断正确的是____________.①.函数的一条对称轴为6x π=②.函数在区间5,24ππ⎡⎤⎢⎥⎣⎦内单调递增③.0(0,3π)x ∃∈,使0()1f x =-④.∃∈R a ,使得函数()y f x a =+在其定义域内为偶函数三.解答题17.(本题满分10分)已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.18.(本题满分12分)已知集合,2|2162xA x ⎧⎫⎪⎪=<<⎨⎬⎪⎪⎩⎭,{|3221}B x a x a =-<<+.(1)当0a =时,求A B ;(2)若A B φ⋂=,求a 的取值范围.19.(本题满分12分)已知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()26f α=,3,88ππα⎛⎫∈-⎪⎝⎭,求sin 2α的值.20.(本题满分12分)已知函数()0.52log 2axf x x -=-为奇函数.(1)求常数a 的值;(2)若对任意10,63x ⎡⎤∈⎢⎥⎣⎦都有()3f x t >-成立,求t 的取值范围.21(本题满分12分)【江苏省盐城市第一中学2020届高三下学期6月调研考试数学试题某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元).(Ⅰ)求()f x 的函数关系式;(Ⅱ)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?22.(本题满分12分)已知函数2()2sin cos 0)f x x x x ωωωω=+->的最小正周期为π.(1)求函数()f x 的单调增区间;(2)将函数()f x 的图象向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图象,若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值.2020-2021学年高一数学第一册单元提优卷期末测试卷(二)(满分:150分,测试时间:120分钟)一、单选题1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .4【答案】B求解二次不等式240x -≤可得{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得|2a B x x ⎧⎫=≤-⎨⎩⎭.由于{}|21A B x x ⋂=-≤≤,故12a-=,解得2a =-.故选B .2.【2020·广东省高三月考(文)】命题“10,ln 1x x x∀>≥-”的否定是A .10ln 1x x x ∃≤≥-,B .10ln 1x x x ∃≤<-,C .10ln 1x x x ∃>≥-,D .10ln 1x x x∃><-,【答案】D【解析】因为全称命题的否定是特称命题,所以命题“0x ∀>,1ln 1x x ≥-”的否定为“0x ∃>,1ln 1x x<-”.故选D .3.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦【答案】D【解析】若0a =,则()3f x x =-,()f x 在区间[)1,-+∞上是增函数,符合.若0a ≠,因为()f x 在区间[)1,-+∞上是增函数,故0112a a a>⎧⎪-⎨≤-⎪⎩,解得103a <≤.综上,103a ≤≤.故选:D .4.【2020·福建省福州第一中学高三其他(理)】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为A .[)(]0,11,2 B .[)(]0,11,4 C .[)0,1D .(]1,4【答案】C【解析】函数()f x 的定义域是[0,2],要使函数()()21f xg x x =-有意义,需使()2f x 有意义且10x -≠.所以10022x x -≠⎧⎨≤≤⎩,解得01x ≤<.故答案为C .5.设函数要想得到函数sin21y x =+的图像,只需将函数cos2y x =的图象()A .向左平移4π个单位,再向上平移1个单位B .向右平移4π个单位,再向上平移1个单位C .向左平移2π个单位,再向下平移1个单位D .向右平移2π个单位,再向上平移1个单位【答案】B【解析】cos 2sin(2)sin 2()24y x x x ππ==+=+,因此把函数cos 2y x =的图象向右平移4π个单位,再向上平移1个单位可得sin 21y x =+的图象,故选B6.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D .2【答案】B【解析】因为(1)2()f x f x +=,且(5)3(3)4f f =+,故()()324442f f =+,解得()48f =.故选:B7.已知3sin(3)cos()0πθπθ-++-=,则sin cos cos 2θθθ=()A .3B .﹣3C .38D .38-【答案】D 【解析】∵3sin(3)cos()0πθπθ-++-=,∴3sin cos 0θθ--=,即cos 3sin θθ=-,∴sin cos cos 2θθθ2222sin cos sin (3sin )3cos sin (3sin )sin 8θθθθθθθθ⋅-===----.故选:D .8.【2020·南昌市八一中学】已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =-的图象可能A .B .C .D .【答案】C【解析】由函数sin (0)y ax b a =+>的图象可得201,23b a πππ<<<<,213a ∴<<,故函数log ()a y xb =-是定义域内的减函数,且过定点(1,0)b +.结合所给的图像可知只有C 选项符合题意.故选:C .9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天【答案】B【解析】因为0 3.28R =,6T =,01R rT =+,所以 3.2810.386r -==,所以()0.38rt t I t e e ==,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为1t 天,则10.38()0.382t t t e e +=,所以10.382t e =,所以10.38ln 2t =,所以1ln 20.691.80.380.38t =≈≈天.故选:B .10.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞【解析】因为()21xf x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞.故选:D .11.【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<0【答案】A【解析】由2233x y x y ---<-得:2323x x y y ---<-,令()23ttf t -=-,2x y = 为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->Q ,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -Q 与1的大小不确定,故CD 无法确定.12.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,))2-∞-+∞ B .1(,(0,2-∞-C .(,0)-∞D .(,0))-∞+∞ 【答案】D【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根即可,令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩,当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意;当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意;当0k >时,如图3,当2y kx =-与2y x =相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =k >.综上,k 的取值范围为(,0))-∞+∞ .故选:D .二.填空题13.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.【答案】(0,)+∞【解析】由题意得010x x >⎧⎨+≠⎩,0x ∴>故答案为:(0,)+∞14.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是____________.【答案】13【解析】22221sin ()(cos sin )(1sin 2)4222παααα+=+=+Q 121(1sin 2)sin 2233αα∴+=∴=故答案为:1315.【2020·江苏省高三月考】已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫ ⎪⎝⎭的值是____________.【答案】2【解析】由2x ≥时,()28f x x =-+是减函数可知,当2a ≥,则()()2f a f a ≠+,所以02a <<,由()(+2)f a f a =得22(2)8a a a +=-++,解得1a =,则21(1)112f f a ⎛⎫==+= ⎪⎝⎭.故答案为:2.16.【2020·六盘山高级中学高三其他(理)】设函数2()2cos ()sin(2)84f x x x ππ=+++,(0,3π)∈x 则下列判断正确的是_____.①.函数的一条对称轴为6x π=②.函数在区间5,24ππ⎡⎤⎢⎥⎣⎦内单调递增③.0(0,3π)x ∃∈,使0()1f x =-④.∃∈R a ,使得函数()y f x a =+在其定义域内为偶函数【答案】④【解析】函数()1cos 2sin 21244f x x x x ππ⎛⎫⎛⎫=++++=+ ⎪ ⎪⎝⎭⎝⎭,当(0,3π)∈x 时,当6x π=时,23x π=不能使函数取得最值,所以不是函数的对称轴,①错;当5,24x π⎡⎤∈π⎢⎥⎣⎦时,52,2x ⎡⎤∈ππ⎢⎥⎣⎦,函数先增后减,②不正确;若()1f x =-,那么cos 2x =不成立,所以③错;当3 2a =π时,()12f x a x +=函数是偶函数,④正确,三.解答题17.(本题满分10分)已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.【答案】(1)证明见解析;(2)1.【解析】证明:(1)∵()()222223220a b b a b a ab b a b +-+=-+=-≥,∴()2232a b b a b +≥+.(2)∵0a >,0b >,∴2ab a b =+≥2ab ≥1≥,∴1≥ab .当且仅当1a b ==时取等号,此时ab 取最小值1.18.(本题满分12分)已知集合,|2162x A x ⎧⎫⎪⎪=<<⎨⎬⎪⎪⎩⎭,{|3221}B x a x a =-<<+.(1)当0a =时,求A B ;(2)若A B φ⋂=,求a 的取值范围.【答案】(1)1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭;(2)3,[2,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦.【解析】(1)1|42A x x ⎧⎫=-<<⎨⎬⎩⎭,0a =时,{|21}B x x =-<<,∴1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭(2)∵A B φ⋂=,∴当B φ=时,3221a a -≥+,即3a ≥,符合题意;当B φ≠时,31213242a a a <⎧⎪⎨+≤--≥⎪⎩或,解得34a ≤-或23a ≤<,综上,a 的取值范围为3,[2,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦.19.(本题满分12分)已知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()26f α=,3,88ππα⎛⎫∈- ⎪⎝⎭,求sin 2α的值.【答案】(1)()f x 的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)4sin 26α=.【解析】(1)因为()()211cos 2111sin sin cos sin 2sin 2cos 222222x f x x x x x x x -=+-=+-=-22sin 2cos cos 2sin sin 224424x x x πππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,当()2242x k k Z πππ-=+∈,即()38x k k Z ππ=+∈时,函数()y f x =取最大值2,所以函数()y f x =的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)因为()26f α=,则sin 2246πα⎛⎫-= ⎪⎝⎭,即1sin 243πα⎛⎫-= ⎪⎝⎭,因为3,88ππα⎛⎫∈- ⎪⎝⎭,所以2,422πππα⎛⎫-∈- ⎪⎝⎭,则cos 243πα⎛⎫-= ⎪⎝⎭,所以sin 2sin 2sin 2cos cos 2sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1432326+=+⋅=.20.(本题满分12分)已知函数()0.52log 2ax f x x -=-为奇函数.(1)求常数a 的值;(2)若对任意10,63x ⎡⎤∈⎢⎥⎣⎦都有()3f x t >-成立,求t 的取值范围.【答案】(1)1a =-;(2)(),1-∞【解析】(1)因为函数()0.52log 2ax f x x -=-为奇函数,所以()()220.50.50.52224log log log 0224ax ax a x f x f x x x x-+-+-=+==----,所以222414a x x-=-,即21a =,1a =或1-,当1a =时,函数()0.50.52log log 12x f x x -==--,无意义,舍去,当1a =-时,函数()0.52log 2x f x x +=-定义域(-∞,-2)∪(2,+∞),满足题意,综上所述,1a =-。
2020-2021学年上学期高一数学期末模拟卷03(人教A版新教材)(浙江专用)【解析版】
数学模拟试卷03第I 卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020·河北高二学业考试)已知集合{}012M =,,,{}1,2N =,则M N ⋃=( ).A .{}1,2B .{}0C .{}0,1,2D .{}0,1【答案】C 【解析】由并集定义可得:{}0,1,2M N =.故选:C.2.(2019·浙江高二学业考试)已知a ,b 是实数,则“a b >”是“22a b >”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】若a b >,则a b b >≥,即a b >,故22a b >. 取1,2a b ==-,此时22a b >,但a b <, 故22a b >推不出a b >, 故选:A.3.(2019·伊宁市第八中学高一期中)若偶函数()f x 在区间(]1-∞-,上是增函数,则( ) A .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭B .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭C .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭D .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭【答案】D 【解析】函数()f x 为偶函数,则()()22f f =-.又函数()f x 在区间(]1-∞-,上是增函数. 则()()3122f f f ⎛⎫<-<- ⎪⎝⎭-,即()()3212f f f ⎛⎫<-<- ⎪⎝⎭故选:D.4.(2020·黑龙江哈尔滨市第六中学校高三开学考试(理))设2313a ⎛⎫= ⎪⎝⎭,532b =,21log 3c =,则( )A .b a c <<B .a b c <<C .c a b <<D .b c a <<【答案】C 【解析】23110133⎛⎫⎛⎫<<= ⎪ ⎪⎝⎭⎝⎭,503221>=,221log log 103<=, ∴c a b <<. 故选:C5.(2020·江苏南通市·高三期中)已知角α的终边经过点()3,4P ,则πcos 24α⎛⎫+= ⎪⎝⎭( )A .50-B .50C .50-D .50【答案】A 【解析】角α的终边经过点()3,4P ,5OP ∴==,由三角函数的定义知:3cos 5α=,4sin 5α, 2237cos 22cos 121525αα⎛⎫∴=-=⨯-=- ⎪⎝⎭,4324sin 22sin cos 25525ααα==⨯⨯=,()()π724cos 2cos2cos sin 2sin 4442525ππααα∴+=-=-=.故选:A.6.(2020·甘肃兰州市·西北师大附中高三期中)函数()f x 在[)0,+∞单调递增,且()3f x +关于3x =-对称,若()21f -=,则()21f x -≤的x 的取值范围( )A .[]22-,B .(][),22,-∞-+∞C .()[),04,-∞+∞D .[]0,4【答案】D 【解析】因为()3f x +关于3x =-对称,所以()f x 关于y 轴对称,所以()()221f f -==, 又()f x 在[)0,+∞单调递增,由()21f x -≤可得222x -≤-≤,解得:04x ≤≤, 故选:D7.(2020·浙江高一期末)对于函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭,有以下四种说法: ①函数的最小值是32-②图象的对称轴是直线()312k x k Z ππ=-∈ ③图象的对称中心为,0()312k k Z ππ⎛⎫-∈⎪⎝⎭ ④函数在区间7,123ππ⎡⎤--⎢⎥⎣⎦上单调递增. 其中正确的说法的个数是( ) A .1 B .2C .3D .4【答案】A 【解析】函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭, 当3=42x ππ+时,即=12x π,函数()f x 取得最小值为132122-⨯+=-,故①正确;当342x k πππ+=+时,即=,123k x k Z ππ+∈,函数()f x 的图象的对称轴是直线=,123k x k Z ππ+∈,故②错误; 当34x k ππ+=时,即,123k x k Z ππ=-+∈,函数()f x 的图象的对称中心为1,,1232k k Z ππ⎛⎫-+∈ ⎪⎝⎭,故③错误; 当3232242k x k πππππ+≤+≤+,即2523,123123k k x k Z ππππ+≤≤+∈,函数()f x 的递增区间为252,,123123k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当1k =-时,()f x 的递增区间为7,124ππ⎡⎤--⎢⎥⎣⎦,故④错误. 故选:A8.(2020·山西吕梁市·高三期中(文))函数1()11f x x=+-的图象与函数()2sin 1(24)g x x x π=+-的图象所有交点的横坐标之和等于( ) A .8 B .6C .4D .2【答案】A 【解析】由函数图象的平移可知, 函数1()11f x x=+-与函数()2sin 1g x x π=+的图象都关于(1,1)M 对称. 作出函数的图象如图,由图象可知交点个数一共8个(四组,两两关于点(1,1)对称), 所以所有交点的横坐标之和等于428⨯=.故选:A9.(2020·山西吕梁市·高三期中(文))已知函数2,0()()21,0x e a x f x a R x x ⎧+=∈⎨->⎩,若函数()f x 在R 上有两个零点,则a 的取值范围是( ) A .(,1)-∞- B .[2,0)-C .(1,0)-D .[1,0)-【答案】B 【解析】当0x >时,()21f x x =-有一个零点12x =,只需当0x ≤时,20x e a +=有一个根,利用“分离参数法”求解即可.解:因为函数()2,021,0x e a x f x x x ⎧+≤=⎨->⎩, 当0x >时,()21f x x =-有一个零点12x =, 所以只需当0x ≤时,202x xa e a e +==-即有一个根即可,因为2xy e =单调递增,当0x ≤时,(]0,1xe ∈,所以(]0,2a -∈,即[)2,0a ∈-,故选:B.10.(2020·河北高二学业考试)已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()()2log 1f x x =+,则不等式()2f x ≤的解集是( ). A .[]3,3- B .[]4,4-C .(][),33,-∞-+∞D .(][),44,-∞-⋃+∞【答案】A 【解析】0x ≥时,()()2log 1f x x =+,()f x ∴在[)0,+∞上单调递增,又()f x 是定义在R 上的奇函数,()f x ∴在R 上单调递增,易知()()223log 31log 42f =+==,()()332f f -=-=-, 由()2f x ≤, 解得:()22f x -≤≤, 由()f x 在R 上单调递增, 解得:33x -≤≤,()2f x ∴≤的解集是[]3,3-.故选:A.第II 卷 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(2020·上海青浦区·高三一模)圆锥底面半径为1cm ,母线长为2cm ,则其侧面展开图扇形的圆心角θ=___________.【答案】π; 【解析】因为圆锥底面半径为1cm ,所以圆锥的底面周长为2cm π, 则其侧面展开图扇形的圆心角22πθπ==, 故答案为:π.12.(2020·浙江宁波市·高三期中)设2log 3a =,则4a =______(用数值表示),lg 36lg 4=______.(用a 表示)【答案】9 1a + 【解析】2log 3a =,22394429log log a ∴===,4222236log 36log 6log (23)log 2log 314lg a lg ===⨯=+=+, 故答案为:9,1a +.13.(2020·深圳科学高中高一期中)某移动公司规定,使用甲种卡,须付“基本月租费”(每月需交的固定费用)30元,在国内通话时每分钟另收话费0.10元;使用乙种卡,不收“基本月租费”,但在国内通话时每分钟话费为0.2元.若某用户每月手机费预算为50元,则使用__________种卡才合算;若要使用甲种卡合算,则该用户每月手机费预算(元)的区间为__________. 【答案】乙 (60,)+∞ 【解析】由题意,设月通话时间为t 分钟,有甲费用为300.1t +,乙费用为0.2t , ∴每月手机费预算为50元,则:由300.150t +=知,甲的通话时间为200分钟, 由0.250t =知,乙的通话时间为250分钟, ∴用户每月手机费预算为50元,用乙种卡合算;要使用甲种卡合算,即月通话时间相同的情况下甲费用更低,即300.10.2t t +<, 解得300t >时,费用在(60,)+∞. 故答案为:乙,(60,)+∞14.(2020·商丘市第一高级中学高一期中)设函数()112,1,1x e x f x x x -⎧<⎪=⎨⎪≥⎩则()3f x ≤成立的x 的取值范围为______. 【答案】(],9-∞ 【解析】当1x <时,由13x e -≤得1ln3x ≤+,所以1x <; 当1≥x 时,由213x ≤得9x ≤,所以19x ≤≤. 综上,符合题意的x 的取值范围是(,9]-∞. 故答案为:(,9]-∞.15.(2020·辽宁本溪市·高二月考)摩天轮是一种大型转轮状的机械建筑设施,稳坐于永乐桥之上的“天津之眼”作为世界上唯一一座建在桥上的摩天轮,其巧夺天工和奇思妙想确是当之无愧的“世界第一”.如图,永乐桥摩天轮的直径为110m ,到达最高点时,距离地面的高度为120m ,能看到方圆40km 以内的景致,是名副其实的“天津之眼”.实际上,单从高度角度来看,天津之眼超越了曾大名鼎鼎的伦敦之眼而跃居世界第一.永乐桥摩天轮设置有48个座舱,开启后按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周大约需要30min .游客甲坐上摩天轮的座舱,开始转到min t 后距离地面的高度为m H ,则转到10min 后距离地面的高度为______m ,在转动一周的过程中,H 关于t 的函数解析式为______.【答案】1852 π55cos 6515H t =-+,030t ≤≤. 【解析】如图,设座舱距离地面最近的位置为点P ,以轴心O 为原点,与地面平行的直线为x 轴,建立直角坐标系.设0min t =时,游客甲位于点()0,55P -,以OP 为终边的角为π2-; 根据摩天轮转一周大约需要30min , 可知座舱转动的角速度约为πmin 15rad , 由题意可得πππ55sin 6555cos 6515215H t t ⎛⎫=-+=-+⎪⎝⎭,030t ≤≤.当10t =时,π18555cos 1065152H ⎛⎫=-⨯+= ⎪⎝⎭. 故答案为:1852;π55cos 6515H t =-+,030t ≤≤ 16.(2020·浙江建人专修学院高三三模)已知2,0()(),0x x f x f x x ⎧≥=⎨--<⎩,若4log 3a =,则()f a =___________;()1f a -=___________.3 233-因为4log 3a =,所以43a =,即2a =01a <<,所以()2a f a ==1(1)(1)2a f a f a --=--=-==3-17.(2020·上海虹口区·高三一模)已知(0,)απ∈,且有12sin2cos2αα-=,则cos α=___________.【解析】2212sin 2cos214sin cos 12sin sin 2sin cos αααααααα-=⇒-=-⇒=,因为(0,)απ∈,所以sin 0α≠,因此由2sin 2sin cos sin 2cos tan 2(0,)2πααααααα=⇒=⇒=⇒∈,而22sin cos 1(1)αα+=,把sin 2cos αα=代入(1)得:22214cos cos 1cos cos 5αααα+=⇒=⇒=(0,)2πα∈,因此cos α=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(2020·黑龙江工农�鹤岗一中高二期末(文))函数()22xxaf x =-是奇函数. ()1求()f x 的解析式;()2当()0,x ∈+∞时,()24x f x m ->⋅+恒成立,求m 的取值范围.【答案】(1)()122xxf x =-;(2)5m <-.() 1函数()22x x af x =-是奇函数, ()()1222222x x x x x x a af x a f x --∴-=-=-+=-+=-,故1a =, 故()122xx f x =-; ()2当()0,x ∈+∞时,()24x f x m ->⋅+恒成立,即21(2)42x xm +<-⋅在()0,x ∈+∞恒成立,令()2(2)42x xh x =-⋅,(0)x >,显然()h x 在()0,+∞的最小值是()24h =-, 故14m +<-,解得:5m <-.19.(2020·宁夏长庆高级中学高三月考(理))已知函数()22sin cos 22222x x x f x ππ⎛⎫⎛⎫=-++- ⎪ ⎪⎝⎭⎝⎭(1)求()f x 的最小正周期;(2)求()f x 在区间[]0,π上的最小值及单调减区间.【答案】(1)最小正周期为2π;(2)()min f x =()f x 的单调递减区间为,6ππ⎡⎤⎢⎥⎣⎦. 【解析】(1)1cos ()2sin cos 222x x xf x +=+sin x x =+12sin cos 2sin 223x x x π⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭.所以()f x 的最小正周期为2π. (2)因为[]0,x π∈,所以4,333x πππ⎡⎤+∈⎢⎥⎣⎦,所以当433x ππ+=,即x π=时,函数()f x 取得最小值由4233x πππ≤+≤,得6x ππ≤≤,所以函数()f x 的单调递减区间为,6ππ⎡⎤⎢⎥⎣⎦. 20.(2019·河北师范大学附属中学高一期中)已知二次函数()f x 的图象经过点()4,4-,方程()0f x =的解集为{}0,2.(1)求()f x 的解析式;(2)是否存在实数(),m n m n <,使得()f x 的定义域和值域分别为[],m n 和[]2,2m n ?若存在,求出m ,n 的值;若不存在,说明理由.【答案】(1)21()2f x x x =-+;(2)存在;2m =-,0n =. 【解析】(1)由已知,设()()2f x ax x =-.因为()f x 的图象经过点()4,4-,所以()4442a -=-,解得12a =-, 即()f x 的解析式为21()2f x x x =-+; (2)假设满足条件实数m ,n 的存在, 由于221111()(1)2222f x x x x =-+=--+≤,因此122n ≤,即14n ≤. 又()f x 的图象是开口向下的抛物线,且对称轴方程1x =,可知()f x 在区间[],m n 上递增,故有()2()2f m m f n n=⎧⎨=⎩,并注意到14m n <≤,解得2m =-,0n =. 综上可知,假设成立,即当2m =-,0n =时,()f x 的定义域和值域分别为[],m n 和[]2,2m n .21.(2020·山西吕梁市·高三期中(文))已知函数()sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫ ⎪⎝⎭上有最小值,无最大值,且满足63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. (1)求()f x 的最小正周期;(2)将函数()f x 的图象向右平移06πϕϕ⎛⎫<< ⎪⎝⎭个单位后得到函数()g x 的图象,若对满足()()122f x g x -=的1x 、2x 有12min 7x x π-=,求ϕ的值. 【答案】(1)37π;(2)14π. 【解析】(1)由()sin ,(0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫ ⎪⎝⎭上有最小值,无最大值, 可知:236T πππω-≤=,故有012ω<≤. 又6x π=与3x π=在一个周期内,且63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭; 4x π∴=时,函数取到最小值.2,()432k k Z πππωπ∴+=-+∈ 故有1083k ω=-+, 又因为012ω<≤,所以143ω=. 所以函数()f x 的最小正周期为37π. (2)由()()122f x g x -=∣∣可知的()()12,f x g x 中一个对应最大值,一个对应最小值. 对于函数()f x 其最大值与最小值对应的x 的距离为半个周期314π. ∴有12min 314x x πϕ-+=. 即314714πππϕ=-=.22.(2020·安徽省蚌埠第三中学高一月考)设函数()()21x x a t f x a--=(0a >,且1a ≠)是定义域为R 的奇函数.(1)求t 的值;(2)若函数()f x 的图象过点31,2⎛⎫ ⎪⎝⎭,是否存在正数()1m m ≠,使函数()()22log x x m g x a a mf x -⎡⎤=+-⎣⎦在[]21,log 3上的最大值为0,若存在,求出m 的值;若不存在,请说明理由.【答案】(1)2t =;(2)不存在,理由见解析.【解析】(1)∵()f x 是定义域为R 的奇函数,∴()00f =,∴2t =;经检验知符合题意.(2)函数()f x 的图象过点31,2⎛⎫ ⎪⎝⎭,所以2132a a -=, ∴2a =(12a =-舍去), 假设存在正数m ,且1m ≠符合题意,由2a =得()()22log 2222x x x x m g x m --⎡⎤=+--⎣⎦, 设22x x t -=-,则()()22222222x x x x m t mt -----+=-+,∵[]21,log 3x ∈,2[2,3]x ∈,∴38,23t ⎡⎤∈⎢⎥⎣⎦,记()22h t t mt =-+, ∵函数()g x 在[]21,log 3上的最大值为0,∴(i )若01m <<时,则函数()22h t t mt =-+在38,23⎡⎤⎢⎥⎣⎦有最小值为1, 由于对称轴122m t =<,∴()min 31731312426h t h m m ⎛⎫==-=⇒= ⎪⎝⎭,不合题意. (ii )若1m 时,则函数()220h t t mt =-+>在38,23⎡⎤⎢⎥⎣⎦上恒成立,且最大值为1,最小值大于0, ①()max 1252512212736873241324m m m h t h m ⎧⎧<≤<≤⎪⎪⎪⎪⇒⇒=⎨⎨⎛⎫⎪⎪=== ⎪⎪⎪⎩⎝⎭⎩, 而此时7338,24823m ⎡⎤=∈⎢⎥⎣⎦,又()min 73048h t h ⎛⎫=< ⎪⎝⎭, 故()g x 在[]21,log 3无意义, 所以7324m =应舍去; ②()max 25252126313126m m h t h m ⎧⎧>>⎪⎪⎪⎪⇒⇒⎨⎨⎛⎫⎪⎪=== ⎪⎪⎪⎩⎝⎭⎩m 无解, 综上所述:故不存在正数m ,使函数()g x 在[]21,log 3上的最大值为0.。
2020-2021学年高一数学必修第一册(人教A版(2019))(试卷+答案)
2020-2021学年高一数学必修一单元测试卷第5章 三角函数(一)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、在平面直角坐标系xOy 中,角与均以Ox 为始边,它们的终边关于x 轴对称,若=αsin 54,则=βsin (A .53B .54C .53-D .-54 2.(2020全国 Ⅱ卷)若α为第四象限角,则( ) A .cos 20α> B .cos 20α< C .sin 20α>D .sin 20α<3..设α是第二象限角,P(x ,4)为其终边上的一点,且cos α=15x ,则tan α=( ) A .43B .34C .-34D .-434. 一段圆弧的长度等于其圆内接正方形的边长,则其圆心角的弧度数为( ) A .2π B .3π C 2 D 35.若4sin cos 3θθ-=,且3π,π4θ⎛⎫∈ ⎪⎝⎭,则sin(π)cos(π)θθ---=( ) A .23- B .23C .43-D .436.(2020全国III 卷)已知2tan tan()74πθθ-+=,则tan θ=( )A .2-B .1-C .1D .27.若2cos 23πα⎛⎫-= ⎪⎝⎭,则()cos 2πα-=( )A . 29- B .29 C . 59- D . 598 (2020海南卷改编)右图是函数sin()y x ωϕ=+的部分图像,则sin()x ωϕ+=( )A .sin()3x π+B .sin(2)3x π-C .)62cos(π-xD .5cos(2)6x π-9. (2020全国卷I )已知(0,)απ∈,且3cos28cos 5αα-=,则sin α=( )A .5B .23C .13D 510. 设函数()sin()3)f x x x ωϕωϕ=++(0,2πωϕ><)的最小正周期为π,且()f x 为偶函数,则( )A .()f x 在(0,)2π单调递减B .()f x 在3(,)44ππ单调递减C .()f x 在(0,)2π单调递增D .()f x 在3(,)44ππ单调递增11. 若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛⎭⎪⎫π4-β2=33,则cos ⎝ ⎛⎭⎪⎫α+β2=( )A .33B .-33C .539D .-69 12. 设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,9π8,若方程f (x )=a 恰好有三个根,分别为x 1,x 2,x 3(x 1<x 2<x 3),则2x 1+3x 2+x 3的值为( )A .πB .3π4C .3π2D .7π4二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13. (2020江苏卷)将函数3sin(2)4y x π=+的图象向右平移6π个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是 .14. (2020北京) 若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________.15. (2020江苏卷)已知22sin ()43πα+=,则sin2α的值是________.16.(2020天津卷改编)已知函数()sin 3f x x π⎛⎫=+ ⎪⎝⎭.给出下列结论:①()f x 的最小正周期为2π;②2f π⎛⎫⎪⎝⎭是()f x 的最大值;③把函数sin y x =的图象上所有点向左平移3π个单位长度,可得到函数()y f x =的图象. 其中所有正确结论的序号是________三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知π02α<<,4sin 5α=. (1)求tan α及sin 2α的值;(2)求πcos 2sin()2αα++的值.18.(12分)已知f(α)=.(1)化简f(α);(2)若f(α)=,且<α<,求cosα-sinα的值;(3)若α=-,求f(α)的值.19. (12分)(2020·湖北武汉高一期末)一半径为2米的水轮如图所示,水轮圆心O 距离水面1米;已知水轮按逆时针做匀速转动,每3秒转一圈,如果当水轮上点P 从水中浮现时(图中点0P )开始计算时间.(1)以水轮所在平面与水面的交线为x 轴,以过点O 且与水面垂直的直线为y 轴,建立如图所示的直角坐标系,试将点P 距离水面的高度h (单位:米)表示为时间t (单位:秒)的函数; (2)在水轮转动的任意一圈内,有多长时间点P 距水面的高度超过2米?20.(12分)【2020·天津高三二模】已知函数()()21cos 3sin cos 2f x x x x x =+-∈R (1)求()f x 的最小正周期;(2)讨论()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的单调性;21. (12分)(本小题满分12分)已知α,β为锐角,sin α=17,cos(α+β)=35. (1)求sin ⎝ ⎛⎭⎪⎫α+π6的值; (2)求cos β的值.22.(12分) 已知函数f(x)=sin2x -2sin2x.(1)求函数f(x)的最大值; (2)求函数f(x)的零点的集合.2020-2020学年高一数学必修一第一册提优卷 第5章 三角函数(一)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、在平面直角坐标系xOy 中,角与均以Ox 为始边,它们的终边关于x 轴对称,若=αsin 54,则=βsin (A .53B .54C .53-D .-54 答案D【解析】角与均以Ox 为始边,且它们的终边关于x 轴对称,=αsin βsin , 又=αsin 54,∴=βsin -54. 故选:D .2.(2020全国 Ⅱ卷)若α为第四象限角,则( ) A .cos 20α> B .cos 20α<C .sin 20α>D .sin 20α<答案:D 【解析】∵22()2k k k Z ππαπ-+<<∈,∴424()k k k Z ππαπ-+<<∈,∴2α是第三象限角或第四象限角,∴sin 20α<故选D .3..设α是第二象限角,P(x ,4)为其终边上的一点,且cos α=15x ,则tan α=( ) A .43 B .34C .-34D .-43答案:D【解析】:α是第二象限角,所以x<0,r =x 2+16, 所以cos α=x x 2+16=15x ,所以x 2=9,所以x =-3, 所以tan α=-43. 故选D .4. 一段圆弧的长度等于其圆内接正方形的边长,则其圆心角的弧度数为( ) A .2π B .3π CD【答案】C【解析】:设圆内接正方形的边长为a ,所以弧长等于a的圆弧所对的圆心角为l rα===,故选C . 5.若4sin cos 3θθ-=,且3π,π4θ⎛⎫∈ ⎪⎝⎭,则sin(π)cos(π)θθ---=() A .3-B .3C .43-D .43【答案】A【解析】由题意,416sin cos 12sin cos 39θθθθ-=⇒-=, 则72sin cos 09θθ=-<,由于3π,π4θ⎛⎫∈ ⎪⎝⎭, 22sin(π)cos(π)sin cos (sin cos )12sin cos 3θθθθθθθθ---=+=-+=-+=-故选A .6.(2020全国III 卷)已知2tan tan()74πθθ-+=,则tan θ=( )A .2-B .1-C .1D .2答案:D【解析】由题可知1tan 2tan 71tan θθθ+-=-,化解得:22tan 2tan 1tan 77tan θθθθ---=-,解得tan 2θ=.故选D .7.若2cos 23πα⎛⎫-= ⎪⎝⎭,则()cos 2πα-=( )A . 29-B .29C . 59-D .59【答案】C【解析】2cos sin 23παα⎛⎫-== ⎪⎝⎭, ()2225cos 2cos22sin 12139πααα⎛⎫-=-=-=⨯-=- ⎪ ⎪⎝⎭.选C . 8 (2020海南卷改编)右图是函数sin()y x ωϕ=+的部分图像,则sin()x ωϕ+=( )A .sin()3x π+B .sin(2)3x π-C .)62cos(π-x D .5cos(2)6x π- 【答案】:B 、 【解析】由图易知22362T πππ=-=,则T π=,22T πω==,由题意结合图像知,26πϕπ⨯+=,故23πϕ=,则2sin(2)sin(2)sin(2)333y x x x ππππ=+=+-=- sin(2)cos(2)266x x πππ=++=+.故选B .9. (2020全国卷I )已知(0,)απ∈,且3cos28cos 5αα-=,则sin α=( )A .B .23 C .13D 【答案】:A【解析】由3cos28cos 5αα-=,得23(2cos 1)8cos 5αα--=, 得23cos 4cos 40αα--=,化为(3cos 2)(cos 2)0αα+-=,得2cos 3α=-,那么sin 3α=.故选A .10. 设函数()sin())f x x x ωϕωϕ=++(0,2πωϕ><)的最小正周期为π,且()f x 为偶函数,则( )A .()f x 在(0,)2π单调递减B .()f x 在3(,)44ππ单调递减C .()f x 在(0,)2π单调递增D .()f x 在3(,)44ππ单调递增【答案】C【解析】()2sin 3f x x πωϕ⎛⎫=+- ⎪⎝⎭,周期为2,2T ππωω===,函数为偶函数,故,326πππϕϕ-=-=-,故()cos2f x x =-,所以函数在(0,)2π上单调递增. 故选C .11. 若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛⎭⎪⎫π4-β2=33,则cos ⎝ ⎛⎭⎪⎫α+β2=( )A .33 B .-33 C .539 D .-69【答案】C【解析】:根据条件可得α+π4∈⎝ ⎛⎭⎪⎫π4,34π,π4-β2∈⎝ ⎛⎭⎪⎫π4,π2,所以sin ⎝ ⎛⎭⎪⎫α+π4=223,sin ⎝ ⎛⎭⎪⎫π4-β2=63, 所以cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2 =cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2=13×33+223×63=539.故选C .12. 设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,9π8,若方程f (x )=a 恰好有三个根,分别为x 1,x 2,x 3(x 1<x 2<x 3),则2x 1+3x 2+x 3的值为( )A .πB .3π4C .3π2D .7π4【答案】D【解析】:由题意x ∈⎣⎢⎡⎦⎥⎤0,9π8,则2x +π4∈⎣⎢⎡⎦⎥⎤π4,5π2, 画出函数的大致图象,如图所示.由图可得,当22≤a <1时,方程f (x )=a 恰有三个根. 由2x +π4=π2得x =π8; 由2x +π4=3π2得x =5π8.由图可知,点(x 1,a )与点(x 2,a )关于直线x =π8对称;点(x 2,a )和点(x 3,a )关于x =5π8对称,所以x 1+x 2=π4,x 2+x 3=5π4,所以2x 1+3x 2+x 3=2(x 1+x 2)+(x 2+x 3)=7π4,故选D .二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13. (2020江苏卷)将函数3sin(2)4y x π=+的图象向右平移6π个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是 . 【答案】524x π=- 【解析】因为()3sin(2)4f x x π=+,将函数()3sin(2)4f x x π=+的图象向右平移6π个单位长度得()()3sin(2)3sin(2)63412g x f x x x ππππ=-=-+=-,则()y g x =的对称轴为2122x k πππ-=+,k Z ∈,即7242k x ππ=+,k Z ∈,0k =时,724x π=,1k =-时,524x π=-,所以平移后的图象中与y 轴最近的对称轴的方程是524x π=-. 14. (2020北京)若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________.【答案】2π(2,2k k Z ππ+∈均可)【解析】因为()()()cos sin sin 1cos f x x x x ϕϕθ=++=+,2=,解得sin 1ϕ=,故可取2ϕπ=. 15. (江苏卷)已知22sin ()43πα+=,则sin2α的值是________.【答案】:13【解析】因为22sin ()43πα+=,由2112sin ()(1cos(2))(1sin2)42223ππααα+=-+=+=,解得1sin 23α=16.(2020天津卷改编)已知函数()sin 3f x x π⎛⎫=+ ⎪⎝⎭.给出下列结论:①()f x 的最小正周期为2π;②2f π⎛⎫⎪⎝⎭是()f x 的最大值;③把函数sin y x =的图象上所有点向左平移3π个单位长度,可得到函数()y f x =的图象. 其中所有正确结论的序号是________【答案】①③【解析】因为()sin()3f x x π=+,所以周期22T ππω==,故①正确; 51()sin()sin 122362f ππππ=+==≠,故②不正确; 将函数sin y x =的图象上所有点向左平移3π个单位长度,得到sin()3y x π=+的图象, 故③正确.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知π02α<<,4sin 5α=. (1)求tan α及sin 2α的值;(2)求πcos 2sin()2αα++的值.【答案】(1)4tan 3α=,24sin 225α=;(2)825.【解析】(1)因为π02α<<,4sin 5α=,所以3cos 4α=,所以sin 4tan cos 3ααα==,4324sin 22sin cos 25525ααα=⋅=⋅⋅=.(2)原式223382cos 1cos 2()15525αα=-+=⋅-+=.18.(12分)已知f(α)=.(1)化简f(α);(2)若f(α)=,且<α<,求cosα-sinα的值;(3)若α=-,求f(α)的值.【答案】(1)f(α)=sinα·cosα.(2)cosα-sinα=-.(3)-【解析】(1)f(α)==sinα·cosα.(2)由f(α)=sinαcosα=可知(cosα-sinα)2=cos 2α-2sinαcosα+sin 2α=1-2sinαcosα=1-2×=.又∵<α<,∴cosα<sinα,即cosα-sinα<0.∴cosα-sinα=-.(3)∵α=-=-6×2π+,∴f(-)=cos(-)·sin(-)=cos(-6)·sin(-6)=cos ·sin =cos(2π-)·sin(2π-)=cos ·=·(-)=-. 19. (12分)(2020·湖北武汉高一期末)一半径为2米的水轮如图所示,水轮圆心O 距离水面1米;已知水轮按逆时针做匀速转动,每3秒转一圈,如果当水轮上点P 从水中浮现时(图中点0P )开始计算时间.(1)以水轮所在平面与水面的交线为x 轴,以过点O 且与水面垂直的直线为y 轴,建立如图所示的直角坐标系,试将点P 距离水面的高度h (单位:米)表示为时间t (单位:秒)的函数; (2)在水轮转动的任意一圈内,有多长时间点P 距水面的高度超过2米?【答案】(1)()22sin 1036t h t ππ⎛⎫=-+≥ ⎪⎝⎭;(2)有1s 时间点P 距水面的高度超过2米. 【解析】(1)设水轮上圆心O 正右侧点为A ,y 轴与水面交点为B ,如图所示:设()sin h a t b ωϕ=++,由1OB =,2OP =,可得03BOP π∠=,所以06AOP π∠=.2a ∴=,1b =,6πϕ=-,由题意可知,函数2sin 16h t πω⎛⎫=-+ ⎪⎝⎭的最小正周期为3T =,223T ππω∴==, 所以点P 距离水面的高度h 关于时间t 的函数为()22sin 1036t h t ππ⎛⎫=-+≥ ⎪⎝⎭; (2)由22sin 1236t h ππ⎛⎫=-+>⎪⎝⎭,得21sin 362t ππ⎛⎫-> ⎪⎝⎭, 令[]0,3t ∈,则211,3666t ππππ⎡⎤-∈-⎢⎥⎣⎦, 由256366t ππππ<-<,解得1322<<t ,又31122-=,所以在水轮转动的任意一圈内,有1s 时间点P 距水面的高度超过2米.20.(12分)【2020·天津高三二模】已知函数()()21cos 3cos 2f x x x x x =-∈R (1)求()f x 的最小正周期;(2)讨论()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的单调性;【答案】(1)π;(2)()f x 在区间,46ππ⎡⎤-⎢⎥⎣⎦上单调递增;在区间,64ππ⎡⎤⎢⎥⎣⎦上单调递减.【解析】(1)依题意,()211cos 231cos 3sin cos 2sin 222226x f x x x x x x +π⎛⎫=+-=+-=+ ⎪⎝⎭所以2T ωπ==π.(2)依题意,令222262k x k πππ-+π≤+≤+π,k ∈Z , 解得36k x k ππ-+π≤≤+π,所以()f x 的单调递增区间为,36k k ππ⎡⎤-+π+π⎢⎥⎣⎦,k ∈Z .设,44A ππ⎡⎤=-⎢⎥⎣⎦,,36B k k ππ⎡⎤=-+π+π⎢⎥⎣⎦,易知,46A B ππ⎡⎤=-⎢⎥⎣⎦,所以当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 在区间,46ππ⎡⎤-⎢⎥⎣⎦上单调递增;在区间,64ππ⎡⎤⎢⎥⎣⎦上单调递减.21. (12分)(本小题满分12分)已知α,β为锐角,sin α=17,cos(α+β)=35. (1)求sin ⎝ ⎛⎭⎪⎫α+π6的值; (2)求cos β的值.【答案】(1)5314(2)4+12335 【解析】 (1)∵α为锐角,sin α=17, ∴cos α=1-sin 2α=437,∴sin ⎝ ⎛⎭⎪⎫α+π6=sin αcos π6+cos αsin π6 =17×32+437×12=5314.(2)∵α,β为锐角,∴α+β∈(0,π),由cos(α+β)=35得,sin(α+β)=1-cos 2(α+β)=45,∴cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=35×437+45×17=4+12335.22.(12分)已知函数f(x)=sin2x-2sin2x.(1)求函数f(x)的最大值;(2)求函数f(x)的零点的集合.【答案】(1)1 (2){x|x=kπ或x=kπ+,k∈Z}【解析】(1)因为f(x)=sin 2x-(1-cos 2x)=2sin(2x+)-1,所以,当2x+=2kπ+,k∈Z,即x=kπ+,k∈Z时,函数f(x)取得最大值1.(2)法一:由(1)及f(x)=0得sin(2x+)=,所以2x+=2kπ+或2x+=2kπ+,k∈Z,即x=kπ或x=kπ+,k∈Z.故函数f(x)的零点的集合为{x|x=kπ或x=kπ+,k∈Z}.法二:由f(x)=0得2sin xcos x=2sin2x,于是sin x=0或cos x=sin x即tan x=. 由sin x=0可知x=kπ;由tan x=可知x=kπ+.故函数f(x)的零点的集合为{x|x=kπ或x=kπ+,k∈Z}.。
江苏省2020-2021学年高一上学期数学期中试题汇编04:函数的概念与性质【填选题】(答案版)
8.(江苏省南京市第十二中学2020-2021学年上学期期中4)下面各组函数中表示同个函数的是()
A. , B. ,
C. , D. ,
【答案】B
【解析】对于A, 的定义域为 ,而 的定义域为 ,两函数的定义域不相同,所以不是同一函数;
对于B,两个函数的定义域都为 ,定义域相同, ,所以这两个函数是同一函数;
A.0B.2
C.4D.-2
【答案】B
【解析】取 ,则 ,
因为函数为奇函数,则 , 即 ,
整理可得 ,即 .故选:B
10.(江苏省南通市西亭高级中学2020-2021学年上学期期中4)已知函数 ,若 =10,则实数a的值为()
A 5B.9C.10D.11
【答案】B
【解析】由 ,令 ,则 .
因为 ,所以a=9.故选:B
A.-4 B.5 C.14 D.23
【答案】C
【解析】由题意可设 ,则当 时, 单调,且 ≥0恒成立,因为 的对称轴方程为 ,则 或 ,解得6≤a≤17或-3≤a≤-2,即 ,则只有14满足题意,故答案选C.
23.(江苏省南通市西亭高级中学2020-2021学年上学期期中6)已知 是偶函数,且其定义域为 ,则 的值是()
【答案】C
【解析】满足条件的函数的定义域为 、 、 、 、 、 、 、 、 ,共 个.故选:C.
18.(江苏省南京市南师附中2020-2021学年上学期期中5)函数 的值域为( )
A. B. C. D.
【答案】D
19.(江苏省南通市西亭高级中学2020-2021学年上学期期中5)已知函数 的值域是()
C.[-4,-1]∪[0,2]D.(-∞,-1]∪[0,2]
高一数学第一学期期末模拟试卷(二)(解析版)
2020—2021学年度高一数学第一学期期末模拟试卷(二)(解析版)(时间120分钟 满分150分)一、单项选择题:(本题共8小题,每小题5分,共40分.在每小题给出的四 个选项中,只有一项是符合题意要求的.)1. 设集合A ={1,2,4},B ={x|x 2−4x +m =0},若A ∩B ={1},则B =( )A. {1,−3}B. {1,0}C. {1,3}D. {1,5}【解答】C . 2.已知,则x 的值为( )A. 12B. 2C. 3D. 4【答案】B3.已知命题p :∃x 0∈R ,x 02−x 0+14≤0,则¬p 为( ) A. ∃x 0∈R ,x 02−x 0+14>0 B. ∃x 0∈R ,x 02−x 0+14<0 C. ∀x ∈R ,x 2−x +14≤0D. ∀x ∈R ,x 2−x +14>0【答案】D4.不等式2−3xx−1>0的解集为( )A. (−∞,34)B. (−∞,23)C. (−∞,23)∪(1,+∞)D. (23,1)【答案】D5.已知函数f(3x +1)=x 2+3x +2,则f(10)=( )A. 30B. 6C. 20D. 9【答案】C6.设函数f(x)=cos(x +π3),则下列结论错误的是( )A. f(x)的一个周期为−2πB. y =f(x)的图象关于直线x =8π3对称C. f(x +π)的一个零点为x =π6D. f(x)在(π2,π)单调递减【答案】D7.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t 的单位:天)的Logistic 模型:I(t)=K1+e −0.23(t−53),其中K 为最大确诊病例数.当I(t ∗)=0.95K 时,标志着已初步遏制疫情,则t ∗约为( )(ln19≈3)A. 60B. 63C. 66D. 69【答案】C【解析】 【分析】本题考查函数模型的实际应用,考查学生计算能力,属于中档题. 根据所给材料的公式列出方程K1+e −0.23(t−53)=0.95K ,解出t 即可. 【解答】解:由已知可得K1+e −0.23(t−53)=0.95K ,解得e −0.23(t−53)=119, 两边取对数有−0.23(t −53)=−ln19≈−3, 解得t ≈66, 故选:C .8.已知函数()y f x =是定义域为R 的偶函数,当0x ≥时,()5sin ,014211,14xx x f x x π⎧⎛⎫≤≤ ⎪⎪⎝⎭⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩,若关于x 方程()()()()255660f x a f x a a R -++=∈⎡⎤⎣⎦有且仅有6个不同实数根,则a 的取值范围是() A .01a <≤或54a =B .01a ≤≤或54a =C .01a <<或54a =D .514a <≤或0a =【答案】A二、多项选择题:(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有 选错的得0分.)9.已知x ≥1,则下列函数的最小值为2的有( )A. y =2x +x 2B. y =4x +1xC. y =3x −1xD. y =x −1+4x+1【答案】ACD10.下列命题正确的是( )A. 三角形全等是三角形面积相等的充分不必要条件B.,x 2−x +1≠0C. 有些平行四边形是菱形是全称量词命题D. 至少有一个整数,使得n 2+n 为奇数是真命题【答案】AB11.下列各组函数是同一函数的是( )A. f(x)=√−2x 3与g(x)=x √−2x ;B. f(x)=x 与g(x)=√x 2;C. f(x)=x 0与g(x)=1x 0;D. f(x)=x 2−2x −1与g(t)=t 2−2t −1【答案】CD12.图象,则sin (ωx +φ)=( )A. sin (x +π3)B. sin (π3−2x)C.cos (2x +π6)D. cos (5π6−2x)【答案】BC三、填空题:(本题共4小题,每小题5分,共20分)13.已知集合A ={1,2},B ={a,a 2+3}.若A ∩B ={1},则实数a 的值为______.为1.14化简求值:(8116)−14+log 2(43×24)=______ .【答案】32315.关于x 的方程(12)|x|=|log 12x|的实数根的个数是________.【答案】216.已知a >0,设函数f(x)=2009x+1+20072009x +1+sinx(x ∈[−a,a])的最大值为M ,最小值为N ,那么M +N = ______ .【答案】4016 【解析】解:∵f(x)=2009x+1+20072009x +1+sinx(x ∈[−a,a])∴设g(x)=2009x+1+20072009x +1,则g(x)=2009x+1+2009−22009x +1=2009−22009x +1,∵2009x 是R 上的增函数,∴g(x)也是R 上的增函数. ∴函数g(x)在[−a,a]上的最大值是g(a),最小值是g(−a).∵函数y =sinx 是奇函数,它在[−a,a]上的最大值与最小值互为相反数,最大值与最小值的和为0.∴函数f(x)的最大值M 与最小值N 之和M +N =g(a)+g(−a) =2009−22009a +1+2009−22009−a +1…第四项分子分母同乘以2009a=4018−[22009a+1+2×2009a2009a+1]=4018−2=4016.四、解答题:(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知集合A={x|x≤−3或x≥2},B={x|1<x<5},C={x|m−1≤x≤2m} (Ⅰ)求A∩B,(∁R A)∪B;(Ⅱ)若B∩C=C,求实数m的取值范围.【答案】解:(Ⅰ)A∩B={x|2≤x<5},∁R A={x|−3<x<2},∴(∁R A)∪B={x|−3<x<5}.(Ⅱ)∵B∩C=C,∴C⊆B,当C=∅时,m−1>2m,∴m<−1;当C≠∅⌀时,{m−1≤2mm−1>12m<5,解得2<m<52,综上,m的取值范围是m<−1或2<m<52.【解析】本题考查了集合的交集,并集,补集运算,考查了集合包含关系的应用,属于基础题.(Ⅰ)根据定义,进行集合的交、并、补集运算,可得答案;(Ⅱ)分集合C=∅⌀和C≠⌀∅两种情况讨论m满足的条件,综合即可得m的取值范围.18.已知命题p:“方程x2+mx+1=0有两个不相等的实根”,命题p是真命题。
第5章 三角函数(一)-2020-2021学年高一数学必修第一册单元提优卷(人教A版(2019))(含答案)
=
3,则
cos
α+β 2
=(
)
22
3
3
A. 3 3
B.- 3 3
C.5 3 9
D.- 6 9
【答案】C
【解析】:根据条件可得α+π∈
π,3π 44
,π-β∈
π,π 42
,所以
sin
α+π 4
=2
2,sin
π-β 42
=
6,
4
42
3
3
α+β 所以 cos 2 =cos
π+α π-β 4 -4 2
π+α π-β =cos 4 cos 4 2 +
4
A. 2
B. 1
C.1
4
D.
3
)
D. 2
7.若
cos
2
2 ,则 cos 2 (
3
)
A. 2 9
C. 5 9
2
B.
9 5
D.
9
8 (2020 海南卷改编)右图是函数 y sin( x ) 的部分图像,则 sin( x ) (
)
A. sin(x ) 3
C. cos(2x ) 6
2020-2020 学年高一数学必修一第一册提优卷
第 5 章 三角函数(一)
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符
合题目要求的)
1、在平面直角坐标系 xOy 中,角
与
均以 Ox 为始边,它们的终边关于 x 轴对称,若 sin
4
,则
5
2020-2020 学年高一数学必修一第一册提优卷
第 5 章 三角函数(一)
2020-2021学年新教材高一数学上学期期末复习练习(四)
2020-2021高一数学期末复习练习(四)考查知识:苏教版必修第一册第I 卷(选择题)请点击修改第I 卷的文字说明一、单选题1.集合{|14}A x N x =∈≤<的真子集的个数是( )A .16B .8C .7D .42.已知:p :A ={x |x 2﹣2x ﹣3≤0},q :B ={x |x 2﹣2mx +m 2﹣4≤0},若p 是¬q 成立的充分不必要条件,求m 的取值范围是( )A .(﹣∞,﹣3)∪(5,+∞)B .(﹣3,5)C .[﹣3,5]D .(﹣∞,﹣3]∪[5,+∞)3.已知a b >,0ab ≠,则下列不等式正确的是( )A .22a b >B .22a b >C .|a |>|b|D .11a b < 4.已知lg 20.3010=,由此可以推断20142是( )位整数.A .605B .606C .607D .6085.设f (x )=12(1),1x x x <<-≥⎪⎩,若f (a )=12,则a =( ) A .14 B .54 C .14或54 D .26.正实数x ,y 满足lg lg 100y x x y =,则xy 的取值范围是( )A .1[,100]100B .1(0,][100,)100⋃+∞ 117.已知扇形的圆心角为23π,面积为24 c m 3π,则扇形的半径为( ) A .12cm B .1cmC .2cmD .4cm 8.复利是一种计算利息的方法.即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱1000元,存入银行,年利率为2.25%;若放入微信零钱通或者支付宝的余额宝,年利率可达4.01%.如果将这1000元选择合适方式存满5年,可以多获利息( )元(参考数据:1.02254=1.093,1,02255=1.170,1.04015=1.217)A .176B .104.5C .77D .88二、多选题9.已知集合{}2A x ax =≤,{B =,若B A ⊆,则实数a 的值可能是( ) A .1- B .1 C .2- D .2 10.设正实数a ,b 满足a +b =1,则( )A .11a b +有最小值4B 12C D .a 2+b 2有最小值12 11.已知定义在R 上的函数()y f x =满足条件()()2f x f x +=-,且函数()1y f x =-为奇函数,则( )A .()4()f x f x +=B .函数()y f x =的图象关于点()1,0-对称C .函数()y f x =为R 上的奇函数D .函数()y f x =为R 上的偶函数12.将函数()sin2f x x =向右平移4π个单位后得到函数()g x ,则()g x 具有性质( ) A .在0,4π⎛⎫ ⎪⎝⎭上单调递增,为偶函数 B .最大值为1,图象关于直线32x π=对称 C .在3,88ππ⎛⎫- ⎪⎝⎭上单调递增,为奇函数 D .周期为π,图象关于点3,04π⎛⎫⎪⎝⎭对称第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题13.已知p :2106x x >--,则“非p ”对应的x 值的集合是___. 14.若对数ln (x 2﹣5x +6)存在,则x 的取值范围为___.15.若()log 3a y ax =+(0a >且1a ≠)在区间(-1,+∞)上是增函数,则a 的取值范围是________.四、双空题16.已知函数()22log (1),02,0x x f x x x x +>⎧=⎨--≤⎩. 若函数()()g x f x m =-有3个零点,则实数m 的取值范围是________;若()f x m =有2个零点,则m =________.17.已知集合{}12A x x =-≤≤,{}2B x a x a =≤≤+.(1)若1a =,求A B ;(2)在①R R A B ⊆,②A B A ⋃=,③A B B =中任选一个作为已知,求实数a 的取值范围.18.已知函数()222y ax a x =-++,a R ∈ (1)32y x <-恒成立,求实数a 的取值范围;(2)当0a >时,求不等式0y ≥的解集;(3)若存在0m >使关于x 的方程()21221ax a x m m-++=++有四个不同的实根,求实数a 的取值.19.计算下列各式的值:(1)lg2+lg50;(2)39log 4log 8; (3))211lg12log 432162lg 20lg 2log 2log 319-⎛⎫++--⋅+ ⎪⎝⎭.20.已知函数f (x )=ax 2﹣2x +1+b (a ≠0)在x =1处取得最小值0.(1)求a ,b 的值;(2)()()f x g x x =,求函数1(|21|),,22x y g x ⎡⎤=-∈⎢⎥⎣⎦的最小值与最大值及取得最小值与最大值时对应的x 值.21.设函数()cos(),0,02f x x πωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的最小正周期为π,且16f π⎛⎫= ⎪⎝⎭. (1)求函数()f x 的解析式;(2)求函数()f x 的单调递增区间;(3)将函数()y f x =的图象向左平移3π个单位长度,再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )在2,63ππ⎡⎤-⎢⎥⎣⎦上的值域.22.销售甲种商品所得利润为P 万元,它与投入资金t 万元的函数关系为1at P t =+;销售乙种商品所得利润为Q 万元,它与投入资金t 万元的函数关系为Q bt =,其中a ,b 为常数.现将5万元资金全部投入甲、乙两种商品的销售:若全部投入甲种商品,所得利润为52万元;若全部投入乙种商品,所得利润为53万元.若将5万元资金中的x 万元投入甲种商品的销售,余下的投入乙种商品的销售,则所得利润总和为()f x 万元. (1)求函数()f x 的解析式;(2)求()f x 的最大值.2020-2021高一数学期末复习练习(四)考查知识:苏教版必修第一册参考答案1.C【分析】先用列举法写出集合A ,再写出其真子集即可.【详解】解:∵141,2,3{|}{}A x N x =∈≤<=,{|1}4A x N x ∴=∈≤<的真子集为:{}{}{},,,,{}1231,21,{},,3{}2,3∅共7个. 故选:C .2.A【分析】求出集合A ,B ,由题可得[1,3]- ()(),22,m m -∞-⋃+∞,即可求出.【详解】解:由2230x x --≤,解得:13x -≤≤.{}2:230[1,3]p A x x x ∴=--≤=-∣.由22240x mx m -+-≤,解得:22m x m -≤≤+.∴q :B ={x |x 2﹣2mx +m 2﹣4≤0}=[m ﹣2,m +2], {}22:240[2,2]q B x x mx m m m ∴=-+-≤=-+∣.∵p 是¬q 成立的充分不必要条件,[1,3]∴- ()(),22,m m -∞-⋃+∞,32m ∴<-或21m +<-,解得5m >或3m <-.∴m 的取值范围是(,3)(5,)-∞-+∞. 故选:A.【点睛】结论点睛:本题考查根据充分不必要条件求参数,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,则q 对应的集合与p 对应集合互不包含. 3.B【分析】利用不等式性质和指数函数的单调性,以及举反例,逐项判定,即可求解.【详解】对于A 中,令1,2a b ==-,此时满足a b >,0ab ≠,但22a b <,所以不正确; 对于B 中,由函数2x y =为R 上的单调递增函数,因为a b >,所以22a b >,所以正确; 对于C 中,令1,2a b ==-,此时满足a b >,0ab ≠,但|a ||b |<,所以不正确; 对于D 中,令1,2a b ==-,此时满足a b >,0ab ≠,但11a b>,所以不正确. 故选:B.4.C【分析】令20142t =,两边取对数后求得lg t ,由此可得20142的整数位.【详解】解:∵lg 20.3010=,令20142t =,∴2014lg 2lg t ⨯=,则lg 20140.3010606.214t =⨯=,∴20142是607位整数.故选:C.5.C【分析】根据解析式分段讨论可求出.【详解】解:∵()12(1),1x f x x x <<=-≥⎪⎩,1()2f a =,∴由题意知,0112a <<⎧=或()11212a a ≥⎧⎪⎨-=⎪⎩, 解得14a =或54a =. 故选:C .6.B【分析】两边取对数可得lg lg 1x y =,利用基本不等式即可求出xy 的取值范围.【详解】正实数x ,y 满足lg lg 100y x x y =,两边取对数可得2lg lg 2x y =,所以lg lg 1x y =, 所以22lg lg lg()1lg lg 22x y xy x y +⎛⎫⎡⎤=≤= ⎪⎢⎥⎝⎭⎣⎦,即2lg ()4xy ≥, 所以lg()2xy ≥或lg()2xy ≤-,解得100xy ≥或10100xy <≤, 所以xy 的取值范围是1(0,][100,)100⋃+∞. 故选:B【点睛】 关键点点睛:本题的求解关键是两边取对数得到lg lg x y 积为定值. 7.C【分析】利用扇形的面积公式即可求解.【详解】设扇形的半径为R ,则扇形的面积2211242233S R R ππα==⨯⨯=, 解得:2R =,故选:C8.B【分析】由题意,某同学有压岁钱1000元,分别计算存入银行和放入微信零钱通或者支付宝的余额宝所得利息,即可得到答案.【详解】将1000元钱存入微信零钱通或者支付宝的余额宝,选择复利的计算方法,则存满5年后的本息和为51000 1.04011217⨯=,故而共得利息1217–1000=217元.将1000元存入银行,不选择复利的计算方法,则存满5年后的利息为1000×0.0225×5=112.5,故可以多获利息217–112.5=104.5.故选:B .【点睛】本题主要考查了等比数列的实际应用问题,其中解答中认真审题,准确理解题意,合理利用等比数列的通项公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.ABC【分析】由B A ⊆可得出关于实数a 的不等式组,解出实数a 的取值范围,进而可得出实数a 的可能取值.【详解】{}2A x ax =≤,{B =且B A ⊆,所以,222a ≤≤⎪⎩,解得1a ≤. 因此,ABC 选项合乎题意.故选:ABC.10.ABCD由正实数a ,b 满足1a b +=,可得2a b ab +,则104ab <,根据1114a b ab +=判断A ;104ab <开平方判断B =判断C ;利用222222()a b a a b b +++判断D .【详解】正实数a ,b 满足1a b +=,即有2a b ab +,可得104ab <, 即有1114a b a b ab ab ++==,即有12a b ==时,11a b+取得最小值4,无最大值,A 正确;由104ab <可得102<,可得12a b ==有最大值12,B 正确;1122=+⨯,可得12a b ==,C 正确; 由222a b ab +可得2222222()()1a a b a b a b b ++=++=,则2212a b +,当12a b ==时,22a b +取得最小值12,D 正确. 故选:ABCD .【点睛】 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).【分析】由()()2f x f x +=-,可得推得()()4f x f x +=,得到A 是正确的;由奇函数的性质和图象的变换,可得判定B 是正确的;由(1)(1)f x f x --=--+,可得推得函数()f x 是偶函数,得到D 正确,C 不正确.【详解】对于A 中,函数()y f x =满足()()2f x f x +=-,可得()()()42f x f x f x +=-+=,所以A 是正确的;对于B 中,()1y f x =-是奇函数,则(1)f x -的图象关于原点对称,又由函数()f x 的图象是由()1y f x =-向左平移1个单位长度得到,故函数()f x 的图象关于点(1,0)-对称,所以B 是正确的;对于C 、D ,由B 可得:对于任意的x ∈R ,都有(1)(1)f x f x --=--+,即(1)(1)0f x f x --+-+=,可变形得(2)()0f x f x --+=,则由(2)()(2)f x f x f x --=-=+对于任意的x ∈R 都成立,令2t x =+,则()()f t f t -=,即函数()f x 是偶函数,所以D 正确,C 不正确.故选:ABD【点睛】函数的周期性有关问题的求解策略:1、求解与函数的周期性有关问题,应根据题目特征及周期定义,求出函数的周期;2、解决函数周期性、奇偶性和单调性结合问题,通常先利用周期性中为自变量所在区间,再利用奇偶性和单调性求解.12.ABD【分析】化简得到()cos 2g x x =-,分别计算函数的奇偶性,最值,周期,轴对称和中心对称,单调区间得到答案.【详解】()sin 2sin 2cos 242g x x x x ππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭ 因为0,4x π⎛⎫∈ ⎪⎝⎭,则20,2x π⎛⎫∈ ⎪⎝⎭,所以()cos 2g x x =-单调递增,且为偶函数,A 正确,C 错误; 最大值为1,当32x π=时,23x π=,所以32x π=为对称轴,B 正确; 22T ππ==,取2,,242k x k x k Z ππππ=+∴=+∈,当1k =时满足,图像关于点3,04π⎛⎫ ⎪⎝⎭对称,D 正确;故选:ABD【点睛】本题考查了三角函数的平移,最值,周期,单调性 ,奇偶性,对称性,意在考查学生对于三角函数知识的综合应用.13.{}23x x -≤≤【分析】先求出命题p ,再按照非命题的定义求解即可.【详解】p :2106x x >--, 则260x x -->,解得2x <-或3x >,所以“非p ”对应的x 值的集合是{}23x x -≤≤. 故答案为:{}23x x -≤≤.14.()(),23,-∞+∞ 【分析】若对数存在,则真数大于0,解不等式即可.【详解】解:∵对数ln (x 2﹣5x +6)存在,∴x 2﹣5x +6>0,∴解得: x <2或 x >3,即x 的取值范围为:(﹣∞,2)∪(3,+∞).故答案为:(﹣∞,2)∪(3,+∞).15.(]1,3【分析】先利用0a >判断30u ax =+>是增函数,进而得到log a y u =是增函数,列关系计算即得结果.【详解】因为()log 3a y ax =+,(0a >且1a ≠)在区间(-1,+∞)上是增函数,知3u ax =+在区间(-1,+∞)上是增函数,且0>u ,故log a y u =是增函数,所以30101a a a a ⎧⎪-+≥⎪⎪>⎨⎪>⎪≠⎪⎩,解得13a .故a 的取值范围是(]1,3.故答案为:(]1,3.16.(0,1) 0或1【分析】把函数()()g x f x m =-有3个零点,转化为()y f x =和y m =的交点有3个,作出函数()f x 的图象,结合图象,即可求解.【详解】由题意,函数()()g x f x m =-有3个零点,转化为()0f x m -=的根有3个,转化为()y f x =和y m =的交点有3个,画出函数()22log (1),02,0x x f x x x x +>⎧=⎨--≤⎩的图象,如图所示,则直线y m =与其有3个公共点, 又抛物线的顶点为(1,1)-,由图可知实数m 的取值范围是(0,1).若()f x m =有2个零点,则0m =或(1)1m f =-=.故答案为:(0,1);0或1.【点睛】本题主要考查了函数与方程的综合应用,其中解答中把函数的零点问题转化为两个函数的图象的交点个数,结合图象求解是解答的关键,着重考查数形结合思想,以及推理与运算能力. 17.(1){}13A B x x ⋃=-≤≤;(2)选①/②/③,10a -≤≤.【分析】(1)应用集合并运算求A B 即可;(2)根据所选条件有B A ⊆,即可求a 的取值范围.【详解】(1)当1a =时,{}13B x x =≤≤,则{}13A B x x ⋃=-≤≤.(2)选条件①②③,都有B A ⊆, ∴1,22,a a ≥-⎧⎨+≤⎩解得10a -≤≤, ∴实数a 的取值范围为10a -≤≤.【点睛】本题考查了集合的基本运算,利用并运算求并集,由条件得到集合的包含关系求参数范围,属于简单题.18.(1)(4,0]-;(2)当02a <<时,不等式的解集为 {|1x x ≤或2}x a ≥;当2a =时,不等式的解集为R ;当2a >时,不等式的解集为 2{|x x a≤或1}x ≥;(3)(,4-∞-- 【分析】(1)先整理,再讨论0a =和0a ≠,列出恒成立的条件,求出a 的范围;(2)先因式分解,对两根大小作讨论,求出解集; (3)先令11t m m =++,由0m >,则可得3t ≥,再将()21221ax a x m m-++=++有四个不同的实根,转化为2(2)20ax a x t -++-=有两个不同正根,根据根与系数的关系,求出a 的取值范围.【详解】(1)由题有()22232ax a x x -++<-恒成立,即210ax ax -+-<恒成立, 当0a =时,10-<恒成立,符合题意;当0a ≠时,则2040a a a <⎧⎨∆=+<⎩,得040a a <⎧⎨-<<⎩,得40a , 综合可得40a .(2)由题2(2)20,ax a x -++≥ 即 (2)(1)0ax x --≥,由0,a >则2()(1)0x x a --=,且221a a a--= ①当02a <<时,21>a,不等式的解集为 {1x x ≤∣或2}x a ≥; ②当2a =时,不等式的解集为R③当2a >时,21a <,不等式的解集为 {2x x a≤∣或1}x ≥;综上可得:当02a <<时,不等式的解集为 {|1x x ≤或2}x a≥; 当2a =时,不等式的解集为R ;当2a >时,不等式的解集为 2{|x x a≤或1}x ≥; (3)当 0m > 时,令1113t m m =++≥=, 当且仅当1m =时取等号,则关于x 的方程(||)f x t = 可化为2||(2)||20a x a x t -++-=,关于x 的方程 2||(2)||20a x a x t -++-= 有四个不等实根, 即2(2)20ax a x t -++-=有两个不同正根, 则 2(2)4(2)0(1)20(2)20(3)a a t a a t a ⎧⎪∆=+-->⎪+⎪>⎨⎪-⎪>⎪⎩由(3)得0a <,再结合(2)得2a <-,由 (1) 知,存在 [3,)t ∈+∞ 使不等式24(2)80at a a ++->成立,故243(2)80a a a ⨯++->,即 2840,a a ++>解得4a <--或4a >-+综合可得4a <--故实数a的取值范围是(,4-∞--.【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解;19.(1)2;(2)43;(3)2. 【分析】(1)根据对数的加法运算法则,即可求得答案;(2)利用换底公式,结合对数的运算性质,即可求得答案;(3)根据对数的运算性质及减法法则,即可求得答案.【详解】(1)2lg 2lg50lg100lg102+===; (2)39lg 4log 42lg 22lg 324lg 32lg8log 8lg 33lg 233lg 9==⨯=⨯=; (3))211lg12log 432162lg 20lg 2log 2log 319-⎛⎫++--⋅+ ⎪⎝⎭=013lg1011)1111244++-+=+-+= 20.(1)a =1,b =0;(2)当x =2时,g (|2x ﹣1|)max =43,x =1时,g (|2x ﹣1|)min =0. 【分析】(1)利用二次函数的性质求出a ,b 的值;(2)求出函数(|21|)x y g =-的解析式,利用换元法对勾函数的性质,得出最值以及取得最值时的x 值.【详解】(1)f (x )=ax 2﹣2x +1+b (a ≠0)在x =1处取得最小值0, 即1a =1,f (1)=a +b ﹣1=0,解得a =1,b =0; (2)由(1)知f (x )=(x ﹣1)2,()()12f x g x x x x==+-,g (|2x ﹣1|)=121221x x -+--,令t =|2x ﹣1|,∵1,22x ⎡∈⎤⎢⎥⎣⎦,则1,3t ⎤∈⎦, 由对勾函数的性质可得()min ()10g t g ==,此时t =1即|2x ﹣1|=1,解得x =1;又)1122g =-=,())14332133g g =+-=>, 当t =3时,解得x =2时,所以当x =2时,g (|2x ﹣1|)max =43,当x =1时,g (|2x ﹣1|)min =021.(1)()cos(2)3f x x π=-;(2)[,],36k k k Z ππππ-+∈;(3)[-. 【分析】(1)由函数()f x 的最小正周期为π,求得2w =,再由16f π⎛⎫=⎪⎝⎭,求得ϕ的值,即可求得函数()f x 的解析式;(2)由(1)知()cos(2)3f x x π=-,根据余弦型函数的性质,即可求得函数的递增区间;(3)根据三角函数的图象变换,求得()cos()3g x x π=+,结合三角函数的性质,即可求解. 【详解】 (1)由题意,函数()cos()f x x =+ωϕ的最小正周期为π, 所以2wππ=,可得2w =,所以()cos(2)f x x ϕ=+, 又由16f π⎛⎫= ⎪⎝⎭,可得()cos(2)cos()1663f πππϕϕ=⨯+=+=, 可得2,3k k Z πϕπ+=∈,即2,3k k Z πϕπ=-∈, 因为02πϕ-<<,所以3πϕ=-, 所以函数()f x 的解析式为()cos(2)3f x x π=-.(2)由(1)知()cos(2)3f x x π=-, 令222,3k x k k Z ππππ-≤-≤∈,解得,36k x k k Z ππππ-≤≤+∈, 所以函数()cos(2)3f x x π=-的单调递增区间为[,],36k k k Z ππππ-+∈. (3)将函数()y f x =的图象向左平移3π个单位长度, 得到函数cos[2()]cos(2)333y x x πππ=+-=+, 再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()cos()3y g x x π==+,因为2[,]63x ππ∈-,可得[,]36x πππ+∈,所以()1g x -≤≤,所以函数()g x 的值域为[-. 【点睛】 解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为sin()y A wx ϕ=+的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解.22.(1)()3513x x f x x -=++,[]0,5x ∈;(2)3万元. 【分析】(1)对甲种商品投资x 万元,则对乙种商品投资为5x -万元,当5t =时,求得3a =,13b =,代入()(5)1ax f x b x x =+-+即可. (2)转化成一个基本不等式的形式,最后结合基本不等式的最值求法得最大值,从而解决问题.【详解】(1)因为1at P t =+,Q bt = 所以当5t =时,55512a P ==+,553Q b ==,解得3a =,13b =. 所以31t P t =+,13=Q t ,从而()3513x x f x x -=++,[]0,5x ∈ (2)由(1)可得()()()313613531+553131313x x x x x f x x x x +--+-+⎛⎫=+==-+≤-= ⎪+++⎝⎭当且仅当3113x x +=+,即2x =时等号成立.故()f x 的最大值为3. 答:当分别投入2万元、3万元销售甲、乙两种商品时总利润最大,为3万元.【点睛】方法点睛:与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.。
江苏省无锡市锡山中学2021-2022高一数学上学期10月段考试题(含解析)
江苏省无锡市锡山中学2021-2022高一数学上学期10月段考试题(含解析)一、选择题1.已知全集{}{}{}0,1,2,3,4,0,1,2,2,3U M N ===则U C M N ⋂= ( ) A. {}2B. {}3C. {}2,3,4D.{}0,1,2,3,4【答案】B 【解析】 【分析】先求M 的补集,再与N 求交集.【详解】∵全集U ={0,1,2,3,4},M ={0,1,2}, ∴∁U M ={3,4}. ∵N ={2,3}, ∴(∁U M )∩N ={3}. 故选B .【点睛】本题考查了交、并、补集的混合运算,是基础题.2.已知全集U N =,设{|}A x x k N ==∈,集合{|6,}B x x x N =>∈,则NA B⋂等于( ) A. {1,4} B. {1,6}C. {1,4,6}D. (4,6}【答案】C 【解析】 【分析】化简集合A ,B ,根据集合的补集,交集运算即可.【详解】因为{|}{}A x x k N ==∈=,{|6,}B x x x N =>∈,所以{|6,}{0,1,2,3,4,5,6}NB x x x N =≤∈=,{1,4,6}NA B ⋂=,故选:C【点睛】本题主要考查了集合的描述法,集合的交集,补集运算,属于中档题.3.函数()f x =的定义域是( ) A. (,0]-∞ B. [0,)+∞C. (,1]-∞D. R【答案】A 【解析】 【分析】要使函数有意义,只需120x -≥,根据指数函数性质解不等式即可求解. 【详解】要使函数有意义, 则120x -≥,即21x ≤, 解得0x ≤,所以函数的定义域(,0]-∞, 故选:A【点睛】本题主要考查了函数的定义域,指数不等式,属于中档题. 4.已知集合||1|2,}M x x x R =〈-∈,集合5|1,1P x x R x ⎧⎫=≥∈⎨⎬+⎩⎭,则M P ⋃等于( )。
新教材2021届高一数学第一册高一数学第一册幂函数试卷(普通班基础篇)(解析版)
幂函数测试(A 卷基础篇)数学全卷满分150分,考试时间120分钟。
★祝考试顺利★注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题作答用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试卷和草稿纸上无效。
3.非选择题作答用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。
答在试卷和草稿纸上无效。
考生必须保持答题卡的整洁。
考试结束后,只需上交答题卡第Ⅰ卷(选择题)一.选择题(共10小题,满分50分,每小题5分)1.(2020·青铜峡市高级中学高二期末(文))下列函数既是偶函数,又在()0,∞+上单调递增的是( ) A .12y x = B .2yx C .3y x = D .4y x =【答案】D 【解析】A 选项,函数12y x =的定义域为[)0,+∞,所以函数12y x =是非奇非偶函数,排除A ; B 选项,幂函数2yx 在()0,∞+上单调递减,排除B ;C 选项,函数3y x =的定义域为R ,()33x x -=-,所以函数3y x =是奇函数,排除C ;D 选项,函数4y x =的定义域为R ,且()44x x -=,所以函数4y x =是偶函数;又由幂函数的性质可得,幂函数4y x =在()0,∞+上单调递增,故D 正确;故选:D.2.(2020·吉化第一高级中学校高二期末(理))幂函数()221()21m f x m m x -=-+在()0,∞上为增函数,则实数m 的值为( ) A .0 B .1C .1或2D .2【答案】D【解析】由题意()f x 为幂函数,所以2211m m -+=,解得0m =或2m =. 因为()f x 在()0,∞上为增函数,所以210m ->,即12m >,所以2m =. 故选D.3.(2020·广西壮族自治区南宁三中高二月考(文))函数43y x =的图像大致是( )A .B .C .D .【答案】A 【解析】4343y x x ==∴该函数的定义域为R ,所以排除C ;因为函数为偶函数,所以排除D ; 又413>,43y x ∴=在第一象限内的图像与2y x 的图像类似,排除B.故选A .4.(2020·陕西省高二期末(文))若函数()223()1m m f x m m x +-=--是幂函数且在(0,)+∞是递减的,则m =( ) A .-1 B .2C .-1或2D .3【答案】A 【解析】函数()223()1m m f x m m x+-=--是幂函数且在(0,)+∞是递减的,则221130m m m m ⎧--=⎨+-<⎩,解得1m =-. 故选:A .5.(2019·贵州省高二学业考试)已知幂函数()f x x α=的图象过点P (2,4),则α=( )A .12B .1C .2D .3【答案】C 【解析】由题意,幂函数()f x x α=的图象过点P (2,4),可得24α=,解答2α=. 故选:C.6.(2020·上海高一课时练习)下面是有关幂函数3()-=f x x 的四种说法,其中错误的叙述是( )A .()f x 的定义域和值域相等B .()f x 的图象关于原点中心对称C .()f x 在定义域上是减函数D .()f x 是奇函数【答案】C 【解析】3()-=f x x ,函数的定义域和值域均为()(),00,-∞⋃+∞,A 正确;3()-=f x x ,()()33()f x x x f x ---=-=-=-,函数为奇函数,故BD 正确;()f x 在(),0-∞和()0,∞+是减函数,但在()(),00,-∞⋃+∞不是减函数,C 错误.故选:C.7.(2020·上海高一课时练习)下列函数在定义域上是奇函数,且在区间(),0-∞上是增函数的是( ) A .34y x = B .13y x =C .4y x -=D .43y x =【答案】B 【解析】34y x =在定义域[0,)+∞上是非奇非偶函数,在区间(),0-∞上无定义;所以A 错; 13y x =在定义域(,)-∞+∞上是奇函数,且在区间(),0-∞上是增函数;所以B 对; 4y x -=在定义域(,0)(0,)-∞+∞上是偶函数,在区间(),0-∞上是增函数;所以C 错;43y x =在定义域(,)-∞+∞上是偶函数,且在区间(),0-∞上是减函数;所以D 错;故选:B8.(2020·上海高一课时练习)若幕函数()f x 的图像经过点1,42⎛⎫⎪⎝⎭,则该函数的图像( ) A .关于x 轴对称 B .关于y 轴对称 C .关于原点对称D .关于直线y x =对称【答案】B 【解析】设()f x x α=,依题意可得1()42α=,解得2α=-,所以2()f x x -=,因为22()()()f x x x f x ---=-==,所以()f x 为偶函数,其图象关于y 轴对称. 故选:B.9.(2020·黄冈市黄州区第一中学高二月考)幂函数()y f x =图象过点11(,)42,则[(9)]f f =( )A B .3 C .13D 【答案】A 【解析】设()y f x x α==,因为幂函数()y f x =图象过点11(,)42,所以有11()24α=,解得12α=,所以12()y f x x ===因为(9)3f ==,所以[(9)](3)f f f ==故选:A10.(2020·迁西县第一中学高二期中)幂函数()y f x =的图象经过点,则()f x 是( ) A .偶函数,且在(0,)+∞上是增函数 B .偶函数,且在(0,)+∞上是减函数 C .奇函数,且在(0,)+∞上是减函数 D .非奇非偶函数,且在(0,)+∞上是增函数【答案】D 【解析】设幂函数()af x x =,因为图象经过点,所以3a =,12a =.故()12f x x =,因为0x ≥,所以()f x 为非奇非偶函数,且在(0,)+∞上是增函数. 故选:D第Ⅱ卷(非选择题)二.填空题(共7小题,单空每小题4分,两空每小题6分,共36分)11.(2020·黑龙江省鹤岗一中高二期末(文))幂函数()2f x x -=的单调增区间为______.【答案】(),0-∞ 【解析】因为幂函数()2f x x -=在()0,∞+是减函数,又因为函数()221f x x x -==是偶函数,所以函数在(),0-∞是增函数.故答案为:(),0-∞12.(2020·上海高一课时练习)函数3y x -=在区间[2,0)-上的值域为__________.【答案】1(,]8-∞- 【解析】因为幂函数3y x -=在区间[2,0)-上为减函数,所以当2x =-时,函数取得最大值18-,又当0x →时,y →-∞,所以函数3y x -=在区间[2,0)-上的值域为1(,]8-∞-.故答案为:1(,]8-∞-.13.(2020·浙江省高二期中)幂函数()f x 的图像经过点(4,2)P ,则(9)f =_______. 【答案】3 【解析】设幂函数()f x x α=,()f x 图像经过点(4,2)P , 42α∴=,12α∴=, ()12f x x ∴=,()12993f ∴==.故答案为:314.(2020·上海高一课时练习)函数()f x 既是幂函数又是二次函数,则()f x =_________;函数()g x 既是幂函数又是反比例函数,则()g x =_________. 【答案】2x 1x - 【解析】因为()f x 是幂函数,所以设()f x x α=(α为常数),又因为()f x 又是二次函数,所以2α=,即2()f x x =因为()g x 是幂函数,所以设()g x x β=(β为常数),又因为()g x 又是反比例函数,所以1β=-,即1()g x x -=故答案为:2x ;1x -15.(2020·浙江省高一期末)幂函数()()f x x R αα=∈的图象经过点(2,8),则α的值为_________;函数()f x 为_________函数.(填“奇”或“偶”)【答案】3. 奇. 【解析】∵幂函数()f x x α=的图象经过点(2,8), ∴28α=,得3α=,3()f x x =,∴3()()f x x -=-3()x f x =-=-,函数()f x 的定义域为R ,∴函数函数()f x 为奇函数, 故答案为:3,奇.16.已知幂函数图象经过点12,4⎛⎫ ⎪⎝⎭,则它的表达式为______;单调递增区间为______.【答案】 2()f x x -=, (,0)-∞【解析】设幂函数的解析式为()nf x x =,由1(2)4f =,得124n=,解得2n =-, 所以2()f x x -=,递增区间为(,0)-∞.故答案为:2()f x x -=, (,0)-∞17.(2018·浙江省东阳中学高一期中)幂函数()f x 的图象过点(,则()4f =______,()22y f x =-的定义域为______.【答案】2 ⎡⎣【解析】设幂函数()af x x =,其图象过点(,3a ∴=;解得12a =,()f x ∴=,故()42f =,由220x -≥,解得:x ≤≤()22y f x =-的定义域为:⎡⎣.故答案为2,.⎡⎣三.解答题(共5小题,满分64分,18--20每小题12分,21,22每小题14分) 18.(2020·全国高一课时练习)比较下列各题中两个值的大小: (1)3355 1. 5,1.7;(2)2233( 1.2),( 1.25)----.【答案】(1)3355 1. 5 1.7<;(2)2233( 1.2)( 1.25)--->-. 【解析】(1)∵幂函数35y x =在(0,)+∞上是增函数,且1.5 1.7<,33551.5 1.7∴<.(2)23y x -=在(,0)-∞上是增函数,且 1.2 1.25->-,2233( 1.2)( 1.25)--∴->-.19.(2020·全国高一课时练习)比较下列各题中两个值的大小: (1) 1.12.3和 1.12.5 (2)1232()a -+和132-.【答案】(1) 1.11.12.32.5<;(2)11233(22)a --+≤.【解析】(1)考察幂函数 1.1y x =,因为其在区间[0,)+∞上是增函数,而且2.3 2.5<,所以 1.1 1.12.3 2.5<. (2)考察幂函数13y x =,因为其在区间(0,)+∞上是减函数,而且222a +≥,所以11233(22)a --+≤. 20.(2020·全国高一课时练习)讨论下列函数的定义域、值域. (1)4y x =;(2)14y x =;(3)3y x -=;(4)23y x =.【答案】(1)定义域为R ,值域为[0,)+∞;(2)定义域为[0,)+∞,值域为[0,)+∞;(3)定义域为(,0)(0,)-∞+∞,值域为(,0)(0,)-∞+∞;(4)定义域为R ,值域为[0,)+∞.【解析】(1)函数的定义域为R ,值域为[0,)+∞. (2)因为14y x ==[0,)+∞,值域为[0,)+∞.(3)因为331y xx-==,所以0x ≠,且0y ≠,所以函数的定义域为(,0)(0,)-∞+∞,值域为(,0)(0,)-∞+∞.(4)因为23y x ==R ,值域为[0,)+∞.21.(2019·全国高一课时练习)若()()11132a a --+<-,试求a 的取值范围.【答案】()23,1,32⎛⎫-∞- ⎪⎝⎭【解析】∵()()11132a a --+<-,∴10,320,132a a a a +>⎧⎪->⎨⎪+>-⎩或10,320,132a a a a +<⎧⎪-<⎨⎪+>-⎩或320,10,a a ->⎧⎨+<⎩解得2332a <<或1a <-.故a的取值范围是()23,1,32⎛⎫-∞- ⎪⎝⎭. 22.(2020·全国高一课时练习)已知幂函数2223(1)m m y m m x --=--⋅,求此幂函数的解析式,并指出其定义域.【答案】3y x -=或0y x =,{|0}x x ≠. 【解析】2223(1)m m y m m x --=--为函数,211m m ∴--=,解得2m =或1m =-.当2m =时,2233m m --=-,则3y x -=,且有0x ≠; 当1m =-时,2230m m --=,则0y x =,且有0x ≠.故所求幂函数的解析式为3y x -=或0y x =,它们的定义域都是{|0}x x ≠.。
江苏省无锡市天一中学2020-2021学年高一(强化班)上学期期末数学试题(无答案)
江苏省天一中学2010-2021学年秋学期期末考试高一数学(强化班)命题人:蒋星伟审阅人:陈俊蜂注意事项及答题要求:1.本次考试时间为120分钟,满分为150分.2.答题前,请务必将自己的班级、姓名、学号用黑色笔写在答题纸上密封线内﹒的相应位置. 3.答题时请用黑色笔在答题纸上作答.......,在试卷或草稿纸上作答一律无效. 一、单项选择题:(共8小题,每小题5分,共40分.在每小题出的四个选项中只有一项是符合题目要求的.)1.函数()f x =的定义域为( ) A .(]3,0-B .(]3,1- C .()(],33,0-∞--D .()(],33,1-∞--2.设x ∈R ,则“2,6x k k ππ=+∈Z ”是“1sin 2x =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必娶条件3.已知某扇形的孤长为32π,圆心角为2π,则该扇形的面积为( ) A .4π B .93π C .6πD .2π4函数()213()log 6f x x x =--的单调递增区间是( )A .1,2⎡⎫-+∞⎪⎢⎣⎭B .1,2⎛⎤-∞- ⎥⎝⎦C .13,2⎛⎫-- ⎪⎝⎭D .1,22⎡⎫-⎪⎢⎣⎭5.已知非零向量a ,b 满足4a b =,且()2a b b ⊥-,则a 与b 的夹角为( )A .6πB .3π C .23π D .56π 6.已知函数1()lg 43xx f x m ⎛⎫=-- ⎪⎝⎭,若对任意的[]1,1x ∈-使得()1f x ≤成立,则实数m 的取值范围为( )A .19,3⎡⎫-+∞⎪⎢⎣⎭B .11,4⎛⎫-∞-⎪⎝⎭C .1911,34⎡⎤--⎢⎥⎣⎦ D .1911,34⎡⎫--⎪⎢⎣⎭ 7.已知函数()2()ln 122x x f x x -=-++,则使不等式()()12f x f x +<成立的x 的取值范围是( )A .()(),11,-∞-+∞B (2,1)--C .1,(1,)3⎛⎫-∞-+∞ ⎪⎝⎭D .(,2)(1,)-∞-+∞8.已知不共线向量OA ,OB 夹角为α,1OA =,2OB =,(1)OP t OA =-,(01)OQ tOB t =≤≤,PQ 在0t t =处取最小值,当0105t <<时,α的取值范围为( ) A .0,3π⎛⎫⎪⎝⎭B .,32ππ⎛⎫⎪⎝⎭ C .2,23ππ⎛⎫⎪⎝⎭D .2,3ππ⎛⎫⎪⎝⎭二、多项选择题:(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.)9.函数()sin()f x A x ωϕ=+(其中0A >,0ω>,ϕπ<)的部分图象如图所示,则下列说法正确的是( )A .23πϕ=-B .函数()f x 图象的对称轴为直线7()212k x k ππ=+∈Z C .将函数()f x 的图象向左平移3π个单位长度,得到函数()2sin 23g x x π⎛⎫=- ⎪⎝⎭的图象D .若()f x 在区间2,3a π⎡⎤⎢⎥⎣⎦上的值域为A ⎡-⎣,则实数a 的取值范围为133,122ππ⎡⎤⎢⎥⎣⎦10.已知x ,y 是正数,且21x y +=,下列叙述正确的是( )A .xy 的最大值为18B .224x y +的最小值为12C .()x x y +的最大值为14 D .22x yxy+的最小值为4 11.在ABC 中,D ,E ,F 分别是边BC ,AC ,AB 中点,下列说法正确的是( )A .0AB AC AD +-= B .0DA EB FC ++= C.若3AB AC A CABAD+=,则BD 是BA 在BC 的投影向量D .若点P 是线段AD 上的动点,且满足BP BA BC λμ=+,则λμ的最大值为1812.已知直线2y x =-+分别与函数xy e =和ln y x =的图象交于点()11,A x y ,()22,B x y ,则下列结论正确的是( ) A .122x x +=B .122xx e ee +>C .1221ln ln 0x x x x +<D .12x x >三、填空题:(本题共4小题,每题5分,共20分.) 13.已知幂函数()2241()31mm f x m m x -+=-+的图像不经过原点,则实数m 的值为________.14.设,(0,)αβπ∈,cos α,cos β是方程26320x x --=的两根,则sin sin αβ=_________.15.设函数2cos ,[6,6]3()12,(,6)(6,)x x f x x xπ⎧∈-⎪⎪=⎨⎪∈-∞-+∞⎪⎩,若关于x 的方程()()210()f x af x a ++=∈⎡⎤⎣⎦R 有且仅有6个不同的实根.则实数a 的取值范围是_______.16.如图,在平面四边形ABCD 中,点E ,F 分别是AD,BC 的中点,且1AB =,EF =,CD =,若15AD BC ⋅=,则AC BD ⋅=_________.四、解答题:(本大题共6小题,共70分.解答时应写出文字说明证明过程或演算步骤.)17.(本题满分10分)从给出的两个条件①2a =,②3a =中选出一个,补充在下面问题中,并完成解答.已知集合{}0,2A a =+,{}20,1,B a =.(1)若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的值; (2)已知__________,若集合C 含有两个元素且满足()C A B ⊆,求集合C .18.(本题满分12分)已知函数2()cos 2cos(0)f x x x x ωωωω=+>的最小正周期为π.(1)求ω及函数()f x 的对称中心; (2)已知()0115f x =,0,63x ππ⎡⎤∈⎢⎥⎣⎦,求0cos 2x 的值. 19.如图,在ABC 中,90BAC ∠=︒,2AB =,3AC =,D 是BC 的中点,点E 满足2AE EC =,BE与AD 交于点G .(1)设AG AD λ=,求实数入的值;(2)设H 是BE 上一点,HA HB HC HA ⋅=⋅,求GF BC ⋅的值.20.(本题满分12分))某公司为调动员工工作积极性拟制定以下奖励方案,要求奖金y (单位:万元)随投资收益x (单位:万元)的增加而增加,奖金不超过90万元,同时奖金不超过投资收益的20%.即假定奖励方案模拟函数为()y f x =时,该公司对函数模型的基本要求是:当[]25,1600x ∈时,①()f x 是增函数.②()90f x ≤恒成立;③()5xf x ≤恒成立.(1)现有两个奖励函数模型:(Ⅰ)1()1015f x x =+;(Ⅱ)()6f x =.试分析这两个函数模型是否符合公司要求?(2)已知函数()10(2)f x a =≥符合公司奖励方案函数模型要求,求实数a 的取值范围. 21.(本题满分12分对于集合{}12,,,n A θθθ=和常数0θ,定义: ()()()22210200cos cos cos n nθθθθθθμ-+-++-=为集合A 相对的0θ的“余弦方差”.(1)若集合,34A ππ⎧⎫=⎨⎬⎩⎭,00θ=,求集合A 相对0θ的“余弦方差”; (2)求证:集合2,,33A πππ⎧⎫=⎨⎬⎩⎭相对任何常数0θ的“余弦方差”是一个与0θ无关的定值,并求此定值; (3)若集合,,4A παβ⎧⎫=⎨⎬⎩⎭,[)0,απ∈,[),2βππ∈,相对任何常数0θ的“余弦方差”是一个与0θ无关的定值,求出α、β.22.(本题满分12分)已知{0M x x =∈≠R 且}1x ≠,()(1,2)n f x n =是定义在M 上的一系列函数,满足:1()f x x =,()11()i i x f x f i x ++-⎛⎫=∈⎪⎝⎭N . (1)求()3f x ,()4f x 的解析式;(2)若()g x 为定义在M 上的函数,且1()1x g x g x x -⎛⎫+=+⎪⎝⎭. ①求()g x 的解析式;②若方程()22(21)2(1)()318420x m x x g x x x x x ---++++++=有且仅有一个实根,求实数m 的取值范围.。
江苏省无锡市锡山高级中学2020-2021学年高一上学期期末数学试题(wd无答案)
江苏省无锡市锡山高级中学2020-2021学年高一上学期期末数学试题(wd无答案)一、单选题(★) 1. 集合,,则A.B.C.D.(★) 2. 命题“ ,”的否定是()A.,B.,C.,D.,(★★) 3. 若幂函数经过点,且,则()A.2B.3C.128D.512(★★) 4. 若角顶点在原点,始边在轴正半轴上,终边一点的坐标为,则角为()角.A.第一象限B.第二象限C.第三象限D.第四象限(★★) 5. 已知扇形面积为4,周长为8,则该扇形的圆心角为()弧度.A.4B.3C.2D.1(★) 6. 函数的图像大致为()A.B.C.D.(★) 7. 高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,设,用表示不超过的最大整数,也被称为“高斯函数”,例如,,,设为函数的零点,则().A.2B.3C.4D.5(★★★★)8. 函数图像上一点向右平移个单位,得到的点也在图像上,线段与函数的图像有5个交点,且满足,,若,与有两个交点,则的取值范围为()A.B.C.D.二、多选题(★) 9. 下列命题中,正确的有()A.若,则B.若,,则C.若,,则D.若,,则(★★) 10. 下列说法中正确的是()A.若,则B.C.若,则D.若,则(★★★) 11. 已知函数的部分图象如图所示,下列结论正确的有()A.函数的最小正周期为B.直线为函数的一条对称轴C.函数的图象可由向右平移个单位得到D.直线与函数的图象的所有交点的横坐标之和为(★★★★) 12. 已知为定义在上且周期为5的函数,当时,.则下列说法中正确的是()A.的增区间为,B.若与在上有10个零点,则的范围是C.当时,的值域为,则的取值范围D.若与有3个交点,则的取值范围为三、填空题(★★) 13. 函数的定义域为 _________ .(★) 14. 已知,,则_____________.(★★) 15. 已知正数,满足:,则的最小值为 ____________ .(★★★★) 16. 已知,若与直线有四个不同的交点,其横坐标从小到大依次为,,,,则的取值范围为_____________.四、解答题(★★) 17. 已知集合,.(1)当时,求;(2)设;,若是的充分不必要条件,求实数的取值范围.(★★★★) 18. 在① ,② ③ 中任选一个条件,补充在下面问题中,并解决问题.已知,,.(1)求的值;(2)求.(★★★) 19. 如图,已知正方形的边长为1,点,分别是边,上的动点(不与端点重合),在运动的过程中,始终保持不变,设.(1)将的面积表示成的函数,并写出定义域;(2)求面积的最小值.(★★) 20. 已知为奇函数.(1)求的值,判断函数的单调性并用函数单调性的定义证明;(2)解不等式.(★★★) 21. 已知函数.(1)求函数的单调增区间;(2)当时,函数有四个零点,求实数的取值范围.(★★★) 22. 已知二次函数满足,.(1)求的表达式;(2)若存在,对任意,都有,求实数的取值范围;(3)记,若对任意的,,,,以,,为边长总可以构成三角形求实数的取值范围.。