【必考题】高一数学上期末试卷附答案(1)
高一数学上册期末试卷(附答案)

高一数学上册期末试卷(附答案)高一数学期末考试试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.函数的定义域为( )A.( ,1)B.( ,∞)C.(1,+∞ )D.( ,1)∪( 1,+∞)2.以正方体ABCD—A1B1C1D1的棱AB、AD、AA1所在的直线为坐标轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC1中点坐标为( )A.( ,1,1)B.(1,,1)C.(1,1, )D.( ,,1)3.若,,,则与的位置关系为( )A.相交B.平行或异面C.异面D.平行4.如果直线同时平行于直线,则的值为( )A. B.C. D.5.设,则的大小关系是( )A. B. C. D.6.空间四边形ABCD中,E、F分别为AC、BD中点,若CD=2AB,EF⊥AB,则直线EF与CD所成的角为( )A.45°B.30°C.60°D.90°7.如果函数在区间上是单调递增的,则实数的取值范围是( )A. B. C. D.8.圆:和圆:交于A,B两点,则AB的垂直平分线的方程是( )A. B.C. D.9.已知,则直线与圆的位置关系是( )A.相交但不过圆心B.过圆心C.相切D.相离10.某三棱锥的三视图如右图所示,则该三棱锥的表面积是( )A.28+65B.60+125C.56+125D.30+6511.若曲线与曲线有四个不同的交点,则实数m的取值范围是( )A. B.C. D.12.已知直线与函数的图象恰好有3个不同的公共点,则实数m 的取值范围是( )A. B.C. D.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.若是奇函数,则 .14.已知,则 .15.已知过球面上三点A,B,C的截面到球心O的距离等于球半径的一半,且AB=BC=CA=3 cm,则球的体积是 .16.如图,将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱锥D-ABC中,给出下列三种说法:①△DBC是等边三角形;②AC⊥BD;③三棱锥D-ABC的体积是26.其中正确的序号是________(写出所有正确说法的序号).三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题10分)根据下列条件,求直线的方程:(1)已知直线过点P(-2,2)且与两坐标轴所围成的三角形面积为1;(2)过两直线3x-2y+1=0和x+3y+4=0的交点,且垂直于直线x+3y+4=0.18.(本小题12分)已知且,若函数在区间的最大值为10,求的值.19.(本小题12分)定义在上的函数满足 ,且 .若是上的减函数,求实数的取值范围.20.(本小题12分)如图,在直三棱柱(侧棱垂直于底面的三棱柱) 中,,分别是棱上的点(点不同于点 ),且为的中点.求证:(1)平面平面 ;(2)直线平面 .21.(本小题12分)如图所示,边长为2的等边△PCD所在的平面垂直于矩形A BCD所在的平面,BC=22,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.22.(本小题12分)已知圆C:x2+y2+2x-4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.高一数学期末考试试题答案一、选择题ACBAD BDCAD BC二、填空题13. 14.13 15. 16.①②三、解答题17.(本小题10分)(1)x+2y-2=0或2x+y+2=0.(2)3x-y+2=0.18.(本小题12分)当0当x=-1时,函数f(x)取得最大值,则由2a-1-5=10,得a=215,当a>1时,f(x)在[-1,2]上是增函数,当x=2时,函数取得最大值,则由2a2-5=10,得a=302或a=-302(舍),综上所述,a=215或302.19.(本小题12分)由f(1-a)+f(1-2a)<0,得f(1-a)<-f(1-2a).∵f(-x)=-f(x),x∈(-1,1),∴f(1-a)又∵f(x)是(-1,1)上的减函数,∴-1<1-a<1,-1<1-2a<1,1-a>2a-1,解得0故实数a的取值范围是0,23.20.(本小题12分)(1)∵ 是直三棱柱,∴ 平面。
完整版)高一第一学期数学期末考试试卷(含答案)

完整版)高一第一学期数学期末考试试卷(含答案)高一第一学期期末考试试卷考试时间:120分钟注:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U=R,集合A={x|3≤x<7},B={x|x^2-7x+10<0},则(A∩B)的取值为A。
(−∞,3)∪(5,+∞)B。
(−∞,3)∪[5,+∞)C。
(−∞,3]∪[5,+∞)D。
(−∞,3]∪(5,+∞)2.已知a⋅3^a⋅a的分数指数幂表示为A。
a^3B。
a^3/2C。
a^3/4D。
都不对3.下列指数式与对数式互化不正确的一组是A。
e=1与ln1=0B。
8^(1/3)=2与log2^8=3C。
log3^9=2与9=3D。
log7^1=0与7^1=74.下列函数f(x)中,满足“对任意的x1,x2∈(−∞,0),当x1f(x2)”的是A。
x^2B。
x^3C。
e^xD。
1/x5.已知函数y=f(x)是奇函数,当x>0时,f(x)=logx,则f(f(100))的值等于A。
log2B。
−1/lg2C。
lg2D。
−lg26.对于任意的a>0且a≠1,函数f(x)=ax^−1+3的图像必经过点(1,4/5)7.设a=log0.7(0.8),b=log1.1(0.9),c=1.10.9,则a<b<c8.下列函数中哪个是幂函数A。
y=−3x^−2B。
y=3^xC。
y=log_3xD。
y=x^2+1是否有模型能够完全符合公司的要求?原因是公司的要求只需要满足以下条件:当x在[10,1000]范围内时,函数为增函数且函数的最大值不超过5.参考数据为e=2.L,e的8次方约为2981.已知函数f(x)=1-2a-a(a>1),求函数f(x)的值域和当x 在[-2,1]范围内时,函数f(x)的最小值为-7.然后求出a的值和函数的最大值。
【高一】2021年高一数学上学期期末试题(含答案)

【高一】2021年高一数学上学期期末试题(含答案)必考ⅰ部分一、:本大题共7小题,每小题5分,满分35分;在每小题给出的四个选项中,只有一项是符合题目要求的.1、未知过点和的直线与直线平行,则的值( a )a.b.c.d.2、过点且旋转轴直线的直线方程为(b)a.b.c.d.3、下列四个结论:⑴两条相同的直线都和同一个平面平行,则这两条直线平行。
⑵两条不同的直线没有公共点,则这两条直线平行。
⑶两条相同直线都和第三条直线横向,则这两条直线平行。
⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。
其中恰当的个数为(a)a.b.c.d.4、一个正方体的顶点都在球面上,它的棱长为,则球的表面积就是( b )a.b.c.d.5、圆上的点到点的距离的最小值就是(b)a.1b.4c.5d.66、若为圆的弦的中点,则直线的方程就是(d)a.b.c.d.7、把正方形沿对角线折起,当以四点为顶点的三棱锥体积最大时,直线和平面所成的角的大小为(c)a.b.c.d.二、题:本大题共6小题,每小题5分,满分30分;把答案填在答题卡中对应题号后的横线上.8、在空间直角坐标系则中,点与点的距离为.9、方程表示一个圆,则的取值范围是.10、例如图,正方体中,,迪潘县的中点,点在上,若,则线段的长度等同于.11、直线恒经过定点,则点的坐标为12、一个底面为正三角形,两端棱与底面横向的棱柱,其三视图如图所示,则这个棱柱的体积为.【第12题图】【第13题图】13、例如图,二面角的大小就是60°,线段在平面efgh上,在ef上,与ef阿芒塔的角为30°,则与平面阿芒塔的角的正弦值就是三.解答题:本大题共3小题,共35分;解答应写出文字说明、证明过程或演算步骤.14、(满分11分后)某工厂为了生产一个实心工件,先画出来了这个工件的三视图(例如图),其中正视图与侧视图为两个全等的等腰三角形,俯视图为一个圆,三视图尺寸如图所示(单位c);(1)求出这个工件的体积;(2)工件搞好后,必须给表面喷漆,未知喷漆费用就是每平方厘米1元,现要制作10个这样的工件,恳请排序喷漆总费用(准确至整数部分).【解析】(1)由三视图可知,几何体为圆锥,底面直径为4,母线短为3,.........................................2分后设圆锥高为,则........................4分后则...6分(2)圆锥的侧面积,.........8分后则表面积=侧面积+底面积=(平方厘米)喷漆总费用=元...............11分后15、(满分12分)如图,在正方体中,(1)澄清:;(2)求直线与直线bd所成的角【解析】(1)在正方体中,又,且,则,而在平面内,且相交故;...........................................6分后(2)连接,因为bd平行,则即为为所求的角,而三角形为正三角形,故,则直线与直线bd阿芒塔的角为.......................................12分后16、(满分12分)已知圆c=0(1)未知不过原点的直线与圆c切线,且在轴,轴上的dT成正比,谋直线的方程;(2)求经过原点且被圆c截得的线段长为2的直线方程。
高一数学上学期期末考试试题(含答案)

高一上学期期末考试一、填空题1.集合{10},{0,1},{1,2})A B C A B C === -,,则(=___________. 2. 函数()f x =)12(log 21-x 的定义域为3.过点(1,0)且倾斜角是直线013=--y x 的倾斜角的两倍的直线方程是 .4.球的表面积与它的内接正方体的表面积之比是_______________ 5.点()1,1,2P -关于xoy 平面的对称点的坐标是 .6.已知直线3430x y +-=与直线6140x my ++=平行,则它们之间的距离是_________7.以点C (-1,5)为圆心,且与y 轴相切的圆的方程为 . 8.已知点(,1,2)A x B 和点(2,3,4),且26AB =,则实数x 的值是_________. 9.满足条件{0,1}∪A={0,1}的所有集合A 的个数是_____.10.函数y=x 2+x (-1≤x ≤3 )的值域是 _________. 11.若点P (3,4),Q (a ,b )关于直线x -y -1=0对称,则2a -b 的值是_________. 12.函数142+--=mx x y 在[2,)+∞上是减函数,则m 的取值范围是 .13.函数()(01)x f x a a a =>≠且在[1,2]上最大值比最小值大2a,则a 的值为 .14. 已知函数f (x )=12++mx mx 的定义域是一切实数,则m 的取值范围是 .二.解答题15、(1)解方程:lg(x+1)+lg(x-2)=lg4 ; (2)解不等式:41221>-x;16.(本小题12分)二次函数f (x )满足f (x +1)-f (x )=2x 且f (0)=1.⑴求f (x )的解析式;⑵当x ∈[-1,1]时,不等式:f (x ) 2x m >+恒成立,求实数m 的范围.17. 如图,三棱柱111ABC A B C -,1A A ⊥底面ABC ,且ABC ∆为正三角形,16A A AB ==,D 为AC 中点. (1)求三棱锥1C BCD -的体积; (2)求证:平面1BC D ⊥平面11ACC A ; (3)求证:直线1//AB 平面1BC D .18.已知圆22:(3)(4)4C x y -+-=,直线1l 过定点 A (1,0). (1)若1l 与圆C 相切,求1l 的方程; (2)若1l 的倾斜角为4π,1l 与圆C 相交于P ,Q 两点,求线段PQ 的中点M 的坐标; (3)若1l 与圆C 相交于P ,Q 两点,求三角形CPQ 的面积的最大值,并求此时1l 的直线方程.A BCA 1B 1C 1D19. (本题14分)已知圆M :22(2)1x y +-=,定点A ()4,2在直线20x y -=上,点P 在线段OA 上,过P 点作圆M 的切线PT ,切点为T .(1)若5MP =,求直线PT 的方程;(2)经过,,P M T 三点的圆的圆心是D ,求线段DO 长的最小值L .20.已知⊙C 1:5)5(22=++y x ,点A(1,-3)(Ⅰ)求过点A 与⊙C 1相切的直线l 的方程;(Ⅱ)设⊙C 2为⊙C 1关于直线l 对称的圆,则在x 轴上是否存在点P ,使得P到两圆的切线长之比为2?荐存在,求出点P 的坐标;若不存在,试说明理由.D 1A 1C 1B 1DACB参考答案一、填空题1.}{3,9 2.),1(+∞ 3.1 4.6 5.2370x y -+= 6.045 7. 22(1)(1)2x y -+-=8.异面 9.π8 10. 相交 11.π12 12.34π13.(A) (2)(4) (B )①③ 14.(A)415(B) (1,32) 二、解答题:15.设35212,x x y a y a +-==,(其中01a a >≠且)。
最新高一数学上学期期末考试试题含答案

最新高一数学上学期期末考试试题含答案第I卷(选择题)一、单选题(每题5分,共60分)1.已知集合,则()。
A。
B.C。
D.2.sin585的值为()。
A。
B.C。
D.3.已知角的终边经过点P(4,m),且sin3/5,则m 等于()。
A。
3B。
-3C。
±3D。
无法确定4.下列函数中,在(0,+∞)上单调递减的是()。
A。
B。
C。
D。
5.已知角的终边上一点坐标为,则角的最小正值为()。
A。
B。
C。
D。
6.下列各式中,值为1/2的是()。
A。
cos2π/12-sin2π/12B。
1-tan^2(22.5°)C。
sin150°cos150°D。
(6-2√3)/(3√3-9)7.下列各式中正确的是()。
A。
XXX(π/7)>tan(π/3)B。
tan(-4π/7)<tan(-π/3)C。
tan 281°>tan 665°D。
tan 4>tan 38.已知扇形的周长是6cm,面积是2cm^2,则扇形的圆心角的弧度数是()。
A。
1或4B。
1/2C。
4/3D。
2/39.函数的零点所在的区间是()。
A。
(1,2)B。
(1,e)C。
(e,3)D。
(3,+∞)10.函数的最小正周期为()。
A。
π/5B。
π/4C。
π/3D。
π/211.已知,sin+cos=x,则sin^2-cos^2的值为()。
A。
B。
C。
D。
12.将函数图象上所有点的横坐标缩短为原来的,再向右平移π/4个单位长度,得到函数的图象,则图象的一条对称轴是直线()。
A。
x=π/4B。
x=π/2C。
x=3π/4D。
x=π第II卷(非选择题)二、填空题(每题5分,共20分)13.已知tan=3,则tan-的值是______。
答案:-1/314.函数的定义域为________。
答案:(-∞,0)∪(0,π/2)15.已知为第二象限角,cos(π/2-2α)=________。
必修一数学期末测试卷(含答案)

必修一数学期末测试卷(含答案)高一数学必修一期末测试题本试卷分为两部分,选择题和非选择题,满分120分,考试时间60分钟。
第Ⅰ卷(选择题,共60分)一、选择题:(每小题5分,共60分,请将所选答案填在括号内)1.已知集合M⊂{4,7,8},且M中至多有一个偶数,则这样的集合共有()A) 3个 (B) 4个 (C) 5个 (D) 6个2.已知S={x|x=2n,n∈Z},T={x|x=4k±1,k∈Z},则()A) S⊂T (B) T⊂S (C) S≠T (D) S=T3.已知集合P={y|y=−x^2+2,x∈R},Q={y|y=−x+2,x∈R},那么P∩Q等于()A) (,2),(1,1) (B) {(,2),(1,1)} (C) {1,2} (D) {y|y≤2}4.不等式ax+ax−4<0的解集为R,则a的取值范围是()A) −16≤a−16 (C) −16<a≤0 (D) a<−165.已知f(x)=⎧⎨⎩x−5(x≥6)f(x+4)(x<6)则f(3)的值为()A) 2 (B) 5 (C) 4 (D) 36.函数y=x−4x+3,x∈[0,3]的值域为()A) [0,3] (B) [−1,0] (C) [−1,3] (D) [0,2]7.函数y=(2k+1)x+b在(-∞,+∞)上是减函数,则()A) k>1/2 (B) k−1/2 (D) k<1/28.若函数f(x)=x+2(a−1)x+2在区间(−∞,4]内递减,那么实数a的取值范围为()A) a≤−3 (B) a≥−3 (C) a≤5 (D) a≥39.函数y=(2a−3a+2)a是指数函数,则a的取值范围是()A) a>0,a≠1 (B) a=1 (C) a=−1 or a=1 (D) a=010.已知函数f(x)=4+ax−1的图象恒过定点p,则点p的坐标是()A) (1,5) (B) (1.4) (C) (−1,4) (D) (4,1)11.函数y=log2(3x−2)的定义域是()A) [1,+∞) (B) (2/3,+∞) (C) (−∞,1] (D) (−∞,2/3]12.设a,b,c都是正数,且3a=4b=6c,则下列正确的是()A) 1/c=1/a+1/b (B) 2/c=1/a+1/b (C) 1/c^2=1/a^2+1/b^2 (D)2/c^2=1/a^2+1/b^2第Ⅱ卷(非选择题,共60分)二、填空题:(每小题5分,共10分,答案填在横线上)13.若$log_a2^3<1$,则$a$的取值范围是$\left(\frac{2}{3},+\infty\right)\cup(1,+\infty)$。
高一数学第一学期期末测试题和答案

高一数学第一学期期末测试题和答案研究必备,高一数学第一学期期末测试题。
本试卷共4页,20题,满分为150分,考试用时120分钟。
一、选择题:1.集合A={1,3,4,5,7,9},B={3,5,7,8,10},则AB的值是()。
A。
{13,4,5,7,8,9} B。
{1,4,8,9} C。
{3,5,7} D。
{3,5,7,8}2.cos(-π/6)的值是()。
A。
3/2 B。
-√3/2 C。
-1/2 D。
√3/23.函数f(x)=ln(x-1)的定义域是()。
A。
(1,∞) B。
[1,∞) C。
(-∞,∞) D。
(-∞,1]4.函数y=cosx的一个单调递增区间为()。
A。
(-π/2,π/2) B。
(0,π) C。
(-π/2,0) D。
(π/2,3π/2)5.函数y=tan(2x+π/4)的最小正周期为()。
A。
π/2 B。
π C。
2π D。
4π6.函数f(x)=lnx-2的零点所在的大致区间是()。
A。
(1,2) B。
(e,3) C。
(2,e) D。
(e,∞)7.已知a=0.2^(3/10),b=log0.2^3,c=log0.2^4,则f(x)=(2m+3)x^(π/4)的值为()。
A。
a>b>c B。
a>c>b C。
b>c>a D。
c>b>a8.若函数y=x^m是幂函数,则m的值为()。
A。
-1 B。
1 C。
2 D。
不确定9.若XXX(α+π/7)=4,则tanα的值为()。
A。
3/4 B。
-3/4 C。
-4/3 D。
4/310.函数y=2cos^2(x-π/4)-1是()。
A。
最小正周期为π的奇函数 B。
最小正周期为π的偶函数C。
最小正周期为2π的奇函数 D。
最小正周期为2π的偶函数二、填空题:11.已知函数f(x)=log2x(x>3),则f[f(x)]的值为()。
答案:log2(log2(x-3))12.已知tanα=3,则4sinα-2cosα的值为()。
高一上数学期末考试试卷及答案解析

高一上数学期末考试试卷及答案解析第一部分:选择题1. 已知三角形ABC,其中∠ABC = 90°,斜边AB = 5,BC = 12。
求∠BAC的正弦值。
解析:根据正弦定理,sin(∠BAC) = AB/AC,由勾股定理可得AC= 13,代入计算得sin(∠BAC) = 5/13。
2. 函数y = x^2 + 4x + 3的图像为抛物线,其顶点坐标为(-2,-1),则函数的对称轴方程为_______。
解析:对称轴与抛物线的顶点横坐标一致,所以对称轴方程为x = -2。
3. 若函数y = ax + b在点(4,7)处的切线斜率为3,则a的值为_______。
解析:切线的斜率等于函数在该点的导数值,所以a = 3。
4. 设集合A = {1, 2, 3, 4},集合B = {2, 4, 6},则A与B的交集为_______。
解析:A与B的交集为{2, 4}。
5. 已知函数f(x) = x^2 + 3x + 2,g(x) = 2x + 1,求f(g(3))的值。
解析:首先算出g(3) = 2(3) + 1 = 7,然后带入f(x)计算得f(g(3)) =7^2 + 3(7) + 2 = 72。
第二部分:解答题1. 计算方程2x + 5 = 15的解。
解析:将等式两边减去5,得到2x = 10,再除以2,得到x = 5,所以方程的解为x = 5。
2. 从一副扑克牌中随机抽取一张,求抽到红心或者黑桃的概率。
解析:一副扑克牌共有52张,其中红心和黑桃的数量各为13张,所以红心或者黑桃的概率为(13+13)/52 = 26/52 = 1/2。
3. 已知直线L1的斜率为1/2,过点A(2,3)。
求直线L1的方程。
解析:直线L1的斜率为1/2,过点A(2,3),所以直线L1的方程为y - 3 = 1/2 * (x - 2)。
4. 某商场A店和B店销售同一种电视机,A店售价为原价的80%,B店以原价的1200元售出,若在B店购买该电视可享受一定的折扣,选择购买哪个商场的电视可以获得更大的实惠?解析:设电视的原价为x元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【必考题】高一数学上期末试卷附答案(1)一、选择题1.已知()f x 在R 上是奇函数,且2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则 A .-2 B .2 C .-98 D .982.已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >>C .c b a >>D .c a b >> 3.设集合{}1|21x A x -=≥,{}3|log ,B y y x x A ==∈,则B A =ð( ) A .()0,1 B .[)0,1 C .(]0,1 D .[]0,14.已知二次函数()f x 的二次项系数为a ,且不等式()2f x x >-的解集为()1,3,若方程()60f x a +=,有两个相等的根,则实数a =( )A .-15B .1C .1或-15D .1-或-155.已知函数ln ()x f x x =,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( )A .b c a <<B .b a c <<C .a c b <<D .c a b <<6.设f(x)=()2,01,0x a x x a x x ⎧-≤⎪⎨++>⎪⎩若f(0)是f(x)的最小值,则a 的取值范围为( ) A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]7.已知函数()()y f x x R =∈满足(1)()0f x f x ++-=,若方程1()21f x x =-有2022个不同的实数根i x (1,2,3,2022i =L ),则1232022x x x x ++++=L ( ) A .1010B .2020C .1011D .20228.若二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,则实数a 的取值范围为( ) A .1,02⎡⎫-⎪⎢⎣⎭ B .1,2⎡⎫-+∞⎪⎢⎣⎭ C .1,02⎛⎫- ⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭ 9.定义在[]7,7-上的奇函数()f x ,当07x <≤时,()26x f x x =+-,则不等式()0f x >的解集为A .(]2,7B .()(]2,02,7-UC .()()2,02,-+∞UD .[)(]7,22,7--U10.已知函数()ln f x x =,2()3g x x =-+,则()?()f x g x 的图象大致为( )A .B .C .D .11.偶函数()f x 满足()()2f x f x =-,且当[]1,0x ∈-时,()cos 12xf x π=-,若函数()()()log ,0,1a g x f x x a a =->≠有且仅有三个零点,则实数a 的取值范围是( ) A .()3,5 B .()2,4 C .11,42⎛⎫ ⎪⎝⎭ D .11,53⎛⎫ ⎪⎝⎭12.已知[]x 表示不超过实数x 的最大整数,()[]g x x =为取整函数,0x 是函数()2ln f x x x=-的零点,则()0g x 等于( ) A .1 B .2C .3D .4 二、填空题 13.已知函数()22f x mx x m =-+的值域为[0,)+∞,则实数m 的值为__________14.已知f (x )是定义域在R 上的偶函数,且f (x )在[0,+∞)上是减函数,如果f (m ﹣2)>f (2m ﹣3),那么实数m 的取值范围是_____.15.若关于x 的方程42x x a -=有两个根,则a 的取值范围是_________16.已知偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,则不等式()0xf x >的解集为______.17.对于函数()y f x =,若存在定义域D 内某个区间[a ,b ],使得()y f x =在[a ,b ]上的值域也为[a ,b ],则称函数()y f x =在定义域D 上封闭,如果函数4()1x f x x=-+在R 上封闭,则b a -=____.18.2()2f x x x =+(0x ≥)的反函数1()f x -=________19.定义在R 上的函数()f x 满足()()2=-+f x f x ,()()2f x f x =-,且当[]0,1x ∈时,()2f x x =,则方程()12f x x =-在[]6,10-上所有根的和为________. 20.若函数()22x f x b =--有两个零点,则实数b 的取值范围是_____.三、解答题21.已知()()()22log 2log 2f x x x =-++.(1)求函数()f x 的定义域;(2)求证:()f x 为偶函数;(3)指出方程()f x x =的实数根个数,并说明理由.22.已知函数()log (12)a f x x =+,()log (2)a g x x =-,其中0a >且1a ≠,设()()()h x f x g x =-.(1)求函数()h x 的定义域;(2)若312f ⎛⎫=- ⎪⎝⎭,求使()0h x <成立的x 的集合. 23.已知函数()22x x f x k -=+⋅,()()log ()2x a g x f x =-(0a >且1a ≠),且(0)4f =.(1)求k 的值;(2)求关于x 的不等式()0>g x 的解集;(3)若()82x t f x ≥+对x ∈R 恒成立,求t 的取值范围. 24.已知函数()()()()log 1log 301a a f x x x a =-++<<.(1)求函数()f x 的定义域;(2)求函数()f x 的零点;(3)若函数()f x 的最小值为4-,求a 的值.25.即将开工的南昌与周边城镇的轻轨火车路线将大大缓解交通的压力,加速城镇之间的流通.根据测算,如果一列火车每次拖4节车厢,每天能来回16次;如果一列火车每次拖7节车厢,每天能来回10次,每天来回次数是每次拖挂车厢个数的一次函数.(1)写出与的函数关系式;(2)每节车厢一次能载客110人,试问每次应拖挂多少节车厢才能使每天营运人数最多?并求出每天最多的营运人数(注:营运人数指火车运送的人数)26.某镇在政府“精准扶贫”的政策指引下,充分利用自身资源,大力发展养殖业,以增加收入.政府计划共投入72万元,全部用于甲、乙两个合作社,每个合作社至少要投入15万元,其中甲合作社养鱼,乙合作社养鸡,在对市场进行调研分析发现养鱼的收益M 、养鸡的收益N 与投入a(单位:万元)满足25,1536,49,3657,a M a ⎧⎪=⎨<⎪⎩剟„1202N a =+.设甲合作社的投入为x (单位:万元),两个合作社的总收益为()f x (单位:万元). (1)若两个合作社的投入相等,求总收益;(2)试问如何安排甲、乙两个合作社的投入,才能使总收益最大?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】∵f(x+4)=f(x),∴f(x)是以4为周期的周期函数,∴f(2 019)=f(504×4+3)=f(3)=f(-1).又f(x)为奇函数,∴f(-1)=-f(1)=-2×12=-2,即f(2 019)=-2. 故选A2.D解析:D【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果.详解:由题意结合对数函数的性质可知:2log 1a e =>,()21ln 20,1log b e ==∈,12221log log 3log 3c e ==>, 据此可得:c a b >>.本题选择D 选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.3.B解析:B【解析】【分析】先化简集合A,B,再求B A ð得解.【详解】由题得{}10|22{|1}x A x x x -=≥=≥,{}|0B y y =≥.所以{|01}B A x x =≤<ð.故选B【点睛】本题主要考查集合的化简和补集运算,考查指数函数的单调性和对数函数的值域的求法,意在考查学生对这些知识的理解掌握水平.4.A解析:A【解析】【分析】设()2f x ax bx c =++,可知1、3为方程()20f x x +=的两根,且0a <,利用韦达定理可将b 、c 用a 表示,再由方程()60f x a +=有两个相等的根,由0∆=求出实数a 的值.【详解】由于不等式()2f x x >-的解集为()1,3,即关于x 的二次不等式()220ax b x c +++>的解集为()1,3,则0a <. 由题意可知,1、3为关于x 的二次方程()220ax b x c +++=的两根, 由韦达定理得2134b a +-=+=,133c a=⨯=,42b a ∴=--,3c a =, ()()2423f x ax a x a ∴=-++,由题意知,关于x 的二次方程()60f x a +=有两相等的根,即关于x 的二次方程()24290ax a x a -++=有两相等的根, 则()()()224236102220a a a a ∆=+-=+-=,0a <Q ,解得15a =-,故选:A. 【点睛】 本题考查二次不等式、二次方程相关知识,考查二次不等式解集与方程之间的关系,解题的关键就是将问题中涉及的知识点进行等价处理,考查分析问题和解决问题的能力,属于中等题.5.D解析:D【解析】【分析】 可以得出11ln 32,ln 251010a c ==,从而得出c <a ,同样的方法得出a <b ,从而得出a ,b ,c 的大小关系.【详解】()ln 2ln 322210a f ===, ()1ln 255ln 5510c f ===,根据对数函数的单调性得到a>c, ()ln 333b f ==,又因为()ln 2ln8226a f ===,()ln 3ln 9336b f ===,再由对数函数的单调性得到a<b,∴c <a ,且a <b ;∴c <a <b .故选D .【点睛】考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.6.D解析:D【解析】【分析】由分段函数可得当0x =时,2(0)f a =,由于(0)f 是()f x 的最小值,则(,0]-∞为减函数,即有0a ≥,当0x >时,1()f x x a x=++在1x =时取得最小值2a +,则有22a a ≤+,解不等式可得a 的取值范围.【详解】因为当x≤0时,f(x)=()2x a -,f(0)是f(x)的最小值,所以a≥0.当x >0时,1()2f x x a a x=++≥+,当且仅当x =1时取“=”. 要满足f(0)是f(x)的最小值,需22(0)a f a +>=,即220a a --≤,解得12a -≤≤,所以a 的取值范围是02a ≤≤,故选D.【点睛】该题考查的是有关分段函数的问题,涉及到的知识点有分段函数的最小值,利用函数的性质,建立不等关系,求出参数的取值范围,属于简单题目. 7.C解析:C【解析】【分析】函数()f x 和121=-y x 都关于1,02⎛⎫ ⎪⎝⎭对称,所有1()21f x x =-的所有零点都关于1,02⎛⎫ ⎪⎝⎭对称,根据对称性计算1232022x x x x ++++L 的值. 【详解】()()10f x f x ++-=Q ,()f x ∴关于1,02⎛⎫ ⎪⎝⎭对称, 而函数121=-y x 也关于1,02⎛⎫ ⎪⎝⎭对称, ()121f x x ∴=-的所有零点关于1,02⎛⎫ ⎪⎝⎭对称, ()121f x x ∴=-的2022个不同的实数根i x (1,2,3,2022i =L ), 有1011组关于1,02⎛⎫ ⎪⎝⎭对称, 122022...101111011x x x ∴+++=⨯=.故选:C【点睛】本题考查根据对称性计算零点之和,重点考查函数的对称性,属于中档题型.8.A解析:A【解析】【分析】由已知可知,()f x 在()1,-+∞上单调递减,结合二次函数的开口方向及对称轴的位置即可求解.【详解】∵二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-, ∴()f x 在()1,-+∞上单调递减, ∵对称轴12x a=, ∴0 112a a<⎧⎪⎨≤-⎪⎩,解可得102a -≤<,故选A . 【点睛】本题主要考查了二次函数的性质及函数单调性的定义的简单应用,解题中要注意已知不等式与单调性相互关系的转化,属于中档题.9.B解析:B【解析】【分析】当07x <≤时,()f x 为单调增函数,且(2)0f =,则()0f x >的解集为(]2,7,再结合()f x 为奇函数,所以不等式()0f x >的解集为(2,0)(2,7]-⋃. 【详解】当07x <≤时,()26x f x x =+-,所以()f x 在(0,7]上单调递增,因为2(2)2260f =+-=,所以当07x <≤时,()0f x >等价于()(2)f x f >,即27x <≤,因为()f x 是定义在[7,7]-上的奇函数,所以70x -≤< 时,()f x 在[7,0)-上单调递增,且(2)(2)0f f -=-=,所以()0f x >等价于()(2)f x f >-,即20x -<<,所以不等式()0f x >的解集为(2,0)(2,7]-⋃【点睛】本题考查函数的奇偶性,单调性及不等式的解法,属基础题.应注意奇函数在其对称的区间上单调性相同,偶函数在其对称的区间上单调性相反.10.C解析:C【解析】【分析】【详解】因为函数()ln f x x =,()23g x x =-+,可得()()•f x g x 是偶函数,图象关于y 轴对称,排除,A D ;又()0,1x ∈时,()()0,0f x g x <>,所以()()•0f x g x <,排除B , 故选C.【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除. 11.D解析:D【解析】试题分析:由()()2f x f x =-,可知函数()f x 图像关于1x =对称,又因为()f x 为偶函数,所以函数()f x 图像关于y 轴对称.所以函数()f x 的周期为2,要使函数()()log a g x f x x =-有且仅有三个零点,即函数()y f x =和函数log a y x =图形有且只有3个交点.由数形结合分析可知,0111{log 31,53log 51a a a a <<>-⇒<<<-,故D 正确. 考点:函数零点【思路点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.12.B解析:B【解析】【分析】根据零点存在定理判断023x <<,从而可得结果.【详解】因为()2ln f x x x=-在定义域内递增, 且()2ln 210f =-<,()23ln 303f =->, 由零点存在性定理可得023x <<,根据[]x 表示不超过实数x 的最大整数可知()02g x =,故选:B.【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续. 二、填空题13.1【解析】【分析】根据二次函数的值域为结合二次函数的性质列出不等式组即可求解【详解】由题意函数的值域为所以满足解得即实数的值为1故答案为:1【点睛】本题主要考查了二次函数的图象与性质的应用其中解答中 解析:1【解析】【分析】根据二次函数的值域为[0,)+∞,结合二次函数的性质,列出不等式组,即可求解.【详解】由题意,函数()22f x mx x m =-+的值域为[0,)+∞,所以满足24400m m ⎧∆=-=⎨>⎩,解得1m =. 即实数m 的值为1.故答案为:1.【点睛】本题主要考查了二次函数的图象与性质的应用,其中解答中熟记二次函数的图象与性质是解答的关键,着重考查了推理与计算能力,属于基础题.14.(﹣∞1)(+∞)【解析】【分析】因为先根据f (x )是定义域在R 上的偶函数将f (m ﹣2)>f (2m ﹣3)转化为再利用f (x )在区间0+∞)上是减函数求解【详解】因为f (x )是定义域在R 上的偶函数且f解析:(﹣∞,1)U (53,+∞) 【解析】【分析】因为先根据f (x )是定义域在R 上的偶函数,将 f (m ﹣2)>f (2m ﹣3),转化为()()223f m f m ->-,再利用f (x )在区间[0,+∞)上是减函数求解.【详解】因为f (x )是定义域在R 上的偶函数,且 f (m ﹣2)>f (2m ﹣3), 所以()()223f m f m ->- ,又因为f (x )在区间[0,+∞)上是减函数,所以|m ﹣2|<|2m ﹣3|,所以3m 2﹣8m +5>0,所以(m ﹣1)(3m ﹣5)>0,解得m <1或m 53>, 故答案为:(﹣∞,1)U (53,+∞). 【点睛】本题主要考查了函数的单调性与奇偶性的综合应用,还考查了转化化归的思想和运算求解的能力,属于中档题.15.【解析】【分析】令可化为进而求有两个正根即可【详解】令则方程化为:方程有两个根即有两个正根解得:故答案为:【点睛】本题考查复合函数所对应的方程根的问题关键换元法的使用难度一般 解析:1(,0)4- 【解析】【分析】令20x t =>,42x x a -=,可化为20t t a --=,进而求20t t a --=有两个正根即可. 【详解】令20x t =>,则方程化为:20t t a --=Q 方程42x x a -=有两个根,即20t t a --=有两个正根,1212140100a x x x x a ∆=+>⎧⎪∴+=>⎨⎪⋅=->⎩,解得:104a -<<.故答案为: 1(,0)4-. 【点睛】本题考查复合函数所对应的方程根的问题,关键换元法的使用,难度一般.16.【解析】【分析】根据函数奇偶性和单调性的性质作出的图象利用数形结合进行求解即可【详解】偶函数的图象过点且在区间上单调递减函数的图象过点且在区间上单调递增作出函数的图象大致如图:则不等式等价为或即或即 解析:()(),20,2-∞-⋃【解析】 【分析】根据函数奇偶性和单调性的性质作出()f x 的图象,利用数形结合进行求解即可. 【详解】Q 偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,∴函数()f x 的图象过点()2,0-,且在区间(),0-∞上单调递增,作出函数()f x 的图象大致如图:则不等式()0xf x >等价为()00x f x >⎧>⎨⎩或()00x f x <⎧<⎨⎩,即02x <<或2x <-,即不等式的解集为()(),20,2-∞-⋃,故答案为()(),20,2-∞-⋃ 【点睛】本题主要考查不等式的解集的计算,根据函数奇偶性和单调性的性质作出()f x 的图象是解决本题的关键.17.6【解析】【分析】利用定义证明函数的奇偶性以及单调性结合题设条件列出方程组求解即可【详解】则函数在R 上为奇函数设即结合奇函数的性质得函数在R 上为减函数并且由题意可知:由于函数在R 上封闭故有解得:所以解析:6 【解析】 【分析】利用定义证明函数()y f x =的奇偶性以及单调性,结合题设条件,列出方程组,求解即可. 【详解】44()()11x xf x f x x x--=-==-+-+,则函数()f x 在R 上为奇函数设120x x ≤<,4()1xf x x=-+ ()()()2112121212444()()01111x x x x f x f x x x x x --=-+=>++++,即12()()f x f x >结合奇函数的性质得函数()f x 在R 上为减函数,并且(0)0f = 由题意可知:0,0a b <>由于函数()f x 在R 上封闭,故有4141()()a bab f a b f b aa b-=-⎧⎪=⎧⎪⇒⎨⎨=⎩-=+⎪⎪⎩ ,解得:3,3a b =-=所以6b a -= 故答案为:6 【点睛】本题主要考查了利用定义证明函数的奇偶性以及单调性,属于中档题.18.()【解析】【分析】设()求出再求出原函数的值域即得反函数【详解】设()所以因为x≥0所以所以因为x≥0所以y≥0所以反函数故答案为【点睛】本题主要考查反函数的求法考查函数的值域的求法意在考查学生对1(0x ≥) 【解析】 【分析】设()22f x y x x ==+(0x ≥),求出x =()1f x -.【详解】设()22f x y x x ==+(0x ≥),所以2+20,x x y x -=∴=±因为x≥0,所以x =()11f x -=.因为x≥0,所以y≥0,所以反函数()11f x -=,0x ()≥.1,0x ()≥ 【点睛】本题主要考查反函数的求法,考查函数的值域的求法,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.19.【解析】【分析】结合题意分析出函数是以为周期的周期函数其图象关于直线对称由可得出函数的图象关于点对称据此作出函数与函数在区间上的图象利用对称性可得出方程在上所有根的和【详解】函数满足即则函数是以为周 解析:16【解析】 【分析】结合题意分析出函数()y f x =是以4为周期的周期函数,其图象关于直线1x =对称,由()()22f x f x -=-+可得出函数()y f x =的图象关于点()2,0对称,据此作出函数()y f x =与函数12y x =-在区间[]6,10-上的图象,利用对称性可得出方程()12f x x =-在[]6,10-上所有根的和. 【详解】函数()y f x =满足()()2f x f x =-+,即()()()24f x f x f x =-+=+,则函数()y f x =是以4为周期的周期函数;()()2f x f x =-Q ,则函数()y f x =的图象关于直线1x =对称;由()()2f x f x =-+,()()2f x f x =-,有()()22f x f x -=-+,则函数()y f x =的图象关于点()2,0成中心对称; 又函数12y x =-的图象关于点()2,0成中心对称,则函数()y f x =与函数12y x =-在区间[]6,10-上的图象的交点关于点()2,0对称,如下图所示:由图象可知,函数()y f x =与函数12y x =-在区间[]6,10-上的图象共有8个交点, 4对交点关于点()2,0对称,则方程()12f x x =-在[]6,10-上所有根的和为4416⨯=. 故答案为:16. 【点睛】本题考查方程根的和的计算,将问题转化为利用函数图象的对称性求解是解答的关键,在作图时也要注意推导出函数的一些基本性质,考查分析问题和解决问题的能力,属于中等题.20.【解析】【分析】【详解】函数有两个零点和的图象有两个交点画出和的图象如图要有两个交点那么 解析:02b <<【解析】 【分析】 【详解】函数()22xf x b =--有两个零点,和的图象有两个交点,画出和的图象,如图,要有两个交点,那么三、解答题21.(1)()2,2-;(2)证明见解析;(3)两个,理由见解析.【解析】 【分析】(1)根据对数函数的真数大于0,列出不等式组求出x 的取值范围即可; (2)根据奇偶性的定义即可证明函数()f x 是定义域上的偶函数. (3)将方程()f x x =变形为()22log 4x x -=,即242xx-=,设()242xg x x =--(22x -≤≤),再根据零点存在性定理即可判断. 【详解】解:(1) ()()()22log 2log 2f x x x =-++Q2020x x ->⎧∴⎨+>⎩,解得22x -<<,即函数()f x 的定义域为()2,2-; (2)证明:∵对定义域()2,2-中的任意x , 都有()()()()22log 2log 2f x x x f x -=++-= ∴函数()f x 为偶函数;(3)方程()f x x =有两个实数根, 理由如下:易知方程()f x x =的根在()2,2-内, 方程()f x x =可同解变形为()22log 4x x -=,即242xx-=设()242x gx x =--(22x -≤≤).当[]2,0x ∈-时,()g x 为增函数,且()()20120g g -⋅=-<, 则在()2,0-内,函数()g x 有唯一零点,方程()f x x =有唯一实根,又因为偶函数,在()0,2内,函数()g x 也有唯一零点,方程()f x x =有唯一实根, 所以原方程有两个实数根. 【点睛】本题考查函数的定义域和奇偶性的应用问题,函数的零点,函数方程思想,属于基础题. 22.(1)1,22⎛⎫- ⎪⎝⎭;(2)1,23⎛⎫ ⎪⎝⎭【解析】 【分析】(1)由真数大于0列出不等式组求解即可; (2)由312f ⎛⎫=-⎪⎝⎭得出14a =,再利用对数函数的单调性解不等式即可得出答案. 【详解】(1)要使函数有意义,则12020x x +>⎧⎨->⎩,即122x -<<,故()h x 的定义域为1,22⎛⎫- ⎪⎝⎭. (2)∵312f ⎛⎫=- ⎪⎝⎭,∴log (13)log 41a a +==-, ∴14a =, ∴1144()log (12)log (2)h x x x =+--,∵()0h x <,∴0212x x <-<+,得123x <<, ∴使()0h x <成立的的集合为1,23⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查了求对数型函数的定义域以及由对数函数的单调性解不等式,属于中档题. 23.(1) 3k =;(2) 当1a >时,()2,log 3x ∈-∞;当01a <<时,()2log 3,x ∈+∞;(3)(],13-∞- 【解析】 【分析】(1)由函数过点()0,4,待定系数求参数值;(2)求出()g x 的解析式,解对数不等式,对底数进行分类讨论即可. (3)换元,将指数型不等式转化为二次不等式,再转化为最值求解即可. 【详解】(1)因为()22x xf x k -=+⋅且(0)4f =,故:14k +=,解得3k =.(2)因为()()log ()2xa g x f x =-,由(1),将()f x 代入得:()log (32?)x a g x -=n ,则log (32?)0x a ->n ,等价于:当1a >时,321x ->n ,解得()2,log 3x ∈-∞ 当01a <<时,321x -<n ,解得()2log 3,x ∈+∞. (3)()82xtf x ≥+在R 上恒成立,等价于: ()()228230xx t --+≥n 恒成立;令2x m =,则()0,m ∈+∞,则上式等价于:2830m m t --+≥,在区间()0,+∞恒成立.即:283t m m ≤-+,在区间()0,+∞恒成立, 又()2283413m m m -+=--,故:2(83)m m -+的最小值为:-13,故:只需13t ≤-即可. 综上所述,(],13t ∈-∞-. 【点睛】本题考查待定系数求参数值、解复杂对数不等式、由恒成立问题求参数范围,属函数综合问题.24.(1)()3,1.-(2)1-±3 【解析】 【分析】(1)根据对数的真数大于零,列出不等式组并求出解集,函数的定义域用集合或区间表示出来;(2)利用对数的运算性质对解析式进行化简,再由()=0f x ,即223=1x x --+,求此方程的根并验证是否在函数的定义域内;(3)把函数解析式化简后,利用配方求真数在定义域内的范围,再根据对数函数在定义域内递减,求出函数的最小值log 4a ,得log 44a =-利用对数的定义求出a 的值. 【详解】 (1)由已知得10,30,x x ->⎧⎨+>⎩, 解得31x -<<所以函数()f x 的定义域为()3,1.-(2)()()()()()()2log 1log 3log 13log 23a a a a f x x x x x x x =-++=-+=--+,令()=0f x ,得223=1x x --+,即222=0x x +-,解得1x =-±∵1(-3,1)-,∴函数()f x 的零点是1-(3)由2知,()()()22log 23log 14a a f x x x x ⎡⎤=--+=-++⎣⎦,∵31x -<<,∴()20144x <-++≤.∵01a <<,∴()2log 14log 4a a x ⎡⎤-++≥⎣⎦,∴()min log 44a f x ==-,∴1442a -==. 【点睛】本题是关于对数函数的综合题,考查了对数的真数大于零、函数零点的定义和对数型的复合函数求最值,注意应在函数的定义域内求解,灵活转化函数的形式是关键.25.(1) ;(2)每次应拖挂节车厢才能使每天的营运人数最多为人.【解析】试题分析:(1)由于函数为一次函数,设出其斜截式方程,将点代入,可待定系数,求得函数关系式为;(2)结合(1)求出函数的表达式为,这是一个开口向下的二次函数,利用对称轴求得其最大值.试题解析:(1)这列火车每天来回次数为次,每次拖挂车厢节, 则设. 将点代入,解得∴.(2)每次拖挂节车厢每天营运人数为, 则, 当时,总人数最多为人.故每次应拖挂节车厢才能使每天的营运人数最多为人.26.(1)87万元;(2)甲合作社投入16万元,乙合作社投入56万元【解析】 【分析】(1)先求出36x =,再求总收益;(2)(2)设甲合作社投入x 万元(1557)x ≤≤,乙合作社投入72x -万元,再对x 分类讨论利用函数求出如何安排甲、乙两个合作社的投入,才能使总收益最大. 【详解】(1)两个合作社的投入相等,则36x =,1(36)436253620872f =++⨯+=(万元)(2)设甲合作社投入x 万元(1557)x ≤≤,乙合作社投入72x -万元.当1536x ≤≤时,11()425(72)2048122f x x x x x =+-+=-+, 令t x =156t ≤≤,则总收益2211()481(4)8922g t t t t =-++=--+,当4t =即16x =时,总收益取最大值为89; 当3657x <≤时,11()49(72)2010522f x x x =+-+=-+, ()f x 在(36,57]上单调递减,所以()(36)87f x f <=.因为8987>,所以在甲合作社投入16万元,乙合作社投入56万元时,总收益最大,最大总收益为89万元. 【点睛】本题主要考查函数的应用和最值的求法,意在考查学生对这些知识的理解掌握水平和应用能力.。