(完整word版)全国高考试卷分类解析程序框图专题
(完整word版)2019年高考数学试卷全国卷1文科真题附答案解析
2019年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设312iz i-=+,则||(z = ) A .2B .3C .2D .12.(5分)已知集合{1U =,2,3,4,5,6,7},{2A =,3,4,5},{2B =,3,6,7},则(UBA = )A .{1,6}B .{1,7}C .{6,7}D .{1,6,7}3.(5分)已知2log 0.2a =,0.22b =,0.30.2c =,则( ) A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5151(0.61822--≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm5.(5分)函数2sin ()cos x xf x x x+=+的图象在[π-,]π的大致为( ) A .B .C .D .6.(5分)某学校为了解1000名新生的身体素质,将这些学生编号1,2,⋯,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A .8号学生B .200号学生C .616号学生D .815号学生7.(5分)tan 255(︒= ) A .23-B .23-+C .23D .23+8.(5分)已知非零向量a ,b 满足||2||a b =,且()a b b -⊥,则a 与b 的夹角为( ) A .6πB .3π C .23π D .56π 9.(5分)如图是求112122++的程序框图,图中空白框中应填入( )A .12A A=+ B .12A A=+C .112A A=+ D .112A A=+10.(5分)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线的倾斜角为130︒,则C 的离心率为( ) A .2sin40︒B .2cos40︒C .1sin50︒D .1cos50︒11.(5分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 4sin a A b B c C -=,1cos 4A =-,则(bc= )A .6B .5C .4D .312.(5分)已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
2023年高考真题——数学(新高考II卷) Word版含解析
程,解出即可.
y xm
【详解】将直线
y
x
m
与椭圆联立
x2 3
y2
,消去
1
y
可得
4x2
6mx
3m2
3
0
,
因为直线与椭圆相交于 A, B 点,则 36m2 4 4 3m2 3 0 ,解得 2 m 2 ,
设 F1 到 AB 的距离 d1,F2 到 AB 距离 d2 ,易知 F1 2, 0 , F2 2, 0 ,
5.
已知椭圆 C :
x2 3
y2
1 的左、右焦点分别为 F1 ,F2 ,直线
y
x m 与 C 交于 A,B 两点,若 △F1AB
面积是 △F2 AB 面积的 2 倍,则 m ( ).
2 A. 3
B. 2 3
C. 2 3
D. 2 3
【答案】C
【解析】
【分析】首先联立直线方程与椭圆方程,利用 0 ,求出 m 范围,再根据三角形面积比得到关于 m 的方
综上所述: a 1 .
故选:B.
3. 某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高 中部两层共抽取 60 名学生,已知该校初中部和高中部分别有 400 名和 200 名学生,则不同的抽样结果共有 ( ).
A.
C45 400
C15 200
种
.C
C30 400
C40 400
C20 200
种.
故选:D.
4.
若
f
x
x
a
ln
2x 2x
1 1
为偶函数,则
a
(
).
A. 1
2020年全国普通高等学校招生统一考试(新课标Ⅰ卷)理科数学+答案+全解全析纯word版(2020.6.15)
2020年全国普通高等学校招生统一考试(新课标Ⅰ卷)理科数学本卷满分150分,考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{|||2}P x x =>,2{|230}Q x x x =--≤,则P Q =I A .(2,)+∞B .(1,)+∞C .(2,3]D .[1,2)-2.已知i 为虚数单位,(2i)67i z -=+,则复平面内与z 对应的点在 A .第一象限B .第二象限C .第三象限D .第四象限3.若26cos 2cos21αα+=-,则tan α= A .2±B .3±C .2D .3-4.已知实数,,a b c 满足lg 222,log ,sin a b a c b ===,则,,a b c 的大小关系是 A .a b c >>B .b c a >>C .a c b >>D .b a c >>5.已知函数()sin 3cos f x x x ωω=-(0ω>)的图象与x 轴的交点中,两个相邻交点的距离为π,把函数()f x 的图象上每一点的横坐标缩小到原来的一半,再沿x 轴向左平移3π个单位长度,然后纵坐标扩大到原来的2倍得到函数()g x 的图象,则下列命题中正确的是 A .()g x 是奇函数B .()g x 的图象关于直线6x π=对称 C .()g x 在[,]312π-π上是增函数D .当[,]66x π-π∈时,()g x 的值域是[0,2]6.函数2()cos sin(1)31x f x x =⋅-+的图象大致为7.在ABC △中,已知1()2AD AB AC =+u u u r u u u r u u u r ,13AE AD =u u u r u u u r ,若以,AD BE u u u r u u u r 为基底,则DC u u u r可表示为A .2133AD BE +u u ur u u u rB .23AD BE +u u ur u u u rC .13AD BE +u u u r u u u rD .1233AD BE +u u ur u u u r8.记不等式组21312y x x y y y kx ≤-⎧⎪+≤⎪⎨≥-⎪⎪≥-⎩表示的平面区域为D ,若平面区域D 为四边形,则实数k 的取值范围是A .11144k << B .11144k <≤ C .11133k <<D .11133k ≤≤9.1872年,戴德金出版了著作《连续性与无理数》,在这部著作中以有理数为基础,用崭新的方法定义了无理数,建立起了完整的实数理论.我们借助划分数轴的思想划分有理数,可以把数轴上的点划分为两类,使得一类的点在另一类点的左边.同样的道理把有理数集划分为两个没有共同元素的集合A 和B ,使得集合A 中的任意元素都小于集合B 中的任意元素,称这样的划分为分割,记为A /B .以下对有理数集的分割不会出现的类型为 A .A 中有最大值,B 中无最小值 B .A 中无最大值,B 中有最小值 C .A 中无最大值,B 中无最小值D .A 中有最大值,B 中有最小值10.已知双曲线2222:1(0,0)x y C a b a b-=>>的右顶点为A ,O 为坐标原点,A 为OM 的中点,若C 的渐近线与以AM 为直径的圆相切,则双曲线C 的离心率等于 A 32 B 23C 3D 211.已知函数()|2|2f x x =-+,()ln g x ax x =-,若0(0,e)x ∀∈,12,(0,e)x x ∃∈满足0()f x = 12()()g x g x =,其中12x x ≠,则实数a 的取值范围是 A .5[,e)eB .1(,e)eC .1[1,e)e+D .15[1,]e e+12.如图,已知平面四边形P'CAB 中,AC BC ⊥,且6AC =,27BC =,214P'C P'B ==BC 将P'BC △折起到PBC △的位置,构成一个四面体,当四面体PABC 的体积最大时,四面体PABC 的外接球的体积等于 A .5003πB .2563πC .50πD .96π二、填空题:本题共4小题,每小题5分,共20分。
2012-2021高考真题分类汇编17.算法与简易逻辑(解析版)
算法与框图一、选择题1.(2019年高考数学课标Ⅲ卷理科)执行如图所示的程序框图,如果输入的ε为0.01,则输出s 的值等于( ).( )A .4122-B .5122- C .6122-D .7122-【答案】D 【解析】11.0,01,0.01?2x s s x ===+=< 否 1101,0.01?24s x =++=< 否611101,0.01?22128s x =++++=< 是 输出76761111112121=21222212s -⎛⎫=++⋯+==-- ⎪⎝⎭-,故选D . 【点评】循环运算,何时满足精确度成为关键,在求和时的项数应准确,此为易错点.2.(2019年高考数学课标全国Ⅰ卷理科)右图是求112122++的程序框图,图中空白框中应填入 ( )A .12A A =+ B .12A A =+C .112A A=+D .112A A=+【答案】A 解析:111112221222A A A =→=→=+++,故图中空白框中应填入12A A =+. 3.(2018年高考数学课标Ⅱ卷(理))为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入 ( )A .1i i =+B .2i i =+C .3i i =+D .4i i =+【答案】B 解析:由11111123499100S =-+-++-,得程序框图是先把奇数项累加,再把偶数项累加,最后再相减.因此在空白框中应填入2i i =+,故选B .4.(2017年高考数学新课标Ⅰ卷理科)右面程序框图是为了求出满足]的最小偶数,那么在和两个空白框中,可以分别填入 ( )A .和B .和321000n n->n 1000A >1n n =+1000A >2n n =+C .和D .和【答案】 D【解析】由题意,因为,且框图中在“否”时输出,所以在判定框内不能输入,故判定框内填,又要求为偶数且初始值为,所以矩形框内填,故选D . 【考点】程序框图【点评】解决此类问题的关键是读懂程序框图,明确顺序结构、条件结构、循环结构的真正含义.本题巧妙的设置了两个空格需要填写,所以需要抓住循环的重点,偶数该如何增量,判断框内如何进行判断,可以根据选项排除.5.(2017年高考数学课标Ⅲ卷理科)执行右面的程序框图,为使输出的值小于,则输入的正整数的最小值为 ( )A .B .C .D .【答案】 D【解析】该程序框图是直到型的循环结构,循环体完成的功能是实现的累加,的累除1000A ≤1n n =+1000A ≤2n n =+321000n n->1000A >1000A ≤n 02n n =+S 91N 5432S M进入循环休内为使输出的值小于,则输入的最小正整数,故选D . 【考点】程序框图【点评】利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构.当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断.注意输入框、处理框、判断框的功能,不可混用.赋值语句赋值号左边只能是变量,不能是表达式,右边的表达式可以是一个常量、变量或含变量的运算式.6.(2017年高考数学课标Ⅱ卷理科)执行右面的程序框图,如果输入的,则输出的 ( )A .2B .3C .4D .5【答案】 B【命题意图】本题考查程序框图的知识,意在考查考生对循环结构的理解与应用. 【解析】解法一:常规解法∵ ,,,,,∴ 执行第一次循环:﹑﹑ ;执行第二次循环:﹑﹑;执行第三次循环:﹑﹑ ;执行第四次循环:﹑﹑;执行第五次循环:﹑﹑S 912N ≤1a =-S =00S =01K =01a =-S S a K =+⋅a a =-11S =-11a =12K =21S =21a =-23K =32S =-31a =34K =42S =41a =-45K =53S =-51a =;执行第五次循环:﹑﹑;当时,终止循环,输出,故输出值为3. 解法二:数列法,,裂项相消可得;执行第一次循环:﹑﹑,当时,即可终止,,即,故输出值为3. 【考点】 流程图【点评】识别、运行程序框图和完善程序框图的思路 (1) 要明确程序框图的顺序结构、条件结构和循环结构. (2) 要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证。
程序框图_文科(高考真题)
程序框图专题1.阅读如图所示的程序框图,运行相应的程序,若输入x的值为1,则输出y的值为( )A.2 B.7 C.8 D.128第1题图第2题图2.阅读上边的程序框图,运行相应的程序,则输出i的值为( )A.2 B.3 C.4 D.53.执行如图所示的程序框图,输出的k值为( )A.3 B.4 C.5 D.64.执行如图所示的程序框图,输出S的值为( )A.-32B.32C.-12D.12第3题图 第4题图 第5题图5.执行如图所示的程序框图,则输出s 的值为( )A.34B.56C.1112D.25246.执行下面的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =( )A.203B.165C.72D.158第6题图 第7题图7.执行上面的程序框图,如果输入的x ,t 均为2,则输出的S =( )A .4B .5C .6D .78.执行如图所示的程序框图,输出S 的值为( )A .3B .-6C .10D .12第8题图答案 1.C [当x =1时,执行y =9-1=8.输出y 的值为8,故选C.]2.C [运行相应的程序.第1次循环:i =1,S =10-1=9;第2次循环:i =2,S =9-2=7;第3次循环:i =3,S =7-3=4;第4次循环:i =4,S =4-4=0;满足S =0≤1,结束循环,输出i =4.故选C.]3.B [第一次循环:a =3×12=32,k =1;第二次循环:a =32×12=34,k =2; 第三次循环:a =34×12=38,k =3; 第四次循环:a =38×12=316<14,k =4. 故输出k =4.]4.D [每次循环的结果为k =2,k =3,k =4,k =5>4,∴S =sin5π6=12.] 5.D [s =12+14+16+18=2524,即输出s 的值为2524.] 6.D [当n =1时,M =1+12=32,a =2,b =32; 当n =2时,M =2+23=83,a =32,b =83; 当n =3时,M =32+38=158,a =83,b =158; n =4时,终止循环.输出M =158.] 7.D [k =1,M =11×2=2,S =2+3=5; k =2,M =22×2=2,S =2+5=7; k =3,3>t ,∴输出S =7,故选D.]8.C [当i=1时,1<5为奇数,S=-1,i=2;当i=2时,2<5为偶数,S=-1+4=3,i=3;当i=3时,3<5为奇数,S=3-33=-5,i=4;当i=4时,4<5为偶数,S=-6+42=10,i=5;当i=5时,5≥5,输出S=10.]程序框图每小题5分共100分班级:姓名:组别:得分:1、(2014全国卷文.理)执行右面的程序框图,如果输入的,x t均为2,则输出的S(A)4 (B)5(C )6 (D )72、(2013全国卷文7)执行右面的程序框图,如果输入的4N =,那么输出的S =( )(A )1111234+++ (B )1111232432+++⨯⨯⨯ (C )111112345++++ (D )111112324325432++++⨯⨯⨯⨯⨯⨯ 3、(2012全国卷理.文)如果执行右边和程序框图,输入正整数N (2N ≥)和实数1a ,2a ,…, N a ,输出A , B ,则( )A .AB +为1a ,2a ,…,N a 的和 B .2A B +为1a ,2a ,…,N a 的算术平均数 C .A 和B 分别是1a ,2a ,…,N a中最大的数和最小的数D .A 和B 分别是1a ,2a ,…,N a 中最小的数和最大的数否 是 是 1k k =+B x =A x =结束输出A ,B ?k N ≥?x B <k x a =?x A >开始 输入N ,1a ,2a ,…N a 1k =,1A a =1B a = 否 是 否第1题第2题第3题4、(2011全国卷理.文)执行右面的程序框图,如果输入的N是6,那么输出的p是( )(A)120 (B)720 (C)1440 (D)50405、(2010全国卷理.文)如果执行右面的框图,输入N=5,则输出的数等于()(A)54(B)45(C)65(D)566、(2009全国卷理.文)如果执行下边的程序框图,输入x=-2,h=0.5,那么输出的各个数的和等于()A.3B.3.5C.4D.4.5第4题 第5题 第6题7、(2013广东卷文)执行如图1所示的程序框图,若输入n 的值为3,则输出s 的值是( )A .1B .2C .4D .78、(2013山东卷文6)执行右边的程序框图,若第一次输入的a 的值为-1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a 的值分别为( )A .0.2,0.2B .0.2,0.8C .0.8,0.2D .0.8,0.89、(2013年高考福建卷(文))阅读如图所示的程序框图,运行相应的程序,如果输入某个正整数n 后,输出的)20,10( S ,那么n 的值为( )A .3B .4C .5D .6第7题 第8题 第9题 10、(2013浙江卷文14)某程序框图如图所示,则该程序运行后输出的值等于_________. 11、(2013湖北卷文13)阅读如图所示的程序框图,运行相应的程序. 若输入m 的值为2,图 1是否结束输出s i=i +1i ≤ n i=1, s=1输入n 开始s=s+(i -1)I=1While I<8S=2I+3I=I+2WendPrint S则输出的结果i =_____4_____.12、(2013湖南文12)执行如图1所示的程序框图,如果输入a=1,b=2,则输出的a 的值为______第10题 第12题13、(2007海南文理5)如果执行下面的程序框图,那么输出的S =( )A.2450 B.2500 C.2550 D.265214、(2013陕西卷理)根据下列算法语句, 当输入x 为60时, 输出y 的值为( )A .25B .30C .31D .6115、(2009杭州学军中学第七次月考)右边的程序语句输出的结果S 为 ( )A .17B .19C .21D .23否A A m =⨯1i i =+输入m1, 1, 0A B i ===开始结束 是?A B <输出i第11题 B B i =⨯开始 K = 0S =50?k ≤是 否 Input x If x ≤50 Then y =0.5 * x Else y =25+0.6*(x -50) End If第13题第14题第15题16、(2009年上海卷理)某算法的程序框如下图所示,则输出量y与输入量x满足的关系式是____________.(注:框图中的赋值符号“=”也可以写成“←”或“:=”)17、(2009安徽卷文)程序框图上(右)(即算法流程图)如图所示,其输入结果是_______。
2020年全国卷一文科数学高考试题(word版+详细解析版)
2020年普通高等学校招生全国统一考试全国卷一文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合2{|340}A x x x =--<,{4,1,3,5}B =-,则A B =A .{4,1}-B .{1,5}C .{3,5}D .{1,3}答案:D解析:2{|340}{|14}A x x x x x =--<=-<<,则交集的定义可得,{13},A B =,故选D 2.若312i i z =++,则||z =A .0B .1C .2D .2答案:C解析:因为312i i 12i (i)1i z =++=++-=+,所以22||=112z +=,故选C3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A.14 B.12C.14 D.12 答案:C解析:如图,P ABCD -是正四棱锥,过P 作PO ABCD ⊥平面,O 为垂足,则O 是正方形ABCD 的中心,取BC 的中点E ,则OE BC ⊥,因为PO ABCD ⊥平面,所以BC PO ⊥,又PO OE O =,所以BC POE ⊥平面,因为PE POE ⊂平面,所以PE BC ⊥,设BC a =,PO h =,由勾股定理得PE =1122PBCS BC PE =⋅=212h =,所以221142PE a aPE -=,解得PE =或PE =(舍去),故选CE OPA B C D4.设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为A .15B .25C .12D .45答案:A解析:O ,A ,B ,C ,D 中任取3点的取法用集合表示有{,,}O A B ,{,,}O A C ,{,,}O A D ,{,,}O B C ,{,,}O B D ,{,,}O C D ,{,,}A B C ,{,,}A B D ,{,,}A C D ,{,,}B C D ,共有10种取法,其中3点共线的取法有{,,}O A C ,{,,}O B D ,共2种,故取到的3点共线的概率为21105=,故选AODCBA5.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i ix y i=得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是A.y a bx=+B.2y a bx=+C.e xy a b=+D.lny a b x=+答案:D解析:本题考查回归方程及一次函数、二次函数、指数函数、对数函数的图象,观察散点图可知,散点图用光滑曲线连接起来比较接近对数函数的图象,故选D。
全国卷新高考数学试卷结构
一、试卷概述全国卷新高考数学试卷旨在全面考察学生的数学基础知识和应用能力,培养学生的逻辑思维、抽象思维和创新思维。
试卷分为两个部分:选择题和非选择题。
以下是试卷的具体结构分析。
二、试卷结构1. 选择题部分选择题部分占试卷总分的50%,主要考察学生的基本概念、基本方法和基本技能。
选择题分为以下几类:(1)单项选择题:主要考察学生对基本概念、基本定理、基本公式的理解和掌握程度。
题目难度适中,题型包括填空题、选择题等。
(2)多项选择题:主要考察学生对多个知识点之间的联系和综合运用能力。
题目难度适中,题型包括判断题、选择题等。
(3)解答题:主要考察学生对复杂问题的解决能力,包括应用题、证明题等。
题目难度较高,要求学生在规定时间内完成。
2. 非选择题部分非选择题部分占试卷总分的50%,主要考察学生的综合应用能力和创新思维能力。
非选择题分为以下几类:(1)填空题:主要考察学生对基本概念、基本定理、基本公式的理解和掌握程度。
题目难度适中,题型包括填空题、选择题等。
(2)解答题:主要考察学生对复杂问题的解决能力,包括应用题、证明题等。
题目难度较高,要求学生在规定时间内完成。
(3)实验探究题:主要考察学生的实验设计、实验操作、实验分析等能力。
题目难度较高,要求学生在规定时间内完成。
(4)综合题:主要考察学生对多个知识点之间的联系和综合运用能力。
题目难度较高,要求学生在规定时间内完成。
三、试卷特点1. 注重基础知识:试卷内容紧密围绕高中数学课程标准,注重考察学生对基础知识的掌握程度。
2. 强化能力培养:试卷不仅考察学生的基础知识,还注重考察学生的逻辑思维、抽象思维和创新思维能力。
3. 体现应用价值:试卷内容紧密结合实际,注重考察学生的数学应用能力。
4. 考察范围广泛:试卷内容涉及高中数学的各个领域,包括代数、几何、概率统计等。
5. 题目设置合理:试卷题目难度适中,既有基础题,也有挑战性题目,能够全面考察学生的数学能力。
2021年高考真题——文科数学(新课标II卷)Word版含答案(自画图)
绝密★启用前2021年一般高等学校招生全国统一考试文 科 数 学留意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上。
2.回答第I 卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦洁净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第II 卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{|12}A x x =-<<,{|03}B x x =<<,则A B =A .(1,3)-B .(1,0)-C .(0,2)D .(2,3)2.若a 为实数,且231aii i+=++,则a = A .-4 B .-3 C .3 D .43.依据下面给出的2004年至2021年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是A .逐年比较,2008年削减二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈削减趋势D .2006年以来我国二氧化硫年排放量与年份正相关 4.向量(1,1)=-a ,(1,2)=-b ,则(2)+⋅=a b aA .-1B .0C .1D .35.设S n 等差数列{}n a 的前n 项和。
若a 1 + a 3 + a 5 = 3,则S 5 = A .5 B .7 C .9D .116.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为A .18B .17 C .16D .157.已知三点(1,0)A,B,C ,则ΔABC 外接圆的圆心到原点的距离为A .53 BCD .43 8.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。
2020年新高考(全国卷)数学试卷结构与评析
新高考(全国卷)地区数学试卷结构及题型变化新高考数学考试试卷及试卷结构说明:新高考数学试卷结构:第一大题,单项选择题,共8小题,每小题5分,共40分;第二大题,多项选择题,共4小题,每小题5分,部分选对得3分,有选错得0分,共20分.第三大题,填空题,共4小题,每小题5分,共20分。
第四大题,解答题,共6小题,均为必考题,涉及的内容是高中数学的六大主干知识:三角函数,数列,统计与概率,立体几何,函数与导数,解析几何。
单项选择题考点分析:多项选择题考点分析:①新高考全国Ⅰ卷与新高考全国Ⅱ卷相同新高考选择题部分分析:①新高考与之前相比,最大的不同就是增加了多项选择题部分,选择题部分由原来的12道单选题,变成了8道单选题与4道多选题。
这有利于缩小学生选择题部分成绩的差距,过去学生错一道单选题,可能就会丢掉5分,在新高考中,考生部分选对就可以得3分,在一定程度上保证了得分率。
②新高考的单项选择题部分主要考察学生的基础知识和基本运算能力,总体上难度不大,只要认真复习,一般都可以取得一个较好的成绩。
在多项选择题上,前两道较为基础,后两道难度较大,能够突出高考的选拔性功能,总体上来看,学生比以往来讲,更容易取得一个不错的成绩,但对于一些数学基础比较的好的同学来说,这些题比以往应该更有挑战性。
过去,只需要在四个选项中选一个正确答案,现在要在四个选项中,选出多个答案,比以往来说,要想准确的把正确答案全部选出来,确实有一定的难度、③新高考数学试卷的第4题,第6题和第12题都体现了创新性。
第4题,以古代知识为背景,考察同学们的立体几何知识,这体现了数学考试的价值观导向。
弘扬传统文化的同时也鼓励同学们走进传统文化。
近年来,对于这类题目也是屡见不鲜,平时也应该鼓励学生去关注一些古代的数学著作,如《九章算术》,《孙子算经》等等,通过对这些著作的了解,再遇到这类题目时,在一定程度上能够减少恐惧感与焦虑感。
第6题则体现了聚焦民生,关注社会热点。
全国统一高考数学试卷(大纲版)(含解析版)(1)
全国统一高考数学试卷(大纲版)一、选择题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)复数=()A.2+i B.2﹣i C.1+2i D.1﹣2i2.(5分)已知集合A={1,3,},B={1,m},A∪B=A,则m的值为()A.0或B.0或3C.1或D.1或33.(5分)椭圆的中心在原点,焦距为4,一条准线为x=﹣4,则该椭圆的方程为()A.B.C.D.4.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,CC1=2,E为CC1的中点,则直线AC1与平面BED的距离为()A.2B.C.D.15.(5分)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为()A.B.C.D.6.(5分)△ABC中,AB边的高为CD,若=,=,•=0,||=1,||=2,则=()A.B.C.D.7.(5分)已知α为第二象限角,,则cos2α=()A.﹣B.﹣C.D.8.(5分)已知F1、F2为双曲线C:x2﹣y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=()A.B.C.D.9.(5分)已知x=lnπ,y=log52,,则()A.x<y<z B.z<x<y C.z<y<x D.y<z<x10.(5分)已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=()A.﹣2或2B.﹣9或3C.﹣1或1D.﹣3或111.(5分)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种12.(5分)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,,动点P 从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为()A.16B.14C.12D.10二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.(注意:在试题卷上作答无效)13.(5分)若x,y满足约束条件则z=3x﹣y的最小值为.14.(5分)当函数y=sinx﹣cosx(0≤x<2π)取得最大值时,x=.15.(5分)若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为.16.(5分)三棱柱ABC﹣A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1=60°,则异面直线AB1与BC1所成角的余弦值为.三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知cos(A﹣C)+cosB=1,a=2c,求C.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD,,PA=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;(Ⅱ)设二面角A﹣PB﹣C为90°,求PD与平面PBC所成角的大小.19.(12分)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;(Ⅱ)ξ表示开始第4次发球时乙的得分,求ξ的期望.20.(12分)设函数f(x)=ax+cosx,x∈[0,π].(Ⅰ)讨论f(x)的单调性;(Ⅱ)设f(x)≤1+sinx,求a的取值范围.21.(12分)已知抛物线C:y=(x+1)2与圆(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.(Ⅰ)求r;(Ⅱ)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.22.(12分)函数f(x)=x2﹣2x﹣3,定义数列{ x n}如下:x1=2,x n+1是过两点P(4,5),Q n (x n,f(x n))的直线PQ n与x轴交点的横坐标.(Ⅰ)证明:2≤x n<x n+1<3;(Ⅱ)求数列{ x n}的通项公式.全国统一高考数学试卷(大纲版)参考答案与试题解析一、选择题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)复数=()A.2+i B.2﹣i C.1+2i D.1﹣2i【考点】A5:复数的运算.【专题】11:计算题.【分析】把的分子分母都乘以分母的共轭复数,得,由此利用复数的代数形式的乘除运算,能求出结果.【解答】解:===1+2i.故选:C.【点评】本题考查复数的代数形式的乘除运算,是基础题.解题时要认真审题,仔细解答.2.(5分)已知集合A={1,3,},B={1,m},A∪B=A,则m的值为()A.0或B.0或3C.1或D.1或3【考点】1C:集合关系中的参数取值问题.【专题】5J:集合.【分析】由题设条件中本题可先由条件A∪B=A得出B⊆A,由此判断出参数m可能的取值,再进行验证即可得出答案选出正确选项.【解答】解:由题意A∪B=A,即B⊆A,又,B={1,m},∴m=3或m=,解得m=3或m=0及m=1,验证知,m=1不满足集合的互异性,故m=0或m=3即为所求,故选:B.【点评】本题考查集合中参数取值问题,解题的关键是将条件A∪B=A转化为B⊆A,再由集合的包含关系得出参数所可能的取值.3.(5分)椭圆的中心在原点,焦距为4,一条准线为x=﹣4,则该椭圆的方程为()A.B.C.D.【考点】K3:椭圆的标准方程;K4:椭圆的性质.【专题】11:计算题.【分析】确定椭圆的焦点在x轴上,根据焦距为4,一条准线为x=﹣4,求出几何量,即可求得椭圆的方程.【解答】解:由题意,椭圆的焦点在x轴上,且∴c=2,a2=8∴b2=a2﹣c2=4∴椭圆的方程为故选:C.【点评】本题考查椭圆的标准方程,考查椭圆的几何性质,属于基础题.4.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,CC1=2,E为CC1的中点,则直线AC1与平面BED的距离为()A.2B.C.D.1【考点】MI:直线与平面所成的角.【专题】11:计算题.【分析】先利用线面平行的判定定理证明直线C1A∥平面BDE,再将线面距离转化为点面距离,最后利用等体积法求点面距离即可【解答】解:如图:连接AC,交BD于O,在三角形CC1A中,易证OE∥C1A,从而C1A∥平面BDE,∴直线AC1与平面BED的距离即为点A到平面BED的距离,设为h,=S△ABD×EC=××2×2×=在三棱锥E﹣ABD中,V E﹣ABD=×2×=2在三棱锥A﹣BDE中,BD=2,BE=,DE=,∴S△EBD=×S△EBD×h=×2×h=∴V A﹣BDE∴h=1故选:D.【点评】本题主要考查了线面平行的判定,线面距离与点面距离的转化,三棱锥的体积计算方法,等体积法求点面距离的技巧,属基础题5.(5分)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为()A.B.C.D.【考点】85:等差数列的前n项和;8E:数列的求和.【专题】11:计算题.【分析】由等差数列的通项公式及求和公式,结合已知可求a1,d,进而可求a n,代入可得==,裂项可求和【解答】解:设等差数列的公差为d由题意可得,解方程可得,d=1,a1=1由等差数列的通项公式可得,a n=a1+(n﹣1)d=1+(n﹣1)×1=n∴===1﹣=故选:A.【点评】本题主要考查了等差数列的通项公式及求和公式的应用,及数列求和的裂项求和方法的应用,属于基础试题6.(5分)△ABC中,AB边的高为CD,若=,=,•=0,||=1,||=2,则=()A.B.C.D.【考点】9Y:平面向量的综合题.【分析】由题意可得,CA⊥CB,CD⊥AB,由射影定理可得,AC2=AD•AB可求AD,进而可求,从而可求与的关系,进而可求【解答】解:∵•=0,∴CA⊥CB∵CD⊥AB∵||=1,||=2∴AB=由射影定理可得,AC2=AD•AB∴∴∴==故选:D.【点评】本题主要考查了直角三角形的射影定理的应用,向量的基本运算的应用,向量的数量积的性质的应用.7.(5分)已知α为第二象限角,,则cos2α=()A.﹣B.﹣C.D.【考点】GG:同角三角函数间的基本关系;GS:二倍角的三角函数.【专题】56:三角函数的求值.【分析】由α为第二象限角,可知sinα>0,cosα<0,从而可求得sinα﹣cosα=,利用cos2α=﹣(sinα﹣cosα)(sinα+cosα)可求得cos2α【解答】解:∵sinα+cosα=,两边平方得:1+sin2α=,∴sin2α=﹣,①∴(sinα﹣cosα)2=1﹣sin2α=,∵α为第二象限角,∴sinα>0,cosα<0,∴sinα﹣cosα=,②∴cos2α=﹣(sinα﹣cosα)(sinα+cosα)=(﹣)×=﹣.故选:A.【点评】本题考查同角三角函数间的基本关系,突出二倍角的正弦与余弦的应用,求得sinα﹣cosα=是关键,属于中档题.8.(5分)已知F1、F2为双曲线C:x2﹣y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=()A.B.C.D.【考点】KC:双曲线的性质.【专题】11:计算题.【分析】根据双曲线的定义,结合|PF1|=2|PF2|,利用余弦定理,即可求cos∠F1PF2的值.【解答】解:将双曲线方程x2﹣y2=2化为标准方程﹣=1,则a=,b=,c=2,设|PF1|=2|PF2|=2m,则根据双曲线的定义,|PF1|﹣|PF2|=2a可得m=2,∴|PF1|=4,|PF2|=2,∵|F1F2|=2c=4,∴cos∠F1PF2====.故选:C.【点评】本题考查双曲线的性质,考查双曲线的定义,考查余弦定理的运用,属于中档题.9.(5分)已知x=lnπ,y=log52,,则()A.x<y<z B.z<x<y C.z<y<x D.y<z<x【考点】72:不等式比较大小.【专题】11:计算题;16:压轴题.【分析】利用x=lnπ>1,0<y=log52<,1>z=>,即可得到答案.【解答】解:∵x=lnπ>lne=1,0<log52<log5=,即y∈(0,);1=e0>=>=,即z∈(,1),∴y<z<x.故选:D.【点评】本题考查不等式比较大小,掌握对数函数与指数函数的性质是解决问题的关键,属于基础题.10.(5分)已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=()A.﹣2或2B.﹣9或3C.﹣1或1D.﹣3或1【考点】53:函数的零点与方程根的关系;6D:利用导数研究函数的极值.【专题】11:计算题.【分析】求导函数,确定函数的单调性,确定函数的极值点,利用函数y=x3﹣3x+c的图象与x轴恰有两个公共点,可得极大值等于0或极小值等于0,由此可求c的值.【解答】解:求导函数可得y′=3(x+1)(x﹣1),令y′>0,可得x>1或x<﹣1;令y′<0,可得﹣1<x<1;∴函数在(﹣∞,﹣1),(1,+∞)上单调增,(﹣1,1)上单调减,∴函数在x=﹣1处取得极大值,在x=1处取得极小值.∵函数y=x3﹣3x+c的图象与x轴恰有两个公共点,∴极大值等于0或极小值等于0.∴1﹣3+c=0或﹣1+3+c=0,∴c=﹣2或2.故选:A.【点评】本题考查导数知识的运用,考查函数的单调性与极值,解题的关键是利用极大值等于0或极小值等于0.11.(5分)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种【考点】D9:排列、组合及简单计数问题.【专题】11:计算题;16:压轴题.【分析】由题意,可按分步原理计数,对列的情况进行讨论比对行讨论更简洁.【解答】解:由题意,可按分步原理计数,首先,对第一列进行排列,第一列为a,b,c的全排列,共有种,再分析第二列的情况,当第一列确定时,第二列第一行只能有2种情况,当第二列一行确定时,第二列第2,3行只能有1种情况;所以排列方法共有:×2×1×1=12种,故选:A.【点评】本题若讨论三行每一行的情况,讨论情况较繁琐,而对两列的情况进行分析会大大简化解答过程.12.(5分)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,,动点P 从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为()A.16B.14C.12D.10【考点】IG:直线的一般式方程与直线的性质;IQ:与直线关于点、直线对称的直线方程.【专题】13:作图题;16:压轴题.【分析】通过相似三角形,来确定反射后的点的落的位置,结合图象分析反射的次数即可.【解答】解:根据已知中的点E,F的位置,可知第一次碰撞点为F,在反射的过程中,直线是平行的,利用平行关系及三角形的相似可得第二次碰撞点为G,且CG=,第二次碰撞点为H,且DH=,作图,可以得到回到E点时,需要碰撞14次即可.故选:B.【点评】本题主要考查了反射原理与三角形相似知识的运用.通过相似三角形,来确定反射后的点的落的位置,结合图象分析反射的次数即可,属于难题.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.(注意:在试题卷上作答无效)13.(5分)若x,y满足约束条件则z=3x﹣y的最小值为﹣1.【考点】7C:简单线性规划.【专题】11:计算题.【分析】作出不等式组表示的平面区域,由z=3x﹣y可得y=3x﹣z,则﹣z表示直线3x﹣y﹣z=0在y轴上的截距,截距越大z越小,结合图形可求【解答】解:作出不等式组表示的平面区域,如图所示由z=3x﹣y可得y=3x﹣z,则﹣z表示直线3x﹣y﹣z=0在y轴上的截距,截距越大z越小结合图形可知,当直线z=3x﹣y过点C时z最小由可得C(0,1),此时z=﹣1故答案为:﹣1【点评】本题主要考查了线性规划的简单应用,解题的关键是明确目标函数中z的几何意义,属于基础试题14.(5分)当函数y=sinx﹣cosx(0≤x<2π)取得最大值时,x=.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【专题】11:计算题;16:压轴题.【分析】利用辅助角公式将y=sinx﹣cosx化为y=2sin(x﹣)(0≤x<2π),即可求得y=sinx ﹣cosx(0≤x<2π)取得最大值时x的值.【解答】解:∵y=sinx﹣cosx=2(sinx﹣cosx)=2sin(x﹣).∵0≤x<2π,∴﹣≤x﹣<,∴y max=2,此时x﹣=,∴x=.故答案为:.【点评】本题考查三角函数的最值两与角和与差的正弦函数,着重考查辅助角公式的应用与正弦函数的性质,将y=sinx﹣cosx(0≤x<2π)化为y=2sin(x﹣)(0≤x<2π)是关键,属于中档题.15.(5分)若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为56.【考点】DA:二项式定理.【专题】11:计算题;16:压轴题.【分析】根据第2项与第7项的系数相等建立等式,求出n的值,根据通项可求满足条件的系数【解答】解:由题意可得,∴n=8展开式的通项=令8﹣2r=﹣2可得r=5此时系数为=56故答案为:56【点评】本题主要考查了二项式系数的性质,以及系数的求解,解题的关键是根据二项式定理写出通项公式,同时考查了计算能力.16.(5分)三棱柱ABC﹣A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1=60°,则异面直线AB1与BC1所成角的余弦值为.【考点】LM:异面直线及其所成的角.【专题】11:计算题;16:压轴题.【分析】先选一组基底,再利用向量加法和减法的三角形法则和平行四边形法则将两条异面直线的方向向量用基底表示,最后利用夹角公式求异面直线AB1与BC1所成角的余弦值即可【解答】解:如图,设=,,,棱长均为1,则=,=,=∵,∴=()•()=﹣++﹣+=﹣++=﹣1++1=1||===||===∴cos<,>===∴异面直线AB1与BC1所成角的余弦值为【点评】本题主要考查了空间向量在解决立体几何问题中的应用,空间向量基本定理,向量数量积运算的性质及夹角公式的应用,有一定的运算量三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知cos(A﹣C)+cosB=1,a=2c,求C.【考点】GL:三角函数中的恒等变换应用;HP:正弦定理.【专题】11:计算题.【分析】由cos(A﹣C)+cosB=cos(A﹣C)﹣cos(A+C)=1,可得sinAsinC=,由a=2c及正弦定理可得sinA=2sinC,联立可求C【解答】解:由B=π﹣(A+C)可得cosB=﹣cos(A+C)∴cos(A﹣C)+cosB=cos(A﹣C)﹣cos(A+C)=2sinAsinC=1∴sinAsinC=①由a=2c及正弦定理可得sinA=2sinC②①②联立可得,∵0<C<π∴sinC=a=2c即a>c【点评】本题主要考查了两角和与差的余弦公式及正弦定理的应用,属于基础试题18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD,,PA=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;(Ⅱ)设二面角A﹣PB﹣C为90°,求PD与平面PBC所成角的大小.【考点】LW:直线与平面垂直;MI:直线与平面所成的角;MM:向量语言表述线面的垂直、平行关系.【专题】11:计算题.【分析】(I)先由已知建立空间直角坐标系,设D(,b,0),从而写出相关点和相关向量的坐标,利用向量垂直的充要条件,证明PC⊥BE,PC⊥DE,从而利用线面垂直的判定定理证明结论即可;(II)先求平面PAB的法向量,再求平面PBC的法向量,利用两平面垂直的性质,即可求得b的值,最后利用空间向量夹角公式即可求得线面角的正弦值,进而求得线面角【解答】解:(I)以A为坐标原点,建立如图空间直角坐标系A﹣xyz,设D(,b,0),则C(2,0,0),P(0,0,2),E(,0,),B(,﹣b,0)∴=(2,0,﹣2),=(,b,),=(,﹣b,)∴•=﹣=0,•=0∴PC⊥BE,PC⊥DE,BE∩DE=E∴PC⊥平面BED(II)=(0,0,2),=(,﹣b,0)设平面PAB的法向量为=(x,y,z),则取=(b,,0)设平面PBC的法向量为=(p,q,r),则取=(1,﹣,)∵平面PAB⊥平面PBC,∴•=b﹣=0.故b=∴=(1,﹣1,),=(﹣,﹣,2)∴cos<,>==设PD与平面PBC所成角为θ,θ∈[0,],则sinθ=∴θ=30°∴PD与平面PBC所成角的大小为30°【点评】本题主要考查了利用空间直角坐标系和空间向量解决立体几何问题的一般方法,线面垂直的判定定理,空间线面角的求法,有一定的运算量,属中档题19.(12分)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;(Ⅱ)ξ表示开始第4次发球时乙的得分,求ξ的期望.【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CH:离散型随机变量的期望与方差.【专题】15:综合题.【分析】(Ⅰ)记A i表示事件:第1次和第2次这两次发球,甲共得i分,i=0,1,2;A表示事件:第3次发球,甲得1分;B表示事件:开始第4次发球,甲、乙的比分为1比2,则B=A0A+A1,根据P(A)=0.4,P(A0)=0.16,P(A1)=2×0.6×0.4=0.48,即可求得结论;(Ⅱ)P(A2)=0.62=0.36,ξ表示开始第4次发球时乙的得分,可取0,1,2,3,计算相应的概率,即可求得ξ的期望.【解答】解:(Ⅰ)记A i表示事件:第1次和第2次这两次发球,甲共得i分,i=0,1,2;A 表示事件:第3次发球,甲得1分;B表示事件:开始第4次发球,甲、乙的比分为1比2,则B=A0A+A1∵P(A)=0.4,P(A0)=0.16,P(A1)=2×0.6×0.4=0.48∴P(B)=0.16×0.4+0.48×(1﹣0.4)=0.352;(Ⅱ)P(A2)=0.62=0.36,ξ表示开始第4次发球时乙的得分,可取0,1,2,3P(ξ=0)=P(A2A)=0.36×0.4=0.144P(ξ=2)=P(B)=0.352P(ξ=3)=P(A0)=0.16×0.6=0.096P(ξ=1)=1﹣0.144﹣0.352﹣0.096=0.408∴ξ的期望Eξ=1×0.408+2×0.352+3×0.096=1.400.【点评】本题考查相互独立事件的概率,考查离散型随机变量的期望,确定变量的取值,计算相应的概率是关键.20.(12分)设函数f(x)=ax+cosx,x∈[0,π].(Ⅰ)讨论f(x)的单调性;(Ⅱ)设f(x)≤1+sinx,求a的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】15:综合题.【分析】(Ⅰ)求导函数,可得f'(x)=a﹣sinx,x∈[0.π],sinx∈[0,1],对a进行分类讨论,即可确定函数的单调区间;(Ⅱ)由f(x)≤1+sinx得f(π)≤1,aπ﹣1≤1,可得a≤,构造函数g(x)=sinx﹣(0≤x),可得g(x)≥0(0≤x),再考虑:①0≤x;②,即可得到结论.【解答】解:(Ⅰ)求导函数,可得f'(x)=a﹣sinx,x∈[0,π],sinx∈[0,1];当a≤0时,f'(x)≤0恒成立,f(x)单调递减;当a≥1 时,f'(x)≥0恒成立,f(x)单调递增;当0<a<1时,由f'(x)=0得x1=arcsina,x2=π﹣arcsina当x∈[0,x1]时,sinx<a,f'(x)>0,f(x)单调递增当x∈[x1,x2]时,sinx>a,f'(x)<0,f(x)单调递减当x∈[x2,π]时,sinx<a,f'(x)>0,f(x)单调递增;(Ⅱ)由f(x)≤1+sinx得f(π)≤1,aπ﹣1≤1,∴a≤.令g(x)=sinx﹣(0≤x),则g′(x)=cosx﹣当x时,g′(x)>0,当时,g′(x)<0∵,∴g(x)≥0,即(0≤x),当a≤时,有①当0≤x时,,cosx≤1,所以f(x)≤1+sinx;②当时,=1+≤1+sinx综上,a≤.【点评】本题考查导数知识的运用,考查函数的单调性,考查函数的最值,解题的关键是正确求导,确定函数的单调性.21.(12分)已知抛物线C:y=(x+1)2与圆(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.(Ⅰ)求r;(Ⅱ)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.【考点】IM:两条直线的交点坐标;IT:点到直线的距离公式;KJ:圆与圆锥曲线的综合.【专题】15:综合题;16:压轴题.【分析】(Ⅰ)设A(x0,(x0+1)2),根据y=(x+1)2,求出l的斜率,圆心M(1,),求得MA的斜率,利用l⊥MA建立方程,求得A的坐标,即可求得r的值;(Ⅱ)设(t,(t+1)2)为C上一点,则在该点处的切线方程为y﹣(t+1)2=2(t+1)(x﹣t),即y=2(t+1)x﹣t2+1,若该直线与圆M相切,则圆心M到该切线的距离为,建立方程,求得t的值,求出相应的切线方程,可得D的坐标,从而可求D到l的距离.【解答】解:(Ⅰ)设A(x0,(x0+1)2),∵y=(x+1)2,y′=2(x+1)∴l的斜率为k=2(x0+1)当x0=1时,不合题意,所以x0≠1圆心M(1,),MA的斜率.∵l⊥MA,∴2(x0+1)×=﹣1∴x0=0,∴A(0,1),∴r=|MA|=;(Ⅱ)设(t,(t+1)2)为C上一点,则在该点处的切线方程为y﹣(t+1)2=2(t+1)(x﹣t),即y=2(t+1)x﹣t2+1若该直线与圆M相切,则圆心M到该切线的距离为∴∴t2(t2﹣4t﹣6)=0∴t0=0,或t1=2+,t2=2﹣抛物线C在点(t i,(t i+1)2)(i=0,1,2)处的切线分别为l,m,n,其方程分别为y=2x+1①,y=2(t1+1)x﹣②,y=2(t2+1)x﹣③②﹣③:x=代入②可得:y=﹣1∴D(2,﹣1),∴D到l的距离为【点评】本题考查圆与抛物线的综合,考查抛物线的切线方程,考查导数知识的运用,考查点到直线的距离公式的运用,关键是确定切线方程,求得交点坐标.22.(12分)函数f(x)=x2﹣2x﹣3,定义数列{ x n}如下:x1=2,x n+1是过两点P(4,5),Q n (x n,f(x n))的直线PQ n与x轴交点的横坐标.(Ⅰ)证明:2≤x n<x n+1<3;(Ⅱ)求数列{ x n}的通项公式.【考点】8H:数列递推式;8I:数列与函数的综合.【专题】15:综合题;16:压轴题.【分析】(Ⅰ)用数学归纳法证明:①n=1时,x1=2,直线PQ1的方程为,当y=0时,可得;②假设n=k时,结论成立,即2≤x k<x k+1<3,直线PQ k+1的方程为,当y=0时,可得,根据归纳假设2≤x k<x k+1<3,<x k+2<3,从而结论成立.可以证明2≤x k+1(Ⅱ)由(Ⅰ),可得,构造b n=x n﹣3,可得是以﹣为首项,5为公比的等比数列,由此可求数列{ x n}的通项公式.【解答】(Ⅰ)证明:①n=1时,x1=2,直线PQ1的方程为当y=0时,∴,∴2≤x1<x2<3;②假设n=k时,结论成立,即2≤x k<x k+1<3,直线PQ k+1的方程为当y=0时,∴∵2≤x k<x k+1<3,∴<x k+2∴x k+1<x k+2<3∴2≤x k+1即n=k+1时,结论成立由①②可知:2≤x n<x n+1<3;(Ⅱ)由(Ⅰ),可得设b n=x n﹣3,∴∴∴是以﹣为首项,5为公比的等比数列∴∴∴.【点评】本题考查数列的通项公式,考查数列与函数的综合,解题的关键是从函数入手,确定直线方程,求得交点坐标,再利用数列知识解决.。
程序框图、顺序结构 Word版含解析
A级:基础巩固练一、选择题1.算法共有三种逻辑结构,即顺序结构、条件结构和循环结构,下列说法正确的是()A.一个算法只含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C.一个算法必须含有上述三种逻辑结构D.一个算法可以同时含有上述三种逻辑结构★答案★ D解析一个算法中含有哪种逻辑结构,主要看解决什么样的问题及解决问题的方法,顺序结构、条件结构和循环结构这三种逻辑结构在一个算法中可以同时出现.2.如图所示的程序框图,已知a1=3,输出的结果为7,则a2的值是()A.9 B.10C.11 D.12★答案★ C解析因为输出的结果为7,所以b=7,又b=b2,所以原b=14,即a1+a2=14.又a1=3,所以a2=11.3.根据所给的程序框图,如图所示,输出的结果是()A.3 B.1C.2 D.0★答案★ C解析由X=Y,得X=2;由Y=X,得Y=2;由Z=Y,得Z=2,故选C. 4.如图所示的程序框图表示的算法意义是()A.边长为3,4,5的直角三角形面积B.边长为3,4,5的直角三角形内切圆面积C.边长为3,4,5的直角三角形外接圆面积D.以3,4,5为弦的圆面积★答案★ B解析由直角三角形内切圆半径r=a+b-c2,知选B.5.程序框图如图所示,若输入R=2,h=3,则输出的结果是()A.6π B.12πC.16π D.18π★答案★ B解析∵R=2,h=3,∴V=π×22×3=12π,∴输出12π.二、填空题6.如图的程序框图表示的算法的运行结果是________.★答案★6 6解析p=9,∴S=9(9-5)(9-6)(9-7)=6 6.7.如图是求长方体的体积和表面积的一个程序框图,补充完整,横线处应填________________.★答案★解析 根据题意,长方体的长、宽、高应从键盘输入,故横线处应填写输入框.8.计算图(2)中空白部分面积的一个程序框图如(1),则①中应填________.★答案★ S =⎝ ⎛⎭⎪⎫1-π16a 2解析 设空白区域的面积为S ,则 S =a 2-14·π·⎝ ⎛⎭⎪⎫a 22=a 2-π16a 2=⎝ ⎛⎭⎪⎫1-π16a 2.三、解答题9.已知函数y=2x+3,设计一个算法,若给出函数图象上任一点的横坐标x,求该点到坐标原点的距离,并画出程序框图.解算法如下:第一步,输入横坐标的值x.第二步,计算y=2x+3.第三步,计算d=x2+y2.第四步,输出d.程序框图如图.B级:能力提升练10.如图所示的程序框图,根据该图和下列各小题的条件回答下面问题.(1)该程序框图解决的是一个什么问题?(2)当输入的x的值为0和4时,输出的值相等,问当输入的x的值为3时,输出的值为多大?(3)在(2)的条件下要想使输出的值最大,输入的x的值应为多大?解(1)该程序框图解决的是求二次函数f(x)=-x2+mx的函数值的问题.(2)当输入的x的值为0和4时,输出的值相等,即f(0)=f(4).因为f(0)=0,f(4)=-16+4m,所以-16+4m=0,所以m=4,所以f(x)=-x2+4x.则f(3)=-32+4×3=3,所以当输入的x的值为3时,输出的f(x)值为3.(3)因为f(x)=-x2+4x=-(x-2)2+4,=4,当x=2时,f(x)最大值所以要想使输出的值最大,输入的x的值应为2.。
2017年全国二卷理科数学高考真题及详解(全word版)
2017年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项: 1.答题前,考生先将自己的XX 、XX 填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签 字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写 的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.=++i1i 3A .i 21+B .i 21-C .i 2+D .i 2-2.设集合{}4 2 1,,=A ,{}042=+-=m x x B ,若{}1=B A ,则=B A .{}3 1-, B. .{}0 1, C .{}3 1, D .{}5 1, 3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?〞意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 A .1盏 B .3盏 C .5盏 D .9盏4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A .π90 B .π63 C .π42 D .π365.设y x 、满足约束条件⎪⎩⎪⎨⎧≥+≥+-≤-+,,,0303320332y y x y x 则y x z +=2的最小值是A .15-B .9-C .1D .96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A .12种B .18种C .24种D .36种理科数学试题第1页〔共4页〕7.甲、乙、丙、丁四位同学一起去向老师询问成语竞猜的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩8.执行右面的程序框图,如果输入的1-=a ,则输出的=S A .2B .3C .4D .59.若双曲线)00(1:2222>>=-b a by a x C ,的一条渐近线被圆4)2(22=+-y x 所截得的弦长为2,则C 的离心率为A .2B .3C .2D .33210.已知直三棱柱111C B A ABC -中, 120=∠ABC , 2=AB , 11==CC BC , 则异面直线1AB 与1BC 所成角的余弦值为A .23 B .515 C .510 D .33 11.若2-=x 是函数12)1()(--+=x e ax x x f 的极值点,则)(x f 的极小值为A .1-B .32--eC .35-eD .112.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则)(PC PB PA +⋅的最小值是A .2-B .23-C .34- D .1-二、填空题:本题共4小题,每小题5分,共20分。
【高考】近5年高考全国卷各科高频考点分布图,附复习建议
【高考】近5年高考全国卷各科高频考点分布图,附复习建议2017年各省份的试卷使用情况?全国Ⅰ卷地区:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建全国Ⅱ卷地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、西藏、陕西、重庆全国Ⅲ卷地区:云南、广西、贵州、四川自主命题省份自主命题:江苏、北京、天津部分使用全国卷省份海南省:全国Ⅱ卷(语、数、英)单独命题(政、史、地、物、化、生)山东卷:全国Ⅰ卷(外语、文综、理综)自主命题(语文、文数、理数)本文用图表形式帮助使用全国卷的省份考生分学科解读,包括高频考点分析、典型例题剖析、复习建议及备考策略及资深名师多年教学精华总结,帮同学们为2017年高考做好充分的准备。
重在教大家分析考点、把握重点的方法,最后附有三轮复习的策略!希望大家坚持看完!定受益良多!【注】1、本文内容较多,阅读时间约25min,建议大家收藏起来。
2、本文分析数据基于2013-2015年高考试题,未涵盖2016年高考试题。
3、请结合2017年最新考试大纲进行备考!4、附:第三轮备考策略,内容仅供参考!2017年高考九大学科高频考点数学(文科)一、高频考点分析由以上柱形图可知,新课标 I 卷高考文科数学近六年高频考点为:1. 函数与导数,立体几何,圆锥曲线,三角函数与解三角形,数列,年均占比14.45%,12.98%,10.13%,9.44%,6.78%;2. 统计,概率,不等式与线性规划,年均占比4-6%;集合与简易逻辑、复数、算法与框图,年均考查约5分左右,即一道选/填分值;3. 最后一道计算题为3选1,10分,可在圆、相似;参数方程、极坐标方程;解绝对值不等式、最值这三道大题中任选其一。
二、复习建议及应试技巧● 试卷结构:1. 选择题12×5,最后2-3道较难;2. 填空题4×5,最后1-2道稍有难度;3. 解答题5×12+10。
● 考试时间分布:共120分钟,选择题40分钟,解答题80分钟。
全国语文高考试卷结构
1. 识记、理解、应用能力选择题(共20分)此类题目主要考查考生对语文基础知识、文学常识、文化常识、古诗文默写、现代文阅读等内容的识记、理解和应用能力。
题型包括:单选题、多选题。
2. 综合性阅读选择题(共10分)此类题目主要考查考生对文本的整体把握、信息提取、推理判断和评价鉴赏等能力。
题型包括:单选题、多选题。
二、非选择题(共70分)1. 古诗文阅读(共35分)此类题目主要考查考生对古诗文的理解、赏析、翻译和评价能力。
题型包括:文言文阅读、古诗词阅读。
2. 现代文阅读(共25分)此类题目主要考查考生对现代文的理解、分析、评价和鉴赏能力。
题型包括:论述类文本阅读、实用类文本阅读、文学类文本阅读。
3. 写作(共10分)此类题目主要考查考生的写作能力,包括立意、选材、构思、表达等方面。
题型包括:材料作文、命题作文。
具体题目如下:一、选择题(共30分)1. 识记、理解、应用能力选择题(共20分)(1)单选题(共10分)(2)多选题(共10分)2. 综合性阅读选择题(共10分)(1)单选题(共5分)(2)多选题(共5分)1. 古诗文阅读(共35分)(1)文言文阅读(共15分)(2)古诗词阅读(共20分)2. 现代文阅读(共25分)(1)论述类文本阅读(共10分)(2)实用类文本阅读(共10分)(3)文学类文本阅读(共5分)3. 写作(共10分)(1)材料作文(共5分)(2)命题作文(共5分)考试时间:120分钟注意事项:1. 考生需在规定时间内完成所有题目。
2. 答题时请按照题目要求,在答题卡上填写正确答案。
3. 写作部分,考生需在答题卡上作答,注意字数要求。
4. 考试过程中,考生需遵守考场纪律,不得作弊。
以上是全国语文高考试卷的结构,旨在全面考查考生的语文素养和综合能力。
考生在备考过程中,应注重基础知识的学习,提高阅读理解能力,培养良好的写作习惯,以应对高考的挑战。
(完整版)高考算法程序框图真题练习及答案详解
(完整版)高考算法程序框图真题练习及答案详解1. 该算法程序框图的功能是什么?A. 求a,b,c三数的最大数B. 求a,b,c三数的最小数C. 将a,b,c按从小到大排列2. 该算法程序框图的功能是什么?A. 求输出a,b,c三数的最大数B. 求输出a,b,c三数的最小数C. 将a,b,c按从小到大排列3. 该算法程序框图的功能是什么?A. 找出a、b、c三个数中最大的数B. 找出a、b、c三个数中最小的数C. 找出a、b、c三个数中第二大的数4. 程序框图表示的算法的运行结果是什么?A. 5B. 6C. 75. 程序框图中所表示的算法是什么?A. 求x的绝对值B. 求x的相反数C. 求x的平方根6. 运行图中所示程序框图所表达的算法,输出的结果是什么?A. 3B. 7C. 157. 程序框图(算法流程图)的输出结果是什么?A. 6B. 5C. 48. 运行相应的程序,输出的结果为什么?A. 676B. 26C. 59. 运行相应的程序,输出的结果是什么?A. 1B. 2C. 310. 运行相应的程序,输出的S的值等于什么?A. 18B. 2C. 2111. 当m=7,n=3时,执行如图所示的程序框图,输出的S的值为什么?A. 7B. 42C. 21012. 执行如图所示的程序框图,若输入n=10,则输出的S=什么?A.B.C.13. 运行相应的程序,当输入x的值为-25时,输出x的值为什么?A. -1B. 1C. 314. 运行相应的程序,输出s值等于什么?A. -3B. -10C.15. 执行如图所示的程序框图,若输入n的值为6,则输出s的值为什么?A. 105B.C. 1516. 执行如图所示的程序框图,则输出的S的值是什么?A.B. 16C.D. 1A.9B.10C.11D.12考点:循环结构.专题:程序框图.分析:根据程序框图,计算每次循环后变量a的值,直到不满足循环条件,输出结果.解答:解:根据程序框图,计算每次循环后变量a的值,直到不满足循环条件,输出结果.第一次循环:a=3+2=5第二次循环:a=5+3=8第三次循环:a=8+4=12第四次循环:a=12+5=17第五次循环:a=17+6=23第六次循环:a=23+7=30第七次循环:a=30+8=38第八次循环:a=38+9=47第九次循环:a=47+10=57此时不满足循环条件,输出a的值,为57-9=48,故选A.点评:本题考查了应用程序框图进行简单的计算问题,是基础题.并在满足条件时跳出循环,输出S的值.当k=3时,不满足条件k≥n,跳出循环,输出S=7×6×5×4=840.故选D.点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.同时,需要注意条件的判断和循环变量的变化过程.解:$k=1$,满足判断框,第1次循环,$s=1$,$k=2$;第2次判断后循环,$s=0$,$k=3$;第3次判断并循环$s=-3$,$k=4$,第3次判断退出循环,输出$s=-3$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2017年3卷)8.执行右面的程序框图,为使输出S的值小于91,则输入的正整数 的最小值为()
A.5
B.4
C.3
D.2
(2017年2卷)10.执行右面的程序框图,如果输入的a=-1,则输出的S=A.2B.3C.4D.5
(2017年1卷)10.如图是为了求出满足 的最小偶数n,学|科网那么在 和 两个空白框中,可以分别填入
A.A>1000和n=n+1B.A>1000和n=n+2
C.A≤1000和n=n+1D.A≤1000和n=n+2
(2016年1卷)(10)执行右面的程序框图,如果输入的 n=1,则输出 的值满足
(A) (B) (C) (D)
(2016年2卷)9.中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序
(2011卷1)
(2011卷1)执行右面的程序框图,如果输入的N是6,那么输出的p是
A.120B.720C.1440D.5040
(2010卷1)如果执行如图的框图,输入N=5,则输出的数等于()
A. B. C. D.
(2009卷1)执行如图所示的程序框图,输入 ,那么输出的各个数的和等于
A.3B.3.5C.4D.4.5
C. D.
(2012卷1)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,aN,输出A,B,则
(A)A+B为a1,a2,…,aN的和
(B(C)A和B分别是a1,a2,…,aN中最大的数和最小的数
(D)A和B分别是a1,a2,…,aN中最小的数和最大的数
(2008卷1)
(2008卷1)右面的程序框图,如果输入三个实数a、b、c,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的()
A. c > xB. x > cC. c > bD. b > c
(2015卷2)右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”。执行该程序框图,若输入的a,b分别为14,18,则输出的a为A. 0 B.2C. 4 D.14
是否
是
否
(2014卷1)执行右面的程序框图,若输入的 分别为1,2,3,则输出的 ( )
A. B. C. D.
(2014卷1)(2014卷2)
(2014卷2)执行右面的程序框图,如果如果输入的x,t均为2,则输出的S=
(A)4(B)5(C)6(D)7
(2013卷1)执行下面的程序框图,如果输入的 ,则输出的 属于
A B C D
(2013卷1)(2013卷2)
(2013卷2)执行上面的程序框图,如果输入的N=4,那么输出的S=( ).
A. B.
框图.执行该程序框图,若输入的a为2,2,5,则输出的s=
(A)7(B)12(C)17(D)34
(2016年3卷)(8)执行下面的程序框图,如果输入的a=4,b=6,那么输出的n=
(A)3(B)4(C)5(D)6
(2015卷1)执行右面的程序框图,如果输入的 ,
则输出的 ()(A) (B) (C)7(D)8(2015卷1)