2017届文科数学立体几何大题训练 (1)

合集下载

湖北省各地2017届高三最新考试数学文试题分类汇编:立体几何含答案

湖北省各地2017届高三最新考试数学文试题分类汇编:立体几何含答案

湖北省各地2017届高三最新考试数学文试题分类汇编立体几何2017。

02一、选择、填空题1、(黄冈市2017届高三上学期期末)在正方体1111ABCD A BC D -中,异面直线1A B 与1AD 所成角的大小为A 。

30B 。

45 C. 60 D 。

902、(荆、荆、襄、宜四地七校考试联盟2017届高三2月联考)知在四面体ABCD 中,,E F 分别是,AC BD 的中点,若2,4,AB CD EF AB ==⊥,则EF 与CD 所成角的度数是A .90B .45C .60D .30 3、(荆门市2017届高三元月调考)关于不重合的直线,m n 与不重合的平面,αβ,有下列四个命题:①m ∥α,n ∥β且α∥β,则m ∥n ; ②m ⊥α,n ⊥β且α⊥β,则m ⊥n ; ③m ⊥α,n ∥β且α∥β,则m ⊥n ; ④m ∥α,n ⊥β且α⊥β,则m ∥n 。

其中为真命题的个数是A .1B .2C .3D .44、(荆州市五县市区2017届高三上学期期末)某几何体侧视图与正视图相同,则它的表面积为( )A 、12+6πB 、16+6πC 、16+10πD 、8+6π5、(天门、仙桃、潜江市2017届高三上学期期末联合考试)多面体MN ABCD -的底面ABCD 为矩形,其正(主)视图和侧(左)视图如图,其中正(主)视图为等腰梯形,侧(左)视图为等腰三角形,则AM 的长为A .3B .5C .6D .226、(武汉市2017届高三毕业生二月调研考)如图是某个几何体的三视图,其中正视图为正方形,俯视图是腰长为2的等腰直角三角形,则该几何体外接球的直径为 A. 2 B. 22 C. 3 D.237、(武汉市武昌区2017届高三1月调研)中国古代数学名著《九章算术》中记载了公元前344年商鞅监制的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x为( )A.1。

2017年高考立体几何大题

2017年高考立体几何大题

2017年高考立体几何大题(文科) 1、(2017新课标Ⅰ文数)(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=o ,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,1,90.2AB BC AD BAD ABC ==∠=∠=︒ (1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为P ABCD -的体积.如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.如图,在三棱锥P–ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(Ⅰ)求证:PA⊥BD;(Ⅱ)求证:平面BDE⊥平面PAC;(Ⅲ)当PA∥平面BD E时,求三棱锥E–BCD的体积.由四棱柱ABCD-A1B1C1D1截去三棱锥C1- B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.A O∥平面B1CD1;(Ⅰ)证明:1(Ⅱ)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.7、(2017浙江)(本题满分15分)如图,已知四棱锥P –ABCD ,△PAD 是以AD 为斜边的等腰直角三角形,,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点.(第19题图)(Ⅰ)证明:平面PAB ;(Ⅱ)求直线CE 与平面PBC 所成角的正弦值.//BC AD //CE8、(2017天津文)(本小题满分13分)如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(I )求异面直线AP 与BC 所成角的余弦值;(II )求证:PD ⊥平面PBC ;(II )求直线AB 与平面PBC 所成角的正弦值.。

2017年高考解答题19文科数学-立体几何训练

2017年高考解答题19文科数学-立体几何训练

文科数学-立体几何训练1.(2015·山东临沂一模,13)在三棱锥S-ACB中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=13,SB=29,则SC与AB所成角的余弦值为________.2.(2015·江苏,16,14分,中)如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.3.(2015·北京,18,14分,中)如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB 为等边三角形,AC⊥BC且AC=BC=2,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB;(3)求三棱锥V-ABC的体积.4.(2013·江苏,16,14分,易)如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.5.(14分)(2015·山东烟台一模,18)如图①,在直角梯形ABCD中,AD∥BC,∠ADC=90°,AB=BC.把△BAC沿AC折起到△P AC的位置,使得P点在平面ADC上的正投影O恰好落在线段AC上,如图②所示,点E,F分别为棱PC,CD的中点.(1)求证:平面OEF∥平面APD;(2)求证:CD⊥平面POF;(3)若AD=3,CD=4,AB=5,求四棱锥E-CFO的体积.6.(2015·山东青岛一模,18,12分)如图几何体中,四边形ABCD为矩形,AB=3BC=6,BF=CF=AE=DE=2,EF=4,EF∥AB,G为FC的中点,M为线段CD上的一点,且CM=2.(1)证明:AF∥平面BDG;(2)证明:平面BGM⊥平面BFC;(3)求三棱锥F-BMC的体积V.7.(2013·北京,17,14分)如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥底面ABCD,P A⊥AD.E和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.。

北京市部分区2017届高三上学期考试数学文试题分类汇编:立体几何含答案

北京市部分区2017届高三上学期考试数学文试题分类汇编:立体几何含答案

北京市部分区2017届高三上学期考试数学文试题分类汇编立体几何一、选择、填空题1、(昌平区2017届高三上学期期末)一个几何体的三视图如图所示,则这个几何体的直观图为俯视图11侧(左)视图正(主)视图12、(朝阳区2017届高三上学期期末)某四棱锥的三视图如图所示,其俯视图为等腰直角三角形, 则该四棱锥的体积为A 。

23 B 。

23 C 。

43D 。

23、(朝阳区2017届高三上学期期中)设m ,n 是两条不同的直线,α,β是两个不同的平面。

下列命题正确的是 A .若,,m n m n αβ⊂⊂⊥,则αβ⊥ B .若//,,//m n αβαβ⊥,则 m n ⊥ C .若,,//m n αβαβ⊥⊥,则//m nD .若,,m n m αβαβ⊥=⊥,则n β⊥4、(东城区2017届高三上学期期末)一个四棱锥的三视图如图所示(单位:cm ),这个四棱锥的体积为____3cm .5、(海淀区2017A 23B43C .2D 536、(海淀区2017届高三上学期期末)如图,已知正方体1111ABCD A B C D -的棱长为1,,E F 分别是棱11,AD B C 上的动点,设1,AE x B F y ==. 若棱.1DD 与平面BEF 有公共点,则x y +的取值范围是A .[0,1]B .13[,]22 C .[1,2]D .3[,2]27、(石景山区2017届高三上学期期末)一个四棱锥的三视图如右图所示, 这个四棱锥的体积为( )A .6B .8C .12ABCD1D 1A 1B 1C E F主视图俯视图左视图1113212侧视图正视图4 23D .248、(通州区2017届高三上学期期末)如图,已知某几何体的主视图和左视图是全等的等腰直角 三角形,俯视图是边长为2的正方形,那么它的体积是A .43B .83C .4D .1639、(西城区2017届高三上学期期末)某四棱锥的三视图如图所示,该四棱锥的表面积是 (A )2025+ (B )1445+ (C )26 (D)1225+10、(北京昌平临川育人学校2017届高三上学期期末)如图,网格纸上小正方形的边长为1,粗线画出的为某几何体的三视图,则此几何体的体积为()A .B .1C .D .2二、解答题1、(昌平区2017届高三上学期期末)在三棱锥ABC P -中,ABC PA 平面⊥,32,2===BC AC AB ,N M ,分别为AB BC ,中点。

2017年全国卷文数(新课标1)立体几何

2017年全国卷文数(新课标1)立体几何

2017年全国卷文数(新课标1)立体几何6.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是A. B.C. D.【答案】A【解析】【分析】本题考查空间中线面平行的判定定理,利用三角形中位线定理是解决本题的关键,注意解题方法的积累,属于中档题.利用线面平行判定定理可知B、C、D均不满足题意,从而可得答案.【解答】解:对于选项B,由于,结合线面平行判定定理可知B不满足题意;对于选项C,由于,结合线面平行判定定理可知C不满足题意;对于选项D,由于,结合线面平行判定定理可知D不满足题意;所以选项A满足题意,故选A.16.已知三棱锥的所有顶点都在球O的球面上,SC是球O的直径若平面平面SCB,,,三棱锥的体积为9,则球O的表面积为______.【答案】【解析】解:三棱锥的所有顶点都在球O的球面上,SC是球O的直径,若平面平面SCB,,,三棱锥的体积为9,可知三角形SBC与三角形SAC都是等腰直角三角形,设球的半径为r,可得,解得.球O的表面积为:.故答案为:.判断三棱锥的形状,利用几何体的体积,求解球的半径,然后求解球的表面积.本题考查球的內接体,三棱锥的体积以及球的表面积的求法,考查空间想象能力以及计算能力.18.如图,在四棱锥中,,且.证明:平面平面PAD;若,,且四棱锥的体积为,求该四棱锥的侧面积.【答案】证明:在四棱锥中,,,,又,,,平面PAD,平面PAB,平面平面PAD.解:设,取AD中点O,连结PO,,,平面平面PAD,底面ABCD,且,,四棱锥的体积为,由平面PAD,得,四边形,解得,,,,,该四棱锥的侧面积:侧.【解析】推导出,,从而,进而平面PAD,由此能证明平面平面PAD.设,取AD中点O,连结PO,则底面ABCD,且,,由四棱锥的体积为,求出,由此能求出该四棱锥的侧面积.本题考查面面垂直的证明,考查四棱锥的侧面积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.。

2011—2017高考全国卷Ⅰ文科数学立体几何汇编

2011—2017高考全国卷Ⅰ文科数学立体几何汇编

新课标全国卷Ⅰ文科数学汇编立 体 几 何一、选择题【2017,6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( )【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17πB . 18πC . 20πD . 28π【2016,11】平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,α平面ABCD m =, α平面11ABB A n =,则,m n 所成角的正弦值为( )A B .2 C . D .13 【2015,6】《九章算术》是我国古代内容极为丰富的数学名着,书 中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( )A .14斛B .22斛C .36斛D .66斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( ) BA .1B .2C .4D .8【2015,11】 【2014,8】【2013,11】 【2012,7】【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱【2013,11】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A .6B .9C .12D .15 【2012,8】平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为,则此球的体积为( )A B . C . D .【2011,8】在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )二、填空题【2017,16】已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA SCB ⊥平面,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O的表面积为_______.【2013,15】已知H是球O的直径AB上一点,AH∶HB=1∶2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为______.【2011,16】已知两个圆锥由公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.三、解答题【2017,18】如图,在四棱锥P ABCD-中,AB∥CD,且90BAP CDP∠=∠=︒.(1)证明:平面PAB⊥平面PAD;(2)若P A P D A B D C===,90APD∠=︒,且四棱锥P ABCD-的体积为83,求该四棱锥的侧面积.【2016,18】如图所示,已知正三棱锥P ABC-的侧面是直角三角形,6PA=,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E.连结PE 并延长交AB于点G.(1)求证:G是AB的中点;(2)在题图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.【2015,18】如图四边形ABCD为菱形,G为AC与BD交点,BE⊥平面ABCD,(Ⅰ)证明:平面AEC⊥平面BED;(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E- ACD【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.(1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高.【2013,19】如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若AB =CB =2,A 1C ,求三棱柱ABC -A 1B 1C 1的体积.【2012,19】如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,90ACB ∠=︒,AC=BC=21AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC ; (2)平面BDC 1【2011,18】如图所示,四棱锥P ABCD -中,底面ABCD 60DAB ∠=,2AB AD =, PD ⊥底面ABCD .(1)证明:PA BD ⊥;(2)若1PD AD ==,求棱锥D PBC -的高.A 1解 析一、选择题【2017,6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( )【解法】选A .由B ,AB ∥MQ ,则直线AB ∥平面MNQ ;由C ,AB ∥MQ ,则直线AB ∥平面MNQ ;由D ,AB ∥NQ ,则直线AB ∥平面MNQ .故A 不满足,选A .【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( ). A .17π B . 18π C . 20π D . 28π解析:选A . 由三视图可知,该几何体是一个球截去球的18,设球的半径为R ,则37428ππ833R ⨯=,解得2R =.该几何体的表面积等于球的表面积的78,加上3个截面的面积,每个截面是圆面的14, 所以该几何体的表面积为22714π23π284S =⨯⨯+⨯⨯⨯14π3π17π=+=.故选A .【2016,11】平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,α平面ABCD m =,α平面11ABB A n =,则,m n 所成角的正弦值为( )A B . C . D .13解析:选A . 解法一:将图形延伸出去,构造一个正方体,如图所示.通过寻找线线平行构造出平面α,即平面AEF ,即研究AE 与AF 所成角的正弦值,易知3EAF π∠=.故选A . 解法二(原理同解法一):过平面外一点A 作平面α,并使α∥平面11CB D ,不妨将点A 变换成B ,作β使之满足同等条件,在这样的情况下容易得到β,即为平面1A BD ,如图所示,即研究1A B 与BD 所成角的正弦值,易知13A BD π∠=,所以其正弦值为A . 【2015,6】《九章算术》是我国古代内容极为丰富的数学名着,书 中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) BA .14斛B .22斛C .36斛D .66斛解:设圆锥底面半径为r ,依题11623843r r ⨯⨯=⇒=,所以米堆的体积为211163203()54339⨯⨯⨯⨯=,故堆放的米约为3209÷1.62≈22,故选B . 【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( ) BA .1B .2C .4D .8解:该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r,其表面积为2πr2+πr×2r+πr2+2r×2r=5πr2+4r2=16+20π,解得r=2,故选B.【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,则这个几何体是( )BA.三棱锥B.三棱柱C.四棱锥D.四棱柱解:几何体是一个横放着的三棱柱.故选B【2013,11】某几何体的三视图如图所示,则该几何体的体积为().A.16+8π B.8+8π C.16+16π D.8+16π解析:选A.该几何体为一个半圆柱与一个长方体组成的一个组合体.V半圆柱=12π×22×4=8π,V长方体=4×2×2=16.所以所求体积为16+8π.故选A.【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.15三棱锥A-BCD,底面△BCD底边为6,高为3侧面ABD⊥底面BCD,AO⊥底面BCD,因此此几何体的体积为11(63)3932V=⨯⨯⨯⨯=,故选择B.【2012,8】8.平面α截球O的球面所得圆的半径为1,球心O到平面α的,则此球的体积为()AB .C .D .【解析】如图所示,由已知11O A =,1OO =在1Rt OO A ∆中,球的半径R OA ==所以此球的体积343V R π==,故选择B .【点评】本题主要考察球面的性质及球的体积的计算.【2011,8】在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )【解析】由几何体的正视图和侧视图可知,该几何体的底面为半圆和等腰三角形,其侧视图可以是一个由等腰三角形及底边上的高构成的平面图形. 故选D .二、填空题【2017,16】已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA SCB ⊥平面,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为_______.【解析】取SC 的中点O ,连接,O A O B ,因为,S A A C SB BC ==,所以,O A S C O B S C ⊥⊥, 因为平面S A C ⊥平面S B C ,所以OA ⊥平面S B C ,设O Ar =,3111123323A SBC SBC V S OA r r r r -∆=⨯⨯=⨯⨯⨯⨯=,所以31933r r =⇒=, 所以球的表面积为2436r ππ=.【2013,15】已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______. 答案:9π2解析:如图,设球O 的半径为R ,则AH =23R ,OH =3R.又∵π·EH 2=π,∴EH =1.∵在Rt △OEH 中,R 2=22+13R ⎛⎫ ⎪⎝⎭,∴R 2=98. ∴S 球=4πR 2=9π2. 【2011,16】已知两个圆锥由公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 . 【解析】设圆锥底面半径为r ,球的半径为R ,则由223π4π16r R =⨯,知2234r R =. 根据球的截面的性质可知两圆锥的高必过球心O ,且两圆锥的顶点以及圆锥与球的交点是球的大圆上的点,因此PB QB ⊥. 设PO x '=,QO y '=,则2x y R +=. ✍ 又PO B BO Q ''△∽△,知22r O B xy '==. 即2234xy r R ==. ✍ 由✍✍及x y >可得3,22R x R y ==. 则这两个圆锥中,体积较小者的高与体积较大者的高的比为13. 故答案为13. 三、解答题【2017,18】如图,在四棱锥P ABCD -中,AB ∥CD ,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若P A P D A B D C ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积. 【解法】(1)90BAP CDP ∠=∠=︒, ∴,A B A P C DD P⊥⊥ 又AB ∥CD ∴A B D P⊥又AP ⊂平面PAD ,DP ⊂平面PAD ,且A P D P P = ∴AB ⊥平面PADAB ⊂平面PAB ,所以 平面PAB ⊥平面PAD(2)由题意:设=PA PD AB DC a === ,因为90APD ∠=︒ ,所以PAD ∆为等腰直角三角形即AD取AD 中点E ,连接PE ,则2PE a =,PE AD ⊥. 又因为平面PAB ⊥平面PAD 所以PE ⊥平面ABCD因为AB ⊥平面PAD ,AB ∥CD 所以AB ⊥AD ,CD ⊥AD 又=AB DC a =所以四边形ABCD 为矩形所以311218233233P ABCD V AB AD PE a a a a -====即2a =【2016,18】如图所示,已知正三棱锥P ABC -的侧面是直角三角形,6PA =,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E .连结PE 并延长交AB 于点G .(1)求证:G 是AB 的中点;(2)在题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.解析 :(1)由题意可得ABC △为正三角形,故6PA PB PC ===. 因为P 在平面ABC 内的正投影为点D ,故PD ⊥平面ABC . 又AB ⊂平面ABC ,所以AB PD ⊥.因为D 在平面PAB 内的正投影为点E ,故DE ⊥平面PAB . 又AB ⊂平面PAB ,所以AB DE ⊥.因为AB PD ⊥,AB DE ⊥,PD DE D =,,PD DE ⊂平面PDG , 所以AB ⊥平面PDG .又PG ⊂平面PDG ,所以AB PG ⊥. 因为PA PB =,所以G 是AB 的中点.(2)过E 作EF BP ∥交PA 于F ,则F 即为所要寻找的正投影. 理由如下,因为PB PA ⊥,PB EF ∥,故EF PA ⊥.同理EF PC ⊥, 又PA PC P =,,PA PC ⊂平面PAC ,所以EF ⊥平面PAC , 故F 即为点E 在平面PAC 内的正投影. 所以13D PEF PEF V S DE -=⋅△16PF EF DE =⋅⋅.在PDG △中,PG =DG =PD =2DE =.由勾股定理知PE =,由PEF △为等腰直角三角形知2PF EF ==,故43D PEF V -=. 【2015,18】如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ⊥平面ABCD ,(Ⅰ)证明:平面AEC ⊥平面BED ;(Ⅱ)若∠ABC =120°,AE ⊥EC , 三棱锥E - ACD的体积为3解:(Ⅰ) ∵BE ⊥平面ABCD ,∴BE ⊥AC . ∵ABCD 为菱形,∴ BD ⊥AC ,∴AC ⊥平面BED ,又AC ?平面AEC ,∴平面AEC ⊥平面BED . …6分(Ⅱ)设AB=x ,在菱形ABCD 中,由∠ABC =120°可得,x ,GB=GD=2x. 在RtΔAEC 中,可得EG =x .∴在RtΔEBG 为直角三角形,可得x . …9分∴31132E ACD V AC GD BE -=⨯⋅⋅==, 解得x =2.由BA=BD=BC 可得.∴ΔAEC 的面积为3,ΔEAD 的面积与ΔECD所以三棱锥E-ACD 的侧面积为 …12分 18. 解析 (1)因为BE ⊥平面ABCD ,所以BE AC ⊥. 又ABCD 为菱形,所以AC BD ⊥.又因为BD BE B =,BD ,BE ⊂平面BED ,所以AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED . (2)在菱形ABCD 中,取2AB BC CD AD x ====,又120ABC ∠=,所以AG GC ==,BG GD x ==.在AEC △中,90AEC ∠=,所以12EG AC ==,所以在Rt EBG △中,BE =,所以31122sin12023233E ACD V x x x x -=⨯⨯⋅⋅⋅==,解得1x =. 在Rt EBA △,Rt EBC △,Rt EBD △中,可得AE EC ED ===所以三棱锥的侧面积1122322S =⨯⨯=+侧【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11. (1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高.证明:(Ⅰ)连接 BC1,则O 为B 1C 与BC 1的交点,∵AO ⊥平面BB 1C 1C . ∴AO ⊥B 1C , …2分 因为侧面BB 1C 1C 为菱形,∴BC 1⊥B 1C ,…4分 ∴BC 1⊥平面ABC 1,∵AB ?平面ABC 1,故B 1C ⊥AB . …6分(Ⅱ)作OD ⊥BC ,垂足为D ,连结AD ,∵AO ⊥BC ,∴BC ⊥平面AOD , 又BC ?平面ABC ,∴平面ABC ⊥平面AOD ,交线为AD ,作OH ⊥AD ,垂足为H ,∴OH ⊥平面ABC . …9分∵∠CBB 1=60°,所以ΔCBB 1为等边三角形,又BC =1,可得OD由于AC ⊥AB 1,∴11122OA B C ==,∴4AD ==,由 OH·AD=OD·OA ,可得OH=14,又O 为B 1C 的中点,所以点B 1到平面ABC 的距离为7,所以三棱柱ABC-A 1B 1C 1的高高为7。

2017年高考数学试题分项版—立体几何(解析版)

2017年高考数学试题分项版—立体几何(解析版)

2017年高考数学试题分项版—立体几何(解析版)一、选择题1.(2017·全国Ⅰ文,6)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()1.【答案】A【解析】A项,作如图①所示的辅助线,其中D为BC的中点,则QD∥AB.∵QD∩平面MNQ=Q,∴QD与平面MNQ相交,∴直线AB与平面MNQ相交;B项,作如图②所示的辅助线,则AB∥CD,CD∥MQ,∴AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,∴AB∥平面MNQ;C项,作如图③所示的辅助线,则AB∥CD,CD∥MQ,∴AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,∴AB∥平面MNQ;D项,作如图④所示的辅助线,则AB∥CD,CD∥NQ,∴AB∥NQ,又AB ⊄平面MNQ ,NQ ⊂平面MNQ ,∴AB ∥平面MNQ .故选A.2.(2017·全国Ⅱ文,6)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π2.【答案】B【解析】方法一 (割补法)如图所示,由几何体的三视图,可知该几何体是一个圆柱被截去上面虚线部分所得.将圆柱补全,并将圆柱体从点A 处水平分成上下两部分.由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V =π×32×4+π×32×6×12=63π.故选B.方法二 (估值法)由题意,知12V 圆柱<V 几何体<V 圆柱. 又V 圆柱=π×32×10=90π,∴45π<V 几何体<90π.观察选项可知只有63π符合.故选B.3.(2017·全国Ⅲ文,9)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C .π2D .π43.【答案】B【解析】设圆柱的底面半径为r ,球的半径为R ,且R =1,由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.∴r = 1-⎝⎛⎭⎫122=32.∴圆柱的体积为V =πr 2h =34π×1=3π4. 故选B.4.(2017·全国Ⅲ文,10)在正方体ABCDA 1B 1C 1D 1中,E 为棱CD 的中点,则( )A .A 1E ⊥DC 1B .A 1E ⊥BDC .A 1E ⊥BC 1D .A 1E ⊥AC4.【答案】C【解析】方法一 如图,∵A 1E 在平面ABCD 上的投影为AE ,而AE 不与AC ,BD 垂直,∴B ,D 错;∵A 1E 在平面BCC 1B 1上的投影为B 1C ,且B 1C ⊥BC 1,∴A 1E ⊥BC 1,故C 正确;(证明:由条件易知,BC 1⊥B 1C ,BC 1⊥CE ,又CE ∩B 1C =C ,∴BC 1⊥平面CEA 1B 1. 又A 1E ⊂平面CEA 1B 1,∴A 1E ⊥BC 1)∵A 1E 在平面DCC 1D 1上的投影为D 1E ,而D 1E 不与DC 1垂直,故A 错.故选C.方法二 (空间向量法)建立如图所示的空间直角坐标系,设正方体的棱长为1,则A (1,0,0),B (1,1,0),C (0,1,0),D (0,0,0),A 1(1,0,1),C 1(0,1,1),E ⎝⎛⎭⎫0,12,0,∴A 1E →=⎝⎛⎭⎫-1,12,-1,DC 1→=(0,1,1),BD →=(-1,-1,0),BC 1→=(-1,0,1),AC →=(-1,1,0),∴A 1E →·DC 1→≠0,A 1E →·BD →≠0,A 1E →·BC 1→=0,A 1E →·AC →≠0,∴A 1E ⊥BC 1.故选C.5.(2017·北京文,6)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A .60B .30C .20D .105.【答案】D【解析】由三视图画出如图所示的三棱锥P -ACD ,过点P 作PB ⊥平面ACD 于点B ,连接BA ,BD ,BC ,根据三视图可知,底面ABCD 是矩形,AD =5,CD =3,PB =4,所以V 三棱锥P ACD =13×12×3×5×4=10. 故选D.6.(2017·浙江,3)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A .π2+1 B .π2+3 C .3π2+1 D .3π2+3 6.【答案】A【解析】由几何体的三视图可知,该几何体是一个底面半径为1,高为3的圆锥的一半与一个底面为直角边长是2的等腰直角三角形,高为3的三棱锥的组合体,∴该几何体体积为V =13×12π×12×3+13×12×2×2×3=π2+1. 故选A.7.(2017·浙江,9)如图,已知正四面体DABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP =PB ,BQ QC =CR RA=2,分别记二面角DPRQ ,DPQR ,DQRP 的平面角为α,β,γ,则( )A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α7.【答案】B【解析】如图①,作出点D 在底面ABC 上的射影O ,过点O 分别作PR ,PQ ,QR 的垂线OE ,OF ,OG ,连接DE ,DF ,DG ,则α=∠DEO ,β=∠DFO ,γ=∠DGO .由图可知它们的对边都是DO ,∴只需比较EO ,FO ,GO 的大小即可.如图②,在AB 边上取点P ′,使AP ′=2P ′B ,连接OQ ,OR ,则O 为△QRP ′的中心. 设点O 到△QRP ′三边的距离为a ,则OG =a ,OF =OQ ·sin ∠OQF <OQ ·sin ∠OQP ′=a ,OE =OR ·sin ∠ORE >OR ·sin ∠ORP ′=a ,∴OF <OG <OE ,∴OD tan β<OD tan γ<OD tan α, ∴α<γ<β.故选B.8.(2017·全国Ⅰ理,7)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .168.【答案】B【解析】观察三视图可知,该多面体是由直三棱柱和三棱锥组合而成的,且直三棱柱的底面是直角边长为2的等腰直角三角形,侧棱长为2.三棱锥的底面是直角边长为2的等腰直角三角形,高为2,如图所示.因此该多面体各个面中有两个梯形,且这两个梯形全等,梯形的上底长为2,下底长为4,高为2,故这两个梯形的面积之和为2×12×(2+4)×2=12.故选B.9.(2017·全国Ⅱ理,4)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π9.【答案】B【解析】方法一 (割补法)由几何体的三视图可知,该几何体是一个圆柱截去上面虚线部分所得,如图所示.将圆柱补全,并将圆柱从点A 处水平分成上下两部分.由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V =π×32×4+π×32×6×12=63π.故选B.方法二 (估值法)由题意知,12V 圆柱<V 几何体<V 圆柱,又V 圆柱=π×32×10=90π,∴45π<V 几何体<90π.观察选项可知只有63π符合.故选B.10.(2017·全国Ⅱ理,10)已知直三棱柱ABCA 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( ) A.32 B.155 C.105 D.3310.【答案】C【解析】方法一 将直三棱柱ABC -A 1B 1C 1补形为直四棱柱ABCD -A 1B 1C 1D 1,如图①所示,连接AD 1,B 1D 1,BD .由题意知∠ABC =120°,AB =2,BC =CC 1=1, 所以AD 1=BC 1=2,AB 1=5,∠DAB =60°.在△ABD 中,由余弦定理知BD 2=22+12-2×2×1×cos 60°=3,所以BD =3,所以B 1D 1= 3. 又AB 1与AD 1所成的角即为AB 1与BC 1所成的角θ,所以cos θ=AB 21+AD 21-B 1D 212×AB 1×AD 1=5+2-32×5×2=105. 故选C.方法二 以B 1为坐标原点,B 1C 1所在的直线为x 轴,垂直于B 1C 1的直线为y 轴,BB 1所在的直线为z 轴建立空间直角坐标系,如图②所示.由已知条件知B 1(0,0,0),B (0,0,1),C 1(1,0,0),A (-1,3,1),则BC 1→=(1,0,-1),AB 1→=(1,-3,-1).所以cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→||BC 1→|=25×2=105. 所以异面直线AB 1与BC 1所成的角的余弦值为105. 故选C.11.(2017·全国Ⅲ理,8)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A .πB.3π4C.π2D.π4 11.【答案】B【解析】设圆柱的底面半径为r ,球的半径为R ,且R =1,由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.∴r =12-⎝⎛⎭⎫122=32.∴圆柱的体积为V =πr 2h =π×⎝⎛⎭⎫322×1=3π4. 故选B.12.(2017·北京理,7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A .3 2B .2 3C .2 2D .212.【答案】B 【解析】在正方体中还原该四棱锥,如图所示,可知SD 为该四棱锥的最长棱.由三视图可知正方体的棱长为2,故SD =22+22+22=2 3.故选B.二、填空题1.(2017·全国Ⅰ文,16)已知三棱锥SABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥SABC 的体积为9,则球O 的表面积为________.1.【答案】36π【解析】如图,连接OA ,OB .由SA =AC ,SB =BC ,SC 为球O 的直径知,OA ⊥SC ,OB ⊥SC .由平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,OA ⊥SC 知,OA ⊥平面SCB . 设球O 的半径为r ,则OA =OB =r ,SC =2r ,∴三棱锥S -ABC 的体积V =13×(12SC ·OB )·OA =r 33, 即r 33=9,∴r =3,∴S 球表=4πr 2=36π. 2.(2017·全国Ⅱ文,15)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为________.2.【答案】14π【解析】∵长方体的顶点都在球O 的球面上,∴长方体的体对角线的长度就是其外接球的直径.设球的半径为R ,则2R =32+22+12=14.∴球O 的表面积为S =4πR 2=4π×⎝⎛⎭⎫1422=14π. 3.(2017·天津文,11)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.3.【答案】9π2【解析】设正方体的棱长为a ,则6a 2=18,∴a = 3.设球的半径为R ,则由题意知2R =a 2+a 2+a 2=3,∴R =32. 故球的体积V =43πR 3=43π×⎝⎛⎭⎫323=9π2. 4.(2017·山东文,13)由一个长方体和两个14圆柱构成的几何体的三视图如图,则该几何体的体积为________.4.【答案】2+π2【解析】该几何体由一个长、宽、高分别为2,1,1的长方体和两个半径为1,高为1的14圆柱体构成,∴V =2×1×1+2×14×π×12×1=2+π2. 5.(2017·浙江,11)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S 6,S 6=________. 5.【答案】332【解析】作出单位圆的内接正六边形,如图,则OA =OB =AB =1,S 6=6S △OAB =6×12×1×32=332.6.(2017·江苏,6)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.6.【答案】32【解析】设球O 的半径为R ,∵球O 与圆柱O 1O 2的上、下底面及母线均相切, ∴圆柱O 1O 2的高为2R ,底面半径为R . ∴V 1V 2=πR 2·2R 43πR 3=32. 7.(2017·全国Ⅰ理,16)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为________.7.【答案】415【解析】如图,连接OD ,交BC 于点G ,由题意知,OD ⊥BC ,OG =36BC . 设OG =x ,x ∈⎝⎛⎭⎫0,52, 则BC =23x ,DG =5-x , 三棱锥的高h =DG 2-OG 2 =25-10x +x 2-x 2=25-10x ,S △ABC =12×23x ×3x =33x 2,则三棱锥的体积V =13S △ABC ·h =3x 2·25-10x =3·25x 4-10x 5.令f (x )=25x 4-10x 5,x ∈⎝⎛⎭⎫0,52,则f ′(x )=100x 3-50x 4. 令f ′(x )=0,得x =2.当x ∈(0,2)时,f ′(x )>0,f (x )单调递增,当x ∈⎝⎛⎭⎫2,52时,f ′(x )<0,f (x )单调递减,故当x =2时,f (x )取得最大值80,则V ≤3×80=415. 所以三棱锥体积的最大值为415 cm 3.8.(2017·全国Ⅲ理,16)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号) 8.【答案】②③【解析】依题意建立如图所示的空间直角坐标系,设等腰直角三角形ABC 的直角边长为1.由题意知,点B 在平面xOy 中形成的轨迹是以C 为圆心,1为半径的圆.设直线a 的方向向量为a =(0,1,0),直线b 的方向向量为b =(1,0,0),CB →以Ox 轴为始边沿逆时针方向旋转的旋转角为θ,θ∈[)0,2π,则B (cos θ,sin θ,0), ∴AB →=(cos θ,sin θ,-1),|AB →|= 2. 设直线AB 与a 所成的夹角为α, 则cos α=|AB →·a ||a ||AB →|=22|sin θ|∈⎣⎡⎦⎤0,22,∴45°≤α≤90°,∴③正确,④错误; 设直线AB 与b 所成的夹角为β, 则cos β=|AB →·b ||b ||AB →|=22|cos θ|.当直线AB 与a 的夹角为60°,即α=60°时, 则|sin θ|=2cos α=2cos 60°=22, ∴|cos θ|=22,∴cos β=22|cos θ|=12. ∵45°≤β≤90°,∴β=60°,即直线AB 与b 的夹角为60°. ∴②正确,①错误.9.(2017·天津理,10)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________. 9.【答案】92π【解析】设正方体棱长为a ,则6a 2=18,∴a = 3.设球的半径为R ,则由题意知2R =a 2+a 2+a 2=3,∴R =32.故球的体积V =43πR 3=43π×⎝⎛⎭⎫323=92π.10.(2017·山东理,13)由一个长方体和两个14圆柱体构成的几何体的三视图如下,则该几何体的体积为________.10.【答案】2+π2【解析】该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的四分之一圆柱体构成,∴V =2×1×1+2×14×π×12×1=2+π2.三、解答题1.(2017·全国Ⅰ文,18)如图,在四棱锥P ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,且四棱锥P ABCD 的体积为83,求该四棱锥的侧面积.1.(1)证明 由已知∠BAP =∠CDP =90°, 得AB ⊥P A ,CD ⊥PD .由于AB ∥CD ,故AB ⊥PD ,从而AB ⊥平面P AD . 又AB ⊂平面P AB , 所以平面P AB ⊥平面P AD .(2)解 如图,在平面P AD 内作PE ⊥AD ,垂足为E .由(1)知,AB ⊥平面P AD ,故AB ⊥PE ,AB ⊥AD , 所以PE ⊥平面ABCD .设AB =x ,则由已知可得AD =2x ,PE =22x , 故四棱锥P ABCD 的体积V P ABCD =13AB ·AD ·PE =13x 3.由题设得13x 3=83,故x =2.从而结合已知可得P A =PD =AB =DC =2,AD =BC =22,PB =PC =22, 可得四棱锥P ABCD 的侧面积为12P A ·PD +12P A ·AB +12PD ·DC +12BC 2sin 60°=6+2 3. 2.(2017·全国Ⅱ文,18)如图,四棱锥P ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面P AD ;(2)若△PCD 的面积为27,求四棱锥P ABCD 的体积.2.(1)证明 在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD . 又BC ⊄平面P AD ,AD ⊂平面P AD , 故BC ∥平面P AD .(2)解 如图,取AD 的中点M ,连接PM ,CM .由AB =BC =12AD 及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面P AD 为等边三角形且垂直于底面ABCD ,平面P AD ∩平面ABCD =AD ,所以PM ⊥AD ,PM ⊥底面ABCD .因为CM ⊂底面ABCD ,所以PM ⊥CM . 设BC =x ,则CM =x ,CD =2x ,PM =3x ,PC =PD =2x . 取CD 的中点N ,连接PN ,则PN ⊥CD , 所以PN =142x . 因为△PCD 的面积为27, 所以12×2x ×142x =27,解得x =-2(舍去)或x =2.于是AB =BC =2,AD =4,PM =2 3.所以四棱锥P ABCD 的体积V =13×2(2+4)2×23=4 3.3.(2017·全国Ⅲ文,19)如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.3.(1)证明 如图,取AC 的中点O ,连接DO ,BO . 因为AD =CD ,所以AC ⊥DO . 又由于△ABC 是正三角形, 所以AC ⊥BO . 又DO ∩OB =O ,所以AC ⊥平面DOB ,故AC ⊥BD . (2)解 连接EO .由(1)及题设知∠ADC =90°,所以DO =AO . 在Rt △AOB 中,BO 2+AO 2=AB 2.又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°. 由题设知△AEC 为直角三角形,所以EO =12AC .又△ABC 是正三角形,且AB =BD ,所以EO =12BD .故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1∶1.4.(2017·北京文,18)如图,在三棱锥P -ABC 中,P A ⊥AB ,P A ⊥BC ,AB ⊥BC ,P A =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:P A ⊥BD ;(2)求证:平面BDE ⊥平面P AC ;(3)当P A ∥平面BDE 时,求三棱锥E -BCD 的体积. 4.(1)证明 因为P A ⊥AB ,P A ⊥BC ,AB ∩BC =B , 所以P A ⊥平面ABC .又因为BD ⊂平面ABC ,所以P A ⊥BD .(2)证明 因为AB =BC ,D 是AC 的中点,所以BD ⊥AC . 由(1)知,P A ⊥BD , 又P A ∩AC =A , 所以BD ⊥平面P AC . 所以平面BDE ⊥平面P AC .(3)解 因为P A ∥平面BDE ,平面P AC ∩平面BDE =DE ,所以P A ∥DE . 因为D 为AC 的中点,所以DE =12P A =1,BD =DC = 2.由(1)知,P A ⊥平面ABC ,所以DE ⊥平面ABC , 所以三棱锥E -BCD 的体积V =16BD ·DC ·DE =13.5.(2017·天津文,17)如图,在四棱锥P ABCD 中,AD ⊥平面PDC ,AD ∥BC ,PD ⊥PB ,AD =1,BC =3,CD =4,PD =2.(1)求异面直线AP 与BC 所成角的余弦值; (2)求证:PD ⊥平面PBC ;(3)求直线AB 与平面PBC 所成角的正弦值.5.(1)解 由已知AD ∥BC ,故∠DAP 或其补角即为异面直线AP 与BC 所成的角. 因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD . 在Rt △PDA 中,由已知,得AP =AD 2+PD 2=5, 故cos ∠DAP =AD AP =55.所以异面直线AP 与BC 所成角的余弦值为55. (2)证明 由(1)知AD ⊥PD . 又因为BC ∥AD ,所以PD ⊥BC .又PD ⊥PB ,PB ∩BC =B ,所以PD ⊥平面PBC .(3)解 如图,过点D 作DF ∥AB ,交BC 于点F ,连接PF ,则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角.因为PD ⊥平面PBC ,所以PF 为DF 在平面PBC 上的射影,所以∠DFP 为直线DF 和平面PBC 所成的角.由于AD ∥BC ,DF ∥AB ,故BF =AD =1. 由已知,得CF =BC -BF =2. 又AD ⊥DC ,所以BC ⊥DC .在Rt △DCF 中,可得DF =CD 2+CF 2=25, 在Rt △DPF 中,可得sin ∠DFP =PD DF =55.所以直线AB 与平面PBC 所成角的正弦值为55. 6.(2017·山东文,18)由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1-B 1CD 1后得到的几何体如图所示.四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD .(1)证明:A 1O ∥平面B 1CD 1;(2)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1. 6.证明 (1)取B 1D 1的中点O 1,连接CO 1,A 1O 1, 由于ABCD -A 1B 1C 1D 1是四棱柱, 所以A 1O 1∥OC ,A 1O 1=OC ,因此四边形A 1OCO 1为平行四边形,所以A 1O ∥O 1C . 又O 1C ⊂平面B 1CD 1,A 1O ⊄平面B 1CD 1, 所以A 1O ∥平面B 1CD 1.(2)因为AC ⊥BD ,E ,M 分别为AD 和OD 的中点, 所以EM ⊥BD .又A 1E ⊥平面ABCD ,BD ⊂平面ABCD , 所以A 1E ⊥BD .因为B 1D 1∥BD ,所以EM ⊥B 1D 1,A 1E ⊥B 1D 1. 又A 1E ,EM ⊂平面A 1EM ,A 1E ∩EM =E ,所以B 1D 1⊥平面A 1EM . 又B 1D 1⊂平面B 1CD 1, 所以平面A 1EM ⊥平面B 1CD 1.7.(2017·浙江,19)如图,已知四棱锥P ABCD ,△P AD 是以AD 为斜边的等腰直角三角形,BC ∥AD ,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点.(1)证明:CE ∥平面P AB ;(2)求直线CE 与平面PBC 所成角的正弦值. 7.(1)证明 如图,设P A 中点为F ,连接EF ,FB .因为E ,F 分别为PD ,P A 中点, 所以EF ∥AD 且EF =12AD ,又因为BC ∥AD ,BC =12AD ,所以EF ∥BC 且EF =BC ,所以四边形BCEF 为平行四边形,所以CE ∥BF . 因为BF ⊂平面P AB ,CE ⊄平面P AB , 因此CE ∥平面P AB .(2)解 分别取BC ,AD 的中点为M ,N , 连接PN 交EF 于点Q ,连接MQ .因为E ,F ,N 分别是PD ,P A ,AD 的中点, 所以Q 为EF 中点,在平行四边形BCEF 中,MQ ∥CE . 由△P AD 为等腰直角三角形得PN ⊥AD .由DC ⊥AD ,BC ∥AD ,BC =12AD ,N 是AD 的中点得BN ⊥AD .所以AD ⊥平面PBN .由BC ∥AD 得BC ⊥平面PBN , 那么平面PBC ⊥平面PBN .过点Q 作PB 的垂线,垂足为H ,连接MH .MH 是MQ 在平面PBC 上的射影,所以∠QMH 是直线CE 与平面PBC 所成的角. 设CD =1.在△PCD 中,由PC =2,CD =1,PD =2得CE =2, 在△PBN 中,由PN =BN =1,PB =3得QH =14,在Rt △MQH 中,QH =14,MQ =2,所以sin ∠QMH =28, 所以直线CE 与平面PBC 所成角的正弦值是28. 8.(2017·江苏,15)如图,在三棱锥ABCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .8.证明 (1)在平面ABD 内,因为AB ⊥AD ,EF ⊥AD , 则AB ∥EF .又因为EF ⊄平面ABC ,AB ⊂平面ABC , 所以EF ∥平面ABC .(2)因为平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,BC ⊂平面BCD ,BC ⊥BD , 所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC ∩AB =B ,AB ⊂平面ABC ,BC ⊂平面ABC , 所以AD ⊥平面ABC .又因为AC ⊂平面ABC ,所以AD ⊥AC .9.(2017·江苏,18)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32 cm ,容器Ⅰ的底面对角线AC 的长为107 cm ,容器Ⅱ的两底面对角线EG ,E 1G 1的长分别为14 cm 和62 cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12 cm.现有一根玻璃棒l ,其长度为40 cm.(容器厚度、玻璃棒粗细均忽略不计).(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱CC 1上,求l 没入水中部分的长度;(2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱GG 1上,求l 没入水中部分的长度. 9.解 (1)由正棱柱的定义,CC 1⊥平面ABCD ,所以平面A 1ACC 1⊥平面ABCD ,CC 1⊥AC ,如图①,记玻璃棒的另一端落在CC 1上点M 处.①因为AC =107,AM =40,所以MC =402-1072=30,从而sin ∠MAC =34. 记AM 与水面的交点为P 1,过P 1作P 1Q 1⊥AC ,Q 1为垂足,则P 1Q 1⊥平面ABCD ,故P 1Q 1=12,从而AP 1=P 1Q 1sin ∠MAC=16. 答 玻璃棒l 没入水中的部分的长度为16 cm.(如果将“没入水中部分”理解为“水面以上部分”,则结果为24 cm)(2)如图②,O ,O 1是正棱台的两底面中心.②由正棱台的定义,OO 1⊥平面EFGH ,所以平面E 1EGG 1⊥平面EFGH ,O 1O ⊥EG .同理,平面E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O ⊥E 1G 1.记玻璃棒的另一端落在GG 1上点N 处.过G 作GK ⊥E 1G 1,K 为垂足,则GK =OO 1=32.因为EG =14,E 1G 1=62,所以KG 1=62-142=24, 从而GG 1=KG 21+GK 2=242+322=40. 设∠EGG 1=α,∠ENG =β,则sin α=sin ⎝⎛⎭⎫π2+∠KGG 1=cos ∠KGG 1=45. 因为π2<α<π,所以cos α=-35. 在△ENG 中,由正弦定理可得40sin α=14sin β, 解得sin β=725. 因为0<β<π2,所以cos β=2425. 于是sin ∠NEG =sin(π-α-β)=sin(α+β)=sin αcos β+cos αsin β=45×2425+⎝⎛⎭⎫-35×725=35. 记EN 与水面的交点为P 2,过P 2作P 2Q 2⊥EG ,Q 2为垂足,则P 2Q 2⊥平面EFGH ,故P 2Q 2=12,从而EP 2=P 2Q 2sin ∠NEG=20. 答 玻璃棒l 没入水中部分的长度为20 cm.(如果将“没入水中部分”理解为“水面以上部分”,则结果为20 cm)10.(2017·江苏,22)如图,在平行六面体ABCDA 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1=3,∠BAD =120°.(1)求异面直线A 1B 与AC 1所成角的余弦值;(2)求二面角BA 1DA 的正弦值.10.解 在平面ABCD 内,过点A 作AE ⊥AD ,交BC 于点E .因为AA 1⊥平面ABCD ,所以AA 1⊥AE ,AA 1⊥AD .如图,以{AE →,AD →,AA 1→}为正交基底,建立空间直角坐标系Axyz .因为AB =AD =2,AA 1=3,∠BAD =120°,则A (0,0,0),B (3,-1,0),D (0,2,0),E (3,0,0),A 1(0,0,3),C 1(3,1,3). (1)A 1B →=(3,-1,-3),AC 1→=(3,1,3),则cos 〈A 1B →,AC 1→〉=A 1B →·AC 1→|A 1B →||AC 1→|=(3,-1,-3)·(3,1,3)7=-17, 因此异面直线A 1B 与AC 1所成角的余弦值为17. (2)平面A 1DA 的一个法向量为AE →=(3,0,0).设m =(x ,y ,z )为平面BA 1D 的一个法向量,又A 1B →=(3,-1,-3),BD →=(-3,3,0),则⎩⎪⎨⎪⎧ m ·A 1B →=0,m ·BD →=0,即⎩⎨⎧3x -y -3z =0,-3x +3y =0. 不妨取x =3,则y =3,z =2,所以m =(3,3,2)为平面BA 1D 的一个法向量,从而cos 〈AE →,m 〉=AE →·m |AE →||m |=(3,0,0)·(3,3,2)3×4=34. 设二面角BA 1DA 的大小为θ,则|cos θ|=34. 因为θ∈[0,π],所以sin θ=1-cos 2θ=74. 因此二面角BA 1DA 的正弦值为74. 11.(2017·全国Ⅰ理,18)如图,在四棱锥P ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,求二面角APBC 的余弦值.11.(1)证明 由已知∠BAP =∠CDP =90°,得AB ⊥AP ,CD ⊥PD ,因为AB ∥CD ,所以AB ⊥PD .又AP ∩DP =P ,所以AB ⊥平面P AD .因为AB ⊂平面P AB ,所以平面P AB ⊥平面P AD .(2)解 在平面P AD 内作PF ⊥AD ,垂足为点F .由(1)可知,AB ⊥平面P AD ,故AB ⊥PF ,可得PF ⊥平面ABCD .以点F 为坐标原点,的方向为x 轴正方向,||为单位长度建立如图所示的空间直角坐标系F -xyz .由(1)及已知可得A ⎝⎛⎭⎫22,0,0,P ⎝⎛⎭⎫0,0,22,B ⎝⎛⎭⎫22,1,0,C ⎝⎛⎭⎫-22,1,0, 所以=⎝⎛⎭⎫-22,1,-22,=(2,0,0),=⎝⎛⎭⎫22,0,-22,=(0,1,0). 设n =(x 1,y 1,z 1)是平面PCB 的一个法向量,则即⎩⎪⎨⎪⎧-22x 1+y 1-22z 1=0,2x 1=0.所以可取n =(0,-1,-2). 设m =(x 2,y 2,z 2)是平面P AB 的一个法向量,则 即⎩⎪⎨⎪⎧22x 2-22z 2=0,y 2=0.所以可取m =(1,0,1),则cos 〈n ,m 〉=n ·m |n ||m |=-23×2=-33. 所以二面角A -PB -C 的余弦值为-33. 12.(2017·全国Ⅱ理,19)如图,四棱锥P ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角MABD 的余弦值.12.(1)证明 取P A 的中点F ,连接EF ,BF .因为E 是PD 的中点,所以EF ∥AD ,EF =12AD . 由∠BAD =∠ABC =90°,得BC ∥AD ,又BC =12AD , 所以EF BC ,四边形BCEF 是平行四边形,CE ∥BF ,又BF ⊂平面P AB ,CE ⊄平面P AB ,故CE ∥平面P AB .(2)解 由已知得BA ⊥AD ,以A 为坐标原点,AB →的方向为x 轴正方向,|AB →|为单位长度,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (1,0,0),C (1,1,0),P (0,1,3),PC →=(1,0,-3),AB →=(1,0,0).设M (x ,y ,z )(0<x <1),则BM →=(x -1,y ,z ),PM →=(x ,y -1,z -3).因为BM 与底面ABCD 所成的角为45°,而n =(0,0,1)是底面ABCD 的法向量,所以|cos 〈BM →,n 〉|=sin 45°, |z |(x -1)2+y 2+z 2=22, 即(x -1)2+y 2-z 2=0.①又M 在棱PC 上,设PM →=λPC →,则x =λ,y =1,z =3-3λ.②由①②解得⎩⎨⎧x =1+22,y =1,z =-62(舍去)或⎩⎨⎧ x =1-22,y =1,z =62, 所以M ⎝⎛⎭⎫1-22,1,62,从而AM →=⎝⎛⎭⎫1-22,1,62. 设m =(x 0,y 0,z 0)是平面ABM 的法向量,则⎩⎪⎨⎪⎧ m ·AM →=0,m ·AB →=0,即⎩⎨⎧(2-2)x 0+2y 0+6z 0=0,x 0=0, 所以可取m =(0,-6,2).于是cos 〈m ,n 〉=m ·n |m ||n|=105. 所以二面角MABD 的余弦值为105.13.(2017·全国Ⅲ理,19)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角DAEC 的余弦值.13.(1)证明 由题设可得△ABD ≌△CBD .从而AD =CD ,又△ACD 为直角三角形,所以∠ADC =90°,取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO .又因为△ABC 是正三角形,故BO ⊥AC ,所以∠DOB 为二面角DACB 的平面角,在Rt △AOB 中,BO 2+OA 2=AB 2,又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°,所以平面ACD ⊥平面ABC .(2)解 由题设及(1)知,OA ,OB ,OD 两两垂直,以O 为坐标原点,OA →为x 轴正方向,OB →为y 轴正方向,OD →为z 轴正方向,|OA →|为单位长度,建立如图所示的空间直角坐标系O -xyz ,则O (0,0,0),A ()1,0,0,D ()0,0,1,B ()0,3,0,C (-1,0,0),由题设知,四面体ABCE的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得E ⎝⎛⎭⎫0,32,12,故AE →=⎝⎛⎭⎫-1,32,12,AD →=()-1,0,1,OA →=()1,0,0. 设平面AED 的法向量为n 1=(x 1,y 1,z 1),平面AEC 的法向量为n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧ AE →·n 1=0,AD →·n 1=0,即⎩⎪⎨⎪⎧-x 1+32y 1+12z 1=0,-x 1+z =0,令x 1=1,则n 1=(1,33,1). ⎩⎪⎨⎪⎧ AE →·n 2=0,OA →·n 2=0,即⎩⎪⎨⎪⎧-x 2+32y 2+12z 1=0,x 2=0,令y 2=-1,则n 2=(0,-1,3),设二面角DAEC 的平面角为θ,易知θ为锐角,则cos θ=|n 1·n 2||n 1||n 2|=77. 14.(2017·北京理,16)如图,在四棱锥P ABCD 中,底面ABCD 为正方形,平面P AD ⊥平面ABCD ,点M 在线段PB 上,PD ∥平面MAC ,P A =PD =6,AB =4.(1)求证:M 为PB 的中点;(2)求二面角BPDA 的大小;(3)求直线MC 与平面BDP 所成角的正弦值.14.(1)证明:设AC ,BD 交于点E ,连接ME ,如图.因为PD ∥平面MAC ,平面MAC ∩平面PDB =ME ,所以PD ∥ME .因为四边形ABCD 是正方形,所以E 为BD 的中点,所以M 为PB 的中点.(2)解:取AD 的中点O ,连接OP ,OE .因为P A =PD ,所以OP ⊥AD ,又因为平面P AD ⊥平面ABCD ,且OP ⊂平面P AD ,所以OP ⊥平面ABCD .因为OE ⊂平面ABCD ,所以OP ⊥OE .因为四边形ABCD 是正方形,所以OE ⊥AD ,如图,建立空间直角坐标系O -xyz ,则P (0,0,2),D (2,0,0),B (-2,4,0),BD →=(4,-4,0),PD →=(2,0,-2).设平面BDP 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·BD →=0,n ·PD →=0,即⎩⎨⎧4x -4y =0,2x -2z =0. 令x =1,则y =1,z = 2.于是n =(1,1,2).平面P AD 的法向量为p =(0,1,0),所以cos 〈n ,p 〉=n ·p |n ||p |=12. 由题意知二面角B -PD -A 为锐角,所以它的大小为π3. (3)解:由题意知M ⎝⎛⎭⎫-1,2,22,C (2,4,0),MC →=⎝⎛⎭⎫3,2,-22. 设直线MC 与平面BDP 所成的角为α,则sin α=|cos 〈n ,MC →〉|=|n ·MC →||n ||MC →|=269. 所以直线MC 与平面BDP 所成角的正弦值为269. 15.(2017·天津理,17)如图,在三棱锥P ABC 中,P A ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(1)求证:MN ∥平面BDE ;(2)求二面角CEMN 的正弦值;(3)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. 15.解 如图,以A 为原点,分别以AB →,AC →,AP →方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系.依题意,可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)证明 DE →=(0,2,0),DB →=(2,0,-2).设n =(x ,y ,z )为平面BDE 的一个法向量,则⎩⎪⎨⎪⎧ n ·DE →=0,n ·DB →=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0.不妨设z =1, 可得n =(1,0,1).又MN →=(1,2,-1),可得MN →·n =0.因为MN ⊄平面BDE ,所以MN ∥平面BDE .(2)易知n 1=(1,0,0)为平面CEM 的一个法向量.设n 2=(x 1,y 1,z 1)为平面EMN 的一个法向量,则⎩⎪⎨⎪⎧ n 2·EM →=0,n 2·MN →=0, 因为EM →=(0,-2,-1),MN →=(1,2,-1),所以⎩⎪⎨⎪⎧-2y 1-z 1=0,x 1+2y 1-z 1=0. 不妨设y 1=1,可得n 2=(-4,1,-2).因此cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-421, 于是sin 〈n 1,n 2〉=10521.所以,二面角CEMN 的正弦值为10521. (3)解 依题意,设AH =h (0≤h ≤4),则H (0,0,h ),进而可得NH →=(-1,-2,h ), BE →=(-2,2,2).由已知,得|cos 〈NH →,BE →〉|=|NH →·BE →||NH →||BE →|=|2h -2|h 2+5×23=721, 整理得10h 2-21h +8=0,解得h =85或h =12. 所以,线段AH 的长为85或12. 16.(2017·山东理,17)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G 是DF 的中点.(1)设P 是CE 上的一点,且AP ⊥BE ,求∠CBP 的大小;(2)当AB =3,AD =2时,求二面角E —AG —C 的大小.16.解 (1)因为AP ⊥BE ,AB ⊥BE ,AB ,AP ⊂平面ABP ,AB ∩AP =A ,所以BE ⊥平面ABP .又BP ⊂平面ABP ,所以BE ⊥BP ,又∠EBC =120°,所以∠CBP =30°.(2)方法一 取EC 的中点H ,连接EH ,GH ,CH .因为∠EBC =120°,所以四边形BEHC 为菱形,所以AE =GE =AC =GC =32+22=13.取AG 的中点M ,连接EM ,CM ,EC ,则EM ⊥AG ,CM ⊥AG ,所以∠EMC 为所求二面角的平面角.又AM =1,所以EM =CM =13-1=2 3.在△BEC 中,由于∠EBC =120°,由余弦定理得EC 2=22+22-2×2×2×cos 120°=12,所以EC =23,因此△EMC 为等边三角形,故所求的角为60°.方法二 在平面EBC 内,作EB ⊥BP 交CE 于点P .以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得A (0,0,3),E (2,0,0),G (1,3,3),C (-1,3,0),故AE →=(2,0,-3),AG →=(1,3,0),CG →=(2,0,3),设m =(x 1,y 1,z 1)是平面AEG 的一个法向量.由⎩⎪⎨⎪⎧ m · AE →=0,m ·AG →=0,可得⎩⎨⎧2x 1-3z 1=0,x 1+3y 1=0. 取z 1=2,可得平面AEG 的一个法向量m =(3,-3,2).设n =(x 2,y 2,z 2)是平面ACG 的一个法向量.由⎩⎪⎨⎪⎧ n ·AG →=0,n ·CG →=0,可得⎩⎨⎧x 2+3y 2=0,2x 2+3z 2=0. 取z 2=-2,可得平面ACG 的一个法向量n =(3,-3,-2).所以cos 〈m ,n 〉=m ·n |m ||n |=12.因此所求的角为60°.。

2015-2017三年文科立体几何高考题汇编

2015-2017三年文科立体几何高考题汇编

2015-2017全国高考文科立体几何题汇编2017(二)6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.90πB.63πC.42πD.36π2017(二)18.(12分)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=12AD, ∠BAD=∠ABC=90°。

(1)证明:直线BC∥平面PAD;(1)若△PAD面积为,求四棱锥P-ABCD的体积。

2017(一)6.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是A.B.C.D.2017(一)18.(12分)如图,在四棱锥P-ABCD中,AB//CD,且90BAP CDP∠=∠=o.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,90APD∠=o,且四棱锥P-ABCD的体积为83,求该四棱锥的侧面积.2017(三)9.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C .π2D .π42017(三)19.(12分)如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.2017(天津)(11)已知一个正方形的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .2017(天津)(17)(本小题满分13分)如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(I )求异面直线AP 与BC 所成角的余弦值;(II )求证:PD ⊥平面PBC ;(II )求直线AB 与平面PBC 所成角的正弦值.2017(北京)(6)某三棱锥的三视图如图所示,则该三棱锥的体积为。

2017届高三最新考试数学文试题分类汇编_立体几何 全国通用 含答案

2017届高三最新考试数学文试题分类汇编_立体几何 全国通用 含答案

山东省13市2017届高三最新考试数学文试题分类汇编立体几何2017.03一、选择、填空题1、(滨州市2017届高三上期末)已知三棱锥S ABC-,其三视图中的正(主)视图和侧(左)视图如图所示,则该三棱锥的体积为()A.833B.1633C.3233D.1632、(德州市2017届高三第一次模拟考试)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径,若该几何体的表面积是17π,则它的体积是()A.8πB.563πC.143πD.283π3、(菏泽市2017年高考一模)一个几何体的三视图如图所示,则该几何体的体积为()A.3 B.4 C.5 D.64、(济宁市2017届高三第一次模拟(3月))一个四棱锥的三视图如图所示,则该四棱锥外接球的体积为 .5、(聊城市2017届高三上期末)一个由圆柱和正四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A .423π+B .443π+ C. 24π+ D .44π+ 6、(临沂市2017届高三2月份教学质量检测(一模))已知一几何体的三视图如图所示,俯视图由一个直角三角形与一个半圆组成,则该几何体的体积为(A) 48π+ (B) 412π+ (C) 88π+ (D) 812π+7、(青岛市2017年高三统一质量检测)某几何体的三视图如右图所示,则该几何体的体积为A .883π+B .1683π+C .8163π+D .16163π+ 8、(泰安市2017届高三第一轮复习质量检测(一模))设m 、n 是两条不同的直线,αβ、是两个不同的平面,下列命题是真命题的是A .若//,//,//m m αβαβ则B .若//,//,//m m ααββ则C .若,,m m αβαβ⊂⊥⊥则D .若,,m m ααββ⊂⊥⊥则9、(泰安市2017届高三第一轮复习质量检测(一模))某三棱锥的三视图如石图所示,其侧(左)视图为直角三角形,则该三棱锥最长的棱长等于A .42B .34C .41D .5210、(潍坊市2017届高三下学期第一次模拟)某几何体的三视图如图所示,则该几何体的体积为A .16πB .8πC .163π D .83π 11、(烟台市2017届高三3月高考诊断性测试(一模))下图是一个几何体的三视图,则该几何体的表面积为 .12、(枣庄市2017届高三下学期第一次模拟考试)《九章算术》是我国数学史上堪与欧几里得《几何原本》相媲美的数学名著.其中,将底面为长方形且有一条侧棱与底面垂直的的四棱锥称之为阳马;将四个面都为直角三角形的四面体称之为鳖膈.已知直三棱柱3,111=⊥-AB BC AB ABC C B A 中,,3541==AA BC ,,将直三棱柱沿一条棱和两个面的对角线分割为一个阳马和一个鳖膈,则鳖膈的体积与其外接球的体积之比为A .π15:3B .π5:33C .33:50πD .33:25π13、(淄博市2017届高三3月模拟考试)已知一个平放的各棱长为4的三棱锥内有一个小球,现从该三棱锥顶端向锥内注水,小球慢慢上浮.当注入的水的体积是该三棱锥体积的78时,小球恰与该三棱锥各侧面及水面相切(小球完全浮在水面上方),则小球的表面积等于( ).A .76πB .43π C. 23π D .2π二、解答题1、(滨州市2017届高三上期末)如图,在四棱锥P ABCD -中,AD AP =,2CD AB =,CD ⊥平面APD ,AB CD ∥,E 为PD 的中点.(Ⅰ)求证:AE ∥平面PBC ;(Ⅱ)求证:平面PBC ⊥平面PCD .2、(德州市2017届高三第一次模拟考试)如图,六面体ABCDE 中,面DBC ⊥面ABC ,AE ⊥面ABC .(Ⅰ)求证://AE 面DBC ;(Ⅱ)若AB BC ⊥,BD CD ⊥,求证:面ADB ⊥面EDC .3、(菏泽市2017年高考一模)如图,在多面体ABCDPE 中,四边形ABCD 和CDPE 都是直角梯形,AB ∥DC ,∥DC ,AD ⊥DC ,PD ⊥平面ABCD ,AB=PD=DA=2PE ,CD=3PE ,F 是CE 的中点.(1)求证:BF ∥平面ADP(2)已知O 是BD 的中点,求证:BD ⊥平面AOF .4、(济宁市2017届高三第一次模拟(3月))如图,四棱锥P ABCD -中,底面ABCD 是平行四边形,且平面PAC ⊥平面ABCD ,E 为PD 的中点,PA PC =,22AB BC ==,60ABC ∠=︒.(Ⅰ)求证://PB 平面ACE ;(Ⅱ)求证:平面PBC ⊥平面PAC .5、(聊城市2017届高三上期末)如图,在直三棱柱111ABC A B C -中,,D M 分别是1,AA BC 的中点,190CDC ∠=o ,在ABC ∆中,260AB AC BAC =∠=,°.(1)证明://AM 平面1BDC ;(2)证明:1DC ⊥平面BDC .6、(临沂市2017届高三2月份教学质量检测(一模))如图,在直角梯形ABCD 中,AB//CD ,∠BCD=90。

2017高考试题分类汇编-立体几何最新版

2017高考试题分类汇编-立体几何最新版

立体几何1 (2017北京文)(本小题14分)如图,在三棱锥P-ABC中,PA丄AB, PA丄BC, AB丄BC, PA=AB=BC=2, D为线段AC的中点,E为线段PC上一点.(H)求证:平面BDE丄平面PAC;(川)当PA//平面BDE时,求三棱锥E-BCD的体积.2 (2017新课标H理)(12分)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面1ABCD, AB 二BC AD, BAD 二ABC =90°, E是PD的中2占八、、♦(1)证明:直线CE /平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M -AB -D的余弦值.3 (2017天津理)(本小题满分13分)如图,在三棱锥P-ABC中,PA丄底面ABC, • BAC =90 .点D,E,N分别为棱PA, PC,BC 的中点,M是线段AD的中点,PA=AC=4, AB=2.(I)求证:MN //平面BDE;(H)求二面角C-EM-N的正弦值;(川)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为求线段AH的长.214 (2017新课标川理数)a, b为空间中两条互相垂直的直线,等腰直角三角形边AC所在直线与a, b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所称角的最小值为45°;④直线AB与a所称角的最小值为60°其中正确的是_________ 。

(填写所有正确结论的编号)5 (2017山东理)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB边所在直线为旋转轴旋转120得到的,G是DF的中点.(I)设P是CE上的一点,且AP _ BE,求.CBP的大小;(H)当AB =3,AD =2,求二面角E - AG -C的大小.6 (2017新课标I理数)•如图,圆形纸片的圆心为0,半径为5 cm,该纸片上的等边三角形ABC的中心为0。

2017年高考真题立体几何部份

2017年高考真题立体几何部份
取 ,可得平面 的一个法向量 .
因此 .
因此所求的角为 .
7.(Ⅰ)观点析;(Ⅱ) .
【解析】此题要紧考查空间点、线、面位置关系,直线与平面学科&网所成的角等基础知识,同时考查空间想象能力和运算求解能力。总分值15分。
(Ⅰ)如图,设PA中点为F,连结EF,FB.
因为E,F别离为PD,PA中点,因此EF∥AD且 ,
因此,线段AH的长为 或 .
6.(Ⅰ) .(Ⅱ) .
【解析】解:(Ⅰ)因为 , ,
, 平面 , ,
因此 平面 ,
又 平面 ,
因此 ,又 ,
因此
(Ⅱ)解法一:
取 的中点 ,连接 , , .
因为 ,
因此四边形 为菱形,
因此 .
取 中点 ,连接 , , .
则 , ,
因此 为所求二面角的平面角.
又 ,因此 .
(2)过AC的平面交BD于点E,假设平面AEC把四面体ABCD分成体积相等的两部份,求二面角D–AE–C的余弦值.
4.如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD//平面MAC,PA=PD= ,AB=4.
(I)求证:M为PB的中点;
(II)求二面角B-PD-A的大小;
又由于
因此
(2)
由题设及(1)知, 两两垂直,以 为坐标原点, 的方向为 轴正方向, 为单位长,成立如下图的空间直角坐标系 ,那么
由题设知,四面体ABCE的体积为四面体ABCD的体积的 ,从而E到平面ABC的距离为D到平面ABC的距离的 ,即E为DB的中点,得E .故
设 是平面DAE的法向量,那么
可取
又因为BC∥AD, ,因此
EF∥BC且EF=BC,

2017届高考数学年(文科)空间几何体的三视图、表面积与体积专题练习答案

2017届高考数学年(文科)空间几何体的三视图、表面积与体积专题练习答案

)(10,+∞⎫⎪⎭平面向量、框图与合情推理解析一、选择题1.解析:根据已知可得b<a<0,故选项A,B,C中的结论正确。

2.解析:依题意有作出可行域,易求得x-y的最大值和最小值分别为2和-2,选D.3.解析:设该容器的总造价为y元,长方体的底面矩形的长为x m,因为无盖长方体的容积为4m3,高为1m,所以长方体的底面矩形的宽为m,依题意,得y=20×4+10(2x+)=80+20(x+)≥80+20×2=160(当且仅当x=,即x=2时取等号)。

所以该容器的最低总造价为160元。

故选C.4.解析:已知不等式组表示的平面区域如图中的阴影部分OAB,其中A(-2,-2),B(3,-2),该区域的面积为×5×2=5.5.解析:lo a=-log 2a,f(log 2a)+f(lo a)≤2f(1),f(x)是偶函数,所以2f(log2a)≤2f(1),所以|log2a|≤1,解得≤a≤2,所以a的最小值是。

故选C.6.解析:因为a>0,当x>0时,y=x++2≥2+2,当x<0时,y=x++2≤-2+2,由已知得所以a=1.故选C.7.解析:已知不等式组表示的平面区域如图中的阴影部分,其中A(0,1),B(2,0),C(,3),所以0≤x≤2,0≤y≤3,所以目标函数即为z=3x-y+3,根据目标函数的几何意义,可知在点B,C处目标函数分别取得最大值和最小值,故z max=9,z min=,所以目标函数的取值范围是[,9]。

8.解析:画出约束条件表示的可行域由得(2,)为最优解。

则2-2×=2.所以a=2,故选D.9.解析:因为直线ax+by=1经过点(1,2),所以a+2b=1.则2a+4b≥2=2=2,当且仅当a=2b=时取等号。

故选B.10.解析:因为a,b都是正数,则(1+)(1+)=5++≥5+2=9,当且仅当b=2a>0时取等号,故选C.11.解析:因f(x)=x3+ax2+bx+c有两个极值点x1,x2,所以函数f(x)的导函数f′(x)=3x2+2ax+b的图象与x轴有两个交点,所以当x∈(-∞,x1),(x2,+∞)时f′(x)>0,这时y=f(x)是增函数,x∈(x1,x2)时,f′(x)<0,这时y=f(x)是减函数,所以f(x1)>f(x2),又因f(x1)=x1<x2,所以函数f(x)的示意图如图所示。

2017年高考真题--立体几何部分

2017年高考真题--立体几何部分

2017年高考真题--立体几何部分2017年高考真题--立体几何部分学校: ___________ 姓名: ____________ 级:___________ 号: _______________一、解答题1 • (12 分)如图,四棱锥P-ABCD 中,侧面PAD 为等比三 角形且垂直于底面 ABCD ,(1)证明:直线CE//平面PAB(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成锐角为45。

,求二面角MABD 的余弦值 2( 12分)如图,在四棱锥P-ABCD 中AB//CD 且 BAP CDP 90。

90o ,E 是PD 的中点.AB BC 1 AD, BAD ABC⑴证明:平面PABL平面PAD(2)若PA=PDAB=DC APD 900,求二面角APBC 的余弦值.3. (12分)如图,四面体ABCD中, △ ABC是正三角形,△ ACD是直角三角形,/ ABD M CBD(1)证明:平面ACDL平面ABC(2)过AC的平面交BD于点E,若平面AEC 把四面体ABCD分成体积相等的两部分,求二面角D- AE- C的余弦值.4.如图,在四棱锥P-ABCD中,底面ABC助正方形,平面PAD L平面ABCD点M在线段PB 上, PD// 平面MAC PA=PD=76,AB=4.(I )求证:M为PB的中点;(II )求二面角BPDA的大小;(Ill )求直线MC与平面BDP所成角的正弦值.5 .如图,在三棱锥P- ABC中, P从底面ABC BAC90 .点D, E, N分别为棱PA P C, BC的中点,M是线段AD的中点,PAAC=4, AB=2. (l)求证:MN/平面BDE(U)求二面角GEMN的正弦值;(m) 已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为^7,求线段AH的长.6 . 17.如图,几何体是圆柱的一部分,它是由矩形肋切(及其内部)以班边所在直线为旋转轴旋转咗疔得到的,”是亦的中点.(I)设尸是在上的一点,且黠-施,求如尸的大小;(H)当肺^,皿",求二面角£-^-c的大小.7 •(本题满分15分)如图,已知四棱锥P -ABCD,APAD是以AD为斜边的等腰直角三角形,BC II AD , CD 丄AD ,PC=AD=2DC=2CB, E 为PD 的中点.I平面PAB;(H)求直线CE与平面PBC所成角的正弦1.(1 )详见解析连接 EF 、BF 、EC・• E、F 分别为PD 、PA 中点 •••已 2AD,又•••叱 0・•・EF £BC,•四边形BCEF 为平行四边形 •・CE //平面PAD(2 )取AD 中点O ,连PO ,由于△ PAD 为正三角形 •・ PO AD又I 平面 PAD 平面ABCD ,平面PAD 平面ABCD AD参考答案(2 ) cos【解析】 (1)取PA 中点F ,・•・PO平面ABCD,连OC,四边形ABCD为正方形。

高考文科立体几何大题专练

高考文科立体几何大题专练

立体几何文科大题1.(2017⋅新课标全国Ⅱ)如图,四棱锥ABCD P -中,侧面PAD 为等边三角形且垂直于底面ABCD ,AD BC AB 21==,︒=∠=∠90ABC BAD .若PCD ∆的面积为72,求四棱锥ABCD P -的体积.[解析]四棱锥ABCD P -中,侧面为PAD 等边三角形且垂直于底面ABCD ,AD BC AB 21==,︒=∠=∠90ABC BAD .设x AD 2=,则x BC AB ==,x CD 2=,O 是AD 的中点,连接CD OC PO 、、的中点为E ,连接OE ,则x OE 23=,x PO 3=,2722x OE PO PE =+=,PCD ∆面积为72,可得7221=⋅CD PE ,解得:2=x ,32=PO .则34=-ABCD P V .2.(2018秋⋅赫山区校级月考)如图,四边形ABCD 中,CD AB //,221====AB DA CD BC ,E 为AB 的中点,以DE 为折痕将ADE ∆折起,使点A 到达点P 的位置,且平面⊥PDE 平面BCDE ,F 为PB 的中点.求三棱锥DEF P -的体积.[解析]取DE 中点H ,连接PH ,2===DE PE PD Θ,DE PH ⊥∴,又⊂PH 平面PDE ,平面⊥PDE 平面BCDE ,且平面I PDE 平面DE BCDE =,⊥∴PH 平面BCDE ,且3=PH ,又F Θ为PB 的中点,∴点F 到平面BCDE 的距离等于点P 到平面BCDE 的距离的21,又Θ四边形BCDE 为菱形,DEB ∆为等边三角形,3232221=⋅⋅=∴∆DEB S ,2133312121=⋅⋅⋅==-=∴----DEB P DEB F DEB P DEF P V V V V . 3.(2013⋅新课标全国Ⅱ)如图,直三棱柱111C B A ABC -中,E D 、分别是1BB AB 、的中点.设21===CB AC AA ,22=AB ,求三棱锥DE A C 1-的体积.[解析]21===CB AC AA Θ,22=AB ,故此直三棱柱的底面为等腰直角三角形.由D 为AB 的中点可得⊥CD 平面11A ABB ,2=⋅=∴ABBC AC CD .62211=+=AD A A D A Θ,同理,利用勾股定理求得3=DE ,31=E A .再由勾股定理可得21221E A DE D A =+,DE D A ⊥∴1.2232111=⋅⋅=∴∆DE D A S DE A ,13111=⋅⋅=∴∆-CD S V DE A DE A C . 4.(2017⋅新课标全国Ⅰ)如图,四棱锥ABCD P -中,CD AB //,且︒=∠=∠90CDP BAP .若DC AB PD PA ===,︒=∠90APD ,且四棱锥ABCD P -的体积为38,求四棱锥的侧面积.[解析]设a DC AB PD PA ====,取AD 中点O ,连接PO ,DC AB PD PA ===Θ,︒=∠90APD ,平面⊥PAB 平面PAD ,⊥∴PO 面ABCD ,且a a a AD 222=+=,a PO 22=,Θ四棱锥ABCD P -的体积为38,由⊥AB 平面PAD ,得AD AB ⊥,3831=⋅⋅=∴-PO S V ABCD ABCD P ,解得2=a ,2====∴DC AB PD PA ,22==BC AD ,2=PO ,2244=+==∴PC PB ,∴该四棱锥的侧面积为:326+=+++=∆∆∆∆PBC PDC PAB PAD S S S S S .5.(2015⋅新课标全国Ⅰ)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,⊥BE 平面ABCD .若︒=∠120ABC ,EC AE ⊥,三棱锥ACD E -的体积为36,求该三棱锥的侧面积.[解析]设x AB =,在菱形ABCD 中,由︒=∠120ABC ,得x GC AG 23==,2x GD GB ==,⊥BE Θ平面ABCD ,BG BE ⊥∴,则EBG ∆为直角三角形,x AG AC EG 2321===∴,则x BG EG BE 2222=-=,Θ三棱锥ACD E -的体积3624621313==⋅⋅⋅=x BE GD AC V ,解得2=x ,即2=AB ,︒=∠120ABC Θ,12cos 2222=⋅-+=∴ABC BC AB BC AB AC ,即32=AC ,在三个直角三角形EBA ,EBD ,EBC 中,斜边ED EC AE ==,EC AE ⊥Θ,EAC ∆∴为等腰三角形,则12222==+AC EC AE ,6=∴AE ,6===∴ED EC AE ,3=∴∆EAC S ,在等腰三角形EAD 中,过E 做AD EF ⊥于F ,则6=AE ,121==AD AF ,则5=EF ,EAD ∆∴与ECD ∆的面积均为5,故三棱锥的侧面积为523+.6.(2014⋅新课标全国Ⅱ)如图,四棱锥ABCD P -中,底面ABCD 为矩形,⊥PA 平面ABCD ,E 为PD 的中点.设1=AP ,3=AD ,三棱锥ABD P -的体积43=V ,求点A 到平面PBC 的距离.[解析]AB AD AB PA V 6361=⋅⋅=.由43=V ,可得23=AB .作PB AH ⊥交PB 于H .由题设知⊥BC 平面PAB ,所以AH BC ⊥,故⊥AH 平面PBC ,又13133=⋅=PB AB PA AH .所以A 到平面PBC 的距离为13133. 7.(2018⋅新课标全国Ⅱ)如图,在三棱锥ABC P -中,22==BC AB ,4====AC PC PB PA ,O 为AC 的中点.(1)证明:⊥PO 平面ABC ;(2)若点M 在棱BC 上,且MB MC 2=,求点C 到平面POM 的距离.[解析](1)证明:连接OB .22==BC AB Θ,4=AC ,222AC BC AB =+∴,即ABC ∆是直角三角形,又O 为AC 的中点,OC OB OA ==∴, PC PB PA ==Θ,POC POB POA ≅∆≅∆∴,ο90=∠=∠=∠∴POC POB POA ,AC PO ⊥∴,OB PO ⊥,O AC OB =I Θ,⊥∴PO 平面ABC .(2)由(1)得⊥PO 平面ABC ,3222=-=AO PA PO ,在COM ∆中,35245cos 222=⋅-+=οCM OC CM OC OM .3152352322121=⨯⨯=⨯⨯=∆OM PO S POM ,343221=⨯⨯=∆∆ABC COM S S . 设点C 到平面POM 的距离为d .POM C OMC P V V --=Θ,PO S d S COM POM ⨯⨯=⋅⨯∴∆∆3131,解得554=d , ∴点C 到平面POM 的距离为554. 8.(2014新课标全国Ⅰ)如图,三棱锥111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.(1)证明:AB C B ⊥1;(2)若1AB AC ⊥,︒=∠601CBB ,1=BC ,求三棱柱111C B A ABC -的高.[解析](1)连接1BC ,则O 为C B 1与1BC 的交点,因为侧面C C BB 11为菱形,所以11BC C B ⊥, 又⊥AO 平面C C BB 11,所以AO C B ⊥1,O BC AO =1I ,故⊥C B 1平面ABO , 由于⊂AB 平面ABO ,所以AB C B ⊥1(2)作BC OD ⊥,垂足为D ,连接AD ,作AD OH ⊥,垂足为H ,由于AO BC ⊥,OD BC ⊥,故⊥BC 平面AOD ,所以BC OH ⊥,又AD OH ⊥,所以⊥OH 平面ABC因为ο601=∠CBB ,所以1CBB ∆为等边三角形,又1=BC ,可得43=OD ,由于1AB AC ⊥,所以21211==C B OA ,由OA OD AD OH ⋅=⋅,且4722=+=OA OD AD ,得1421=OH ,又O 为C B 1的中点,所以点1B 到平面ABC 的距离为721,故三棱柱111C B A ABC -的高721.。

2017数学高考分类·文科(2017高考真题+模拟新题)G单元 立体几何

2017数学高考分类·文科(2017高考真题+模拟新题)G单元 立体几何

G 单元 立体几何G1 空间几何体的结构6.G1、G8[2017·江苏卷] 如图1-2,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.图1-26.32[解析] 设球O 的半径为R ,因为该球与圆柱的上、下底面及母线均相切,所以圆柱的底面圆的半径为R ,圆柱的高为2R .故圆柱O 1O 2的体积V 1=2πR 3,球O 的体积V 2=43πR 3,所以V 1V 2=2πR 343πR 3=32.18.G1、G5、C8[2017·江苏卷] 如图1-6,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32 cm ,容器Ⅰ的底面对角线AC 的长为107 cm ,容器Ⅱ的两底面对角线EG ,E 1G 1的长分别为14 cm 和62 cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12 cm.现有一根玻璃棒l ,其长度为40 cm.(容器厚度、玻璃棒粗细均忽略不计)图1-6(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱CC 1上,求l 没入水中部分的长度;(2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱GG 1上,求l 没入水中部分的长度.18.解:(1)由正棱柱的定义,CC 1⊥平面ABCD ,所以平面A 1ACC 1⊥平面ABCD ,CC 1⊥AC .记玻璃棒的另一端落在CC 1上点M 处. 因为AC =107,AM =40,所以MC =402-(107)2=30,从而sin ∠MAC =34.记AM 与水面的交点为P 1,过P 1作P 1Q 1⊥AC ,Q 1为垂足,则P 1Q 1⊥平面ABCD ,故P 1Q 1=12, 从而AP 1=P 1Q 1sin ∠MAC=16.答:玻璃棒l 没入水中部分的长度为16 cm.(如果将“没入水中部分”理解为“水面以上部分”,则结果为24 cm) (2)如图,O ,O 1是正棱台的两底面中心.由正棱台的定义,OO 1⊥平面EFGH ,所以平面E 1EGG 1⊥平面EFGH ,O 1O ⊥EG .同理,平面E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O ⊥E 1G 1. 记玻璃棒的另一端落在GG 1上点N 处. 过G 作GK ⊥E 1G 1,K 为垂足, 则GK =OO 1=32. 因为EG =14,E 1G 1=62,所以KG 1=62-142=24,从而GG 1=KG 21+GK 2=242+322=40. 设∠EGG 1=α,∠ENG =β,则sin α=sin ⎝⎛⎭⎫π2+∠KGG 1=cos ∠KGG 1=45.因为π2<α<π,所以cos α=-35.在△ENG 中,由正弦定理可得40sin α=14sin β,解得sin β=725.因为0<β<π2,所以cos β=2425.于是sin ∠NEG =sin(π-α-β)=sin(α+β)= sin αcos β+cos αsin β=45×2425+⎝⎛⎭⎫-35×725=35. 记EN 与水面的交点为P 2,过P 2作P 2Q 2⊥EG ,Q 2为垂足,则P 2Q 2⊥平面EFGH , 故P 2Q 2=12,从而EP 2=P 2Q 2sin ∠NEG =20.答:玻璃棒l 没入水中部分的长度为20 cm.(如果将“没入水中部分”理解为“水面以上部分”,则结果为20 cm)G2 空间几何体的三视图和直观图13.G2[2017·山东卷] 由一个长方体和两个14 圆柱体构成的几何体的三视图如图1-3,则该几何体的体积为________.图1-313.2+π2 [解析] 该几何体的直观图如图所示,由三视图的俯视图可知,底面积为π4+π4+2=π2+2,由正视图和侧视图可知高为1,所以体积V =(π2+2)×1=π2+2.6.G2[2017·北京卷] 某三棱锥的三视图如图1-2所示,则该三棱锥的体积为( )图1-2A .60B .30C .20D .106.D [解析] 三视图的直观图为图中的三棱锥A - BCD (借助长方体).由三视图可知三棱锥的底面为直角三角形,底面积S =12×5×3=152,高h =4,故体积V =13Sh =13×152×4=10,故选D.6.G2[2017·全国卷Ⅱ] 如图1-1,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()图1-1A.90πB.63πC.42πD.36π6.B[解析] 由三视图可知,此几何体应是一个圆柱切去一部分后所得,如图所示.通过切割及补形知,此几何体的体积等同于底面半径为3,高为7的圆柱,所以所求体积V=π×32×7=63π.G3 平面的基本性质、空间两条直线G4 空间中的平行关系6.G4[2017·全国卷Ⅰ] 如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A BCD图1-26.A[解析] 因为M,N,Q分别为对应棱的中点,所以在选项B,C中均有AB∥MQ,在选项D中,有AB∥NQ,所以在选项B,C,D中均有AB与平面MNQ平行,所以选A.15.G4、G5[2017·江苏卷] 如图1-4,在三棱锥A­BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.图1-4求证:(1)EF∥平面ABC;(2)AD⊥AC.15.证明:(1)在平面ABD内,因为AB⊥AD,EF⊥AD,所以EF∥AB.又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC⊂平面BCD,BC⊥BD,所以BC⊥平面ABD.因为AD⊂平面ABD,所以BC⊥AD.又AB ⊥AD ,BC ∩AB =B ,AB ⊂平面ABC ,BC ⊂平面ABC , 所以AD ⊥平面ABC . 又因为AC ⊂平面ABC , 所以AD ⊥AC .18.G4、G7[2017·全国卷Ⅱ] 如图1-3,四棱锥P ­ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°.图1-3(1)证明:直线BC ∥平面PAD ; (2)若△PCD 的面积为27,求四棱锥P-ABCD 的体积.18.解:(1)证明:在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD.又BC ⊄平面PAD ,AD ⊂平面PAD ,故BC ∥平面PAD.(2)取AD 的中点M ,连接PM ,CM.由AB =BC =12AD 及BC ∥AD ,∠ABC =90°,得四边形ABCM 为正方形,则CM ⊥AD.因为侧面PAD 为等边三角形且垂直于底面ABCD ,平面PAD ∩平面ABCD =AD ,所以PM ⊥AD ,PM ⊥底面ABCD.因为CM ⊂底面ABCD ,所以PM ⊥CM.设BC =x ,则CM =x ,CD =2x ,PM =3x ,PC =PD =2x.取CD 的中点N ,连接PN ,则PN ⊥CD ,所以PN =142x. 因为△PCD 的面积为2 7, 所以12×2x ×142x =27,解得x =-2(舍去)或x =2.于是AB =BC =2,AD =4,PM =2 3,所以四棱锥P-ABCD 的体积V =13×2×(2+4)2×23=43.18.G4、G5[2017·山东卷] 由四棱柱ABCD - A 1B 1C 1D 1截去三棱锥C 1 ­ B 1CD 1后得到的几何体如图1-4所示.四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD.(1)证明:A 1O ∥平面B 1CD 1;(2)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.图1-418.证明:(1)取B 1D 1的中点O 1,连接CO 1,A 1O 1, 由于ABCD - A 1B 1C 1D 1是四棱柱, 所以A 1O 1∥OC ,A 1O 1=OC , 因此四边形A 1OCO 1为平行四边形, 所以A 1O ∥O 1C ,又O 1C ⊂平面B 1CD 1,A 1O ⊄平面B 1CD 1, 所以A 1O ∥平面B 1CD 1.(2)因为AC⊥BD,E,M分别为AD和OD的中点,所以EM⊥BD,又A1E⊥平面ABCD,BD⊂平面ABCD,所以A1E⊥BD.因为B1D1∥BD,所以EM⊥B1D1,A1E⊥B1D1,又A1E,EM⊂平面A1EM,A1E∩EM=E,所以B1D1⊥平面A1EM,又B1D1⊂平面B1CD1,所以平面A1EM⊥平面B1CD1.18.G4、G5、G12[2017·北京卷] 如图1-4,在三棱锥P­ABC中,P A⊥AB,P A⊥BC,AB⊥BC,P A=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:P A⊥BD;(2)求证:平面BDE⊥平面P AC;(3)当P A∥平面BDE时,求三棱锥E -BCD的体积.图1-418.解:(1)证明:因为P A⊥AB,P A⊥BC,所以P A⊥平面ABC.又因为BD ⊂平面ABC ,所以P A ⊥BD .(2)证明:因为AB =BC ,D 为AC 中点,所以BD ⊥AC . 由(1)知,P A ⊥BD ,所以BD ⊥平面P AC , 所以平面BDE ⊥平面P AC .(3)因为P A ∥平面BDE ,平面P AC ∩平面BDE =DE , 所以P A ∥DE .因为D 为AC 的中点,所以DE =12P A =1,BD =DC = 2.由(1)知,P A ⊥平面ABC ,所以DE ⊥平面ABC , 所以三棱锥E - BCD 的体积V =16BD ·DC ·DE =13.G5 空间中的垂直关系15.G4、G5[2017·江苏卷] 如图1-4,在三棱锥A ­BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .图1-4求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .15.证明:(1)在平面ABD 内,因为AB ⊥AD ,EF ⊥AD ,所以EF ∥AB . 又因为EF ⊄平面ABC ,AB ⊂平面ABC , 所以EF ∥平面ABC .(2)因为平面ABD ⊥平面BCD , 平面ABD ∩平面BCD =BD , BC ⊂平面BCD ,BC ⊥BD , 所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC ∩AB =B ,AB ⊂平面ABC ,BC ⊂平面ABC , 所以AD ⊥平面ABC . 又因为AC ⊂平面ABC , 所以AD ⊥AC .17.G5、G11[2017·天津卷] 如图1-2所示,在四棱锥P - ABCD 中,AD ⊥平面PDC ,AD ∥BC ,PD ⊥PB ,AD =1,BC =3,CD =4,PD =2.(1)求异面直线AP 与BC 所成角的余弦值; (2)求证:PD ⊥平面PBC ;(3)求直线AB 与平面PBC 所成角的正弦值.图1-217.解:(1)由已知AD ∥BC ,故∠DAP 或其补角即为异面直线AP 与BC 所成的角. 因为AD ⊥平面PDC ,所以AD ⊥PD.在Rt △PDA 中,由已知,得AP =AD 2+PD 2=5,故cos ∠DAP =AD AP =55,所以,异面直线AP 与BC 所成角的余弦值为55. (2)证明:因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD. 又因为BC ∥AD ,所以PD ⊥BC , 又PD ⊥PB ,所以PD ⊥平面PBC.(3)过点D 作AB 的平行线交BC 于点F ,连接PF ,则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角.因为PD ⊥平面PBC ,故PF 为DF 在平面PBC 上的射影,所以∠DFP 为直线DF 和平面PBC 所成的角.由于AD ∥BC ,DF ∥AB ,故BF =AD =1, 由已知,得CF =BC -BF =2.又AD ⊥DC ,故BC ⊥DC ,在Rt △DCF 中,可得DF =CD 2+CF 2=25,在Rt △DPF 中,可得sin ∠DFP =PD DF =55,所以,直线AB 与平面PBC 所成角的正弦值为55.18.G4、G5[2017·山东卷] 由四棱柱ABCD - A 1B 1C 1D 1截去三棱锥C 1 ­ B 1CD 1后得到的几何体如图1-4所示.四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD.(1)证明:A 1O ∥平面B 1CD 1;(2)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.图1-418.证明:(1)取B 1D 1的中点O 1,连接CO 1,A 1O 1,由于ABCD - A1B1C1D1是四棱柱,所以A1O1∥OC,A1O1=OC,因此四边形A1OCO1为平行四边形,所以A1O∥O1C,又O1C⊂平面B1CD1,A1O⊄平面B1CD1,所以A1O∥平面B1CD1.(2)因为AC⊥BD,E,M分别为AD和OD的中点,所以EM⊥BD,又A1E⊥平面ABCD,BD⊂平面ABCD,所以A1E⊥BD.因为B1D1∥BD,所以EM⊥B1D1,A1E⊥B1D1,又A1E,EM⊂平面A1EM,A1E∩EM=E,所以B1D1⊥平面A1EM,又B1D1⊂平面B1CD1,所以平面A1EM⊥平面B1CD1.18.G5、G7[2017·全国卷Ⅰ] 如图1-5,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.图1-5(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,且四棱锥P -ABCD 的体积为83,求该四棱锥的侧面积.18.解:(1)证明:由已知∠BAP =∠CDP =90°,得AB ⊥AP ,CD ⊥PD . 由于AB ∥CD ,故AB ⊥PD ,从而AB ⊥平面P AD . 又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD . (2)在平面P AD 内作PE ⊥AD ,垂足为E .由(1)知,AB ⊥平面P AD ,故AB ⊥PE ,可得PE ⊥平面ABCD .设AB =x ,则由已知可得AD =2x ,PE =22x , 故四棱锥P -ABCD 的体积V P ­ABCD =13AB ·AD ·PE =13x 3.由题设得13x 3=83,故x =2.从而P A =PD =2,AD =BC =22,PB =PC =2 2,可得四棱锥P -ABCD 的侧面积为12P A ·PD +12P A ·AB +12PD ·DC +12BC 2sin 60°=6+2 3. 10.G5[2017·全国卷Ⅲ] 在正方体ABCD ­A 1B 1C 1D 1中,E 为棱CD 的中点,则( ) A .A 1E ⊥DC 1 B .A 1E ⊥BD C .A 1E ⊥BC 1 D .A 1E ⊥AC10.C [解析] 在正方体中连接A 1D ,AD 1,B 1C ,由正方体的性质知AD 1⊥A 1D ,CD ⊥AD 1,又∵A 1D ∩CD =D ,∴AD 1⊥平面A 1B 1CD ,又∵BC 1∥AD 1,∴BC 1⊥平面A 1B 1CD ,∵A 1E⊂平面A 1B 1CD ,∴BC 1⊥A 1E .19.G5、G12[2017·全国卷Ⅲ] 如图1-4,四面体ABCD 中,△ABC 是正三角形,AD =CD .图1-4(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD ,若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.19.解:(1)证明:取AC 的中点O ,连接DO ,BO . 因为AD =CD ,所以AC ⊥DO .又由于△ABC 是正三角形,所以AC ⊥BO . 从而AC ⊥平面DOB ,故AC ⊥BD .(2)连接EO .由(1)及题设知∠ADC =90°,所以DO =AO . 在Rt △AOB 中,BO 2+AO 2=AB 2. 又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°. 由题设知△AEC 为直角三角形,所以EO =12AC .又△ABC 是正三角形,且AB =BD ,所以EO =12BD .故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1∶1.18.G4、G5、G12[2017·北京卷] 如图1-4,在三棱锥P ­ ABC 中,P A ⊥AB ,P A ⊥BC ,AB ⊥BC ,P A =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:P A ⊥BD ;(2)求证:平面BDE ⊥平面P AC ;(3)当P A ∥平面BDE 时,求三棱锥E - BCD 的体积.图1-418.解:(1)证明:因为P A ⊥AB ,P A ⊥BC ,所以P A ⊥平面ABC . 又因为BD ⊂平面ABC ,所以P A ⊥BD .(2)证明:因为AB =BC ,D 为AC 中点,所以BD ⊥AC . 由(1)知,P A ⊥BD ,所以BD ⊥平面P AC , 所以平面BDE ⊥平面P AC .(3)因为P A ∥平面BDE ,平面P AC ∩平面BDE =DE , 所以P A ∥DE .因为D 为AC 的中点,所以DE =12P A =1,BD =DC = 2.由(1)知,P A ⊥平面ABC ,所以DE ⊥平面ABC , 所以三棱锥E - BCD 的体积V =16BD ·DC ·DE =13.18.G1、G5、C8[2017·江苏卷] 如图1-6,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32 cm ,容器Ⅰ的底面对角线AC 的长为107 cm ,容器Ⅱ的两底面对角线EG ,E 1G 1的长分别为14 cm 和62 cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12 cm.现有一根玻璃棒l ,其长度为40 cm.(容器厚度、玻璃棒粗细均忽略不计)图1-6(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱CC 1上,求l 没入水中部分的长度;(2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱GG 1上,求l 没入水中部分的长度.18.解:(1)由正棱柱的定义,CC 1⊥平面ABCD ,所以平面A 1ACC 1⊥平面ABCD ,CC 1⊥AC .记玻璃棒的另一端落在CC 1上点M 处. 因为AC =107,AM =40,所以MC =402-(107)2=30,从而sin ∠MAC =34.记AM 与水面的交点为P 1,过P 1作P 1Q 1⊥AC ,Q 1为垂足,则P 1Q 1⊥平面ABCD ,故P 1Q 1=12, 从而AP 1=P 1Q 1sin ∠MAC=16.答:玻璃棒l 没入水中部分的长度为16 cm.(如果将“没入水中部分”理解为“水面以上部分”,则结果为24 cm) (2)如图,O ,O 1是正棱台的两底面中心.由正棱台的定义,OO 1⊥平面EFGH ,所以平面E 1EGG 1⊥平面EFGH ,O 1O ⊥EG . 同理,平面E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O ⊥E 1G 1. 记玻璃棒的另一端落在GG 1上点N 处. 过G 作GK ⊥E 1G 1,K 为垂足, 则GK =OO 1=32. 因为EG =14,E 1G 1=62,所以KG 1=62-142=24,从而GG 1=KG 21+GK 2=242+322=40. 设∠EGG 1=α,∠ENG =β,则sin α=sin ⎝⎛⎭⎫π2+∠KGG 1=cos ∠KGG 1=45.因为π2<α<π,所以cos α=-35.在△ENG 中,由正弦定理可得40sin α=14sin β,解得sin β=725.因为0<β<π2,所以cos β=2425.于是sin ∠NEG =sin(π-α-β)=sin(α+β)= sin αcos β+cos αsin β=45×2425+⎝⎛⎭⎫-35×725=35. 记EN 与水面的交点为P 2,过P 2作P 2Q 2⊥EG ,Q 2为垂足,则P 2Q 2⊥平面EFGH , 故P 2Q 2=12,从而EP 2=P 2Q 2sin ∠NEG =20.答:玻璃棒l 没入水中部分的长度为20 cm.(如果将“没入水中部分”理解为“水面以上部分”,则结果为20 cm)G6 三垂线定理G7 棱柱与棱锥18.G4、G7[2017·全国卷Ⅱ] 如图1-3,四棱锥P ­ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°.图1-3(1)证明:直线BC ∥平面PAD ; (2)若△PCD 的面积为27,求四棱锥P-ABCD 的体积.18.解:(1)证明:在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD.又BC ⊄平面PAD ,AD ⊂平面PAD ,故BC ∥平面PAD.(2)取AD 的中点M ,连接PM ,CM.由AB =BC =12AD 及BC ∥AD ,∠ABC =90°,得四边形ABCM 为正方形,则CM ⊥AD.因为侧面PAD 为等边三角形且垂直于底面ABCD ,平面PAD ∩平面ABCD =AD ,所以PM ⊥AD ,PM ⊥底面ABCD.因为CM ⊂底面ABCD ,所以PM ⊥CM.设BC =x ,则CM =x ,CD =2x ,PM =3x ,PC =PD =2x.取CD 的中点N ,连接PN ,则PN ⊥CD ,所以PN =142x. 因为△PCD 的面积为2 7, 所以12×2x ×142x =27,解得x =-2(舍去)或x =2.于是AB =BC =2,AD =4,PM =2 3,所以四棱锥P-ABCD 的体积V =13×2×(2+4)2×23=43.18.G5、G7[2017·全国卷Ⅰ] 如图1-5,在四棱锥P -ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.图1-5(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,且四棱锥P -ABCD 的体积为83,求该四棱锥的侧面积.18.解:(1)证明:由已知∠BAP =∠CDP =90°,得AB ⊥AP ,CD ⊥PD . 由于AB ∥CD ,故AB ⊥PD ,从而AB ⊥平面P AD . 又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD . (2)在平面P AD 内作PE ⊥AD ,垂足为E .由(1)知,AB ⊥平面P AD ,故AB ⊥PE ,可得PE ⊥平面ABCD .设AB =x ,则由已知可得AD =2x ,PE =22x , 故四棱锥P -ABCD 的体积V P ­ABCD =13AB ·AD ·PE =13x 3.由题设得13x 3=83,故x =2.从而P A =PD =2,AD =BC =22,PB =PC =2 2,可得四棱锥P -ABCD 的侧面积为12P A ·PD +12P A ·AB +12PD ·DC +12BC 2sin 60°=6+2 3.G8 多面体与球6.G1、G8[2017·江苏卷] 如图1-2,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.图1-26.32[解析] 设球O 的半径为R ,因为该球与圆柱的上、下底面及母线均相切,所以圆柱的底面圆的半径为R ,圆柱的高为2R .故圆柱O 1O 2的体积V 1=2πR 3,球O 的体积V 2=43πR 3,所以V 1V 2=2πR 343πR 3=32.11.G8[2017·天津卷] 已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.11.9π2 [解析] 设正方体的棱长为a ,则6×a 2=18,即a = 3.∵正方体内接于球,∴球的半径 R =32,∴球的体积V =43π×⎝⎛⎭⎫323=9π2.15.G8[2017·全国卷Ⅱ] 长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为________.15.14π [解析] 长方体的体对角线长l =32+22+12=14,而长方体的外接球的直径恰为长方体的体对角线长,所以球O 的直径2R =l =14,所以球O 的表面积S =4πR 2=14π.16.G8[2017·全国卷Ⅰ] 已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径,若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________.16.36π [解析] 如图,SC 为球O 的直径,O 为球心,因为SA =AC ,所以AO ⊥SC ,同理SB =BC ,所以BO ⊥SC ,所以SC ⊥平面ABO .又平面SCA ⊥平面SCB ,所以AO ⊥BO .设球的半径为R ,则AO =BO =SO =CO =R ,所以V 三棱锥S -ABC =2×13S △ABO ×SO =2×13×12×AO ×BO ×SO =13R 3=9,所以R =3,所以球O 的表面积S =4πR 2=36π.9.G8[2017·全国卷Ⅲ] 已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4C.π2D.π49.B [解析] 由题可知球心为圆柱的中心,则圆柱底面圆的半径r =12-⎝⎛⎭⎫122=32,故圆柱的体积V =πr 2h =3π4.G9 空间向量及运算22.G9、G11[2017·江苏卷] 如图1-8,在平行六面体ABCD -A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1=3,∠BAD =120°.图1-8(1)求异面直线A 1B 与AC 1所成角的余弦值; (2)求二面角B -A 1D ­A 的正弦值.22.解:在平面ABCD 内,过点A 作AE ⊥AD ,交BC 于点E .因为AA 1⊥平面ABCD , 所以AA 1⊥AE ,AA 1⊥AD .如图,以{AE →,AD →,AA 1→}为正交基底,建立空间直角坐标系A -xyz .因为AB =AD =2,AA 1=3,∠BAD =120°,所以A (0,0,0),B (3,-1,0),D (0,2,0),E (3,0,0),A 1(0,0,3),C 1(3,1,3).(1)A 1B →=(3,-1,-3),AC 1→=(3,1,3), 则cos 〈A 1B →,AC 1→〉=A 1B →·AC 1→|A 1B →||AC 1→|=(3,-1,-3)·(3,1,3)7=-17,因此异面直线A 1B 与AC 1所成角的余弦值为17.(2)平面A 1DA 的一个法向量为AE →=(3,0,0). 设m =(x ,y ,z )为平面BA 1D 的法向量, 又A 1B →=(3,-1,-3),BD →=(-3,3,0), 则⎩⎪⎨⎪⎧m ·A 1B →=0,m ·BD →=0,即⎩⎨⎧3x -y -3z =0,-3x +3y =0.不妨取x =3,则y =3,z =2,所以m =(3,3,2)为平面BA 1D 的一个法向量,从而cos 〈AE →,m 〉=AE →·m |AE →||m |=(3,0,0)·(3,3,2)3×4=34.设二面角B -A 1D ­A 的大小为θ,则|cos θ|=34.因为θ∈[0,π],所以sin θ=1-cos 2θ=74. 因此二面角B -A 1D ­A 的正弦值为74.G10 空间向量解决线面位置关系G11 空间角与距离的求法22.G9、G11[2017·江苏卷] 如图1-8,在平行六面体ABCD -A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1=3,∠BAD =120°.图1-8(1)求异面直线A 1B 与AC 1所成角的余弦值; (2)求二面角B -A 1D ­A 的正弦值.22.解:在平面ABCD 内,过点A 作AE ⊥AD ,交BC 于点E . 因为AA 1⊥平面ABCD , 所以AA 1⊥AE ,AA 1⊥AD .如图,以{AE →,AD →,AA 1→}为正交基底,建立空间直角坐标系A -xyz .因为AB =AD =2,AA 1=3,∠BAD =120°,所以A (0,0,0),B (3,-1,0),D (0,2,0),E (3,0,0),A 1(0,0,3),C 1(3,1,3).(1)A 1B →=(3,-1,-3),AC 1→=(3,1,3), 则cos 〈A 1B →,AC 1→〉=A 1B →·AC 1→|A 1B →||AC 1→|=(3,-1,-3)·(3,1,3)7=-17,因此异面直线A 1B 与AC 1所成角的余弦值为17.(2)平面A 1DA 的一个法向量为AE →=(3,0,0). 设m =(x ,y ,z )为平面BA 1D 的法向量, 又A 1B →=(3,-1,-3),BD →=(-3,3,0), 则⎩⎪⎨⎪⎧m ·A 1B →=0,m ·BD →=0,即⎩⎨⎧3x -y -3z =0,-3x +3y =0.不妨取x =3,则y =3,z =2,所以m =(3,3,2)为平面BA 1D 的一个法向量,从而cos 〈AE →,m 〉=AE →·m |AE →||m |=(3,0,0)·(3,3,2)3×4=34.设二面角B -A 1D ­A 的大小为θ,则|cos θ|=34.因为θ∈[0,π],所以sin θ=1-cos 2θ=74. 因此二面角B -A 1D ­A 的正弦值为74.17.G5、G11[2017·天津卷] 如图1-2所示,在四棱锥P - ABCD 中,AD ⊥平面PDC ,AD ∥BC ,PD ⊥PB ,AD =1,BC =3,CD =4,PD =2.(1)求异面直线AP 与BC 所成角的余弦值; (2)求证:PD ⊥平面PBC ;(3)求直线AB 与平面PBC 所成角的正弦值.图1-217.解:(1)由已知AD ∥BC ,故∠DAP 或其补角即为异面直线AP 与BC 所成的角. 因为AD ⊥平面PDC ,所以AD ⊥PD.在Rt △PDA 中,由已知,得AP =AD 2+PD 2=5,故cos ∠DAP =AD AP =55,所以,异面直线AP 与BC 所成角的余弦值为55. (2)证明:因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD. 又因为BC ∥AD ,所以PD ⊥BC , 又PD ⊥PB ,所以PD ⊥平面PBC.(3)过点D 作AB 的平行线交BC 于点F ,连接PF ,则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角.因为PD ⊥平面PBC ,故PF 为DF 在平面PBC 上的射影,所以∠DFP 为直线DF 和平面PBC 所成的角.由于AD ∥BC ,DF ∥AB ,故BF =AD =1, 由已知,得CF =BC -BF =2.又AD ⊥DC ,故BC ⊥DC ,在Rt △DCF 中,可得DF =CD 2+CF 2=25,在Rt △DPF 中,可得sin ∠DFP =PD DF =55,所以,直线AB 与平面PBC 所成角的正弦值为55.G12 单元综合19.G5、G12[2017·全国卷Ⅲ] 如图1-4,四面体ABCD 中,△ABC 是正三角形,AD =CD .图1-4(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD ,若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.19.解:(1)证明:取AC 的中点O ,连接DO ,BO . 因为AD =CD ,所以AC ⊥DO .又由于△ABC 是正三角形,所以AC ⊥BO . 从而AC ⊥平面DOB ,故AC ⊥BD .(2)连接EO .由(1)及题设知∠ADC =90°,所以DO =AO . 在Rt △AOB 中,BO 2+AO 2=AB 2. 又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°. 由题设知△AEC 为直角三角形,所以EO =12AC .又△ABC 是正三角形,且AB =BD ,所以EO =12BD .故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1∶1.18.G4、G5、G12[2017·北京卷] 如图1-4,在三棱锥P ­ ABC 中,P A ⊥AB ,P A ⊥BC ,AB ⊥BC ,P A =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:P A ⊥BD ;(2)求证:平面BDE ⊥平面P AC ;(3)当P A ∥平面BDE 时,求三棱锥E - BCD 的体积.图1-418.解:(1)证明:因为P A ⊥AB ,P A ⊥BC ,所以P A ⊥平面ABC . 又因为BD ⊂平面ABC ,所以P A ⊥BD .(2)证明:因为AB =BC ,D 为AC 中点,所以BD ⊥AC . 由(1)知,P A ⊥BD ,所以BD ⊥平面P AC , 所以平面BDE ⊥平面P AC .(3)因为P A ∥平面BDE ,平面P AC ∩平面BDE =DE , 所以P A ∥DE .因为D 为AC 的中点,所以DE =12P A =1,BD =DC = 2.由(1)知,P A ⊥平面ABC ,所以DE ⊥平面ABC , 所以三棱锥E - BCD 的体积V =16BD ·DC ·DE =13.1年模拟5.[2017·广州模拟]如图K31­2所示, 网格纸上小正方形的边长为1, 粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83, 则该几何体的俯视图可以是( )图K31­2图K31­35.C [解析] 该几何体为正方体截去一部分后剩下的部分,如图四棱锥P - ABCD 所示,则该几何体的俯视图为选项C.7.[2017·长沙一模]某一简单几何体的三视图如图K31­5所示,则该几何体的外接球的表面积是( )图K31­5A .15πB .16πC .25πD .27π7.C [解析] 由三视图知该几何体为底面为正方形的长方体,底面正方形的对角线长为4,长方体的高为3.易知长方体底面边长为22.设长方体外接球的半径为r ,则2r =()2 22+()222+32=5,∴r =52,∴长方体外接球的表面积S =4πr 2=25π.17.[2017·宁德质检]已知正三棱柱ABC - A 1B 1C 1的顶点都在同一个球面上,且该正三棱柱的体积为32,底面三角形ABC 的周长为3,则这个球的体积为__________.17.323π27[解析] 设三棱柱的高为h ,由题可知S △ABC =34,V 三棱柱ABC -A 1B 1C 1=34×h =32,解得h =2. 外接球的球心在上、下底面中心连线的中点处,则外接球半径R =12+⎝⎛⎭⎪⎫12-⎝⎛⎭⎫122×232=43, 所以外接球的体积为43πR 3=43π×⎝⎛⎭⎫433=32 3π27.1.[2017·梅州一检]已知α,β是两个不同的平面,m ,n 是两条不重合的直线,则下列说法中正确的是( )A .若m ∥α,α∩β=n ,则m ∥nB .若m ⊥α,n ⊥m ,则n ∥αC .若m ⊥α,n ⊥β,α⊥β,则m ⊥nD .若α⊥β,α∩β=n ,m ⊥n ,则m ⊥β1.C [解析] 对于A ,如图,m ∥α,α∩β=n ,此时m ,n 异面,故A 错误; 对于B ,若m ⊥α,m ⊥n ,则n ∥α或n ⊂α,故B 错误;对于C ,若n ⊥β,α⊥β,则n ∥α或n ⊂α,又m ⊥α,∴m ⊥n ,故C 正确; 对于D ,若α⊥β,α∩β=n ,m ⊥n ,则m 也可能与β相交、平行或在β内,故D 错误.6. [2017·咸阳月考]在棱长均相等的正四棱锥P - ABCD 中,O 为底面正方形的中心,M ,N 分别为侧棱P A ,PB 的中点,有下列结论:①PC ∥平面OMN ;②平面OMN ⊥平面P AB ;③OM ⊥P A ;④平面PCD ∥平面OMN .其中正确结论的序号是________.图K32­16.①③④ [解析] 如图所示,其中E ,F 分别为AD ,BC 的中点,G 为OE 的中点,平面OMN 即平面MNFE .因为PC ∥OM ,所以PC ∥平面OMN ,同理PD ∥ON ,所以平面PCD ∥平面OMN ,故①④正确;由于四棱锥的棱长均相等,所以P A 2+PC 2=AB 2+BC 2=AC 2,所以PC ⊥P A ,又PC ∥OM ,所以OM ⊥P A ,故③正确;因为OM =12PC =12PD =ME ,所以MG ⊥OE ,又MN ∥OE ,所以GM ⊥MN ,假设平面OMN ⊥平面P AB ,则GM ⊥平面P AB ,则MG ⊥P A ,设四棱锥的棱长为4,则MA =2,AG =5,MG =3,三边长度不满足勾股定理,所以MG 不垂直P A ,与假设矛盾,故②不正确.2.[2017·长沙一模]如图K 33­1所示,以A ,B ,C ,D ,E 为顶点的六面体中,△ABC 和△ABD 均为等边三角形,且平面ABC ⊥平面ABD ,EC ⊥平面ABC ,EC =3,AB =2.图K 33­1(1)求证:DE ∥平面ABC ; (2)求此六面体的体积.2.解:(1)证明:作DF ⊥AB ,交AB 于点F ,连接CF . 因为平面ABC ⊥平面ABD , 所以DF ⊥平面ABC . 又因为EC ⊥平面ABC , 所以DF ∥EC .因为△ABD 是边长为2的等边三角形, 所以DF =3,因此DF =EC ,于是四边形DECF 为平行四边形, 所以DE ∥CF , 因此DE ∥平面ABC .(2)因为△ABD 是等边三角形, 所以F 是AB 的中点, 又△ABC 是等边三角形, 所以CF ⊥AB ,由DF ⊥平面ABC ,知DF ⊥CF , 从而CF ⊥平面ABD . 又因为DE ∥CF , 所以DE ⊥平面ABD ,因此四面体ABDE 的体积为13S △ABD ·DE =1.四面体ABCE 的体积为13S △ABC ·CE =1,而六面体ABCED 的体积=四面体ABDE 的体积+四面体ABCE 的体积, 故所求六面体的体积为2.5.[2017·深圳一调]如图K34­1所示,四边形ABCD 为菱形,四边形ACFE 为平行四边形,BD 与AC 相交于点G ,AB =BD =2,AE =3,∠EAD =∠EAB .(1)证明:平面ACFE ⊥平面ABCD .(2)若∠EAG =60°,求三棱锥F -BDE 的体积.图K34­15.解:(1)证明:连接EG . ∵四边形ABCD 为菱形, ∴AD =AB ,BD ⊥AC ,DG =GB . 在△EAD 和△EAB 中,AD =AB ,AE =AE ,∠EAD =∠EAB , ∴△EAD ≌△EAB , ∴ED =EB ,∴BD ⊥EG . 又∵BD ⊥AC ,AC ∩EG =G , ∴BD ⊥平面ACFE , ∵BD ⊂平面ABCD , ∴平面ACFE ⊥平面ABCD .(2)连接FG ,∵BD ⊥平面ACFE ,FG ⊂平面ACFE , ∴FG ⊥BD .∵在△EAG 中,AE =AG =3,且∠EAG =60°,∴△EAG 为正三角形,∴∠EGA =60°.在△FCG 中,CG =FC =3,∠GCF =120°,∴∠FGC =30°, ∴∠EGF =90°,即FG ⊥EG .又BD ∩EG =G ,∴FG ⊥平面BDE ,∴点F 到平面BDE 的距离为FG =3. ∵S △BDE =12×BD ·EG ,且EG =32-(23)2=3,∴S △BDE =12×2×3=3,∴三棱锥F -BDE 的体积为13×3×3= 3.6.[2017·宁德质检]如图K34­2所示,在菱形ABCD 中,AB =2,∠ABC =60°,BD ∩AC =O ,现将其沿菱形对角线BD 折起得到空间四边形EBCD ,使EC = 2.(1)求证:EO ⊥CD .(2)求点O 到平面EDC 的距离.图K34­26.解:(1)证明:∵四边形ABCD 为菱形,∴AC ⊥BD . ∵BD ∩AC =O ,∴EO ⊥BD .∵在菱形ABCD 中,AB =2,∠ABC =60°,∴AD =CD =BC =2,AO =OC =1.∵EC =2,CO =EO =1,∴EO 2+OC 2=EC 2,∴EO ⊥OC ,又BD ∩OC =O , ∴EO ⊥平面BCD ,∴EO ⊥CD .(2)设点O 到平面ECD 的距离为h ,由(1)知EO ⊥平面OCD . V 三棱锥O -CDE =V 三棱锥E -OCD ,即13S △OCD ·EO =13S △ECD ·h . 在Rt △OCD 中,OC =1,OD =3,∠DOC =90°,∴S △OCD =12·OC ·OD =32.在△CDE中,ED =DC =2,EC =2,∴S △CDE =12×2×22-⎝⎛⎭⎫222=72,∴h =S △OCD ·EO S △ECD =217,即点O 到平面EDC 的距离为217.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017届文科数学立体几何大题训练
1. 如图,三棱锥A —BPC 中,AP ⊥PC ,AC ⊥BC ,M 为AB 中点,D 为PB 中点,且△PMB 为正三角形.
(Ⅰ)求证:DM 如图1,在四棱锥ABCD P -中,⊥PA 底面ABCD ,面ABCD 为正方形,E 为侧棱PD 上一点,F 为AB 上一点.该四棱锥的正(主)视图和侧(左)视图如图2所示.
(Ⅰ)求四面体PBFC 的体积; (Ⅱ)证明:AE ∥平面PFC ;
(Ⅲ)证明:平面PFC ⊥平面PCD .
3. 如图,四棱柱P ABCD -中, .//,,AB PAD AB CD PD AD F ⊥=平面是DC 上的点且1
,2
DF AB PH =为PAD ∆中AD 边上的高.
(Ⅰ)求证://AB 平面PDC ; (Ⅱ)求证:PH BC ⊥;
(Ⅲ)线段PB 上是否存在点E ,使EF ⊥平面PAB 说明理由. F A
D P
C
H
4. 如图,在四棱锥中,底面为菱形,,为的
中点。

(1)若
,求证:平面

(2)点在线段上,
,试
确定的值,使;
5. .如图,E 是矩形ABCD 中AD 边上的点,F 为CD 边的中点,
2
43
AB AE AD ===,现将ABE ∆沿BE 边折至PBE ∆位置,且平面PBE ⊥平面
BCDE .
⑴ 求证:平面PBE ⊥平面
PEF ;
⑵ 求四棱锥P BEFC -的体积.
P
B
C E
D F
E
6. 如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,
90ABC BCD ∠=∠=,PA PD DC CB a ====,2AB a =,E 是PB 中点,H 是AD
中点.
(Ⅰ)求证://EC 平面APD ;(Ⅱ)求三棱锥E BCD -的体积.
7. 如图,在三棱锥S ABC -中,侧面SAB 与侧面SAC 均为等边三角形, 90BAC ∠=°,O 为BC 中点.
(Ⅰ)证明:SO ⊥平面ABC ;
(Ⅱ)求异面直线BS 与AC 所成角的大小.
S
8. 如图,已知AB ⊥平面ACD ,DE ∥AB ,△ACD 是正三角形,2AD DE AB ==,且F 是CD 的中点.
(Ⅰ)求证AF ∥平面BCE ;
(Ⅱ)设AB =1,求多面体ABCDE 的体积.
9.如图,E 是矩形ABCD 中AD 边上的点,F 为CD 边的中点,
2
43
AB AE AD ===,现将
P
E
D E
ABE ∆沿BE 边折至PBE ∆位置,且平面PBE ⊥平面BCDE .
⑴ 求证:平面PBE ⊥平面PEF ; ⑵ 求四棱锥P BEFC -的体积.
10. 右图为一组合体,其底面
ABCD 为正方形,PD ⊥平面ABCD ,//EC PD ,
且22PD AD EC ===
(Ⅰ)求证://BE 平面PDA ; (Ⅱ)求四棱锥B CEPD -的体积; (Ⅲ)求该组合体的表面积.
11. 四棱锥S ABCD -中,底面ABCD

平行四边形,侧面SBC ⊥底面ABCD ,E 为SD 的中点,已知
45222ABC AB BC ∠===,,, 3.SB SC ==
(Ⅰ)求证:SA BC ⊥;
(Ⅱ)在BC 上求一点F ,使//EC 平面SAF ; (Ⅲ)求三棱锥D EAC -的体积.
12. 在三棱柱111ABC A B C -中,底面是边长为32的正三角形,点1A 在底面ABC 上的射影O 恰是BC 中点.
(Ⅰ)求证:1AA BC ⊥;
(Ⅱ)当侧棱1AA 和底面成45角时, 求
11A BB C C V -
(Ⅲ)若D 为侧棱1AA 上一点,当DA
D
A 1为何值时,11BD A C ⊥.
13. 如图,已知三棱锥ABC P -,
90=∠ACB ,D AB CB ,20,4==为AB 中
点,M 为PB 中点,且PDB ∆是正三角形,PC PA ⊥.
(1)求证:平面PAC ⊥平面ABC ; (2)求三棱锥BCD M -的体积.
14.在四棱锥P-ABCD 中,底面ABCD 是矩形,PA=AD=4,AB=2,PB=25,PD=42,E 是PD 的中点 (1)求证:AE ⊥平面PCD ;
(2)若F 是线段BC 的中点,求三棱锥F-ACE 的体积。

D
P
M
C
B
A
15. 如图,在正四棱锥ABCD P -中,底面是边长为2的正方形,侧棱6=PA ,E
为BC 的中点,F 是侧棱PD 上的一动点。

(1)证明:BF AC ⊥;
(2)当直线ACF PE 平面//时,求三棱锥
ACD F -的体积.
16. 如图,在直三棱柱(即侧棱与底面垂直的三棱柱)111ABC A B C -中,
90,ACB ∠=122AC AA BC ===,D 为1AA 的
中点.
(I )求证:平面1B CD ⊥平面11B C D ; (II )求1C 到平面1B CD 的距离.
17.如图,斜三棱柱111A B C ABC -中,侧面11AA C C ⊥底面ABC ,底面ABC 是边长为2的等边三角形,侧面11AA C C 是菱形,160A AC ∠=,E 、F 分别是11A C 、AB 的中点.
求证:(1)EC ABC ⊥平面;
(2)求三棱锥1A EFC -的体积.
18. 如图所示,四棱锥P-ABCD 的底面ABCD 是边长为1的菱形,∠BCD=60︒
,E 是CD 的中点,PA ⊥底面ABCD ,PA=2.
(1)证明:平面PBE ⊥平面PAB ;
(2)求PC 与平面PAB 所成角的余弦值。

A
B
F
C
C 1
E B 1
第18题图
19. 如图,斜三棱柱111A B C ABC -中,侧面11AA C C ⊥底面ABC ,侧面11AA C C 是菱形,
160A AC ∠=,E 、F 分别是11A C 、AB 的中点.
求证:(1)EF ∥平面11BB C C ; (2)平面CEF ⊥平面ABC
20.已知△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,∠ADB =60°,E 、F 分别是AC 、AD 上的动点,且
)10(,<<==λλAD
AF
AC AE (Ⅰ)求证:不论λ为何值,总有平面BEF ⊥平面ABC ;
(Ⅱ)当λ为何值时,平面BEF ⊥平面ACD
C
E F
E
D
B
A
C。

相关文档
最新文档