函数的对称性
10、函数对称性
十、函数对称性一、函数对称性对称性是函数的一个基本性质,对称性不仅广泛的存在与数学问题之中,而且利用对称性往往能够更为简捷的解决数学问题,高考中也函数对称性的考察,列为高考的重点。
1、函数()y f x =自身图像的对称性定理:若函数()f x 满足()()f a x f b x +=-,则函数()f x 图像关于直线2a bx +=对称。
“()()f a x f b x +=-”表示当自变量取a x +和自变量取a x -时的函数值相等。
也就是说函数图像上的两点横坐标分别是a x +和a x -,且它们的纵坐标相等。
在直角坐标系中更能体现这一关系:2不同但是它们的纵坐标相等,从图像上可以看出这两点关于直线2a bx +=对称。
我们知道当x 在函数内取不同值时,a x +与a x -所表示的点的很坐标也不同如:当1x =时,两点的横坐标分别为1a +和1a -,它们的中点仍然是2a b+,并且同样有(1)(1)f a f b +=-,所以当1x =时所对应的两个点是关于2a bx +=对称的;当2x =时,两点的横坐标分别为2a +和2a -,它们的中点也是2a b+,并且同样有(2)(2)f a f b +=-,所以当2x =时所对应的两点也是关于2a bx +=对称的。
当x 取不同值时,a x +与a x -表示若干组不同的点,但是这些点都是关于直线2a bx +=对称的。
因此函数图像上所有的点都是关于直线2a bx +=对称的,所以只要函数()f x 满足()()f a x f b x +=-,则函数()f x 图像就关于2a bx +=对称。
定理的一些推论:①()()f a x f a x +=-⇔函数()y f x =的图象关于直线x a =对称 ②(2)()f a x f x -=⇔函数()y f x =的图象关于直线x a =对称 ③()()f x f x -=⇔函数()y f x =的图象关于直线y 轴对称 ④函数)(a x f y +=是偶函数)(x f ⇔关于a x =对称因为函数)(a x f y +=是由函数()y f x =向左或向右平移而等到的,假设0a >,则)(a x f y +=是将函数()y f x =向左平移a 个单位而得到的,反过来,函数)(a x f y +=向右平移a 个单位就得到()y f x =,因为函数)(a x f y +=是偶函数,所以函数)(a x f y +=是关于y 轴对称的,将)(a x f y +=向右平移a 个单位,那么对称轴y 轴也向右平移a 个单位,所以函数()y f x =的对称轴为a x =。
函数的对称性
函数的对称性
(内容需原创)
1. 函数的对称性是指一个函数的值在某一点或几个点取到最大值或最小值的性质。
2. 函数的对称性是一种比较容易发现的函数性质。
掌握函数的对称性有助于提升函数分解、求导和求解数学问题的能力。
3. 常见的函数对称性有:
(1) 奇函数的对称性:如果它以某一点经过或以其为中心对称,则称其为奇函数。
例如,三次多项式函数y=ax^3+bx^2+cx+d,它以x = 0 为中心,应用自变量的变换x→-x,函数变化f(x)→-f(x),可知y=ax^3+bx^2+cx+d也是一个奇函数。
(2)偶函数的对称性:如果以某一点经过左右对称,则称其为偶函数。
例如,二次多项式函数y=ax^2+bx+c,它以 x = 0 中心对称,若将自变量x变换x→-x,函数变化f(x)→f(x),可知y=ax^2+bx+c也是一个偶函数。
(3) 关于y轴对称性:如果函数的每一对对称点,在y轴中对称,则称其为y轴对称性。
例如,三次多项式函数y= ax^3+bx^2+cx+d,它的每一对对称点(x1,y1)(x2,y2),在y轴中也是对称的,即(-x1,y1)(-x2,y2),因此y=ax^3+bx^2+cx+d也具有y轴对称性。
4. 位移与缩放函数作为其他对称性。
位移函数可以理解为在某一段函数上进行位移,缩放函数可以理解为改变某一段函数的显示大小。
5. 函数对称性可用已知特征函数作为依据来发现,其变换规律可以用三角函数,指数函数以及幂函数等来描述。
6. 对函数的对称性有所了解,能够从宏观和微观的角度更好的理解函数的定义及其变化规律,并有效的运用它们解决数学问题。
函数的对称性
一、函数自身的对称性探究定理1.函数y = f (x)的图像关于点A (a ,b)对称的充要条件是f (x) + f (2a-x) = 2b证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P'(2a-x,2b-y)也在y = f (x)图像上,∴2b-y = f (2a-x)即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。
(充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0)∵ f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。
故点P'(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P'关于点A (a ,b)对称,充分性得征。
推论:函数y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0定理2. 函数y = f (x)的图像关于直线x = a对称的充要条件是f (a +x) = f (a-x) 即f (x) = f (2a-x) (证明留给读者)推论:函数y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x)定理3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(a≠b),则y = f (x)是周期函数,且2| a-b|是其一个周期。
②若函数y = f (x) 图像同时关于直线x = a 和直线x = b成轴对称(a≠b),则y = f (x)是周期函数,且2| a-b|是其一个周期。
③若函数y = f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b成轴对称(a≠b),则y = f (x)是周期函数,且4| a-b|是其一个周期。
函数对称性的总结
函数对称性的总结函数对称性是数学中一个重要的概念,在各个领域都有广泛应用。
理解和应用函数对称性有助于我们更好地理解和解决数学问题。
本文将对函数对称性的概念、性质和应用进行总结。
函数对称性的概念:在数学中,函数对称性是指函数具有某种变换性质,使得在一定的条件下,函数在变换前后保持不变。
具体来说,如果对于定义域上的任意一个元素x,都存在一个元素y,使得对称变换后的x,会得到y,在函数对称变换之后,函数的图像也会发生相应的变化。
函数对称性可以分为轴对称、中心对称和周期对称等。
1.轴对称:一个函数在平面上如果具有轴对称性,比如存在一个轴使得对称变换后的图像与变换前的图像完全重合,那么这个函数就是轴对称函数。
轴对称函数的图像具有左右对称的特点。
比如,y = x^2 就是一个轴对称函数,其图像关于y轴对称。
2.中心对称:一个函数在平面上如果具有中心对称性,比如存在一个点使得对称变换后的图像与变换前的图像完全重合,那么这个函数就是中心对称函数。
中心对称函数的图像具有上下左右对称的特点。
比如,y = sin(x) 就是一个中心对称函数,其图像关于原点对称。
3.周期对称:一个函数如果具有周期对称性,那么在一定的周期内,函数的变换可以形成循环。
即,在给定的周期内,函数的某个值与另一个值相等。
周期对称函数的图像在周期内具有相似的形状和变化趋势。
比如,y = sin(x) 就是一个周期对称函数,其周期为2π。
函数对称性的性质:1.对称轴或对称中心是函数对称性的重要特征。
通过找到函数的对称轴或对称中心,可以更好地理解函数的变化规律和性质。
2.函数对称性能够简化函数的分析和计算过程。
根据函数对称性的特点,我们可以通过分析对称图形的一部分,推断出对称图形的其他部分;通过对称性可以简化函数的复杂性,并提供更方便的计算方法。
3.函数对称性能够提供问题求解的启示。
函数对称性在实际问题中具有重要的应用价值,比如建筑设计中的对称线、电路中的交流信号分析等。
函数对称性的总结
函数对称性的总结函数对称性是数学中一个重要的概念,可以帮助我们更好地理解和分析各种函数。
在本文中,我将总结函数对称性的基本概念、性质和应用,以及如何判断函数的对称性。
首先,什么是函数对称性?函数对称性指的是函数在某种变换下保持不变的性质。
具体来说,如果函数在某个变换下满足等式 f(x) = f(-x),那么我们称这个函数具有对称性。
这个变换可以是关于原点对称、关于y轴对称、关于x轴对称等。
常见的函数对称性包括:1. 关于原点对称:如果一个函数满足 f(x) = f(-x),则称该函数关于原点对称。
这意味着函数的图像在原点处对称,即图像的左右两侧是镜像关系。
2. 关于y轴对称:如果一个函数满足 f(x) = f(-x),则称该函数关于y轴对称。
这意味着函数的图像在y轴上对称,即在图像的左右两侧相互重合。
3. 关于x轴对称:如果一个函数满足 f(x) = -f(-x),则称该函数关于x轴对称。
这意味着函数的图像在x轴上对称,即图像关于x轴对称。
函数对称性的性质也值得我们注意:1. 对称性可以简化函数的分析和计算。
例如,如果一个函数是关于y轴对称的,那么我们只需要计算出函数在y轴右侧的部分,然后将结果镜像到左侧即可。
2. 对称性可以帮助我们发现函数的特点。
例如,如果一个函数是关于x轴对称的,那么当 x = a 是函数的零点时,可以确定 x = -a 也是函数的零点。
现在,让我们来看看如何判断一个函数是否具有对称性。
一般来说,我们可以通过一些简单的方法来进行判断。
1. 对称性的代数判断方法:通过代数运算,我们可以验证函数的对称性。
例如,对于关于原点对称的函数,我们可以将 x 替换为 -x,然后将两边进行比较来判断函数是否具有对称性。
2. 对称性的图形判断方法:通过函数的图形来判断函数是否具有对称性。
我们可以绘制函数的图像,并观察图像是否在某个变换下保持不变。
3. 对称性的性质判断方法:通过函数的性质来判断函数是否具有对称性。
函数对称性公式大总结
函数对称性公式大总结1. 引言在数学中,函数对称性是一个重要的概念,它描述了函数在某种变换下保持不变的性质。
函数对称性有多种形式,如轴对称性、中心对称性等。
本文将对函数对称性的一些常见公式进行总结,并提供示例说明。
2. 轴对称函数公式2.1 轴对称性的定义轴对称是指函数图像对于某一条直线对称,即函数图像在这条直线两侧对称。
设函数为 f(x),对称轴为 x = a,则函数 f(x) 在对称轴两侧的函数值相等,即 f(a + h) = f(a - h)。
2.2 轴对称函数公式•偶函数:若函数 f(x) 满足 f(-x) = f(x),则称 f(x) 为偶函数。
•奇函数:若函数 f(x) 满足 f(-x) = -f(x),则称 f(x) 为奇函数。
偶函数和奇函数都具有轴对称性,其中以偶函数更为常见。
3. 中心对称函数公式3.1 中心对称性的定义中心对称是指函数图像对于某一点对称,即函数图像关于这一点对称。
设函数为 f(x),对称中心为 (a, b),则函数 f(x) 在对称中心两侧的函数值相等,即 f(a + h) = f(a - h)。
3.2 中心对称函数公式•对数函数:对数函数 y = loga(x) 关于 y 轴对称,其中 a > 0,且a ≠ 1。
•幂函数:幂函数 y = ax^n 关于 y 轴对称,其中a ≠ 0,且 n 为任意整数。
•正弦函数和余弦函数:正弦函数 y = sin(x) 和余弦函数 y = cos(x) 关于原点对称。
4. 复合对称函数公式4.1 复合对称性的定义复合对称是指函数图像同时具有轴对称性和中心对称性。
函数 f(x) 在具有轴对称性的直线上的每一个点,同时也是具有中心对称性的点。
4.2 复合对称函数公式•奇次幂函数:奇次幂函数y = ax^(2n+1) 具有轴对称性和中心对称性,其中a ≠ 0,n 为任意整数。
5. 示例说明5.1 示例 1:偶函数考虑函数 f(x) = x^2,我们可以看到该函数关于 y 轴对称,即 f(x) = f(-x)。
函数对称性
函数的对称性:y=f(|x|)是偶函数,它关于y轴对称,y=|f(x)|是把x轴下方的图像对称到x轴的上方,但无法判断是否具备对称性。
例如,y=|lnx|没有对称性,而y=|sinx|却有对称性。
函数的对称性公式推导1.对称性f(x+a)=f(b-x)记住此方程式是对称性的一般形式.只要x有一个正一个负.就有对称性.至于对称轴可用吃公式求X=a+b/2如f(x+3)=f(5_x)X=3+5/2=4等等.此公式对于那些未知方程,却知道2方程的关系的都通用.你可以去套用,在此不在举例.对于已知方程的要求对称轴的首先你的记住一些常见的对称方程的对称轴.如一原二次方程f(x)=ax2+bx+c对称轴X=b/2a原函数与反函数的对称轴是y=x.而对于一些函数如果不加限制条件就不好说它们的对称轴如三角函数,它的对称轴就不仅仅是X=90还有…(2n+!)90度等等.因为他的定义为R.f(x)=|X|他的对称轴则是X=0,还应该注意的是一些由简单函数平移后要求的对称轴就只要把它反原成出等的以后在加上平移的数量就可以了.如f(x-3)=x-3。
令t=x-3,则f(t)=t。
可见原方程是由初等函数向右移动了3个单位。
同样对称轴也向右移3个单位X=3(记住平移是左加右减的形式,如本题的X-3说明向由移)2,至于周期性首先也的从一般形式说起f(x)=f(x+T)注意此公式里面的X都是同号,而不象对称方程一正一负.此区别也是判断对称性还是周期性的关键.同样要记住一些常见的周期函数如三角函数什么正弦函数,余弦函数正切函数等.当然它们的最小周期分别是2π,2π,π,当然他们的周期不仅仅是这点只要是它们最小周期的正数倍都可以是题目的周期.如f(x)=sinX,T=2π(T=2π/W)但是如果是f(x)=|sinx|的话它的周期就是T=π因为加了绝对值之后Y轴下面的图形全被翻到上面去了,由图不难看出起最小对称周T =π.y1=(sinx)^2=(1-cos2x)/2上面的2个方程T=π(T=2π/W)而对于≥2个周期函数方程的加减复合方程,如果他们的周期相同,则它的周期还是相同的周期.如y=sin2x+cos2x因为他们有一个公共周期T =π所以它的周期为T=π而对于不相同的周期则它的周期为它们各个周期的最小公倍数.如y=sin3πx+cos2πx,T1=2/3,T2=1则T=2/3对称函数在对称函数中,函数的输出值不随输入变数的排列而改变。
函数的对称性
函数的对称性知识梳理一、对称性的概念及常见函数的对称性1、对称性的概念①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。
②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。
2、常见函数的对称性(所有函数自变量可取有意义的所有值)①常数函数;②一次函数;③二次函数;④反比例函数;⑤指数函数;⑥对数函数;⑦幂函数;⑧正弦函数;⑨正弦型函数sin()y A x ωϕ=+既是轴对称又是中心对称;⑩余弦函数;⑾正切函数;⑿耐克函数;⒁绝对值函数:这里主要说的是(||)y f x =和|()|y f x =两类。
前者显然是偶函数,它会关于y 轴对称;后者是把x 轴下方的图像对称到x 轴的上方,是否仍然具备对称性,这也没有一定的结论,例如|ln |y x =就没有对称性,而|sin |y x =却仍然是轴对称。
⒂形如(0,)ax b y c ad bc cx d +=≠≠+的图像是双曲线,其两渐近线分别直线d x c=- (由分母为零确定)和直线a y c =(由分子、分母中x 的系数确定),对称中心是点(,)d a c c-。
二、抽象函数的对称性【此类问题涉及到了函数图象的两种对称性,一种是同一函数自身的对称性,我们称其为自对称;另一种是两个函数之间的对称性 ,我们称其为互对称。
】1、函数)(x f y =图象本身的对称性(自对称问题)(1)轴对称①)(x f y =的图象关于直线a x =对称 ⇔)()(x a f x a f -=+ ⇔)2()(x a f x f -=⇔)2()(x a f x f +=-②)()(x b f x a f -=+ ⇔)(x f y =的图象关于直线22)()(b a x b x a x +=-++=对称. 特别地,函数)(x f y =的图像关于y 轴对称的充要条件是()()f x f x =-.(2)中心对称①)(x f y =的图象关于点),(b a 对称⇔b x a f x a f 2)()(=-++ ⇔b x a f x f 2)2()(=-+⇔b x a f x f 2)2()(=++-。
函数对称性梳理
函数对称性梳理函数的对称性是函数的一个重要性质,对称关系广泛存在于数学问题之中,利用对称性能更简捷地解决问题。
函数的对称包括函数自身的对称性和不同函数之间的对称性。
下面具体分析各个方面:一、函数自身的对称定理1.函数y=f(x)的图像关于点a(a ,b)对称的充要条件是:f(x)+f(2a-x)=2b推论:函数y= f(x)的图像关于原点的对称的充要条件是f(x)+f(-x)=0定理2. 函数y=f(x)的图像关于直线x=a对称的充要条件是f(a+x)=f(a-x)即f(x)=f(2a-x)推论:函数y=f(x)的图像关于y轴对称(实际是偶函数)的充要条件是f(x)=f(-x)定理3. ①若函数y=f(x) 图像同时关于点a(a,c)和点b(b,c)成中心对称(a≠b),则y=f(x)是周期函数,且2|a-b|是其一个周期。
②若函数y=f(x) 图像同时关于直线x=a和直线x=b成轴对称(a ≠b),则y=f(x)是周期函数,且2|a-b|是其一个周期。
③若函数y=f(x)图像既关于点a(a,c)成中心对称又关于直线x=b 成轴对称(a≠b),则y=f(x)是周期函数,且4|a-b|是其一个周期。
二、不同函数对称性定理4. 函数y=f(x)与y = 2b-f (2a-x)的图像关于点a (a ,b)成中心对称。
定理5. ①函数y=f(x)与y=f(2a-x)的图像关于直线x= a成轴对称。
②函数y=f(x)与a-x=f(a-y)的图像关于直线x+y=a成轴对称。
③函数y=f(x)与x-a=f(y + a)的图像关于直线x-y=a成轴对称。
推论:函数y=f(x)的图像与x=f(y)的图像关于直线x=y 成轴对称(实际是函数与反函数的问题)。
三、函数对称性应用举例例1 定义在r上的非常数函数满足:f(x+10)为偶函数,且f(5-x)=f(5+x),则f(x)一定是()a. 是偶函数,也是周期函数b. 是偶函数,但不是周期函数c. 是奇函数,也是周期函数d. 是奇函数,但不是周期函数例解:因为f(x+10)为偶函数,所以f(10+x)=f(10-x)。
函数的性质对称性
函数的性质对称性张磊函数的对称性是函数的重要性质之一,主要包括轴对称和中心对称两种.在解几中,许多问题中都隐含对称性,如角的平分线,线段的中垂线,光的反射等,要注意挖掘,充分利用对称性,中点坐标公式,斜率关系加以解决;在函数中,对称性与函数的奇偶性、周期性又有着内在的联系,解题时常常要进行相互转化,再加以解决.一对称性的有关结论1 y=f(x)关于x=a对称f(2ax) =f(x) f(2a+x) =f(-x)f(ax) =f(x+x) 内反外同轴对称对称f(ax) =f(bx)引申 y=f(x)关于x=a+b22 y=f(x)关于点(a,0)对称f(2ax) =-f(x)f(2a+x) =-f(-x)f(ax) =f(a+x) 内外都反点对称引申 y=f(x)关于点(a,b)对称 f(2ax) =2bf(x)二对称性与奇偶性关系奇函数的图像关于原点(0 ,0)对称;偶函数图像关于y轴对称.奇偶性实际是一种特殊的对称性.三对称性与周期性关系双对称周期性 (联系正余余弦函数对称性与周期性关系) 1 {f (2a +x ) =f (−x )f (2b +x ) =f (−x )f (2a +x ) = f (2b +x ) f(2a-2b+x)= f(x)所以函数f(x)是周期函数,周期为|2a −2b |2 {f (2a +x )=−f (−x )f (2b +x )=−f (−x )f (2a +x ) = f (2b +x ) f(2a-2b+x)= f(x)所以函数f(x)是周期函数,周期为|2a −2b |3 {f (2a +x )=f (−x )f (2b +x )=−f (−x )f (2a +x )=− f (2b +x ) f(2a-2b+x)= -f(x) f(4a-4b+x)= f(x)所以函数f(x)是周期函数,周期为|4a −4b |四 点关于线的对称点点(x 0 ,y 0)关于直线ax+by+c=0的对称点为(x 02a a 2+b 2(a x 0+by 0+c ) , y 02b a 2+b 2(a x 0+by 0+c ))。
函数对称性的总结
参考一:函数对称性总结函数的对称性一、三角函数图像的对称性1、y =f (x ) 与y =-f (x ) 关于x 轴对称。
换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) =-g (x ) ,即它们关于y =0对称。
2、y =f (x ) 与y =f (-x ) 关于Y 轴对称。
换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) =g (-x ) ,即它们关于x =0对称。
3、y =f (x ) 与y =f (2a -x ) 关于直线x =a 对称。
换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) =g (2a -x ) ,即它们关于x =a 对称。
4、y =f (x ) 与y =2a -f (x ) 关于直线y =a 对称。
换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) +g (x ) =2a ,即它们关于y =a 对称。
5、y =f (x ) 与y =2b -f (2a -x ) 关于点(a , b ) 对称。
换种说法:y =f (x ) 与y =g (x ) 若满足f (x ) +g (2a -x ) =2b ,即它们关于点(a , b ) 对称。
6、y =f (a -x ) 与y =f (x -b ) 关于直线x =二、单个函数的对称性一、函数的轴对称:定理1:如果函数y =f (x )满足f (a +x )=f (b -x ),则函数y =f (x )的图象关于直线x =a +b2a +b 2对称。
对称.推论1:如果函数y =f (x )满足f (a +x )=f (a -x ),则函数y =f (x )的图象关于直线x =a 对称. 推论2:如果函数y =f (x )满足f (x )=f (-x ),则函数y =f (x )的图象关于直线x =0(y 轴)对称. 特别地,推论2就是偶函数的定义和性质. 它是上述定理1的简化.二、函数的点对称:定理2:如果函数y =f (x )满足f (a +x )+f (a -x )=2b ,则函数y =f (x )的图象关于点(a , b )对称.推论3:如果函数y =f (x )满足f (a +x )+f (a -x )=0,则函数y =f (x )的图象关于点(a , 0)对称.推论4:如果函数y =f (x )满足f (x )+f (-x )=0,则函数y =f (x )的图象关于原点(0, 0)对称. 特别地,推论4就是奇函数的定义和性质. 它是上述定理2的简化.性质5:函数y =f (x ) 满足f (a +x ) +f (b -x ) =c 时,函数y =f (x ) 的图象关于点(a +b ,c )对称。
第十四课--函数的对称性
1.f(x)是定义在R上的以3为周期的奇函
数,且f(2)=0,则方程f(x)=0在区间(0,6)
内解的个数的最小值是( )
D
A.3 B.4 C.5 D.7
f(x)是周期为T的奇函数,则f(T/2)=0
2.已知定义在R上的奇函数f(x)满足
f(x+2)=-f(x),则f(6)的值为
B
(A)-1 (B) 0 (C) 1 (D)2
13.函数y=sinx关于点(kπ,0)对称,也 关于直线x=π/2+kπ对称 14.函数y=cosx关于点(π/2+kπ,0)对 称,也关于直线x=kπ对称
15.函数y=tanx关于点(kπ/2,0)对称
16.三次函数y=ax3+bx2+cx+d关于 点(-b/3a,f(-b/3a))对称
六、练习题
T=4 (3)减函数
20.已知函数y=f(x)是定义在R上的周期 函数,周期T=5,函数y=f(x)(-1≤x≤1)是 奇函数.又知y=f(x)在[0,1]上是一次函数, 在[1,4]上是二次函数,且在x=2时函数 取得最小值-5.(1)证明:f(1)+f(4)=0;(2) 求y=f(x),x∈[1,4]的解析式; (3)求y=f(x)在[4,9]上的解析式.
三、两个函数的轴对称:若函数y=f (x) 定义
域为R,则函数y=f (a+x) 与y=f (b-x)两函数
的图象关于直线x=(b-a)/2对称。
5.函数y=f(x-a)与y=f(a-x)的图
象关于什么直线对称? 若f(x)满足f(x-a)=f(a-x),则
x=a
f(x)的图像有怎样的对称性? x=0
15.设f (x)= x2 +1 ,若g (x)的图象与 y=f(x+2) 的图象关于点(1,1)对称,求g (x)
函数对称性
故点M1(2a-x0,2b-y0)也在 图像上;而点M与点M1关于点P(a ,b)对称。
在掌握了(*)式以后,也基本解决了函数 在平面内关于任一点对称的问题。
(1)f(a+x)=f(a-x)。
(2)f(2a-x)=f(x)。
(3)f(2a+x)=f(-x)。
性质2、若函数y=f(x)关于点(a,0)中心对称,则以下三式成立且等价:
(1)f(a+x)=-f(a-x)。
(2)f(2a-x)=-f(x)。
解:设点 是函数 图象上的任一点。
若 ,则点M关于函数 的图象上;
若 ,则点 关于直线 的对称点为 ,这点也在 的图象上;
若 ,可类似说明。
所以 与 的图象关于直线 对称。
例4.设f(x)是定义在R上的偶函数,且f(1+x)= f(1-x),当-1≤x≤0时,
⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴。
⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化。
(A) 1999; (B)2000; (C)2001; (D)2002。
解:∵y = f(x-1)和y = g-1(x-2)函数的图像关于直线y = x对称,
函数的对称性
函数的对称性一、有关对称性的常用结论(一)函数图象自身的对称关系1、轴对称(1))(x f -=)(x f ⇔函数)(x f y =图象关于y 轴对称;(2) 函数)(x f y =图象关于a x =对称⇔)()(x a f x a f -=+⇔()(2)f x f a x =-⇔()(2)f x f a x -=+;(3)若函数)(x f y =定义域为R ,且满足条件)()(x b f x a f -=+,则函数)(x f y =的图象关于直线2b a x +=对称。
2、中心对称(1))(x f -=-)(x f ⇔函数)(x f y =图象关于原点对称;.(2)函数)(x f y =图象关于(,0)a 对称⇔)()(x a f x a f --=+⇔()(2)f x f a x =-- ⇔)2()(x a f x f +=-;(3)函数)(x f y =图象关于),(b a 成中心对称⇔b x a f x a f 2)()(=++-⇔b x f x a f 2)()2(=+-(4)若函数)(x f y = 定义域为R ,且满足条件c x b f x a f =-++)()((c b a ,,为常数),则函数)(x f y =的图象关于点)2,2(c b a + 对称。
(二)两个函数图象之间的对称关系 1.若函数)(x f y =定义域为R ,则两函数)(x a f y +=与)(x b f y -=的图象关于直线2a b x -=对称。
推论1:函数)(x a f y +=与函数)(x a f y -=的图象关于直线0=x 对称。
推论2:函数)(a x f y -=与函数)(x a f y -=的图象关于直线a x =对称。
2.若函数)(x f y =定义域为R ,则两函数)(x a f y +=与)(x b f c y --=的图象关于点)2,2(c a b -对称。
推论:函数)(x a f y +=与函数)(x b f y --=图象关于点)0,2(a b -对称。
初中数学 什么是函数的对称性 如何判断一个函数是否具有对称性
初中数学什么是函数的对称性如何判断一个函数是否具有对称性函数的对称性是指函数图像在坐标平面上的某种变换下仍保持不变的性质。
常见的函数对称性包括奇偶性对称、轴对称和中心对称等。
1. 奇偶性对称:如果对于任意$x$,都有$f(-x)=-f(x)$,那么称函数$f(x)$是奇函数。
奇函数图像关于原点对称。
如果对于任意$x$,都有$f(-x)=f(x)$,那么称函数$f(x)$是偶函数。
偶函数图像关于$y$轴对称。
2. 轴对称:如果函数图像关于某条垂直于$x$轴的直线对称,那么称函数具有$x$轴对称性。
同样地,如果函数图像关于某条垂直于$y$轴的直线对称,那么称函数具有$y$轴对称性。
3. 中心对称:如果函数图像关于坐标系中心对称,那么称函数具有中心对称性。
要判断一个函数是否具有对称性,可以采用以下方法:1. 奇偶性判断:对于一个函数,可以根据函数的定义式来判断它是否是奇偶函数。
如果函数的定义式中只包含偶次幂或者只包含奇次幂,那么它就是偶函数或者奇函数。
如果函数的定义式中既包含偶次幂又包含奇次幂,那么它既不是偶函数也不是奇函数。
2. 轴对称判断:通过观察函数图像在坐标平面上的位置和形状,可以判断函数是否具有轴对称性。
如果函数图像关于某条垂直于$x$轴或$y$轴的直线对称,那么函数具有$x$轴或$y$轴对称性。
3. 中心对称判断:通过观察函数图像在坐标平面上的位置和形状,可以判断函数是否具有中心对称性。
如果函数图像关于坐标系中心对称,那么函数具有中心对称性。
需要注意的是,函数的对称性是函数图像在坐标平面上的某种变换下仍保持不变的性质。
不同的对称性可以对应不同的变换方式,具体需要根据函数的定义式和函数图像来进行判断。
希望以上内容能够帮助你理解函数的对称性以及如何判断一个函数是否具有对称性,并提供了一些常用的判断方法和思路。
函数的对称性ppt课件
(1)(2023·郴州检测)已知函数f(x)=-x2+bx+c,且f(x+1)是
偶函数,则f(-1),f(1),f(2)的大小关系是
A.f(-1)<f(1)<f(2)
B.f(1)<f(2)<f(-1)
C.f(2)<f(-1)<f(1)
D.f(-1)<f(2)<f(1)
√
(2)(2023·银川模拟)已知函数f(x)(x∈R)满足f(4+x)=f(-x),若函数y=
则 + = .
【答案】6
【解析】设函数 图象的对称中心为 , ,则有2 = + (2 − ),
即2 = 3 − 9 2 + 29 − 30 + (2 − )3 − 9(2 − )2 + 29(2 − ) − 30,
整理得2 = (6 − 18) 2 − (122 − 36) + 83 − 362 + 58 − 60,
所以 = 2 .
故答案为 = 2 .
题型三
例3
两个函数图象的对称
已知函数y=f(x)是定义域为R的函数,则函数y=f(x+2)与y=f(4-x)
的图象
√
A.关于直线x=1对称
B.关于直线x=3对称
C.关于直线y=3对称
D.关于点(3,0)对称
跟踪训练3
A.y=ex-1
√
C.y=e2-x
A
B
考点2 函数的对称性
一。函数的图象自对称性
函数y=f(x)图象关于直线x=a对称⇔f(2a-x)=f(x)
函数y=f(x)图象关于点(a,b)中心对称 ⇔f(2a-x)+f(x)=2b
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的对称性
函数的对称性是指函数的图形在一条对称轴上的对称表现,或者说任意函数的定义域内的变化模式有着一定的对称特征。
通俗地讲,当给定一个函数,可以通过将它的图形翻转沿着某条对称轴的方式去考察其对称性,而是否存在某种对称性则会取决于函数的形式及其参数,也就是说它们会决定函数的对称轴甚至其非对称情况。
对称性非常重要,因为它有助于记忆和理解函数。
举个例子来说,如果你有一个函数f,它的定义域内具有左右对称性,那
么你可以通过在x=0处切割它们,为此可以将函数中的x称为对称轴,这样就可以很容易地推断出它的行为规律。
而此外,如果一个函数的定义域内没有对称的规律,它可能不是很容易理解。
人们可以用三种方式来表达函数的对称性:反比例、反射和旋转。
反比例方式指的是在定义域内以反比例多少的方式进行调整,即以相同的数字翻转,使得变化的规律完全一致,但是具体的数字却不同。
反射方式指的是把一个函数的所有点的x坐标的值取反,使表达式(f(-x))成为另一个函数(f(x))的对称图形。
而旋转方式则是指以y轴或者x轴中心点旋转,使每个点的坐标的值发生变化,从而形成对称的函数图形。
另外,函数的对称性还受把某个参数称为平移向量或旋转角度所影响。
对于平移向量来说,可以将函数内部的某些坐标(x,y)向左右或上下方移动,使其变得更加对称,形成相对简单
的函数图形。
而旋转角度则是指以一个定义域内某个点为中心,
使整个函数的图像旋转一定的角度,使函数的变化模式更加简单。
总而言之,函数的对称性是一个重要的概念,它不仅可以帮助我们理解函数的表现规律,还可以帮助我们把函数的参数和变量更好地对应起来。
各种不同的变换会使函数的定义域内的变化模式发生改变,这同样也影响了函数的对称性,所以理解函数的对称性也是重要的,也是一个要注意的问题。