数列综合测试题(经典)含答案
数列测试题及答案
数列测试题及答案一、选择题1. 已知数列\( a_n \)的通项公式为\( a_n = 3n - 1 \),那么第10项的值为:A. 29B. 28C. 27D. 26答案:A2. 若数列\( b_n \)的前n项和为\( S_n \),且\( S_n = n^2 \),求数列\( b_n \)的第3项:A. 5B. 6C. 7D. 8答案:B二、填空题1. 给定等差数列\( c_n \),首项\( c_1 = 5 \),公差\( d = 3 \),其第5项为________。
答案:202. 若数列\( d_n \)是等比数列,且\( d_1 = 2 \),公比\( q = 4 \),求第4项:________。
答案:64三、解答题1. 已知数列\( e_n \)的前n项和为\( S_n \),若\( S_3 = 21 \),\( S_5 = 45 \),求\( e_4 + e_5 \)。
解:由题意得\( e_4 + e_5 = S_5 - S_3 = 45 - 21 = 24 \)。
2. 某等差数列的前5项和为50,且第3项为15,求该数列的首项和公差。
解:设该等差数列的首项为\( a \),公差为\( d \),则有:\[ 5a + 10d = 50 \]\[ a + 2d = 15 \]解得:\( a = 5 \),\( d = 5 \)。
四、证明题1. 证明等差数列中,任意两项的等差中项等于它们的算术平均数。
证明:设等差数列\( f_n \)的首项为\( f_1 \),公差为\( d \),任取两项\( f_m \)和\( f_n \)(\( m < n \)),则它们的等差中项为\( f_{\frac{m+n}{2}} \)。
根据等差数列的性质,有:\[ f_{\frac{m+n}{2}} = f_1 + \left(\frac{m+n}{2} -1\right)d \]而算术平均数为:\[ \frac{f_m + f_n}{2} = \frac{f_1 + (m-1)d + f_1 + (n-1)d}{2} = f_1 + \frac{(m+n-2)d}{2} \]由于\( \frac{m+n}{2} - 1 = \frac{m+n-2}{2} \),所以两者相等,证明了等差中项等于算术平均数。
数列测试题及答案
数列测试题及答案一、选择题1. 已知数列{a_n}满足a_1=1,a_{n+1}=2a_n+1,那么a_5的值为:A. 15B. 31C. 63D. 127答案:B2. 数列{a_n}是等差数列,公差为3,且a_3=12,则a_1的值为:A. 3B. 6C. 9D. 12答案:B3. 已知数列{a_n}满足a_1=2,a_{n+1}=3a_n,那么数列的通项公式为:A. a_n = 2 * 3^{n-1}B. a_n = 2 * 3^nC. a_n = 3 * 2^{n-1}D. a_n = 3^n答案:B二、填空题4. 已知数列{a_n}的前n项和S_n=n^2,求a_3的值。
答案:65. 数列{a_n}是等比数列,首项为2,公比为4,求a_5的值。
答案:128三、解答题6. 已知数列{a_n}满足a_1=1,a_{n+1}=a_n+n,求数列的前5项。
答案:a_1 = 1a_2 = a_1 + 1 = 2a_3 = a_2 + 2 = 4a_4 = a_3 + 3 = 7a_5 = a_4 + 4 = 117. 已知数列{a_n}是等差数列,且a_1=5,a_4=14,求数列的通项公式。
答案:a_n = 5 + (n-1) * 3 = 3n + 28. 已知数列{a_n}满足a_1=2,a_{n+1}=2a_n+1,求数列的前5项。
答案:a_1 = 2a_2 = 2a_1 + 1 = 5a_3 = 2a_2 + 1 = 11a_4 = 2a_3 + 1 = 23a_5 = 2a_4 + 1 = 479. 已知数列{a_n}是等比数列,首项为3,公比为2,求数列的前5项。
答案:a_1 = 3a_2 = 3 * 2 = 6a_3 = 6 * 2 = 12a_4 = 12 * 2 = 24a_5 = 24 * 2 = 4810. 已知数列{a_n}满足a_1=1,a_{n+1}=3a_n-2,求数列的前5项。
数列综合测试题含标准答案
数列综合测试题(经典)含标准答案(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--数列综合测试题第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是( )B .1C .2D .32.设等比数列{a n }的前n 项和为S n ,若8a 2+a 5=0,则下列式子中数值不能确定的是( )3.(理)已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *)且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .54.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为正偶数时,n 的值可以是( )A .1B .2C .5D .3或115.已知a >0,b >0,A 为a ,b 的等差中项,正数G 为a ,b 的等比中项,则ab 与AG 的大小关系是( )A .ab =AGB .ab ≥AGC .ab ≤AGD .不能确定6.各项都是正数的等比数列{a n }的公比q ≠1,且a 2,12a 3,a 1成等差数列,则a 3+a 4a 4+a 5的值为( )或5-127.数列{a n }的通项公式为a n =2n -49,当该数列的前n 项和S n 达到最小时,n 等于( )A.24 B.25C.26 D.278.数列{a n}是等差数列,公差d≠0,且a2046+a1978-a22012=0,{b n}是等比数列,且b2012=a2012,则b2010·b2014=( )A.0 B.1C.4 D.89.已知各项均为正数的等比数列{a n}的首项a1=3,前三项的和为21,则a3+a4+a5=( )A.33 B.72C.84 D.18910.已知等差数列{a n}的前n项和为S n,若a1=1,S3=a5,a m=2011,则m=( ) A.1004 B.1005C.1006 D.100711.设{a n}是由正数组成的等差数列,{b n}是由正数组成的等比数列,且a1=b1,a2003=b2003,则( )A.a1002>b1002B.a1002=b1002C.a1002≥b1002D.a1002≤b100212.已知数列{a n}的通项公式为a n=6n-4,数列{b n}的通项公式为b n=2n,则在数列{a n}的前100项中与数列{b n}中相同的项有( )A.50项B.34项C.6项D.5项第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)13.已知数列{a n}满足:a n+1=1-1a n,a1=2,记数列{a n}的前n项之积为P n,则P2011=________.14.秋末冬初,流感盛行,荆门市某医院近30天每天入院治疗流感的人数依次构成数列{a n},已知a1=1,a2=2,且a n+2-a n=1+(-1)n(n∈N*),则该医院30天入院治疗流感的人数共有________人.15.已知等比数列{a n}中,各项都是正数,且a1,12a3,2a2成等差数列,则a3+a10a1+a8=________.16.在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,且从上到下所有公比相等,则a+b+c的值为________.三、解答题()17.设数列{a n }的前n 项和为n S =2n 2,{b n }为等比数列,且a 1=b 1,b 2(a 2 -a 1)=b 1。
数列综合测试题与答案
高一数学数列综合测试题1. { an }是首项 a1= 1,公差为 d =3 的等差数列,如果 an =2 005 ,则序号 n 等于 ().A .667B . 668C . 669D .6702.在各项都为正数的等比数列 { an }中,首项 a1 =3 ,前三项和为 21,则 a3+ a4+a5= ( ) .A .33B . 72C . 84D .1893.如果 a1, a 2, , a8 为各项都大于零的等差数列,公差d ≠0,则 () . A .a 1a8> a4a5 B . a1a 8< a4a 5 C . a1+ a8 < a4+ a5D .a1a8 =a4a 54.已知方程 (x 2- 2x + m)( x 2- 2x + n)= 0 的四个根组成一个首项为 1的等差数列,则|m - n |等于 ( ).4A .1 3 1D . 3 B . C .8 4 25.等比数列 {an} 中, a2 5 n }的前 4 项和为 (). = 9, a= 243,则{ aA .81B . 120 C . 168D . 1926. 若数列 { an }是等差数列,首项 a 1> 0, a2 003 + a2 004 > 0 ,a 2 003 ·a2 004 < 0,则使前 n 项和Sn > 0 成立的最大 自然数 n 是 ().A .4005B . 4006C . 4007D .40087.已知等差数列 { a }的公差为 2,若 a , a ,a成等比数列 , 则 a = () .n 1 3 4 2A .- 4B .-6C .- 8D . -108.设 Sn 是等差数列 {an}的前 n 项和,若 a 9 = ( ).5 = 5 ,则 S a 3 9 S 5A .1B .-1 C . 2D . 1 29.已知数列- 1, a1 , a2,- 4 成等差数列,- 1 ,b 1,b 2,b3,- 4 成等比数列,则 a 2a1的值是 ( ).b 2 A . 1 B .- 1 C .- 1或1 D . 12 2 2 2 4 10.在等差数列 {a n} 中, an ≠0, an -1- a n 2 + an +1= 0(n ≥ 2),若 S2n -1 =38,则 n = ( ). A .38B . 2C . 1D .9二、填空题..11.设 f (x)=1 n 项和公式的方法,可求得f (- 5) + f( - 4) ++ f (0) ++,利用课本中推导等差数列前2x 2f (5) + f(6) 的值为.12.已知等比数列 {an} 中,(1) 若 a3 ·a4·a5=8 ,则a2·a3·a4 ·a5·a6=.(2) 若a1+a 2=3 4 5 6=.324 ,a+ a=36,则 a + a(3) 若 S4= 2, S8= 6,则 a17+ a18+ a19+ a20=.13.在8和27之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为.3 21 4.在等差数列 {a } 中,3(a3+ a)+2(a7+ a +a13)= 24,则此数列前13 项之和为.n 5 101 5.在等差数列 {a n} 中, a5= 3, a6 =-2 ,则 a4+ a5++a10=.1 6.设平面内有 n 条直线 ( n≥ 3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f ( n) 表示这n条直线交点的个数,则 f (4) =;当 n> 4 时, f (n)=.三、解答题1 7. (1) 已知数列{a2- 2n,求证数列{a} 成等差数列 .} 的前 n 项和 S =3nn n n(2) 已知1,1,1成等差数列,求证 b c , c a , a b也成等差数列 .a bc ab c18.设 { an}是公比为q 的等比数列,且a1, a3, a2 成等差数列.(1)求 q 的值;..(2)设 { bn }是以 2 为首项, q 为公差的等差数列,其前 n 项和为 Sn ,当 n ≥2时,比较 Sn 与 bn 的大小,并说明理由.19.数列 { an }的前 n 项和记为Sn,已知 a1= 1, an+1=n2 Sn( n= 1, 2, 3 ).n求证:数列 { Sn }是等比数列.n20.已知数列 {a n}是首项为 a 且公比不等于 1 的等比数列, Sn 为其前 n 项和, a1,2a 7,3a 4 成等差数列,求证: 12S3,S6, S12- S6 成等比数列 ...高一数学数列综合测试题参考答案一、选择题 1. C解析:由题设,代入通项公式 an = a1+( n - 1)d ,即 2 005= 1 +3( n - 1) ,∴n = 699 . 2. C解析:本题考查等比数列的相关概念,及其有关计算能力. 设等比数列 { an }的公比为q(q > 0) ,由题意得a1+ a2+a 3= 21,2 2 = 7.即 a1(1 + q + q )= 21,又 a1= 3,∴1+ q + q 解得 q =2 或 q =- 3( 不合题意,舍去 ) , 2 2 2 ∴a 3+ a4 +a5= a1 q (1 + q +q )= 3×2 ×7= 84. 3. B .解析:由 a 1+ a8 =a4+ a5,∴排除 C . 又 a1·a8= a1(a1+ 7d) = a12+ 7a1d ,∴a ·a =(a + 3d)(a + 4d)=a 2+7a d +12d 2 .1 > a ·a 4 5 1 1 1 1 84. C解析:..解法 1:设 a1= 1 , a2= 1 + d , a3= 1 + 2d , a4=1+ 3d ,而方程 x 2- 2x + m = 0 中两根之和为 2, x 2- 2x + n =4 4 4 4中两根之和也为 2,∴a + a +a + a =1 + 6d =4 ,1 2 3 4∴d = 1 , a1= 1 , a4= 7 是一个方程的两个根,a1= 3 , a3= 5 是另一个方程的两个根.24444∴ 7 , 15 分别为 m 或 n , 16 16 ∴|m - n |=1,故选 C .2解法 2:设方程的四个根为 x1, x2, x3, x4 ,且 x1+ x2= x3 + x4= 2, x1·x2= m ,x3·x4= n .由等差数列的性质:若 + s = p +q ,则 a +a = a +a ,若设x 为第一项, x 必为第四项,则 x = ,于是可得s pq 1 2 2 74 等差数列为 1 , 3 ,5 , 7 ,4 4 4 4∴m = 7 , n = 15 , 16 16 ∴|m - n |=1.2 5. B2 5 =243 a 5 3 243 ,解析:∵ a = 9, a , = q = = 27 a 2 9 ∴q = 3, a 1q =9 , a1= 3,∴S4 = 3-35 = 240 = 120.1-3 26. B解析:解法 1:由 a 2 003+ a 2 004 > 0,a2 003 ·a < 0,知 a 2 003和a 2 004 两项中有一正数一负数,又 a > 0,则公差为负数,2 004 1否则各项总为正数,故 a 2 003> a2 004 ,即 a2 003 >0 , a2 004< 0.4 006( a 1+ ) 4 +)a 006( a a4 006=4 006=2 0032004 >0,∴S2 24 007 =4 007 14007)=4 0072004<0 ,∴S2 ·(a +a ·2a2故 4006 为 Sn> 0 的最大自然数 . 选B...解法 2:由 a 1> 0, a2 003+ a2 004> 0, a2 003·a2 004< 0,同解法 1 的分析得a2 003 >0,a2 004 <0,∴S 为 S 中的最大值.2003 n∵Sn 是关于 n 的二次函数,如草图所示,∴2 003 到对称轴的距离比(第6题)2 004 到对称轴的距离小,∴4 007 在对称轴的右侧.2根据已知条件及图象的对称性可得 4 006 在图象中右侧零点B 的左侧, 4 007 , 4 008 都在其右侧,Sn> 0 的最大自然数是 4 006 .7. B解析:∵ {a n}是等差数列,∴ a3= a1+ 4, a4= a1+ 6,又由 a1,a 3, a4 成等比数列,∴( a1 + 4) 2= a1 (a 1+ 6) ,解得 a 1=- 8,∴a 2=- 8+ 2=- 6 .8. A9(a1a9 )S9=2 9 a59 5解析:∵5(a1==·= 1,∴选 A.S5a5 )5 a35 929. A解析:设 d 和 q 分别为公差和公比,则-4=- 1+ 3d 且- 4= (-1)q4,∴d =- 1, q2= 2,∴a2 a1 = d2=1.b2q 210.C解析:∵ {a n}为等差数列,∴ a n2= an-1+ a n+ 1,∴ a n2= 2an,又 an≠0,∴an= 2, {an}为常数数列,..而an=S2 n 1,即2n 1∴n = 10.二、填空题11.3 2.解析:∵ f( x)=x2∴f (1 - x)=1 1 x 2∴f (x)+ f (1 - x)=2n- 1=38= 19,21,21 x=2x=2 2,2 2x2x2 2 211 2 x 1 12x 1 ( 2 2x )2 +2=2=2=.2 2x 2 2 x 2 2 x 2 2x 2设S=f (- 5) + f( - 4) ++ f (0) ++ f (5) + f (6) ,则S=f (6) +f (5) ++ f(0) ++ f (- 4) + f (- 5) ,∴2S= [f (6) + f (-5)] + [f (5) + f (- 4)] ++ [f (- 5) + f (6)] = 62 ,∴S= f (- 5) +f (- 4) ++ f (0) ++ f(5) + f(6) = 3 2 .12.( 1)32;( 2) 4;( 3)32.解析:( 1)由 a3·a5= a42,得 a4= 2 ,∴a 2·a3 ·a4·a5·a6= a45= 32.( 2)a1a2324q2 1,1 2 29 ( a a )q 36∴a 5+ a6 =(a1+ a2) q4= 4.( 3)S4= a1+ a2+ a3+a 4=2q4=2 ,S8= a1+a 2++ a8= S4+ S4 q416.∴a + a + a + a = S q =3217 18 19 20 4 13. 216.解析:本题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与中间数为8 27=6,插入的三个3 2```8,27同号,由等比中项的3 2..14. 26.解析:∵ a3+ a 5= 2a4 , a7+ a13= 2a 10,∴6(a 4+ a10)= 24, a4 + a10= 4,13( a1+a13 )=13( a4+a10 )13 4 =26.∴S13==22 215.- 49.解析:∵ d= a6 - a5=- 5,∴a 4+ a5 ++ a10=7( a4+a10)2=7( a5-d+a5+5d)2=7(a5 + 2d)=- 49.116. 5,(n + 1)( n- 2) .解析:同一平面内两条直线若不平行则一定相交,故每增加一条直线一定与前面已有的每条直线都相交,∴f(k)=f (k-1) +(k- 1) .由f(3) = 2,f (4) = f(3) + 3= 2+ 3= 5,f(5) = f(4) + 4= 2+ 3+ 4= 9,f (n) = f( n- 1) + (n- 1) ,相加得 f (n)= 2+ 3+ 4++ (n - 1)=1 ( n+ 1)( n - 2) .2三、解答题17.分析:判定给定数列是否为等差数列关键看是否满足从第 2 项开始每项与其前一项差为常数.证明:( 1)n = 1 时, a1= S1= 3- 2= 1,..当n ≥2 时, an = Sn - Sn- 1= 3n 2- 2n- [3( n- 1) 2- 2(n - 1)] = 6n- 5,n= 1 时,亦满足,∴ an= 6n- 5(n∈N*) .首项 a1=1, a n- an- 1= 6n - 5- [6( n - 1) - 5] =6( 常数 )(n ∈ N*) ,∴数列{an}成等差数列且 a1 =1 ,公差为 6.111( 2)∵,,成等差数列,∴2=1+1化简得 2ac= b( a+c). b a cb+ c a+ b bc+ c2+a2+ab b( a+ c)+ a2+ c2( a+c) 2( a+c)2a+ ca +c=ac=ac=ac=( + ) = 2 ·,b ac b2∴b+c,c+a,a+b也成等差数列.a b c18.解:( 1)由题设3 1 22a1 2 1 1 2a = a +a ,即q = a+ aq,∵a 1≠0,∴2q 2- q- 1= 0,1∴q = 1 或-.2( 2)若 q =1,则 Sn= 2n+n( n-1)=n+3n.2 2当n ≥2 时, Sn-bn= Sn-1=( n-1)( n+2)> 0,故 Sn>bn . 21 n=2n+n( n-1)1 - n2+ 9n若 q =-,则 S (-)=.2 2 2 4当n ≥2 时, Sn-bn= Sn-1=( n-1)( 10-n), 4故对于 n∈ N+,当 2≤n ≤9 时, Sn>b n;当 n= 10 时, Sn= b n;当 n≥11 时, Sn< b n.n+219.证明:∵ an+1= Sn+1 - Sn ,an+1=Sn,∴( n+ 2)Sn = n( Sn+ 1- Sn),整理得nSn + 1= 2(n+ 1) Sn,所以Sn+1 = 2 Sn .n+1 n故 { Sn }是以 2为公比的等比数列.n20.证明:由 a ,2a,3a成等差数列,得4a= a +3a,即 4 a6 3,747q =a + 3a q1 1 4 1 1 13 +3-1)= 0,变形得 (4q 1)(q∴q 3=-1或 q 3= 1( 舍 ).4..由S612S3S12S6S6a1 (1 q6 )=1 q 3= 1 q312a1(1q ) 121qa1 (1q12 )=S12- 1=1 qS6a1 (1q6 )1 q= 1 ;16- 1= 1+ q 6- 1=1;得 S6 =S12 S6.1612S3S6,S,S -S 成等比数列.∴12S3 6 12 6 单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。
高二数学数列综合测试题(解析版)
7.已知 分别是等差数列 与 的前 项和,且 ,则 ()
A. B. C. D.
【答案】B
【详解】因为数列 是等差数列,所以 ,
所以 ,
又因为 分别是等差数列 与 的前 项和,且 ,
所以 ,
故选: .
8.已知数列 满足 ,则满足 的 的最大取值为()
11.一个弹性小球从 高处自由落下,每次着地后又跳回原来高度的 再落下.设它第 次着地时,经过的总路程记为 ,则当 时,下面说法正确的是()
A. B. C. 的最小值为 D. 的最小值为250
【答案】BC
【详解】由题可知,第一次着地时, ;第二次着地时, ;
第三次着地时, ;……
第 次着地后,
则 ,显然 ,又 是关于 的增函数, ,故当 时, 的最小值为 ;
A.39B.45C.48D.51
【答案】D
【详解】设该塔群共有n阶,自上而下每一阶的塔数所构成的数列为 ,依题意可知 , ,…, 成等差数列,且公差为2, ,
则 ,解得 .
故最下面三价的塔数之和为 .故选:D
4.等比数列 的前 项和为 , , ,则 为()
A. B. C. D.28或-21
ห้องสมุดไป่ตู้【答案】A
数列复习训练题
一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一个
1.等差数列 中,已知 ,则 ()
A.36B.27C.18D.9
【答案】B
【详解】解:由题得 .故选:B
2.若数列 满足 , , ,则 的值为()
A.-3B.-2C.-1D.2
【答案】C
【详解】由 得 ,故有
数列测试题及答案解析
数列测试题及答案解析一、选择题1. 已知数列{an}满足a1=2,an+1 = 2an,判断数列{an}是否为等比数列。
A. 是B. 不是C. 无法判断答案:A2. 若数列{bn}是等差数列,且b3=5,b5=9,求b7。
A. 11B. 13C. 无法确定答案:B二、填空题1. 给定数列{cn},其中c1=1,cn+1 = cn + n,求c5的值。
答案:152. 已知等差数列{dn}的首项d1=3,公差d=2,求d20的值。
答案:43三、解答题1. 求等比数列{en}的前n项和Sn,若e1=1,公比q=3。
解:根据等比数列前n项和公式Sn = e1 * (1 - q^n) / (1 - q),代入e1=1和q=3,得到Sn = (1 - 3^n) / (1 - 3)。
2. 已知等差数列{fn}的前n项和为Tn,若f1=2,d=3,求T10。
解:根据等差数列前n项和公式Tn = n/2 * (2a1 + (n - 1)d),代入f1=2和d=3,得到T10 = 10/2 * (2*2 + (10 - 1)*3) = 5 * (4 + 27) = 5 * 31 = 155。
四、证明题1. 证明数列{gn},其中gn = n^2,是一个单调递增数列。
证明:设n≥2,我们需要证明对于任意的n,有gn ≥ gn-1。
即证明n^2 ≥ (n-1)^2。
展开得n^2 - (n-1)^2 = 2n - 1 > 0,所以数列{gn}是单调递增的。
2. 证明等差数列{hn}的任意两项hn和hm(m > n)之和等于它们中间项的两倍。
证明:设等差数列{hn}的首项为h1,公差为d。
根据等差数列的定义,hn = h1 + (n - 1)d,hm = h1 + (m - 1)d。
将两项相加得hn + hm = 2h1 + (m + n - 2)d。
由于m > n,所以m + n - 2 = m - 1 + n - 1,即hn + hm = h1 + (m - 1)d + h1 + (n - 1)d = 2h1 + (m + n - 2)d = 2h((m + n - 1)/2),这正是它们中间项的两倍。
第二章数列单元综合测试(人教A版必修5)
第二章数列单元综合测试时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)1.数列{2n +1}的第40项a 40等于( ) A .9 B .10 C .40D .41解析:a 40=2×40+1=81=9.答案:A2.等差数列{2-3n }中,公差d 等于( ) A .2 B .3 C .-1D .-3解析:设a n =2-3n ,则an +1-a n =[2-3(n +1)]-(2-3n )=-3. 答案:D3.数列{a n }的通项公式是a n =2n ,S n 是数列{a n }的前n 项和,则S 10等于( )A .10B .210C .210-2D .211-2解析:∴数列{a n }是公比为2的等比数列且a 1=2.答案:D4.在等差数列{a n }中,前n 项和为S n ,若a 7=5,S 7=21,那么S 10等于( ) A .55 B .40 C .35D .70解析:设公差为d ,则⎩⎪⎨⎪⎧a 1+6d =5,7a 1+21d =21,解得d =23,a 1=1,则S 10=10a 1+45d =40. 答案:B5.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( ) A .7 B .8 C .15D .16解析:设公比为q ,由于4a 1,2a 2,a 3成等差数列, 则4a 2=4a 1+a 3,所以4q =4+q 2,解得q =2. 所以S 4=a 1(1-q 4)1-q =1-241-2=15.答案:C6.等差数列{a n }的前n 项和为S n, 若a 3+a 17=10,则S 19的值是( ) A .55 B .95 C .100D .不确定解析:a 3+a 17=a 1+a 19,∴S 19=19(a 1+a 19)2=192×10=95.答案:B7.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=( )A .120B .105C .90D .75解析:{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,即3a 2=15,则a 2=5. 又a 1a 2a 3=80,∴a 1a 3=(5-d )(5+d )=16,∴d =3.答案:B8.一个只有有限项的等差数列,它前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .18解析:设该数列有n 项,且首项为a 1,末项为a n, 公差为d .则依题意有⎩⎪⎨⎪⎧5a 1+10d =34,①5a n -10d =146,②a 1+an2·n =234,③①+②可得a 1+a n =36.代入③得n =13.从而有a 1+a 13=36. 又所求项a 7恰为该数列的中间项,∴a 7=a 1+a 132=362=18.故选D.答案:D9.三个不同的实数a ,b ,c 成等差数列,又a ,c ,b 成等比数列,则ab 等于( )A .-2B .2C .-4D .4解析:∵2b =a +c ,∴c =2b -a .∵c 2=ab ,∴a 2-5ab +4b 2=0,∴a =b (舍去)或a =4b ,∴a b=4. 答案:D10.已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1等于( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2解析:设公比为q ,答案:C11.在一直线上共插有13面小旗,相邻两面小旗之间距离为10 m ,在第一面小旗处有一个人,把小旗全部集中到一面小旗的位置上,每次只能拿一面小旗,要使他走的路程最短,应集中到哪一面小旗的位置上( )A .7B .6C .5D .4解析:图1如图1所示,设将旗集中到第x 面小旗处,则从第一面旗到第x 面旗共走路程为10(x-1)m ,然后回到第二面旗处再到第x 面处的路程是20(x -2)m ,…,从第x -1面到第x 面来回共20 m ,从第x 面处到第x +1面处路程为20 m ,从第x 面到第x +2面处的路程为20×2 m ,….总共的路程为s =10(x -1)+20(x -2)+20(x -3)+…+20×1+20×1+20×2+…+20×(13-x )=10(x -1)+20·(x -2)(x -1)2+20·(13-x )(14-x )2=10[(x -1)+(x -2)(x -1)+(13-x )(14-x )]=10(2x 2-29x +183)=20(x -294)2+31154.∵x ∈N *,∴当x =7时,s 有最小值为780 m , 即将旗集中到第7面小旗处,所走的路程最短. 答案:A12.若数列{a n }是等差数列,首项a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前n 项和S n >0成立的最大自然数n 是( )A .4013B .4014C .4015D .4016解析:由已知a 1>0,a 2007·a 2008<0,可得数列{a n }为递减数列,即d <0,a 2007>0,a 2008<0.利用等差数列的性质及前n 项和公式可得所以使前n 项和S n >0成立的最大自然数n 是4014,选B. 答案:B第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.数列{a n }中的前n 项和S n =n 2-2n +2,则通项公式a n =________. 解析:当n =1时,a 1=S 1=1;当n >1时,a n =S n -S n -1=(n 2-2n +2)-[(n -1)2-2(n -1)+2]=2n -3. 又n =1时,2n -3≠a 1,所以有a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >1.答案:a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >114.设{a n }为公比q >1的等比数列,若a 2006和a 2007是方程4x 2-8x +3=0的两根,则a 2008+a 2009=________.解析:方程4x 2-8x +3=0的两根是12和32,答案:1815.等差数列{a n }中,若S 12=8S 4,且d ≠0,则a 1d等于________.解析:∵S 12=12a 1+66d ,S 4=4a 1+6d ,又S 12=8S 4,∴12a 1+66d =32a 1+48d .∴20a 1=18d ,∴a 1d =1820=910.答案:91016.用[x ]表示不超过x 的最大整数,如[0.78]=0,[3.01]=3,如果定义数列{x n }的通项公式为x n =[n5](n ∈N *),则x 1+x 2+…+x 5n =________.解析:x 5n =[5n5]=[n ]=n ,则x 1+x 2+…+x 5n =5[x 5+x 10+x 15+…+x 5(n -1)]+x 5n =5(1+2+…+n -1)+n =52n 2-32n .答案:52n 2-32n三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(本小题10分)三个数成等比数列,其积为512,如果第一个数与第三个数各减2,则成等差数列.求这三个数.解:设三数为aq,a ,aq .由题意,得⎩⎪⎨⎪⎧a 3=512,(a q -2)+(aq -2)=2a , 解得⎩⎪⎨⎪⎧a =8,q =2或⎩⎪⎨⎪⎧a =8,q =12.所以这三个数为4,8,16或16,8,4.18.(本小题12分)求和:(a -1)+(a 2-2)+…+(a n -n ),a ≠0. 解:原式=(a +a 2+…+a n )-(1+2+…+n )=(a +a 2+…+a n )-n (n +1)2=⎩⎪⎨⎪⎧a (1-a n )1-a-n (n +1)2(a ≠1),n -n 22(a =1).19.(本小题12分)已知数列{a n }是等差数列,a 2=6,a 5=18;数列{b n }的前n 项和是T n ,且T n +12b n =1.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列. 解:(1)设{a n }的公差为d ,∴⎩⎪⎨⎪⎧a 1+d =6,a 1+4d =18,解得a 1=2,d =4. ∴a n =2+4(n -1)=4n -2.(2)证明:当n =1时,b 1=T 1,由T 1+12b 1=1,得b 1=23.当n ≥2时,∵T n =1-12b n ,Tn -1=1-12b n -1,∴T n -T n -1=12(bn -1-b n ).∴b n =12(b n -1-b n ).∴b n =13b n -1. ∴{b n }是以23为首项,13为公比的等比数列.20.(本小题12分)假设某市2007年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,该市历年所建中低价房的累计面积(以2007年为累计的第一年)等于4750万平方米?解:设n 年后该市每年所建中低价房的面积为a n , 由题意可知{a n }是等差数列,其中a 1=250,d =50,则S n =250n +n (n -1)2×50=25n 2+225n .令25n 2+225n =4750,即n 2+9n -190=0, 解得n =-19或n =10. 又n 是正整数,∴n =10.到2016年底,该市历年所建中低价房的累计面积等于4750万平方米. 21.(本小题12分)设a 1=1,a 2=53,an +2=53an +1-23a n (n ∈N *).(1)令b n =an +1-a n (n ∈N *),求数列{b n }的通项公式;(2)求数列{na n }的前n 项和S n .解:(1)因为b n +1=a n +2-a n +1=53a n +1-23a n -a n +1=23(a n +1-a n )=23b n ,所以数列{b n }是首项为b 1=a 2-a 1=23,公比为23的等比数列,所以b n =(23)n (n =1,2,…).22.(本小题12分)将数列{a n }中的所有项按每一行比上一行多一项的规则排成如下数表:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10记表中的第一列数a 1,a 2,a 4,a 7,…构成的数列为{b n },b 1=a 1=1.S n 为数列{b n }的前n 项和,且满足2b nb n S n -S 2n=1(n ≥2).(1)证明数列{1S n}成等差数列,并求数列{b n }的通项公式;(2)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当a 81=-491时,求上表中第k (k ≥3)行所有项的和.解:(1)证明:由已知,当n ≥2时,2b nb n S n -S 2n=1,又因为S n =b 1+b 2+…+b n ,又因为S 1=b 1=a 1=1,所以数列{1S n }是首项为1,公差为12的等差数列.由上可知1S n =1+12(n -1)=n +12,即S n =2n +1.所以当n ≥2时,b n =S n -S n -1=2n +1-2n =-2n (n +1). 因此b n =⎩⎪⎨⎪⎧1,n =1,-2n (n +1),n ≥2. (2)设题表中从第三行起,每行的公比都为q ,且q >0.因为1+2+…+12=12×132=78,所以表中第1行至第12行共含有数列{a n }的前78项.故a 81在表中第13行第三列,因此a 81=b 13·q 2=-491.又b 13=-213×14,所以q =2.记表中第k (k ≥3)行所有项的和为S ,即S =b k (1-q k )1-q =-2k (k +1)·1-2k 1-2=2k (k +1)(1-2k )(k ≥3).。
【数列】数列综合练习题(1)--测试用
数列综合练习题一、选择题:本大题共10个小题;每小题5分,共50分1、数列 的一个通项公式是 ( )A. B . C . D . 2、若两数的等差中项为6,等比中项为10,则以这两数为根的一元二次方程是( ) A 、010062=+-x x B 、0100122=++x x C 、0100122=--x x D 、0100122=+-x x3、已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数,则b 2(a 2-a 1)=( )A.8 B.-8 C.±8 D.4、已知数列{}n a 是等比数列,若,a a a a 41813229=+则数列{}n a 的前30项的积=30T ( ) A 、154, B 、152, C 、1521⎪⎭⎫ ⎝⎛, D 、153,5、已知等比数列{a n }的公比为2, 前4项的和是1, 则前8项的和为 ( ) A .15. B .17. C .19. D .216、已知等差数列}{n a 的前n 项和为n S ,若45818,a a S =-=则 ( )(A )18 (B )36 (C )54 (D )727、已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的等差数列,则|m -n|=( )A .1B .43 C .21 D .83 8、等差数列{a n }中,a 1+a 2+…+a 50=200,a 51+a 52+…+a 100=2700,则a 1等于( ) A .-1221 B .-21.5 C .-20.5 D .-20 9、设 {a n }是由正数组成的等比数列, 且公比q = 2, 如果a 1 · a 2 · a 3 · … · a 30 = 230, 那么a 3 · a 6 · a 9 · … · a 30 = ( )A .210.B .215.C .220.D .216.10、某人从1999年9月1日起,每年这一天到银行存款一年定期a 元,且每年到期的存款将本和利再存入新一年的一年定期,若年利率r 保持不变,到2003年9月1日将所有的存款和利息全部取出,他可取回的钱数为 A 、()51r a + B 、()()[]r r r a++1-15 C 、 ()41r a + D 、()[]115-+r ra 12)1(3++-=n n n a n n 12)3()1(++-=n n n a n n 121)1()1(2--+-=n n a n n 12)2()1(++-=n n n a n n ⋯--,924,715,58,189二、 填空题:本大题共4小题;每小题4分,共16分。
数列综合练习题(含答案)精选全文
3月6日数列综合练习题一、单选题1.已知数列为等比数列,是它的前n项和.若,且与的等差中项为,则()A .35B .33C .31D .29【答案】C 【解析】试题分析:∵等比数列{}n a ,∴21a a q =⋅,∴13134222a q a a q a a ⋅⋅=⇒⋅=⇒=,又∵与的等差中项为54,∴477512244a a a ⋅=+⇒=,∴3741182a q q a ==⇒=,∴41316a a q ==,515116(1)(1)32311112a q S q--===--.2.等差数列{}n a 中,19173150a a a ++=则10112a a -的值是()A.30B.32C.34D.25【答案】A 【解析】试题分析:本题考查等差数列的性质,难度中等.由条件知930a =,所以10112a a -=930a =,故选A.3.数列满足且,则等于()A.B.C.D.【答案】D 【解析】由有解知数列1n x ⎧⎫⎨⎬⎩⎭是首项为1,公差为211112x x -=的等差数列;所以11121(1),221n n n n x x n +=+-=∴=+.故选D 4.设等差数列{}n a 的前n 项和为n S ,数列21{}n a -的前n 项和为n T ,下列说法错误..的是()A .若n S 有最大值,则n T 也有最大值B .若n T 有最大值,则n S 也有最大值C .若数列{}n S 不单调,则数列{}n T 也不单调D .若数列{}n T 不单调,则数列{}n S 也不单调【答案】C 【解析】【详解】解:数列{a 2n ﹣1}的首项是a 1,公差为2d ,A .若S n 有最大值,则满足a 1>0,d <0,则2d <0,即T n 也有最大值,故A 正确,B .若T n 有最大值,则满足a 1>0,2d <0,则d <0,即S n 也有最大值,故B 正确,C .S n =na 1()12n n -+•d 2d =n 2+(a 12d -)n ,对称轴为n 111122222d da a a d d d --=-==--⨯,T n =na 1()12n n -+•2d =dn 2+(a 1﹣d )n ,对称轴为n 111222a d d -=-=-•1a d,不妨假设d >0,若数列{S n }不单调,此时对称轴n 11322a d =-≥,即1a d-≥1,此时T n 的对称轴n 1122=-•111122a d ≥+⨯=1,则对称轴1122-•132a d <有可能成立,此时数列{T n }有可能单调递增,故C 错误,D .不妨假设d >0,若数列{T n }不单调,此时对称轴n 1122=-•132a d ≥,即1a d-≥2,此时{S n }的对称轴n 11122a d =-≥+25322>=,即此时{S n }不单调,故D 正确则错误是C ,故选C .5.设n=()A .333n 个B .21333n - 个C .21333n- 个D .2333n 个【答案】A【解析】1013333n n -====⋅⋅⋅ 个.故选A.6.已知各项均为正数的数列{}n a 的前n 项和为n S ,满足2124n n a S n +=++,且21a -,3a ,7a 恰好构成等比数列的前三项,则4a =().A .1B .3C .5D .7【答案】C 【详解】∵2124n n a S n +=++,当2n ≥,()21214n n a S n -=+-+,两式相减,化简得()2211n n a a +=+,∵0n a >,∴11n n a a +=+,数列{}n a 是公差1的等差数列.又21a -,3a ,7a 恰好构成等比数列的前三项,∴()()211126a a a +=+,∴12a =,∴45a =.故选:C第II 卷(非选择题)二、填空题7.已知数列{}n a 的首项11a =,且1(1)12nn na a n a +=+ ,则5a =____.【答案】198.等差数列{}n a 中,39||||a a =,公差0d <,则使前n 项和n S 取得最大值的自然数n 是________.【答案】5或6【解析】试题分析:因为0d <,且39||||a a =,所以39a a =-,所以1128a d a d +=--,所以150a d +=,所以60a =,所以0n a >()15n ≤≤,所以n S 取得最大值时的自然数n 是5或6.9.数列{}n a 满足:11a =,121n n a a +=+,且{}n a 的前n 项和为n S ,则n S =__.【答案】122n n +--【详解】由121n n a a +=+得()1+121n n a a +=+所以1112+n n a a +=+,且112a +=所以数列{}1n a +是以2为首项,2为公比的等比数列,且11=222n nn a -+⨯=所以21nn a =-前n 项和()123121222222212n nn nS n n n +-=++++-==--- 10.已知数列{}n a 中,132a =前n 项和为n S ,且满足()*123n n a S n N ++=∈,则满足2348337n n S S <<所有正整数n 的和是___________.【答案】12【详解】由()*123n n a S n N++=∈得()123n n n SS S +-+=,即()11332n n S S +-=-,所以数列{}3n S -是首项为113332S a -=-=-,公比为12的等比数列,故31322n nS -=-⋅,所以332n n S =-,所以22332n n S =-.由2348337n n S S <<得2332334833732n n -<-<,化简得1113327n <<,故3,4,5n =.满足2348337n nS S <<所有正整数n 的和为34512++=.故答案为:12三、解答题11.已知数列{a n }满足a 1=3,a n ﹣a n ﹣1﹣3n =0,n ≥2.(1)求数列{a n }的通项公式;(2)设b n 1na =,求数列{b n }的前n 项和S n .【详解】(1)数列{a n }满足a 1=3,a n ﹣a n ﹣1﹣3n =0,n ≥2,即a n ﹣a n ﹣1=3n ,可得a n =a 1+(a 2﹣a 1)+(a 3﹣a 2)+…+(a n ﹣a n ﹣1)=3+6+9+…+3n 12=n (3+3n )32=n 232+n ;(2)b n 123n a ==•2123n n =+(111n n -+),前n 项和S n 23=(1111112231n n -+-++-+ )23=(111n -+)()231n n =+.12.在数列{}n a 中,n S 为其前n 项和,满足2(,*)n n S ka n n k R n N =+-∈∈.(I )若1k =,求数列{}n a 的通项公式;(II )若数列{}21n a n --为公比不为1的等比数列,求n S .【答案】解:(1)当1k =时,2,n n S a n n =+-所以21,(2)n S n n n -=-≥,即22(1)(1),(1)n S n n n n n =+-+=+≥……3分所以当1n =时,112a S ==;当2n ≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=所以数列{}n a 的通项公式为.……………6分(II )当时,1122n n n n n a S S ka ka n --=-=-+-,1(1)22n n k a ka n --=-+,111a S ka ==,若1k =,则211n a n --=-,从而{}21n a n --为公比为1的等比数列,不合题意;……………8分若1k ≠,则10a =,221a k=-,3246(1)k a k -=-212325378333,5,71(1)k k k a a a k k --+--=--=-=--由题意得,2213(5)(3)(7)0a a a -=--≠,所以0k =或32k =.……10分当0k =时,2n S n n =-,得22n a n =-,213n a n --=-,不合题意;…12分当32k =时,1344n n a a n -=-+,从而1213[2(1)1]n n a n a n ---=---因为121130,a -⨯-=-≠210n a n --≠,{}21n a n --为公比为3的等比数列,213nn a n --=-,所以231nn a n =-+,从而1233222n n S n n +=+-+.………………………14分【解析】试题分析:解:(1)当1k =时,2,n n S a n n =+-所以21,(2)n S n n n -=-≥,即22(1)(1),(1)n S n n n n n =+-+=+≥……3分所以当1n =时,112a S ==;当2n ≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=所以数列{}n a 的通项公式为…6分(2)当时,1122n n n n n a S S ka ka n --=-=-+-,1(1)22n n k a ka n --=-+,111a S ka ==,若1k =,则211n a n --=-,从而{}21n a n --为公比为1的等比数列,不合题意;若1k ≠,则10a =,221a k=-,3246(1)k a k -=-212325378333,5,71(1)k k k a a a k k --+--=--=-=--由题意得,2213(5)(3)(7)0a a a -=--≠,所以0k =或32k =.当0k =时,2n S n n =-,得22n a n =-,213n a n --=-,不合题意;当32k =时,1344n n a a n -=-+,从而1213[2(1)1]n n a n a n ---=---因为121130,a -⨯-=-≠210n a n --≠,{}21n a n --为公比为3的等比数列,213nn a n --=-,所以231nn a n =-+,从而1233222n n S n n +=+-+.13.设数列{}n a 的通项公式63n a n =-+,{}n b 为单调递增的等比数列,123512b b b =,1133a b a b +=+.()1求数列{}n b 的通项公式.()2若3nn na cb -=,求数列{}n c 的前n 项和n T .【详解】()1由题意,数列{}n a 的通项公式n a 6n 3=-+,{}n b 为单调递增的等比数列,设公比为q ,123b b b 512=,1133a b a b +=+.可得331b q 512=,2113b 15b q -+=-+,解得1b 4=,或1q 2(2=-舍去),则n 1n 1n b 422-+=⋅=。
数列综合测试题
高二数学数列综合测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知a ,b ,c 成等比数列,a ,m ,b 与b ,n ,c 分别成两个等差数列,则a m +cn等于 ( )A .4B .3C .2D .1 2.已知{a n }是等差数列,a 4=15,S 5=55,则过点P (3,a 3),Q (4,a 4)的直线斜率为 ( )A .4 B.14 C .-4 D .-143.设等比数列{a n }的前n 项与为S n ,若S 6S 3=3,则S 9S 6= ( )A .2 B.73 C.83D .34.已知数列{a n }的前n 项与为S n ,且15S n =a n -1,则a 2等于 ( ) A .-54 B.54 C.516 D.25165.等比数列{a n }的前n 项与为S n ,且4a 1,2a 2,a 3成等差数列,若a 1=1,则S 4=( ) A .7 B .8 C .15 D .166.若数列{a n }的通项公式为a n =n (n -1)·…·2·110n,则{a n }为( )A .递增数列B .递减数列C .从某项后为递减D .从某项后为递增7.等差数列{a n }的通项公式是a n =1-2n ,其前n 项与为S n ,则数列{S nn}的前11项与为( )A .-45B .-50C .-55D .-668.设数列{a n }的前n 项与为S n , 已知15a =,且12(1)(1)n n nS n n n S +=+++( n ∈N*), 则过点P(n,n a ) 与Q(n+2,2+n a )( n ∈N*)的直线的一个方向向量的坐标可以是 ( )A .(2,21)B .(-1, -1)C .(21-, -1)D .(2,21--)9.在等比数列{a n }中,若a 3a 5a 7a 9a 11=32,则a 29a 11的值为( )A .4B .2C .-2D .-410.已知两个等差数列{a n }与{b n }的前n 项与分别为A n 与B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数n 的个数是 ( )A .2B .3C .4D .511.已知{a n }是递增数列,对任意的n ∈N *,都有a n =n 2+λn 恒成立,则λ的取值范围是 ( )A .(-72,+∞) B .(0,+∞)C .(-2,+∞)D .(-3,+∞)12.已知数列{a n }满足a n +1=12+a n -a 2n ,且a 1=12,则该数列的前2 008项的与等于 ( ) A .1 506 B .3 012 C .1 004D .2 008二、填空题(本大题共4小题,每小题4分,共16分.将答案填写在题中的横线上)13.已知数列{a n }满足:a 1=m (m 为正整数),a n +1=⎩⎪⎨⎪⎧a n 2,当a n 为偶数时3a n +1,当a n 为奇数时,若a 6=1,则m 所有可能的取值为________.14.已知数列{a n }满足a 1=12,a n =a n -1+1n 2-1(n ≥2),则{a n }的通项公式为________.15.已知等差数列{a n }的首项a 1及公差d 都是整数,前n 项与为S n (n ∈N *).若a 1>1,a 4>3,S 3≤9,则通项公式a n =________. 16.下面给出一个“直角三角形数阵”: 14 12,1434,38,316满足每一列的数成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,记第i 行第j 列的数为a ij (i ≥j ,i ,j ∈N *),则a 83=________.三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知等差数列{a n }的首项a 1=1,公差d >0,且第二项,第五项,第十四项分别是等比数列{b n }的第二项,第三项,第四项. ⑴求数列{a n }与{b n }的通项公式.⑵设数列{c n }对任意正整数n ,均有1332211+=+⋯⋯+++n nna b c b c b c b c ,求c 1+c 2+c 3+…+c 2010的值. 18.(本小题满分12分)已知数列{a n }中,其前n 项与为S n ,且n ,a n ,S n 成等差数列(n ∈N *). (1)求数列{a n }的通项公式;(2)求S n >57时n 的取值范围. 19.(本小题满分12分)已知二次函数f (x )=x 2-ax +a (a ≠0),不等式f (x )≤0的解集有且只有一个元素,设数列{a n }的前n 项与为S n =f (n ).(1)求数列{a n }的通项公式;(2)设各项均不为0的数列{c n }中,满足c i ·c i +1<0的正整数i 的个数称作数列{c n }的变号数,令c n =1-aa n(n ∈N *),求数列{c n }的变号数.20.(本小题满分12分)已知数列{a n }满足:a 1=1,a 2=12,且[3+(-1)n ]a n +2-2a n +2[(-1)n -1]=0,n ∈N *.(1)求a 3,a 4,a 5,a 6的值及数列{a n }的通项公式; (2)设b n =a 2n -1·a 2n ,求数列{b n }的前n 项与S n .21.(本小题满分12分)已知数列{a n }的前n 项与为S n ,点(n ,S nn)在直线y =12x +112上.数列{b n }满足b n +2-2b n +1+b n =0(n ∈N *),b 3=11,且其前9项与为153.(1)求数列{a n },{b n }的通项公式;(2)设c n =3(2a n -11)(2b n -1),数列{c n }的前n 项与为T n ,求使不等式T n >k57对一切n ∈N *都成立的最大正整数k 的值.22.(本小题满分14分)在数列{a n }中,a 1=1,3a n a n -1+a n -a n -1=0(n ≥2,n ∈N).(1)试判断数列{1a n}是否为等差数列;(2)若λa n +1a n +1≥λ,对任意n ≥2的整数恒成立,求实数λ的取值范围.数列综合测试题参考答案一、选择题CABDC DDDBD DA 二、填空题13、4,5,32 14、a n =54-2n +12n (n +1)15、n +1 16、12三、解答题17.⑴由题意得(a 1+d )(a 1+13d )=(a 1+4d )2(d >0) 解得d =2,∴a n =2n -1,b n =3n -1.⑵当n =1时,c 1=3 当n ≥2时,∵,1n n nna abc -=+∴⎩⎨⎧≥⋅==-)2(32)1(31n n c n n故132-⋅=n n c18.解:(1)∵n ,a n ,S n 成等差数列,∴S n =2a n -n ,S n -1=2a n -1-(n -1) (n ≥2), ∴a n =S n -S n -1=2a n -2a n -1-1 (n ≥2), ∴a n =2a n -1+1 (n ≥2),两边加1得a n +1=2(a n -1+1) (n ≥2),∴a n +1a n -1+1=2 (n ≥2). 又由S n =2a n -n 得a 1=1.∴数列{a n +1}是首项为2,公比为2的等比数列,∴a n +1=2·2n -1,即数列{a n }的通项公式为a n =2n -1. (2)由(1)知,S n =2a n -n =2n +1-2-n ,∴S n +1-S n =2n +2-2-(n +1)-(2n +1-2-n ) =2n +1-1>0,∴S n +1>S n ,{S n }为递增数列.由题设,S n >57,即2n +1-n >59. 又当n =5时,26-5=59,∴n >5.∴当S n >57时,n 的取值范围为n ≥6(n ∈N *).19.解:(1)由于不等式f (x )≤0的解集有且只有一个元素, ∴Δ=a 2-4a =0⇒a =4, 故f (x )=x 2-4x +4.由题S n =n 2-4n +4=(n -2)2 则n =1时,a 1=S 1=1;n ≥2时,a n =S n -S n -1=(n -2)2-(n -3)2=2n -5, 故a n =⎩⎪⎨⎪⎧1 n =1,2n -5 n ≥2.(2)由题可得,c n =⎩⎪⎨⎪⎧-3 n =11-42n -5 n ≥2.由c 1=-3,c 2=5,c 3=-3,所以i =1,i =2都满足c i ·c i +1<0,当n ≥3时,c n +1>c n ,且c 4=-13,同时1-42n -5>0⇒n ≥5,可知i =4满足c i 、c i +1<0,n ≥5时,均有c n c n +1>0.∴满足c i c i +1<0的正整数i =1,2,4,故数列{c n }的变号数为3.20.解:(1)经计算a 3=3,a 4=14,a 5=5,a 6=18.当n 为奇数时,a n +2=a n +2,即数列{a n }的奇数项成等差数列,∴a 2n -1=a 1+(n -1)·2=2n -1.当n 为偶数时,a n +2=12a n ,即数列{a n }的偶数项成等比数列,∴a 2n =a 2·(12)n -1=(12)n.因此,数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧n (n 为奇数),(12)n2(n 为偶数).(2)∵b n =(2n -1)·(12)n,∴S n =1·12+3·(12)2+5·(12)3+…+(2n -3)·(12)n -1+(2n -1)·(12)n, ①12S n =1·(12)2+3·(12)3+5·(12)4+…+(2n -3)·(12)n+(2n -1)·(12)n +1, ②①②两式相减, 得12S n =1·12+2[(12)2+(12)3+…+(12)n ]-(2n -1)·(12)n +1 =12+12·[1-(12)n -1]1-12-(2n -1)·(12)n +1=32-(2n +3)·(12)n +1. ∴S n =3-(2n +3)·(12)n .21.解:(1)由已知得S n n =12n +112,∴S n =12n 2+112n .当n ≥2时,a n =S n -S n -1 =12n 2+112n -12(n -1)2-112(n -1)=n +5; 当n =1时,a 1=S 1=6也符合上式. ∴a n =n +5.由b n +2-2b n +1+b n =0(n ∈N *)知{b n }是等差数列,由{b n }的前9项与为153,可得9(b 1+b 9)2=9b 5=153,得b 5=17,又b 3=11,∴{b n }的公差d =b 5-b 32=3,b 3=b 1+2d ,∴b 1=5,∴b n =3n +2.(2)c n =3(2n -1)(6n +3)=12(12n -1-12n +1),∴T n =12(1-13+13-15+…+12n -1-12n +1)=12(1-12n +1). ∵n 增大,T n 增大, ∴{T n }是递增数列.∴T n ≥T 1=13.T n >k57对一切n ∈N *都成立,只要T 1=13>k57,∴k <19,则k max =18.22.解:(1)∵a 1≠0,∴a n ≠0,∴由已知可得1a n -1a n -1=3(n ≥2),故数列{1a n}是等差数列.(2)将a n =1b n =13n -2代入λa n +1a n +1≥λ并整理得λ(1-13n -2)≤3n +1,∴λ≤(3n +1)(3n -2)3n -3,原命题等价于该式对任意n ≥2的整数恒成立.设C n =(3n +1)(3n -2)3n -3,则C n +1-C n =(3n +1)(3n -4)3n (n -1)>0,故C n +1>C n ,∴C n 的最小值为C 2=283,∴λ的取值范围是(-∞,283].。
高中数学数列经典题型专题训练试题(含答案)
高中数学数列经典题型专题训练试题学校:___________姓名:___________班级:___________考号:___________说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分。
考试时间120分钟。
2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。
考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)一.单选题(共15小题,每题2分,共30分)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-12.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-39.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.9910.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.52212.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项二.填空题(共10小题,每题2分,共20分)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.17.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.18.数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.22.设正项等比数列{an}的公比为q,且,则公比q=______.23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.第Ⅱ卷(非选择题)三.简答题(共5小题,50分)26.(10分)已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.27.(8分)已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.28.(7分)已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.29.(12分)已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.30.(12分)在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.参考答案一.单选题(共__小题)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-1答案:C解析:解:∵a1+a2+a3+…+a n=2n-1…①∴a1+a2+a3+…+a n-1=2n-1-1…②,①-②得a n=2n-1,∴a n2=22n-2,∴数列{a n2}是以1为首项,4为公比的等比数列,∴a12+a22+a32+…+a n2==,故选C.2.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-答案:C解析:解:∵{a n}为等比数列a5•a11=3,∴a3•a13=3①∵a3+a13=4②由①②得a3=3,a13=1或a3=1,a13=3∴q10=或3,∴=或3,故选C.3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.答案:A解析:解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选A.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.答案:D解析:解:∵数列{a n}是等差数列,a1=1,a3=4,∴a3=a1+2d,即4=1+2d,解得d=.故选:D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()A.12B.13C.14D.15答案:A解析:解:令a n=<0,解得n≤6,当n>7时,a n>0,且a6+a7=a5+a8=a4+a9=a3+a10=a2+a11=a1+a12=0,所以S12=0,S13>0,即使S n≥0的最小正整数n=12.故选A.6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列答案:A解析:解:∵S n=2n2-2n,则S n-S n-1=a n=2n2-2n-[2(n-1)2-2(n-1)]=4n-4故数列{a n}是公差为4的等差数列故选A.7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.答案:C解析:解:当n=1时,a1=S1=21-1=1,当n≥2时,a n=Sn-Sn-1=2n-1-(2n-1-1)=2•2n-1-2n-1=2n-1,对n=1也适合∴a n=2n-1,∴数列{a n}是等比数列,此数列奇数项也构成等比数列,且首项为1,公比为4.∴此数列奇数项的前n项和为==故选C8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-3答案:C解析:解:由题意可得q≠1由数列{S n+2}也是等比数列可得s1+2,s2+2,s3+2成等比数列则(s2+2)2=(S1+2)(S3+2)代入等比数列的前n项和公式整理可得(6+4q)2=24(1+q+q2)+12解可得q=3故选C.9.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.99答案:A解析:解:当n为奇数时,a n+2-a n=1+(-1)n=0,可得a1=a3=…=a59=2.当n为偶数时,a n+2-a n=1+(-1)n=2,∴数列{a2n}为等差数列,首项为2,公差为2,∴a2+a4+…+a60=30×2+=930.∴S60=(a1+a3+…+a59)+(a2+a4+…+a60)=30×2+930=990.故选:A.10.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列答案:A解析:解:∵数列{a n}是公差为2的等差数列∴a n=a1+2(n-1)∴∴数列是公比为4的等比数列故选A11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.522答案:B解析:解:由a n=4a n-1+3可得a n+1=4a n-1+4=4(a n-1+1),故可得=4,由题意可得a1+1=1即数列{a n+1}为首项为1,公比为4的等比数列,故可得a5+1=44=256,故a5=255故选B12.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.答案:B解析:解:∵a n•b n=1∴b n==∴s10==(-)+=-=故选项为B.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()A.20B.18C.10D.8答案:B解析:解:设等比数列{a n}的公比为q,∵a1+a2=8,a3-a1=16,∴,解得,∴=2×32=18.故选:B.14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.答案:C解析:解:∵a4=2S3+3,a5=2S4+3,即2S4=a5-3,2S3=a4-3∴2S4-2S3=a5-3-(a4-3)=a5-a4=2a4,即3a4=a5∴3a4=a4q解得q=3,故选C15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项答案:D解析:解:由题意得=,∵n是正整数,∴=当且仅当时取等号,此时,∵当n=9时,=19;当n=9时,=19,则当n=9或10时,取到最小值是19,而取到最大值.故选D.二.填空题(共__小题)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.答案:-40解析:解:设等差数列{a n}的公差为d,∵a1+a2+a3=8,a4+a5+a6=-4,∵a4+a5+a6=(a1+3d)+(a2+3d)+(a3+3d)=a1+a2+a3+9d,∴-4=8+9d,解得d=-,∴a13+a14+a15=a1+a2+a3+36d=8-×36=-40,故答案为:-4017.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.答案:8解析:解:由等差数列的性质可得a3+a5+a7+a9+a11=(a3+a11)+a7+(a5+a9)=2a7+a7+2a7=5a7=20∴a7=4∴a1+a13=2a7=8故答案为:818.(2015秋•岳阳校级月考)数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.答案:2n+n2-1解析:解:数列a n的前n项和S n=(2+22+23+…+2n)+[1+3+5+…+(2n-1)]=+=2n-1+n2.故答案为:2n-1+n2.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.答案:2n-1解析:解:由题可得,a n+1+1=2(a n+1),则=2,又a1=1,则a1+1=2,所以数列{a n+1}是以2为首项、公比的等比数列,所以a n+1=2•2n-1=2n,则a n=2n-1.故答案为:2n-1.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.答案:3解析:解:设等差数列{a n}的首项为a1,公差为d,由a2+a6=a8,得a1+d+a1+5d=a1+7d,即a1=d,所以==.故答案为3.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.答案:1023解析:解:由题意,两边同加1得:a n+1+1=2(a n+1),∵a1+1=2∴{a n+1}是以2为首项,以2为等比数列∴a n+1=2•2n-1=2n∴a n=2n-1∴a10=1024-1=1023.故答案为:1023.22.设正项等比数列{an}的公比为q,且,则公比q=______.答案:解析:解:由题意知得∴6q2-q-1=0∴q=或q=-(与正项等比数列矛盾,舍去).故答案为:23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.答案:2n+1-1解析:解:由题意知a n+1=2a n+1,则a n+1+1=2a n+1+1=2(a n+1)∴=2,且a1+1=4,∴数列{a n+1}是以4为首项,以2为公比的等比数列.则有a n+1=4×2n-1=2n+1,∴a n=2n+1-1.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.答案:=5解析:解:等差数列{a n}中,∵a3+2a8+a9=20,∴(a1+2d)+2(a1+7d)+(a1+8d)=4a1+24d=4(a1+6d)=4a7=20,∴a7=5.故答案为:5.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.答案:解析:解:由题设条件知a1+a1q=a1q2,∵a1>0,∴q2-q-1=0解得,∵数列{a n}为正项等比数列,∴.故答案:.三.简答题(共__小题)26.已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.答案:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+1解析:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+127.已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.解析:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.28.已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.解析:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.29.已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.答案:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)解析:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)30.在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.答案:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.解析:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.。
数列综合练习题以及答案解析
数列综合练习题一.选择题(共23小题)1.已知函数f(x)=,若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是()A.[,4)B.(,4)C.(2,4) D.(1,4)2.已知{a n}是递增数列,且对任意n∈N*都有a n=n2+λn恒成立,则实数λ的取值范围是()A.(﹣,+∞)B.(0,+∞)C.[﹣2,+∞)D.(﹣3,+∞)3.已知函数f(x)是R上的单调增函数且为奇函数,数列{a n}是等差数列,a11>0,则f(a9)+f(a11)+f(a13)的值()A.恒为正数B.恒为负数C.恒为0 D.可正可负4.等比数列{a n}中,a4=2,a7=5,则数列{lga n}的前10项和等于()A.2 B.lg50 C.10 D.55.右边所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a所表示的数是()A.2 B.4 C.6 D.86.已知正项等比数列{a n}满足:a7=a6+2a5,若存在两项a m,a n,使得=4a1,则+的最小值为()A.B.C.D.7.已知,把数列{a n}的各项排列成如图的三角形状,记A(m,n)表示第m行的第n个数,则A(10,12)=()A.B.C.D.8.设等差数列{a n}满足=1,公差d∈(﹣1,0),若当且仅当n=9时,数列{a n}的前n项和S n取得最大值,则首项a1的取值范围是()A.(π,)B.[π,]C.[,]D.(,)9.定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f (a n)},仍是等比数列,则称f(x)为“等比函数”.现有定义在(﹣∞),0)∪(0,+∞)上的如下函数:①f(x)=3x,②f(x)=,③f(x)=x3,④f(x)=log2|x|,则其中是“等比函数”的f(x)的序号为()A.①②③④B.①④C.①②④D.②③10.已知数列{a n}(n∈N*)是各项均为正数且公比不等于1的等比数列,对于函数y=f(x),若数列{lnf(a n)}为等差数列,则称函数f(x)为“保比差数列函数”.现有定义在(0,+∞)上的三个函数:①f(x)=;②f(x)=e x;③f(x)=;④f(x)=2x,则为“保比差数列函数”的是()A.③④B.①②④C.①③④D.①③11.已知数列{a n}满足a1=1,a n+1=,则a n=()A.B.3n﹣2 C.D.n﹣212.已知数列{a n}满足a1=2,a n+1﹣a n=a n+1a n,那么a31等于()A.﹣B.﹣C.﹣D.﹣13.如果数列{a n}是等比数列,那么()A.数列{}是等比数列B.数列{2an}是等比数列C.数列{lga n}是等比数列D.数列{na n}是等比数列14.在数列{a n}中,a n+1=a n+2,且a1=1,则=()A.B.C.D.15.等差数列的前n项,前2n项,前3n项的和分别为A,B,C,则()A.A+C=2B B.B2=AC C.3(B﹣A)=C D.A2+B2=A(B+C)16.已知数列{a n}的通项为a n=(﹣1)n(4n﹣3),则数列{a n}的前50项和T50=()A.98 B.99 C.100 D.10117.数列1,,,…,的前n项和为()A.B. C. D.18.数列{a n}的通项公式为,其前n项和为s n,则s2017等于()A.1006 B.1008 C.﹣1006 D.﹣100819.数列{a n}中,,则数列{a n}前16项和等于()A.130 B.132 C.134 D.13620.《庄子•天下篇》中记述了一个著名命题:“一尺之锤,日取其半,万世不竭”.反映这个命题本质的式子是()A.1+++…+=2﹣B.1+++…++…<2C.++…+=1 D.++…+<121.在数列{a n}中,若=+,a1=8,则数列{a n}的通项公式为()A.a n=2(n+1)2B.a n=4(n+1)C.a n=8n2D.a n=4n(n+1)22.已知函数f(x)=,把函数g(x)=f(x)﹣x的零点按从小到大的顺序排列成一个数列,则该数列的前n项的和为S n,则S10=()A.210﹣1 B.29﹣1 C.45 D.5523.设等差数列{a n}满足,公差d∈(﹣1,0),当且仅当n=9时,数列{a n}的前n项和S n取得最大值,求该数列首项a1的取值范围()A.B.[,]C.(,)D.[,]二.解答题(共4小题)24.已知{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{a n}的通项公式;(2)设c n=a n+b n,求数列{c n}的前n项和.25.已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.26.设数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.(1)求{a n}的通项公式;(2)求数列{}的前n项和.27.已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.数列综合练习题答案与解析一.选择题(共23小题)1.已知函数f(x)=,若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是()A.[,4)B.(,4)C.(2,4) D.(1,4)【解答】解:函数f(x)=,数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,∴,解得2<a<4.故选:C.2.已知{a n}是递增数列,且对任意n∈N*都有a n=n2+λn恒成立,则实数λ的取值范围是()A.(﹣,+∞)B.(0,+∞)C.[﹣2,+∞)D.(﹣3,+∞)【解答】解:∵{a n}是递增数列,∴a n>a n,+1∵a n=n2+λn恒成立即(n+1)2+λ(n+1)>n2+λn,∴λ>﹣2n﹣1对于n∈N*恒成立.而﹣2n﹣1在n=1时取得最大值﹣3,∴λ>﹣3,故选D.3.已知函数f(x)是R上的单调增函数且为奇函数,数列{a n}是等差数列,a11>0,则f(a9)+f(a11)+f(a13)的值()A.恒为正数B.恒为负数C.恒为0 D.可正可负【解答】解:∵f(a11)>f(0)=0,a9+a13=2a11>0,a9>﹣a13,∴f(a9)>f(﹣a13)=﹣f(a13),f(a9)+f(a13)>0,∴f(a9)+f(a11)+f(a13)>0,故选:A.4.等比数列{a n}中,a4=2,a7=5,则数列{lga n}的前10项和等于()A.2 B.lg50 C.10 D.5【解答】解:∵等比数列{a n}中,a4=2,a7=5,∴a1a10=a2a9=…=a4a7=10,∴数列{lga n}的前10项和S=lga1+lga2+…+lga10=lga1a2…a10=lg105=5故选:D5.右边所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a所表示的数是()A.2 B.4 C.6 D.8【解答】解:杨辉三角形中,每一行的第一个数和最后一个数都是1,首尾之间的数总是上一行对应的两个数的和,∴a=3+3=6;故选C.6.已知正项等比数列{a n}满足:a7=a6+2a5,若存在两项a m,a n,使得=4a1,则+的最小值为()A.B.C.D.【解答】解:设正项等比数列{a n}的公比为q,且q>0,由a7=a6+2a5得:a6q=a6+,化简得,q2﹣q﹣2=0,解得q=2或q=﹣1(舍去),因为a m a n=16a12,所(a1q m﹣1)(a1q n﹣1)=16a12,则q m+n﹣2=16,解得m+n=6,+=×(m+n)×(+)=×(17++)≥×(17+2)=,当且仅当=,解得:m=,n=,因为m n取整数,所以均值不等式等号条件取不到,+>,验证可得,当m=1、n=5时,取最小值为.故答案选:B.7.已知,把数列{a n}的各项排列成如图的三角形状,记A(m,n)表示第m行的第n个数,则A(10,12)=()A.B.C.D.【解答】解:由A(m,n)表示第m行的第n个数可知,A(10,12)表示第10行的第12个数,根据图形可知:①每一行的最后一个项的项数为行数的平方,所以第10行的最后一个项的项数为102=100,即为a100;②每一行都有2n﹣1个项,所以第10行有2×10﹣1=19项,得到第10行第一个项为100﹣19+1=82,所以第12项的项数为82+12﹣1=93;所以A(10,12)=a93=故选A.8.设等差数列{a n}满足=1,公差d∈(﹣1,0),若当且仅当n=9时,数列{a n}的前n项和S n取得最大值,则首项a1的取值范围是()A.(π,)B.[π,]C.[,]D.(,)【解答】解:∵======﹣=﹣sin(4d),∴sin(4d)=﹣1,∵d∈(﹣1,0),∴4d∈(﹣4,0),∴4d=﹣,d=﹣,∵S n=na1+==﹣+,∴其对称轴方程为:n=,有题意可知当且仅当n=9时,数列{a n}的前n项和S n取得最大值,∴<<,解得π<a1<,故选:A.9.定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f (a n)},仍是等比数列,则称f(x)为“等比函数”.现有定义在(﹣∞),0)∪(0,+∞)上的如下函数:①f(x)=3x,②f(x)=,③f(x)=x3,④f(x)=log2|x|,则其中是“等比函数”的f(x)的序号为()A.①②③④B.①④C.①②④D.②③【解答】解:不妨设等比数列{a n}中,a n=a1•q n﹣1,①∵f(x)=3x,∴====常数,故当q≠1时,{f(a n)}不是等比数列,故f(x)=3x不是等比函数;②∵f(x)=,∴===,故{f(a n)}是等比数列,故f(x)=是等比函数;③∵f(x)=x3,∴=═q3,故{f(a n)}是等比数列,故f(x)=x3是等比函数;④f(x)=log2|x|,∴==,故{f(a n)}不是等比数列,故f(x)=log2|x|不是等比函数.故其中是“等比函数”的f(x)的序号②③,故选:D.10.已知数列{a n}(n∈N*)是各项均为正数且公比不等于1的等比数列,对于函数y=f(x),若数列{lnf(a n)}为等差数列,则称函数f(x)为“保比差数列函数”.现有定义在(0,+∞)上的三个函数:①f(x)=;②f(x)=e x;③f(x)=;④f(x)=2x,则为“保比差数列函数”的是()A.③④B.①②④C.①③④D.①③【解答】解:设数列{a n}的公比为q(q≠1)①由题意,lnf(a n)=ln,∴lnf(a n+1)﹣lnf(a n)=ln﹣ln=ln=﹣lnq是常数,∴数列{lnf(a n)}为等差数列,满足题意;②由题意,lnf(a n)=ln,∴lnf(a n+1)﹣lnf(a n)=ln﹣ln=a n+1﹣a n不是常数,∴数列{lnf(a n)}不为等差数列,不满足题意;③由题意,lnf(a n)=ln,∴lnf(a n+1)﹣lnf(a n)=ln﹣ln=lnq是常数,∴数列{lnf(a n)}为等差数列,满足题意;④由题意,lnf(a n)=ln(2a n),∴lnf(a n+1)﹣lnf(a n)=ln(2a n+1)﹣ln(2a n)=lnq是常数,∴数列{lnf(a n)}为等差数列,满足题意;综上,为“保比差数列函数”的所有序号为①③④故选:C.11.已知数列{a n}满足a1=1,a n+1=,则a n=()A.B.3n﹣2 C.D.n﹣2【解答】解:∵a1=1,a n+1=,∴=+3,即﹣=3,∴数列{}是以1为首项,3为公差的等差数列,∴=1+(n﹣1)×3=3n﹣2,∴a n=,故选:A.12.已知数列{a n}满足a1=2,a n+1﹣a n=a n+1a n,那么a31等于()A.﹣B.﹣C.﹣D.﹣【解答】解:由已知可得﹣=﹣1,设b n=,则数列{b n}是以为首项,公差为﹣1的等差数列.∴b31=+(31﹣1)×(﹣1)=﹣,∴a31=﹣.故选:B.13.如果数列{a n}是等比数列,那么()A.数列{}是等比数列B.数列{2an}是等比数列C.数列{lga n}是等比数列D.数列{na n}是等比数列【解答】解:对于A:设b n=,则==()2=q2,∴{b n}成等比数列;正确;对于B:数列{2},=2≠常数;不正确;对于C:当a n<0时lga n无意义;不正确;对于D:设c n=na n,则==≠常数.不正确.故选A.14.在数列{a n}中,a n+1=a n+2,且a1=1,则=()A.B.C.D.【解答】解:在数列{a n}中,a n+1=a n+2,且a1=1,可得a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1,由==(﹣),可得=(1﹣+﹣+﹣+…+﹣)=(1﹣)=.故选:A.15.等差数列的前n项,前2n项,前3n项的和分别为A,B,C,则()A.A+C=2B B.B2=AC C.3(B﹣A)=C D.A2+B2=A(B+C)【解答】解:由等差数列的前n项和公式的性质可得:A,B﹣A,C﹣B也成等差数列.∴2(B﹣A)=A+C﹣B,解得3(B﹣A)=C.故选:C.16.已知数列{a n}的通项为a n=(﹣1)n(4n﹣3),则数列{a n}的前50项和T50=()A.98 B.99 C.100 D.101【解答】解:数列{a n}的通项为a n=(﹣1)n(4n﹣3),前50项和T50=﹣1+5﹣9+13﹣17+…+197=(﹣1+5)+(﹣9+13)+(﹣17+21)+…+(﹣193+197)=4+4+4+…+4=4×25=100.故选:C.17.数列1,,,…,的前n项和为()A.B. C. D.【解答】解:===2().数列1,,,…,的前n项和:数列1+++…+=2(1++…)=2(1﹣)=.故选:B.18.数列{a n}的通项公式为,其前n项和为s n,则s2017等于()A.1006 B.1008 C.﹣1006 D.﹣1008【解答】解:∵,n=2k﹣1(k∈N*)时,a n=a2k﹣1=(2k﹣1)=0.n=2k时,a n=a2k=2kcoskπ=2k•(﹣1)k.∴s2017=(a1+a3+…+a2017)+(a2+a4+…+a2016)=0+(﹣2+4﹣…﹣2014+2016)=1008.故选:B.19.数列{a n}中,,则数列{a n}前16项和等于()A.130 B.132 C.134 D.136+(﹣1)n a n=2n﹣1,【解答】解:∵a n+1∴a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a16﹣a15=29.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a11=2,a12+a10=40,a13+a15=2,a16+a14=56,从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.∴{a n}的前16项和为4×2+8×4+=136.故选:D.20.《庄子•天下篇》中记述了一个著名命题:“一尺之锤,日取其半,万世不竭”.反映这个命题本质的式子是()A.1+++…+=2﹣B.1+++…++…<2C.++…+=1 D.++…+<1【解答】解:根据已知可得每次截取的长度构造一个以为首项,以为公比的等比数列,∵++…+=1﹣<1,故反映这个命题本质的式子是++…+<1,故选:D21.在数列{a n}中,若=+,a1=8,则数列{a n}的通项公式为()A.a n=2(n+1)2B.a n=4(n+1)C.a n=8n2D.a n=4n(n+1)【解答】解:∵=+,a1=8,则数列{}为等差数列.∴=+(n﹣1)=(n+1).∴a n=2(n+1)2.故选:A.22.已知函数f(x)=,把函数g(x)=f(x)﹣x的零点按从小到大的顺序排列成一个数列,则该数列的前n项的和为S n,则S10=()A.210﹣1 B.29﹣1 C.45 D.55【解答】解:当0<x≤1时,有﹣1<x﹣1<0,则f(x)=f(x﹣1)+1=2x﹣1,当1<x≤2时,有0<x﹣1≤1,则f(x)=f(x﹣1)+1=2x﹣2+1,当2<x≤3时,有1<x﹣1≤2,则f(x)=f(x﹣1)+1=2x﹣3+2,当3<x≤4时,有2<x﹣1≤3,则f(x)=f(x﹣1)+1=2x﹣4+3,以此类推,当n<x≤n+1(其中n∈N)时,则f(x)=f(x﹣1)+1=2x﹣n﹣1+n,所以,函数f(x)=2x的图象与直线y=x+1的交点为:(0,1)和(1,2),由于指数函数f(x)=2x为增函数且图象下凸,故它们只有这两个交点.然后:①将函数f(x)=2x和y=x+1的图象同时向下平移一个单位,即得到函数f(x)=2x﹣1和y=x 的图象,取x≤0的部分,可见它们有且仅有一个交点(0,0).即当x≤0时,方程f(x)﹣x=0有且仅有一个根x=0.②取①中函数f(x)=2x﹣1和y=x图象﹣1<x≤0的部分,再同时向上和向右各平移一个单位,即得f(x)=2x﹣1和y=x在0<x≤1上的图象,此时它们仍然只有一个交点(1,1).即当0<x≤1时,方程f(x)﹣x=0有且仅有一个根x=1.③取②中函数f(x)=2x﹣1和y=x在0<x≤1上的图象,继续按照上述步骤进行,即得到f(x)=2x﹣2+1和y=x在1<x≤2上的图象,此时它们仍然只有一个交点(2,2).即当1<x≤2时,方程f(x)﹣x=0有且仅有一个根x=2.④以此类推,函数y=f(x)与y=x在(2,3],(3,4],…,(n,n+1]上的交点依次为(3,3),(4,4),…(n+1,n+1).即方程f(x)﹣x=0在(2,3],(3,4],…(n,n+1]上的根依次为3,4,…,n+1.综上所述方程f(x)﹣x=0的根按从小到大的顺序排列所得数列为:0,1,2,3,4,…,其通项公式为:a n=n﹣1,前n项的和为S n=,∴S10=45,故选C.23.设等差数列{a n}满足,公差d∈(﹣1,0),当且仅当n=9时,数列{a n}的前n项和S n取得最大值,求该数列首项a1的取值范围()A.B.[,]C.(,)D.[,]【解答】解:∵等差数列{a n}满足,∴(sina4cosa7﹣sina7cosa4)(sina4cosa7+sina7cosa4)=sin(a5+a6)=sin(a4+a7)=sina4cosa7+sina7cosa4,∴sina4cosa7﹣sina7cosa4=1,或sina4cosa7+sina7cosa4=0即sin(a4﹣a7)=1,或sin(a4+a7)=0(舍)当sin(a4﹣a7)=1时,∵a4﹣a7=﹣3d∈(0,3),a4﹣a7=2kπ+,k∈Z,∴﹣3d=2kπ+,d=﹣﹣π.∴d=﹣∵S n=na1+=n2+(a1﹣)n,且仅当n=9时,数列{a n}的前n项和S n取得最大值,∴8.5<﹣<9.5,∴π<a1<故选:C二.解答题(共4小题)24.已知{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{a n}的通项公式;(2)设c n=a n+b n,求数列{c n}的前n项和.【解答】解:(1)设{a n}是公差为d的等差数列,{b n}是公比为q的等比数列,由b2=3,b3=9,可得q==3,b n=b2q n﹣2=3•3n﹣2=3n﹣1;即有a1=b1=1,a14=b4=27,则d==2,则a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1;(2)c n=a n+b n=2n﹣1+3n﹣1,则数列{c n}的前n项和为(1+3+…+(2n﹣1))+(1+3+9+…+3n﹣1)=n•2n+=n2+.25.已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.【解答】解:(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q,a1=﹣1,b1=1,a2+b2=2,a3+b3=5,可得﹣1+d+q=2,﹣1+2d+q2=5,解得d=1,q=2或d=3,q=0(舍去),则{b n}的通项公式为b n=2n﹣1,n∈N*;(2)b1=1,T3=21,可得1+q+q2=21,解得q=4或﹣5,当q=4时,b2=4,a2=2﹣4=﹣2,d=﹣2﹣(﹣1)=﹣1,S3=﹣1﹣2﹣3=﹣6;当q=﹣5时,b2=﹣5,a2=2﹣(﹣5)=7,d=7﹣(﹣1)=8,S3=﹣1+7+15=21.26.设数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.(1)求{a n}的通项公式;(2)求数列{}的前n项和.【解答】解:(1)数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.n≥2时,a1+3a2+…+(2n﹣3)a n﹣1=2(n﹣1).∴(2n﹣1)a n=2.∴a n=.当n=1时,a1=2,上式也成立.∴a n=.(2)==﹣.∴数列{}的前n项和=++…+=1﹣=.27.已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,{b2n}是等比数列,公比为3,首项为1.﹣1b1+b3+b5+…+b2n﹣1==.。
统计概率与数列综合经典题(含详解答案)
统计概率与数列综合经典题(含详解答案)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March高考数学热点难点:统计概率与数列综合经典题1.随着科学技术的飞速发展,网络也已经逐渐融入了人们的日常生活,网购作为一种新的消费方式,因其具有快捷、商品种类齐全、性价比高等优势而深受广大消费者认可.某网购公司统计了近五年在本公司网购的人数,得到如下的相关数据(其中“x =1”表示2015年,“x =2”表示2016年,依次类推;y 表示人数):(1)试根据表中的数据,求出y 关于x 的线性回归方程,并预测到哪一年该公司的网购人数能超过300万人;(2)该公司为了吸引网购者,特别推出“玩网络游戏,送免费购物券”活动,网购者可根据抛掷骰子的结果,操控微型遥控车在方格图上行进. 若遥控车最终停在“胜利大本营”,则网购者可获得免费购物券500元;若遥控车最终停在“失败大本营”,则网购者可获得免费购物券200元. 已知骰子出现奇数与偶数的概率都是12,方格图上标有第0格、第1格、第2格、…、第20格。
遥控车开始在第0格,网购者每抛掷一次骰子,遥控车向前移动一次.若掷出奇数,遥控车向前移动一格(从k 到1k +)若掷出偶数遥控车向前移动两格(从k 到2k +),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。
设遥控车移到第(119)n n ≤≤格的概率为n P ,试证明{}1n n P P --是等比数列,并求网购者参与游戏一次获得免费购物券金额的期望值.附:在线性回归方程ˆˆˆybx a =+中,1221ˆˆˆ,ni ii nii x y nxyb ay b x xnx ==-==--∑∑. 2.冠状病毒是一个大型病毒家族,己知可引起感冒以及中东呼吸综合征和严重急性呼吸综合征等较严重疾病.而今年出现新型冠状病毒是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.某医院为筛查冠状病毒,需要检验血液是否为阳性,现有n (n *∈N )份血液样本,有以下两种检验方式: 方式一:逐份检验,则需要检验n 次.方式二:混合检验,将其中k (k *∈N 且2k ≥)份血液样本分别取样混合在一起检验.若检验结果为阴性,这k 份的血液全为阴性,因而这k 份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k 份血液究竟哪几份为阳性,就要对这k 份再逐份检验,此时这k 份血液的检验次数总共为1k +. 假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p (01p <<).现取其中k (k *∈N 且2k ≥)份血液样本,记采用逐份检验方式,样本需要检验的总次数为1ξ,采用混合检验方式,样本需要检验的总次数为2ξ. (1)若()()12E E ξξ=,试求p 关于k 的函数关系式()p f k =; (2)若p 与干扰素计量n x 相关,其中12,,,n x x x (2n ≥)是不同的正实数,满足11x =且n N *∀∈(2n ≥)都有1222113221121n n n i i i x x x e x x x x --=+-⋅=-∑成立. (i )求证:数列{}n x 等比数列; (ii)当1p =的期望值比逐份检验的总次数的期望值更少,求k 的最大值3.在读书活动中,某市图书馆的科技类图书和时政类图书是市民借阅的热门图书.为了丰富图书资源,现对已借阅了科技类图书的市民(以下简称为“问卷市民”)进行随机问卷调查,若不借阅时政类图书记1分,若借阅时政类图书记2分,每位市民选择是否借阅时政类图书的概率均为12,市民之间选择意愿相互独立.(1)从问卷市民中随机抽取4人,记总得分为随机变量ξ,求ξ的分布列和数学期望;(2)(i )若从问卷市民中随机抽取(N )m m +∈人,记总分恰为m 分的概率为m A ,求数列{}m A 的前10项和;(ⅱ)在对所有问卷市民进行随机问卷调查过程中,记已调查过的累计得分恰为n 分的概率为n B (比如:1B 表示累计得分为1分的概率,2B 表示累计得分为2分的概率,N n +∈),试探求n B 与1n B -之间的关系,并求数列{}n B 的通项公式.4.如今我们的互联网生活日益丰富,除了可以很方便地网购,网络外卖也开始成为不少人日常生活中重要的一部分,其中大学生更是频频使用网络外卖服务.A 市教育主管部门为掌握网络外卖在该市各大学的发展情况,在某月从该市大学生中随机调查了100人,并将这100人在本月的网络外卖的消费金额制成如下频数分布表(已知每人每月网络外卖消费金额不超过3000元):()1由频数分布表可以认为,该市大学生网络外卖消费金额Z (单位:元)近似地服从正态分布()2,N μσ,其中μ近似为样本平均数x (每组数据取区间的中点值,660σ=).现从该市任取20名大学生,记其中网络外卖消费金额恰在390元至2370元之间的人数为X ,求X 的数学期望;()2A 市某大学后勤部为鼓励大学生在食堂消费,特地给参与本次问卷调查的大学生每人发放价值100元的饭卡,并推出一档“勇闯关,送大奖”的活动.规则是:在某张方格图上标有第0格、第1格、第2格、…、第60格共61个方格.棋子开始在第0格,然后掷一枚均匀的硬币(已知硬币出现正、反面的概率都是12,其中01P =),若掷出正面,将棋子向前移动一格(从k 到1k +),若掷出反面,则将棋子向前移动两格(从k 到2k +).重复多次,若这枚棋子最终停在第59格,则认为“闯关成功”,并赠送500元充值饭卡;若这枚棋子最终停在第60格,则认为“闯关失败”,不再获得其他奖励,活动结束.①设棋子移到第n 格的概率为n P ,求证:当159n ≤≤时,{}1n n P P --是等比数列;②若某大学生参与这档“闯关游戏”,试比较该大学生闯关成功与闯关失败的概率大小,并说明理由.参考数据:若随机变量ξ服从正态分布()2,N μσ,则()0.6827P μσξμσ-<≤+=,()220.9545P μσξμσ-<+=,()330.9973P μσξμσ-<+=.5.在某次世界新能源汽车大会上着眼于全球汽车产业的转型升级和生态环境的持续改善.某汽车公司顺应时代潮流,最新研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程(理论上是指新能源汽车所装载的燃料或电池所能够提供给车行驶的最远里程)的测试.现对测试数据进行分析,得到如下的频率分布直方图:(1)估计这100辆汽车的单次最大续航里程的平均值x (同一组中的数据用该组区间的中点值代表).(2)根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程X 近似地服从正态分布()2,N μσ,经计算第(1)问中样本标准差s 的近似值为50.用样本平均数x 作为μ的近似值,用样本标准差s 作为σ的估计值,现任取一辆汽车,求它的单次最大续航里程恰在250千米到400千米之间的概率.参考数据:若随机变量ξ服从正态分布()2,N μσ,则()0.6827P μσξμσ-<+≈,(22)0.9545P μσξμσ-<+≈,(33)0.9973P μσξμσ-<+≈.(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券.已知硬币出现正、反面的概率都是12,方格图上标有第0格、第1格、第2格、…、第50格.遥控车开始在第0格,客户每掷一次硬币,遥控车车向前移动一次,若掷出正面,遥控车向前移动一格(从k 到1k +),若掷出反面,遥控车向前移动两格(从k 到2k +),直到遥控车移到第49格(胜利大本营)或第50格(失败大本营)时,游戏结束,设遥控车移到第n 格的概率为n P ,试说明{}1n n P P --是等比数列,并解释此方案能否成功吸引顾客购买该款新能源汽车.6.为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.7.一种掷硬币走跳棋的游戏:在棋盘上标有第1站、第2站、第3站、…、第100站,共100站,设棋子跳到第n 站的概率为n P ,一枚棋子开始在第1站,棋手每掷一次硬币,棋子向前跳动一次.若硬币的正面向上,棋子向前跳一站;若硬币的反面向上,棋子向前跳两站,直到棋子跳到第99站(失败)或者第100站(获胜)时,游戏结束. (1)求1,P 2,P 3P ;(2)求证:数列{}1n n P P +-(1,2,3,,98)n =⋯为等比数列; (3)求玩该游戏获胜的概率.8.某市不仅有着深厚的历史积淀与丰富的民俗文化,更有着许多旅游景点.每年来该市参观旅游的人数不胜数.其中,名人园与梦岛被称为该市的两张名片,为合理配置旅游资源,现对已游览名人园景点的游客进行随机问卷调查.若不去梦岛记1分,若继续去梦岛记2分.每位游客去梦岛的概率均为23,且游客之间的选择意愿相互独立. (1)从游客中随机抽取3人,记总得分为随机变量X ,求X 的分布列与数学期望;(2)若从游客中随机抽取m 人,记总分恰为m 分的概率为m A ,求数列{}m A 的前6项和;(3)在对所有游客进行随机问卷调查的过程中,记已调查过的累计得分恰为n 分的概率为n B ,探讨n B 与1n B -之间的关系,并求数列{}n B 的通项公式.参考答案1.解:(1)123453,5x ++++==20501001501801005y ++++==511202503100415051801920i ii x y==⨯+⨯+⨯+⨯+⨯=∑522222211234555,ii x==++++=∑故19205310042,5559b -⨯⨯==-⨯ 从而10042326,a y bx =-=-⨯=-所以所求线性回归方程为4226y x =-, 令*4226300,x x N ->∈,解得8x ≥.故预计到2022年该公司的网购人数能超过300万人(2)遥控车开始在第0格为必然事件,01P =,第一次掷骰子出现奇数,遥控车移到第一格,其概率为12,即112P =.遥控车移到第n (219n )格的情况是下列两种,而且也只有两种.①遥控车先到第2n -格,又掷出奇数,其概率为212n P -②遥控车先到第1n -格,又掷出偶数,其概率为112n P -所以211122n n n P P P --=+,1121()2n n n n P P P P ---∴-=--∴当119n 时,数列1{}n n P P --是公比为12-的等比数列 2312132111111,(),(),()2222nn n P P P P P P P -∴-=--=--=-⋅⋅⋅-=- 以上各式相加,得2311111()()()()2222nn P -=-+-+-+⋅⋅⋅+-=11()1()32n ⎡⎤---⎢⎥⎣⎦1211()32n n P +⎡⎤∴=--⎢⎥⎣⎦(0,1,2,,19n =⋅⋅⋅),∴获胜的概率2019211()32P ⎡⎤=--⎢⎥⎣⎦失败的概率1920181111232P P ⎡⎤==+⎢⎥⎣⎦() ∴设参与游戏一次的顾客获得优惠券金额为X 元,200X =或500 ∴X 的期望201919211115001()2001()1004()32322EX ⎡⎤⎡⎤⎡⎤=⨯-+⨯+=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦∴参与游戏一次的顾客获得优惠券金额的期望值为1911004()2⎡⎤-⎢⎥⎣⎦,约400元.2.(1)解:由已知,1k ξ=,()11P ξ=,得()1E k ξ=,2ξ的所有可能取值为1,1k +,∴()()211kP p ξ==-,()()2111kP k p ξ=+=--.∴()()()()()2111111k k kE p k p k k p ξ⎡⎤=-++--=+--⎣⎦. 若()()12E E ξξ=,则()11kk k k p =+--,()11kp k -=,∴111kp k ⎛⎫-= ⎪⎝⎭,∴111kp k ⎛⎫=- ⎪⎝⎭.∴p 关于k 的函数关系式为()111kf k k ⎛⎫=- ⎪⎝⎭,(k *∈N ,且2k ≥).(2)(i )∵证明:当2n =时,12222213221221x x x e x x x x --⋅=-,∴1231x e x =,令12310x q e x ==>,则1q ≠,∵11x =,∴下面证明对任意的正整数n ,13n n x e -=.①当1n =,2时,显然成立; ②假设对任意的n k =时,13k k x e-=,下面证明1n k =+时,31k k x e +=;由题意,得12221113221121kk k i i i x x x e x x x x -++=+-⋅=-∑,∴12213121223113111111k k k k k k x e xx x x x x x x x e -++-+⎛⎫-⋅++++= ⎪⎝⎭-,∴11233122131212333111111k k k k k e e x e x e e x e ----++--+⎧⎫⎡⎤⎛⎫⎪⎪⎢⎥- ⎪⎪⎪⎢⎥⎝⎭-⎪⎪⎣⎦⋅+=⎨⎬⎪⎪-⋅-⎪⎪⎪⎪⎩⎭,()21231213122331111k k k k k xe x e xe e --+-++⎛⎫- ⎪ ⎪-⎝⎭+⋅=--,∴()212233331110k k k k k exe e x ----+++⎛⎫⋅+-⋅-= ⎪⎝⎭,233311110k k k k e x e x --+++⎛⎫⎛⎫-+= ⎪⎪⎝⎭⎝⎭. ∴31k k x e +=或2331k k x e -+=-(负值舍去).∴31k k x e +=成立.∴由①②可知,{}n x 为等比数列,13n n x e -=.(ii )解:由(i)知,11p ==,()()12E E ξξ>,∴()11kk k k p >+--,得()11kkp k <-=,∴1ln 3k k >.设()1ln 3f x x x =-(0x >),()33xf x x-'=,∴当3x ≥时,0fx ,即()f x 在[)3,+∞上单调减.又ln 4 1.3863≈,4 1.33333≈,∴4ln 43>;ln5 1.6094≈,5 1.66673≈.∴5ln 53<. ∴k 的最大值为4.3.解(1)ξ的可能取值为4,5,6,7,8,04411(4)C (),216P ξ=== 1134111(5)C (),24(2)P ξ=== 2224113(6)C ,2()()28P ξ===,3314111(7)C ,2()()24P ξ===4404111(8)C 2()()216P ξ=== 所有ξ的分布列为所以数学期望11311()4567861648416E ξ=⨯+⨯+⨯+⨯+⨯=. (2)(i )总分恰为m 分的概率为1()2mm A =,所以数列{}m A 是首项为12,公比为12的等比数列,前10项和101011(1)1023221102412S -==-. (ii )已调查过的累计得分恰为n 分的概率为n B ,得不到n 分的情况只有先得1n -分,再得2分,概率为1111,22n B B -=.因为1112n n B B -+=,即1112n n B B -=-+,所以1212()323n n B B --=--,则{23}n B -是首项为12136B -=-,公比为12-的等比数列, 所以1211()362n n B --=--,所以211()332n n B =+-. 4.解:()12500.27500.3512500.2517500.1x =⨯+⨯+⨯+⨯22500.05+⨯+27500.051050⨯=,因为Z 服从正态分布()21050,660N ,所以()()0.95450.6827390237020.95450.81862P Z P Z μσμσ-<≤=-<≤+=-=.所以()20,0.8186XB ,所以X 的数学期望为()200.818616.372E X =⨯=.()2①棋子开始在第0格为必然事件,01P =.第一次掷硬币出现正面,棋子移到第1格,其概率为12,即112P =. 棋子移到第()259n n ≤≤格的情况是下列两种,而且也只有两种:棋子先到第2n -格,又掷出反面,其概率为212n P -;棋子先到第1n -格,又掷出正面,其概率为112n P -,所以211122n n n P P P --=+,即112(1)2n n n n P P P P ----=--,且1012P P -=-, 所以当159n ≤≤时,数列{}1n n P P --是首项1012P P -=-,公比为12-的等比数列.②由①知1112P -=-,12212P P ⎛⎫-=- ⎪⎝⎭,33212P P ⎛⎫-=- ⎪⎝⎭,,112nn n P P -⎛⎫-=- ⎪⎝⎭,以上各式相加,得21111222n nP ⎛⎫⎛⎫⎛⎫-=-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以21111222nn P ⎛⎫⎛⎫⎛⎫=+-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()12110,1,2,,5932n n +⎡⎤⎛⎫=--=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.所以闯关成功的概率为6060592121113232P ⎡⎤⎡⎤⎛⎫⎛⎫=--=-⎢⎥⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦, 闯关失败的概率为5959605811211111223232P P ⎡⎤⎡⎤⎛⎫⎛⎫==⨯--=+⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦.60595859602111111110323232P P ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫-=--+=->⎢⎥⎢⎥⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以该大学生闯关成功的概率大于闯关失败的概率. 5.解:(1)0.002502050.004502550.009503050.004503550.00150405300x =⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=(千米).(2)由~(300X N ,250).0.95450.6827(250400)0.95450.81862P X -∴<=-=.(3)遥控车开始在第0 格为必然事件,01P=.第一次掷硬币出现正面,遥控车移到第一格,其概率为12,即112P=.遥控车移到第(249)n n 格的情况是下面两种,而且只有两种:①遥控车先到第2n -格,又掷出反面,其概率为212n P -.②遥控车先到第1n -格,又掷出正面,其概率为112n P -.211122n n n P P P --∴=+. 1121()2n n n n P P P P ---∴-=--.149n ∴时,数列1{}n n P P --是等比数列,首项为1012P P -=-,公比为12-的等比数列.1112P ∴-=-,2211()2P P -=-,3321()2P P -=-,⋯⋯,11()2n n n P P --=-. 1112100111()()()()()1222n n n n n n n P P P P P P P P ----∴=-+-+⋯⋯+-+=-+-+⋯⋯-+ 1111()212[1()]1321()2n n ++--==----(0n =,1,⋯⋯,49). ∴获胜的概率504921[1()]32P =--,失败的概率49495048112111[1()][1()]223232P P ==⨯--=+.5049484950211111[1()][1()][1()]0323232P P ∴-=---+=->. ∴获胜的概率大.∴此方案能成功吸引顾客购买该款新能源汽车.6.解(1)由题意可知X 所有可能的取值为:1-,0,1()()11P X αβ∴=-=-;()()()011P X αβαβ==+--;()()11P X αβ==-则X 的分布列如下:(2)0.5α=,0.8β=0.50.80.4a ∴=⨯=,0.50.80.50.20.5b =⨯+⨯=,0.50.20.1c =⨯= (i )()111,2,,7i i i i p ap bp cp i -+=++=⋅⋅⋅即()110.40.50.11,2,,7i i i i p p p p i -+=++=⋅⋅⋅整理可得:()11541,2,,7i i i p p p i -+=+=⋅⋅⋅ ()()1141,2,,7i i i i p p p p i +-∴-=-=⋅⋅⋅{}1i i p p +∴-()0,1,2,,7i =⋅⋅⋅是以10p p -为首项,4为公比的等比数列(ii )由(i )知:()110144i ii i p p p p p +-=-⋅=⋅78714p p p ∴-=⋅,67614p p p -=⋅,……,01014p p p -=⋅作和可得:()880178011114414441143p p p p p ---=⋅++⋅⋅⋅+===-18341p ∴=- ()4401234401184144131144441434141257p p p p p --∴=-=⋅+++==⨯==--+ 4p 表示最终认为甲药更有效的.由计算结果可以看出,在甲药治愈率为,乙药治愈率为时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种实验方案合理.7.(1)棋子开始在第1站是必然事件,11P ∴=; 棋子跳到第2站,只有一种情况,第一次掷硬币正面向上,其概率为1,2212P ∴=;棋子跳到第3站,有两种情况,①第一次掷硬币反面向上,其概率为12;②前两次掷硬币都是正面向上,其概率为111,224⨯=3113244P ∴=+=; (2)棋子棋子跳到第2n +()*197,n n N ≤≤∈站,有两种情况:①棋子先跳到第n 站,又掷硬币反面向上,其概率为12nP;②棋子先跳到第1n +站,又掷硬币正面向上,其概率为112n P +.故211122n n n P P P ++=+.()21112n n n n P P P P +++∴-=--又2112P P -=-, 数列()1(1,2,3,n nP P n +-=…,98)是以12-为首项,12-为公比的等比数列. (3)由(2)得112nn n P P +⎛⎫-=- ⎪⎝⎭.()()9999989897P P P P P =-+-+…()211P P P +-+98971122⎛⎫⎛⎫=-+-+ ⎪ ⎪⎝⎭⎝⎭ …112⎛⎫+-+ ⎪⎝⎭99112112⎛⎫-- ⎪⎝⎭=⎛⎫-- ⎪⎝⎭9821332=+⋅ 所以获胜的概率为9998111332P -=-⋅ 8.解(1)X 可能取值为3,4,5,6()3113327P X ⎛⎫===⎪⎝⎭, ()21321643327P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭, ()223211253327P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭, ()3286327P X ⎛⎫===⎪⎝⎭, 故其分布列为()5E X =.(2)总分恰为m 的概率13mm A ⎛⎫= ⎪⎝⎭,故6611(1)36433172913S -==-. (3)已调查过的累计得分恰为n 分的概率为n B ,得不到n 分的情况只有先得1n -分,再得2分,概率为123n B -,而113B =,故1213n n B B --=,即1213n n B B -=-+,可得1323535n n B B -⎛⎫-=-- ⎪⎝⎭,134515B -=-,所以13425153n n B -⎛⎫-=-- ⎪⎝⎭可得322553nn B ⎛⎫=+⋅- ⎪⎝⎭.。
数列综合测试题含标准答案
数列综合测试题含标准答案A. 24B. 25数列综合测试题第I 卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)S 3 O P1. 已知等差数列{a n }的前n 项和为S,且满足---=1,则数列{a n }的公差是()B. 1C. 2D. 32. 设等比数列{a n }的前n 项和为S,若8a 2 + a s = 0,则下列式子中数值不能确定的是()3.(理)已知数列{a n }满足 log3a n +1 = log 3a n + 1(n € N )且a ?+ ◎+ a 6=9,则+ a 9)的值是()1A. — 5B. — ~5C. 5A 7n + 45a n4.已知两个等差数列{ a n }和{b n }的前n 项和分别为 A 和B,且B= n + 3,则使得为正偶数时,n 的值可以是()A. 1B. 2C. 5D. 3 或 115.已知a >0, b >0, A 为a , b 的等差中项,正数 G 为a , b 的等比中项,贝U ab 与AG 的大小关系是()A. ab = AGB. ab > AGC. ab w AGD.不能确定1a 3 + a 46.各项都是正数的等比数列{a n }的公比q z 1,且a p , &, a 成等差数列,则的2a 4 + a 5值为()1log 3( a s +/5 -127.数列{a n}的通项公式为a n= 2n—49,当该数列的前n项和S达到最小时,n等于()A. 24B. 25C. 26D. 27& 数列{a n}是等差数列,公差d M 0,且a2046 + a1978 —a2012= 0, { b n}是等比数列,且b2012 =a2012, 贝U b2010 ? b2014 =( )A. 0B. 1C. 4D. 89. 已知各项均为正数的等比数列{a n}的首项a1= 3,前二项的和为则a3 + a4+ a5 =21,( )A. 33B. 72C. 84D. 18910 .已知等差数列{a n}的前n项和为S,若a1 =1, S3= a5, a m= 2011 , 则m=( )A. 1004B. 1005C. 1006D. 100711 .设{a n}是由正数组成的等差数列,{b n}是由正数组成的等比数列,a1 = b, a2003 且=b2003 , 则()A. a1002> b1002B. a1002 = bl002C. a1002》b1002D. a1002 bl00212.已知数列{a n}的通项公式为a n= 6n—4,数列{t n}的通项公式为b n= 2n,则在数列{a n}的前100项中与数列{b n}中相同的项有()A. 50 项B. 34 项C. 6项D. 5项第n卷(非选择题共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)113.已知数列{a n}满足:a n+1= 1 ——,a1= 2,记数列{a n}的前n项之积为P n,贝U F2ou =a n14.秋末冬初,流感盛行,荆门市某医院近30天每天入院治疗流感的人数依次构成数列{a n},已知a1= 1, a2= 2,且a n+ 2—a n= 1 + (—1)" (n€ N),则该医院30天入院治疗流感的人数共有 ______ 人.15._____________________________________________________________ _____ 已知等比数列{a n}中,各项都是正数,且a1,妇3,2a2成等差数列,则牛空= ___________________ .2 a1 + a816.在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,且从上到下所有公比相等,则a+ b+ c的值为__________ .三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.设数列{a n }的前n 项和为S n =2n1 2 3, {5}为等比数列,且 a i =b i , b 2(a 2 — a i ) = b i 。
数列大题综合(含答案)
数列大题综合1.(2022春·广东深圳·高二翠园中学校考期中)设等差数列{}n a 的前n 项和为n S ,且629S S =,3634a a -=.(1)求数列{}n a 的通项公式;(2)设12n n n b a a +=,求数列{}n b 的前n 项和n T .2.(2022春·广东广州·高二校考期中)记n S 是公差不为0的等差数列{}n a 的前n 项和,33a S =,244a a S =.(1)求数列{}n a 的通项公式n a ;(2)求使n n S a >成立的n 的最小值3.(2022春·广东佛山·高二佛山一中校考期中)已知等差数列{}n a 满足:47a =,1019a =,其前n 项和为.n S (1)求数列{}n a 的通项公式n a 及n S ;(2)若n b ={}n b 的前n 项和n T .4.(2022春·广东江门·高二江门市第二中学校考期中)设{}n a 是首项为1的等比数列,且1a 、23a 、39a 成等差数列.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和,求{}n S 的前n 项和n T .5.(2022秋·广东广州·高二校考期中)已知数列{}n a 的前n 项和为n S ,且23122n S n n =+,递增的等比数列{}n b 满足:1418b b +=,2332b b ⋅=.(1)求数列{}n a 、{}n b 的通项公式;(2)设{}n b 的前n 项和分别为n T ,求n T .6.(2022春·广东珠海·高二珠海市第二中学校考期中)设数列{}n a 的前n 项和为n S .已知11a =,()122N n n a S n *+=+∈(1)求数列{}n a 的通项公式;(2)数列{}n b 满足()32log 1n n n b a a n *⎛⎫=⋅-∈ ⎪⎝⎭N ,求数列{}n b 的前n 项和nT.7.(2022春·广东广州·高二统考期中)已知等比数列{}n a 的各项均为正数,24a =,3424a a +=.(1)求数列{}n a 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n d 的等差数列,求证:12311113nd d d d ++++<L .8.(2022春·广东佛山·高二校考期中)已知数列{}n a 、{}n b 满足1233= nbn a a a a ,若数列{}n a 是等比数列,且13,=a 434=+b b .(1)求数列{}n a 、{}n b 的通项公式;(2)令()21nn n b c n a =+,求{}n c 的前n 项和为n S .9.(2022春·广东佛山·高二校考期中)在等比数列{}n a 中,公比0q >,其前n 项和为n S ,且26S =,______.从①430S =,②6496S S -=,③3a 是3S 与2的等差中项这三个条件中任选一个,补充到上面问题中的横线上,并作答.(1)求数列{}n a 的通项公式;(2)设log 2n n a b =,且数列{}n c 满足11c =,11n n n n c c b b ++-=,求数列{}n c 的通项公式.10.(2022春·广东佛山·高二顺德市李兆基中学校考期中)已知数列{}n a 的前n 项和为n S ,且220n n S a -+=,数列{}n b 为等差数列,11b a =,523b b b =+.(1)求数列{}n a ,{}n b 的通项公式;(2)数列{}n c 是由数列{}n b 的项删去数列{}n a 的项后按从小到大的顺序排列构成的新数列,求数列{}n c 的前50项和50T .11.(2022春·广东佛山·高二佛山市南海区九江中学校考期中)已知数列{}n a 的前n 项和为n S ,满足322n n S a =-,*n ∈N .(1)求数列{}n a 的通项公式;(2)设,2,n n a n b n n ⎧=⎨+⎩为偶数为奇数,求数列{}n b 的前2n 项和2n T .12.(2022春·广东深圳·高二校考期中)等差数列{}n a 前n 项和为n S ,且3616a a +=,981S =.(1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎩⎭的前n 项和为n T ,若715n T >,求n 的最小值.13.(2022春·广东深圳·高二深圳市建文外国语学校校考期中)已知数列{}n a 的前n 项和为n S ,且213n n S a +=.(1)证明数列{}n a 为等比数列,且求其通项公式;(2)若数列{}n b 满足n n a b n =,求数列{}n b 的前n 项和n T .14.(2022春·广东佛山·高二南海中学校考期中)已知数列{}n a 中,12a =,*121(N )n n a a n n +=-+∈.(1)求2a ,并证明{}n a n -为等比数列;(2)求数列{}n a 的前n 项和n S .15.(2022春·广东佛山·高二佛山市顺德区郑裕彤中学校考期中)已知数列{}n a 中,12a =,24a =,且()*2132n n n a a a n N ++=-∈.(1)设12n n n b a a +=-,证明数列{}n b 是常数列;(2)求数列{}n a 的通项公式,并求数列{}n a 的的前n 项和;(3)设2sin cos log 22n n n n c a ππ⎛⎫=+⋅ ⎪⎝⎭,求数列{}n c 的前2022项的和.16.(2022春·广东广州·高二执信中学校考期中)已知数列{}n a 是公差大于1的等差数列,前n 项和为n S ,11a =,且2,31a -,63a -成等比数列.(1)求数列{}n a 的通项公式;(2)若()2n n n n b S n a =+,数列{}n b 的前n 项和为n T ,求证12n T <.17.(2022春·广东汕头·高二校考期中)在①35a =,5722a a +=;②11a =,525S =;③2n S n =,这三个条件中任选一个,补充在下面问题中,然后解答补充完整的题目.已知n S 为等差数列{}n a 的前n 项和,若______.(1)求数列{}n a 的通项公式;(2)若n 11n n C a a +=,求数列{}n c 的前n 项和n T .18.(2022春·广东·高二校联考期中)已知首项为2的数列{}n a 满足111,22,n n n a n a a n +⎧+⎪=⎨⎪⎩为奇数为偶数,记212,-==n n n n b a c a .(1)求证:数列{}n b 是一个等差数列;(2)求数列1⎧⎫⎨⎬⋅⎩⎭n n b c 的前10项和10S .19.(2022春·广东佛山·高二校考期中)已知等差数列{}n a 满足37a =,5726a a +=,()*211n nb n a =∈-N .(1)求数列{}n a ,{}n b 的通项公式;(2)数列{}n b 的前n 项和为n S ,求100S .20.(2022春·广东江门·高二校联考期中)已知数列{}n a 的前n 项和为n S ,且满足11a =,()1212n n S S n -=+≥.(1)求{}n a 的通项公式;(2)若()()111nn n n a b a a +=++,求数列{}n b的前n 项和n T .21.(2022春·广东揭阳·高二普宁市华侨中学校考期中)已知Sn 为等差数列{an }的前n 项和,若a 3+a 5=5,S 4=7.(1)求an ;(2)记bn =2221n n a a +⋅,求数列{bn }的前n 项和Tn .22.(2022春·广东佛山·高二校联考期中)“绿水青山就是金山银山”是时任浙江省委书记习近平同志于2005年8月15日在浙江湖州安吉考察时提出的科学论断,2017年10月18日,该理论写入中共十九大报告.为响应总书记号召,我国某西部地区进行沙漠治理,该地区有土地1万平方公里,其中70%是沙漠,从今年起,该地区进行绿化改造,每年把原有沙漠的16%改造为绿洲,同时原有绿洲的4%被沙漠所侵蚀又变成沙漠,记该地区今年绿洲的面积为1a 万平方公里,第n 年绿洲的面积为n a 万平方公里.(1)求第n 年绿洲的面积n a 与上一年绿洲的面积1n a -的关系;(2)证明:数列45n a ⎧⎫-⎨⎩⎭是等比数列,并求{}n a 的通项公式;(3)求第几年该地区的绿洲面积可超过60%?(参考数据:lg 20.3010=)23.(2022春·广东佛山·高二校考期中)已知等差数列{}n d 的前n 项和2n S n n =+,且2d ,4d 为等比数列数列{}n a 的第2、3项.(1)求{}n a 的通项公式;(2)设n nnb a =,求证:122n b b b +++< 24.(2022春·广东佛山·高二校联考期中)已知数列{}n a 的前n 项和为n S ,且342n n S a =-.(1)求{}n a 的通项公式;(2)若()221log n n b n a =+,求数列1n b ⎧⎫⎨⎩⎭的前n 项和n T .25.(2022秋·广东广州·高二校考期中)已知等差数列{}n a 满足,110a =,且210a +,38a +,46a +成等比数列.(1)求数列{}n a 的通项公式;(2)若数列{}n b 的通项公式为2nn b =,求数列{}n n a b 的前n 项和.26.(2022春·广东江门·高二台山市华侨中学校考期中)已知数列{}n a 为单调递增的等比数列,且1432a a =,2312a a +=.(1)求数列{}n a 的通项公式;(2)记2log =n n n b a a ,求数列{}n b 的前n 项和n T .27.(2022春·广东韶关·高二校考期中)已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N ;(Ⅲ)对任意的正整数n ,设()21132,,,.n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.28.(2022春·广东广州·高二广州市协和中学校考期中)已知等差数列{}n a 中,前n 项和为n S ,11a =,{}n b 为等比数列且各项均为正数,11b =,且满足:22337,22b S b S +=+=.(1)求n a 与n b ;(2)记12n nn na cb -⋅=,求{}nc 的前项和;(3)若不等式1(1)2nn n n m T --⋅-<对一切n N *∈恒成立,求实数m 的取值范围.29.(2022春·广东广州·高二广州市育才中学校考期中)已知数列{}n a 的前n 项和为n S ,点(n ,()*)n S n N ∈在函数2y x =的图象上,数列{}n b 满足()1*1622,n n n b b n n N +-=+∈,且113b a =+(1)求数列{}n a 的通项公式;(2)证明列数12n nb ⎧⎫+⎨⎬⎩⎭是等比数列,并求数列{}n b 的通项公式;(3)设数列{}n c 满足对任意的*312123123,2222n n nn c c c c n N a b b b b +∈=+++⋯+++++均有成立,求1232010c c c c +++⋯+的值.30.(2022春·广东广州·高二广州市禺山高级中学校联考期中)已知数列{}n a 中,11a =,214a =,且1(1)(2,3,4,)nn na n n a n a +=-=⋅⋅⋅-.(1)设*111()n n b n N a +=-∈,试用n b 表示1n b +,并求{}n b 的通项公式;(2)设*1sin 3()cos cos n n n n c N b b +=∈,求数列{}n c 的前n 项和n S .数列大题综合答案1.(2022春·广东深圳·高二翠园中学校考期中)设等差数列{}n a 的前n 项和为n S ,且629S S =,3634a a -=.(1)求数列{}n a 的通项公式;(2)设12n n n b a a +=,求数列{}n b 的前n 项和n T .n 0n 的前项和,33244(1)求数列{}n a的通项公式n a ;(2)求使n n S a >成立的n 的最小值,n 满足:4,10,其前项和为n (1)求数列{}n a 的通项公式n a 及n S ;(2)若n b ={}n b 的前n 项和n T .n 是首项为1的等比数列,且1、2、3成等差数列.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和,求{}n S 的前n 项和n T .5.(2022秋·广东广州·高二校考期中)已知数列n a 的前n 项和为n S ,且222n S n n =+,递增的等比数列{}n b 满足:1418b b +=,2332b b ⋅=.(1)求数列{}n a 、{}n b 的通项公式;(2)设{}n b 的前n 项和分别为n T ,求n T .n 的前n 项和为n 1,()122N n n a S n *+=+∈(1)求数列{}n a 的通项公式;(2)数列{}nb 满足()32log 1n n n b a a n *⎛⎫=⋅-∈ ⎪⎝⎭N ,求数列{}n b 的前n 项和nT .n 的各项均为正数,2,34(1)求数列{}n a 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n d 的等差数列,求证:12311113nd d d d ++++<L .n 、n 满足123nn n 是等比数列,且13,=a 434=+b b .(1)求数列{}n a 、{}n b 的通项公式;(2)令()21nn n b c n a =+,求{}n c 的前n 项和为n S .n 中,公比,其前n 项和为n ,且2,______.从①430S =,②6496S S -=,③3a 是3S 与2的等差中项这三个条件中任选一个,补充到上面问题中的横线上,并作答.(1)求数列{}n a 的通项公式;(2)设log 2n n a b =,且数列{}n c 满足11c =,11n n n n c c b b ++-=,求数列{}n c 的通项公式.n 的前项和为n ,且n n ,数列{}n b 为等差数列,11b a =,523b b b =+.(1)求数列{}n a ,{}n b 的通项公式;(2)数列{}n c 是由数列{}n b 的项删去数列{}n a 的项后按从小到大的顺序排列构成的新数列,求数列{}n c 的前50项和50T .n 的前n 项和为n ,满足322n n Sa =-,*n ∈N .(1)求数列{}n a 的通项公式;(2)设,2,n n a n b n n ⎧=⎨+⎩为偶数为奇数,求数列{}n b 的前2n 项和2n T .n 前n 项和为n ,且36,9.(1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎩⎭的前n 项和为n T ,若715n T >,求n 的最小值.n 的前n 项和为n ,且213n n S a +=.(1)证明数列{}n a 为等比数列,且求其通项公式;(2)若数列{}n b 满足n n a b n =,求数列{}n b 的前n 项和n T .n 中,1,1n n +=-+∈.(1)求2a ,并证明{}n a n -为等比数列;(2)求数列{}n a 的前n 项和n S .n 中,1,2,且()*2132n n n a a a n N ++=-∈.(1)设12n n n b a a +=-,证明数列{}n b 是常数列;(2)求数列{}n a 的通项公式,并求数列{}n a 的的前n 项和;(3)设2sin cos log 22n n n n c a ππ⎛⎫=+⋅ ⎪⎝⎭,求数列{}n c 的前2022项的和.n 是公差大于1的等差数列,前项和为n ,11a =,且2,31a -,63a -成等比数列.(1)求数列{}n a 的通项公式;(2)若()2n n n n b S n a =+,数列{}n b 的前n 项和为n T ,求证12n T <.3,57;②1,5;③n 条件中任选一个,补充在下面问题中,然后解答补充完整的题目.已知n S 为等差数列{}n a 的前n 项和,若______.(1)求数列{}n a 的通项公式;(2)若n 11n n C a a +=,求数列{}n c 的前n 项和n T .18.(2022春·广东·高二校联考期中)已知首项为2的数列{}n a 满足11,22,n n n a n a a n +⎧+⎪=⎨⎪⎩为奇数为偶数,记212,-==n n n n b a c a .(1)求证:数列{}n b 是一个等差数列;(2)求数列1⎧⎫⎨⎬⋅⎩⎭n n b c 的前10项和10S .19.(2022春·广东佛山·高二校考期中)已知等差数列{}n a 满足37a =,5726a a +=,*21n n b n a =∈-N .(1)求数列{}n a ,{}n b 的通项公式;(2)数列{}n b 的前n 项和为n S ,求100S .n 的前项和为n ,且满足1,1n n -(1)求{}n a 的通项公式;(2)若()()111nn n n a b a a +=++,求数列{}n b 的前n 项和n T .35S 4=7.(1)求an ;(2)记bn =2221nn a a +⋅,求数列{bn }的前n 项和Tn .年8月15日在浙江湖州安吉考察时提出的科学论断,2017年10月18日,该理论写入中共十九大报告.为响应总书记号召,我国某西部地区进行沙漠治理,该地区有土地1万平方公里,其中70%是沙漠,从今年起,该地区进行绿化改造,每年把原有沙漠的16%改造为绿洲,同时原有绿洲的4%被沙漠所侵蚀又变成沙漠,记该地区今年绿洲的面积为1a 万平方公里,第n 年绿洲的面积为n a 万平方公里.(1)求第n 年绿洲的面积n a 与上一年绿洲的面积1n a -的关系;(2)证明:数列45n a ⎧⎫-⎨⎩⎭是等比数列,并求{}n a 的通项公式;(3)求第几年该地区的绿洲面积可超过60%?(参考数据:lg 20.3010=)n n S n n =+2,4列{}n a 的第2、3项.(1)求{}n a 的通项公式;(2)设n nnb a =,求证:122n b b b +++<n 的前项和为n ,且n n (1)求{}n a 的通项公式;(2)若()221log n n b n a =+,求数列1n b ⎧⎫⎨⎩⎭的前n 项和n T .n 12,3,4成等比数列.(1)求数列{}n a 的通项公式;(2)若数列{}n b 的通项公式为2nn b =,求数列{}n n a b 的前n 项和.【答案】(1)28n a n =+(2)()116272n n S n +=-++⋅【详解】(1)等差数列{}n a 的首项110a =,公差设为d ,由210a +,38a +,46a +成等比数列,则()()()23248106a a a +=+⋅+,即()()()2111281036a d a d a d ++=++⋅++,即()()()218220163d d d +=+⋅+,解得2d =,所以()1128n a a n d n =+-=+.n 14,2312a a +=.(1)求数列{}n a 的通项公式;(2)记2log =n n n b a a ,求数列{}n b 的前n 项和n T .n 为等差数列,n 为等比数列,()()115435431,5,4a b a a a b b b ===-=-.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N ;(Ⅲ)对任意的正整数n ,设()21132,,,.n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.n 中,前项和为n ,1,n 为等比数列且各项均为正数,11b =,且满足:22337,22b S b S +=+=.(1)求n a 与n b ;(2)记12n nn na cb -⋅=,求{}nc 的前项和;(3)若不等式1(1)2nn n n m T --⋅-<对一切n N *∈恒成立,求实数m 的取值范围.29.(2022春·广东广州·高二广州市育才中学校考期中)已知数列n 的前项和为n ,点,n 在函数2y x =的图象上,数列{}n b 满足()1*1622,n n n b b n n N +-=+∈,且113b a =+(1)求数列{}n a 的通项公式;(2)证明列数12n n b ⎧⎫+⎨⎬⎩⎭是等比数列,并求数列{}n b 的通项公式;(3)设数列{}n c 满足对任意的*312123123,2222n n nn c c c c n N a b b b b +∈=+++⋯+++++均有成立,求1232010c c c c +++⋯+的值.30.(2022春·广东广州·高二广州市禺山高级中学校联考期中)已知数列{}n a 中,11a =,24a =,且1(1)(2,3,4,)nn na n n a n a +=-=⋅⋅⋅-.(1)设*111()n n b n N a +=-∈,试用n b 表示1n b +,并求{}n b 的通项公式;(2)设*1sin 3()cos cos n n n n c N b b +=∈,求数列{}n c 的前n 项和n S .。
数列考试题型及答案详解
数列考试题型及答案详解一、选择题1. 已知数列\( a_n \)的通项公式为\( a_n = 2n - 1 \),该数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 常数数列答案:A2. 若数列\( b_n \)满足\( b_n = b_{n-1} + 3 \),且\( b_1 = 1 \),则\( b_5 \)的值为:A. 10B. 13C. 16D. 19答案:B二、填空题3. 给定数列\( c_n \)的前几项为\( c_1 = 1, c_2 = 3, c_3 = 6 \),若数列\( c_n \)是等差数列,则\( c_4 \)的值为______。
答案:104. 若数列\( d_n \)的前\( n \)项和为\( S_n = 2n^2 - n \),求\( d_4 \)的值。
答案:15三、解答题5. 已知数列\( e_n \)的前\( n \)项和为\( S_n = 3n^2 + n \),求证数列\( e_n \)是等差数列,并求出其首项和公差。
证明:由题意知,\( S_1 = e_1 = 3 \times 1^2 + 1 = 4 \)。
当\( n \geq 2 \)时,\( e_n = S_n - S_{n-1} = (3n^2 + n) - [3(n-1)^2 + (n-1)] = 6n - 2 \)。
又\( e_1 = 4 \),满足上述等式,故\( e_n = 6n - 2 \)。
由\( e_n \)的表达式可知,\( e_n - e_{n-1} = 6 \),即数列\( e_n \)的公差为6,首项为4,因此\( e_n \)是等差数列。
6. 已知数列\( f_n \)的通项公式为\( f_n = 3^n - 2^n \),求\( f_{10} \)的值。
解答:根据题意,\( f_{10} = 3^{10} - 2^{10} \)。
计算得\( f_{10} = 59049 - 1024 = 58025 \)。
数列大题综合练习(含答案)
数列大题综合练习(含答案)1、在数列{an}中,a1=1,an+1=2an+2n。
1)设bn=an,证明数列{bn}为等差数列;2)求数列{an}的前n项和Sn。
2、已知数列{an}中,a1=11,且an-an+1=22an+1。
1)求数列{an}的通项公式;2)数列{bn}满足:b1=2,bn+1-2bn=22n+1,且{bn}是等差数列,求数列{bn}的通项公式及前n项和Sn。
3、已知数列{an}的前n项和为Sn,an=2,{bn}为首项是3的等差数列,且b3Sn/5=434。
1)求{bn}的通项公式;2)设{bn}的前n项和为Tn,求XXX的值。
4、设Sn是数列{an}的前n项和,点P(an,Sn)在直线y=2x-2上,(n∈N)1)求数列{an}的通项公式;2)记bn=2(1-1/n),求数列{bn}的前n项和XXX。
5、已知数列{an}满足a1=1,a2=2,an+2=an+an+1/2,n∈N1)令bn=an+1-an,证明{bn}是等比数列;2)求数列{an}的通项公式。
6、数列{an}的前n项和Sn满足:Sn=2an-3n,(n∈N)1)求数列{an}的通项公式an;2)令bn=31/n,数列{bn}的前n项和为Tn,求证:Tn<Sn+3n+92.7、正项数列{an}满足f(an)=an2,(1)求证{an}是等差数列;(2)若bn=an,求数列{bn}的前n项和为Tn。
8、已知数列{an}的前n项和为Sn,a1=1,数列各项均不为0,点Pn(an,Sn)在函数f(x)=x2+x上的图象上。
1)求数列{an}的通项an及前n项和Sn;2)求证:Pn+1≤Pn。
n1 an 1anan 1数列 an是等差数列。
2)bn3n an3n(n 121232 n 21 2 n 3n S n1 2 n 21 2 n 32n12n23n2)12n12n1)(n2) 12n12n232n 11.当$n=1$时,$a_1=S_1=1$,所以数列$\{a_n\}$是首项为1,公差为2的等差数列。
数列 直线 圆专项综合测试卷及参考答案
数列直线圆专项综合测试卷一.选择题(共20小题)1.设{a n}为等差数列,其前n项和为S n.若2a8=6+a11,则S9=()A.54 B.40 C.96 D.802.已知S n为等差数列{a n}的前n项之和,且S3=15,S6=48,则S9的值为()A.63 B.81 C.99 D.1083.设等差数列{a n}的前n项和为S n,若a5=2a3,则=()A .B .C .D .4.不论m为何实数,直线(m﹣1)x﹣y﹣2m+1=0恒过定点()A.(1,﹣1)B.(2,﹣1)C.(﹣2,﹣1)D.(1,1)5.已知数列{a n}为等比数列,,则a1a10的值为()A.16 B.8 C.﹣8 D.﹣166.设S n为正项等比数列{a n}的前n项和,a5,3a3,a4成等差数列,则的值为()A .B .C.16 D.177.已知数列{a n}的前n 项和,则a5=()A.6 B.8 C.12 D.208.在等差数列{a n}中,若a6,a7是方程x2+3x﹣1=0的两根,则{a n}的前12项的和为()A.6 B.18 C.﹣18 D.﹣69.在等差数列{a n}中,a2+a4=2,a5=3,则{a n}的前6项和为()A.6 B.9 C.10 D.1110.若直线l1:y=k(x﹣2)与直线l2关于点(1,2)对称,则直线l2恒过点()A.(2,0)B.(0,2)C.(0,4)D.(4,0)11.某厂今年产值是a亿元,计划今后十年内年产值平均增长率是10%.则从今年起到第10年末的该厂总产值是()A.11(1.110﹣1)a亿元B.10(1.110﹣1)a亿元C.11(1.19﹣1)a亿元D.10(1.19﹣1)a亿元12.公比为2的等比数列{a n}的各项都是正数,且a3•a11=16,则=()A.﹣4 B.﹣5 C.﹣6 D.﹣713.已知等比数列{a n}的前n项和为S n=3n+a,则数列{a n2}的前n项和为()A .B .C .D.9n﹣114.已知数列{a n}的递增的等比数列,a1+a4=9,a2•a3=8,则数列的前2019项和S2019=()A.22019B.22018﹣1 C.22019﹣1 D.22020﹣115.在数列{a n}中,a1=1,a n =(n≥2,n∈N*),则a4=()A .B .C.2 D.616.已知数列{a n}的前n项和为S n,S n=2a n﹣2,若存在两项a m,a n,使得a m a n=64,则的最小值为()A .B .C .D .17.已知数列{a n}的首项a1=35,且满足a n﹣a n﹣1=2n﹣1,则的最小值为()A.2B .C .D.1218.已知M,N分别是曲线C1:x2+y2﹣4x﹣4y+7=0,C2:x2+y2﹣2x=0上的两个动点,P 为直线x+y+1=0上的一个动点,则|PM|+|PN|的最小值为()A .B .C.2 D.319.已知直线a1x+b1y+1=0和直线a2x+b2y+1=0都过点A(2,1),则过点P1(a1,b1)和点P2(a2,b2)的直线方程是()A.2x+y﹣1=0 B.2x+y+1=0 C.2x﹣y+1=0 D.x+2y+1=020.已知P为直线2x+y﹣5=0上的动点,过点P作圆C:(x﹣1)2+(y+2)2=2的一条切线,切点为Q,则△PCQ面积的最小值是()A .B .C.3 D.6二.填空题(共6小题)21.已知圆C过点(2,0),圆心在x轴的正半轴上,直线l:y=x﹣2被该圆所截得的弦长为2,则圆C 的标准方程为.22.已知圆C:x2+y2+8x﹣m+1=0与直线相交于A,B两点.若|AB|=2,则实数m的值为.23.已知数列{a n}首项为a1=1,且,则数列的前n项和为.24.已知m∈R,A(3,2),直线l:mx+y+3=0.点A到直线l的最大距离为;若两点A和B(﹣1,4)到直线l的距离相等,则实数m等于25.在△ABC中,角A,B,C所对的边分别为a,b,c,若△ABC的面积为,且A,B,C成等差数列,则ac最小值为.26.如图,已知点C的坐标是(2,2)过点C的直线CA与X轴交于点A,过点C且与直线CA垂直的直线CB与Y轴交于点B,设点M是线段AB的中点,则点M的轨迹方程为.三.解答题(共2小题)27.在等比数列{a n}中,公比q∈(0,1),且满足a3=2,a1a3+2a2a4+a3a5=25.(1)求数列{a n}的通项公式;(2)设b n=log2a n,数列{b n}的前n项和为S n,当取最大值时,求n 的值.28.已知数列{a n}的前n项和为S n,且满足3S n=2a n﹣3n.(1)求数列{a n}的前三项a1,a2,a3;(2)证明数列{a n+1}为等比数列;(3)求数列的前n项和T n.参考答案与试题解析一.选择题(共20小题)1.【分析】由等差数列的性质可得:2a8=6+a11=a11+a5,解得a5.再利用等差数列的性质求和公式即可得出.【解答】解:由等差数列的性质可得:2a8=6+a11=a11+a5,解得a5=6.则S9==9a5=54.故选:A.2.【分析】根据等差数列的性质,S m,S2m﹣S m,S3m﹣S2m……也成等差数列,进而可得S9的值.【解答】解:依题意,数列{a n}为等差数列,所以S3,S6﹣S3,S9﹣S6也成等差数列,又S3=15,S6﹣S3=48﹣15=33,所以S9﹣S6=2(S6﹣S3)﹣S3=66﹣15=51,所以S9=S3+S6﹣S3+S9﹣S6=15+33+51=99.故选:C.3.【分析】根据等差数列的前n项和S2n﹣1=(2n﹣1)a n ,将转化为a5和a3的算式即可得到所求.【解答】解:依题意,数列{a n}为等差数列,所以==,又因为a5=2a3,所以===,故选:D.4.【分析】直线(m﹣1)x﹣y﹣2m+1=0化为:m(x﹣2)+(﹣x﹣y+1)=0,令x﹣2=0,﹣x﹣y+1=0,即可得出定点坐标.【解答】解:直线(m﹣1)x﹣y﹣2m+1=0化为:m(x﹣2)+(﹣x﹣y+1)=0,令x﹣2=0,则﹣x﹣y+1=0,解得x=2,y=﹣1.∴直线(m﹣1)x﹣y﹣2m+1=0恒过定点(2,﹣1).故选:B.5.【分析】由,可得20=﹣2a4a7,可得a1a10=a4a7.【解答】解:∵,∴20=﹣2a4a7,解得a4a7=﹣8,∴a1a10=a4a7=﹣8,故选:C.6.【分析】设等比数列的公比为q,q>0,运用等差数列的中项性质和等比数列的通项公式,解方程可得公比q,再由等比数列的求和公式,计算可得所求值.【解答】解:正项等比数列{a n}的公比设为q,q>0,a5,3a3,a4成等差数列,可得6a3=a5+a4,即6a1q2=a1q4+a1q3,化为q2+q﹣6=0,解得q=2(﹣3舍去),则===1+q4=1+16=17.故选:D.7.【分析】利用a5=S5﹣S4即可得出.【解答】解:数列{a n}的前n 项和,则a5=S5﹣S4=52﹣5﹣(42﹣4)=8.故选:B.8.【分析】由韦达定理得a6+a7=﹣3,{a n}的前12项的和为S12=(a1+a12)=,由此能求出结果.【解答】解:在等差数列{a n}中,a6,a7是方程x2+3x﹣1=0的两根,∴a6+a7=﹣3,∴{a n}的前12项的和为:S12=(a1+a12)===﹣18.故选:C.9.【分析】利用等差数列的通项公式与求和公式即可得出.【解答】解:设等差数列{a n}的公差为d,∵a2+a4=2,a5=3,∴2a1+4d=2,a1+4d=3,解得:a1=﹣1,d=1,则{a n}的前6项和=﹣6+×1=9.故选:B.10.【分析】直线l1:y=k(x﹣2)恒过点P(2,0).求出点P关于点(1,2)的对称点即可得出.【解答】解:直线l1:y=k(x﹣2)恒过点P(2,0).设点P关于点(1,2)的对称点为Q(a,b),则,解得a=0,b=4.∴直线l2恒过点(0,4).故选:C.11.【分析】从今年起到第10年末的该厂总产值是S10=a+a×1.1+a×1.12+a×1.13+…+a ×1.19,由此能求出结果.【解答】解:∵某厂去年产值是a亿元,计划今后五年内年产值平均增长率是10%.∴从今年起到第10年末的该厂总产值是:S10=a+a×1.1+a×1.12+a×1.13+…+a×1.19==10×(1.110﹣1)a(亿元).故选:B.12.【分析】公比为2的等比数列{a n}的各项都是正数,且a3•a11=16,根据通项公式可得:•212=16,解得a1,利用通项公式与对数运算性质即可得出.【解答】解:公比为2的等比数列{a n}的各项都是正数,且a3•a11=16,∴•212=16,∴a1=2﹣4.∴a10=2﹣4×29=25.则=﹣5.故选:B.13.【分析】等比数列{a n}的前n项和为S n=3n+a,所以a1=3+a,a2=(9+a)﹣(3+a)=6,a3=(27+a)﹣(9+a)=18,所以=a1×a3得a的值,因为数列{a n}为等比数列,故数列{a n2}为以为首项,以q2为公比的等比数列,求出数列{a n2}的的首项和公比,求出其前n项和.【解答】解:依题意,等比数列{a n}的前n项和为S n=3n+a,所以a1=3+a,a2=(9+a)﹣(3+a)=6,a3=(27+a)﹣(9+a)=18,所以=a1×a3得a=﹣1,所以a1=2,q=3,所以数列{a n2}的首项为4,公比为9,所以数列{a n2}的前n项和T n ==.故选:A.14.【分析】根据数列{a n}是递增的等比数列,q>1,由a1+a4=9,a2a3=8,求解a1和q,可前n项和,从而求解2019项之和S2019的值.【解答】解:由题意,{a n}是递增的等比数列,则q>1,a1>0.由a1+a4=9,a2a3=8,即a1+a1q3=9,a12q3=8,解得:a1=1,q=2.那么前n项和S n=2n﹣1,则S2019=22019﹣1.故选:C.15.【分析】利用所给递推关系式,依次计算即可.【解答】解:因为a1=1,(n≥2,n∈N*),所以,所以,则.故选:D.16.【分析】运用数列的递推式和等比数列的定义、通项公式可得a n=2n.求得m+n=6,=(m+n)()=(10++),运用基本不等式,检验等号成立的条件,即可得到所求最小值.【解答】解:S n=2a n﹣2,可得a1=S1=2a1﹣2,即a1=2,n≥2时,Sn﹣1=2a n﹣1﹣2,又S n=2a n﹣2,相减可得a n=S n﹣S n﹣1=2a n﹣2a n﹣1,即a n=2a n﹣1,{a n}是首项为2,公比为2的等比数列.所以a n=2n.aman=64,即2m•2n=64,得m+n=6,所以=(m+n)()=(10++)≥(10+2)=,当且仅当=时取等号,即为m =,n =.因为m、n 取整数,所以均值不等式等号条件取不到,则>,验证可得,当m=2,n=4时,取得最小值为.故选:B.17.【分析】运用累加法和等差数列的求和公式,可得a n,再由基本不等式和n=5,6时,的值,即可得到所求最小值.【解答】解:数列{a n}的首项a1=35,且满足a n﹣a n﹣1=2n﹣1,可得a n=a1+(a2﹣a1)+(a3﹣a2)+…+(a n﹣a n﹣1)=34+(1+3+5+…+2n﹣1)=34+n(1+2n﹣1)=34+n2,则=n +≥2,此时n =,解得n不为自然数,由于n为自然数,可得n=5时,5+=;n=6时,6+=<,则的最小值为,故选:C.18.【分析】分别求得两个曲线的表示的圆心和半径,由圆的对称性可得|PM|的最小值为|PC1|﹣1,|PN|的最小值为|PC2|﹣1,过C2作直线x+y+1=0的对称点B,设坐标为(m,n),由中点坐标公式和两直线垂直的条件可得B的坐标,当且仅当B,P,C1三点共线可得所求最小值.【解答】解:曲线C1:x2+y2﹣4x﹣4y+7=0,为以C1(2,2),半径为1的圆,C2:x2+y2﹣2x=0为C2(1,0),半径为1的圆,由圆的对称性可得|PM|的最小值为|PC1|﹣1,|PN|的最小值为|PC2|﹣1,过C2作直线x+y+1=0的对称点B,设坐标为(m,n),可得=1,+=1=0,解得m=﹣1,n=﹣2,即B(﹣1,﹣2),连接BC1,交直线于P,连接PC2,可得|PC1|+|PC2|=|PC1|+|PB|≥|BC1|==5.当且仅当B,P,C1三点共线可得|PC1|+|PC2|的最小值为5,则则|PM|+|PN|的最小值为5﹣2=3.故选:D.19.【分析】把A(2,1)坐标代入两条直线a1x+b1y+1=0和a2x+b2y+1=0得2a1+b1+1=0,2a2+b2+1=0,求出2(a1﹣a2)=b2﹣a1,再用两点式方程求过点P1(a1,b1),P2(a2,b2)的直线的方程.【解答】解:把A(2,1)坐标代入两条直线a1x+b1y+1=0和a2x+b2y+1=0,得2a1+b1+1=0,2a2+b2+1=0,∴2(a1﹣a2)=b2﹣b1,过点P1(a1,b1),P2(a2,b2)的直线的方程是:,∴y﹣b1=﹣2(x﹣a1),则2x+y﹣(2a1+b1)=0,∵2a1+b1+1=0,∴2a1+b1=﹣1,∴所求直线方程为:2x+y+1=0.故选:B.20.【分析】求出圆心C到直线l的距离,得出|PC|的最小值,连接圆C和切点Q,得出CQ⊥PQ,计算△PCQ面积的最小值即可.【解答】解:点P是直线l:2x+y﹣5=0上的动点,则圆心C(1,﹣2)到直线l的距离为d ==;则|PC|的最小值为,过点P作圆C的切线,切点为Q,连接CQ,则CQ⊥PC;所以△PCQ 的面积等于×CQ×PQ =××=,即△PCQ 面积的最小值为.故选:A.二.填空题(共6小题)21.【分析】根据题意,设圆心为C(a,b),算出点C到直线y=x﹣2的距离,根据垂径定理建立方程,再由圆C过点(2,0),得(2﹣a)2+(0﹣b)2=r2,结合圆心在x 轴的正半轴上,得b=0,a>0,求解a与r值,即可得到所求圆的方程.【解答】解:设所求的圆的方程是(x﹣a)2+(y﹣b)2=r2,则圆心(a,b)到直线l:y=x﹣2的距离为,()2+2=r2,﹣﹣﹣﹣﹣﹣﹣①由于圆C过点(2,0),∴(2﹣a)2+(0﹣b)2=r2,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣②又∵圆心在x轴的正半轴上,∴b=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣③联立①②③,a>0,解得a=4,b=0,r2=4,∴所求的圆的方程是(x﹣4)2+y2=4.故答案为:(x﹣4)2+y2=4.22.【分析】化圆C 的方程为标准方程,利用圆心到直线的距离d与弦长和半径的关系列方程求出m的值.【解答】解:圆C:x2+y2+8x﹣m+1=0化为标准方程是(x+4)2+y2=15+m;则圆心C(﹣4,0),半径为r =(其中m>﹣15);所以圆心C 到直线的距离为d ==,化简得=,解得m=﹣11.故答案为:﹣11.23.【分析】由数列的恒等式:a n=a1+(a2﹣a1)+(a3﹣a2)+…+(a n﹣a n﹣1),结合已知递推式,结合等差数列的求和公式,可得a n ,求得==2(﹣),再由数列的裂项相消求和,可得所求和.【解答】解:a1=1,且,可得a n=a1+(a2﹣a1)+(a3﹣a2)+…+(a n﹣a n﹣1)=1+2+3+…+n =n(n+1),则==2(﹣),可得数列的前n项和为2(1﹣+﹣+…+﹣)=2(1﹣)=.故答案为:.24.【分析】求出直线l恒过定点(0,﹣3),由两点间的距离公式求点A到直线l的最大距离;再由点到直线的距离公式列式求实数m.【解答】解:∵直线l:mx+y+3=0恒过定点(0,﹣3),∴点A(3,2)到直线l 的最大距离为;∵两点A(3,2)和B(﹣1,4)到直线mx+y+3=0距离相等,∴,解得m =,或m=﹣6.故答案为:;或﹣6.25.【分析】本题的关键在于写出余弦定理运用均值不等式.【解答】解:∵A、B、C成等差数列,∴2B=A+C,又∵A+B+C=π,∴B =,∴,∴ac=2b,由余弦定理有:b2=a2+c2﹣2ac cos B,∴,∴ac≥4,故填4.26.【分析】由题意可知:点M既是Rt△ABC的斜边AB的中点,又是Rt△OAB的斜边AB 的中点,可得|OM|=|CM|,利用两点间的距离公式即可得出.【解答】解:由题意可知:点M既是Rt△ABC的斜边AB的中点,又是Rt△OAB的斜边AB的中点.∴|OM|=|CM|,设M(x,y),则,化为x+y﹣2=0.故答案为x+y﹣2=0.三.解答题(共2小题)27.【分析】(1)由条件判断a n>0,再由等比数列的性质和通项公式,解方程可得首项和公比,进而得到所求通项公式;(2)求得b n=log2a n=log224﹣n=4﹣n,可得S n =,=,再由等差数列的求和公式和配方法,可得所求最大值时的n的值.【解答】解:(1)a1a3+2a2a4+a3a5=25,可得a22+2a2a4+a42=(a2+a4)2=25,由a3=2,即a1q2=2,①,可得a1>0,由0<q<1,可得a n>0,可得a2+a4=5,即a1q+a1q3=5,②由①②解得q =(2舍去),a1=8,则a n=8•()n﹣1=24﹣n;(2)b n=log2a n=log224﹣n=4﹣n,可得S n =n(3+4﹣n )=,=,则=3++…+=n(3+)==﹣(n ﹣)2+,可得n=6或7时,取最大值.则n的值为6或7.28.【分析】(1)由条件3S n=2a n﹣3n,分别令n=1,2,3,结合前n项和的定义,计算可得所求;(2)运用数列的递推式和等比数列的定义、通项公式,即可得到所求;(3)设,则,再由数列的错位相减法求和,结合等比数列的求和公式,计算可得所求和.【解答】解:(1)由题意得3a1=3S1=2a1﹣3,可得a1=﹣3;3S2=2a2﹣6=3(﹣3+a2),可得a2=3;3S3=2a3﹣9=3(﹣3+3+a3),可得a3=﹣9;(2)证明:因为3S n=2a n﹣3n,所以S n=(2a n﹣3n)①当n≥2时,S n﹣1=(2a n﹣1﹣3n+3)②①﹣②,得,∵a1+1=﹣2,∴{a n+1}是以﹣2为首项,﹣2为公比的等比数列,a+1=(﹣2)n,可得a n=(﹣2)n﹣1;n(3)设,则,所以T n=b1+b2+b3+…+b n,∴,∴=,两式相减得T n=++…+﹣=﹣=﹣﹣,则T n=﹣﹣=﹣.。
数列综合经典练习题(含详细答案)
数列综合经典练习题(含详解答案)一、选择题1.已知等差数列{}n a 中79416,1,a a a +==则12a 的值是( ) A .15B .30C .31D .642.如果等差数列{}n a 中,,34515a a a ++=,那么127a a a +++=( )A.14B.21C.28D.353.已知首项为正数的等差数列{}n a 满足:20052006200520060,.0a a a a +><.则使0n S >成立的最大自然数n 是 ( )A. 4009B.4010C. 4011D.4012 4.在等差数列{}n a 中, n S 为其前n 项和,若34825a a a ++=,则9S = ( ) A.60 B.75 C.90 D.1055.设n S 为等比数列{}n a 的前n 项和,且关于x 的方程21320a x a x a -+=有两个相等的实根,则93S S 的值为( ) A.27B.21C.14D.56.设等差数列{}n a 的前n 项和为n S ,若488,20S S ==,则13141516a a a a +++=( ) A.12B.8C.20D.167.若数列{}n a 的首项112a =,且*1(1)(N )n n n a a a n +=+∈,则200300a a =( )A.32B.23 C.201301D.3012018.古时有如下问题:今有肖司差夫一丁八万六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升.其大意为:官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天派出的人数比前一天多7人,每个修筑堤坝的人每天分发到3升大米.在该问题中第三天共发了大米( ) A. 234升B.405升C. 639升D.894升9.一个有限项的等差数列,前4项的和为40,最后4项的和是80,所有项的和是210,则此数列的项数为( ) A.12B.14C.16D.1810.已知等差数列{}n a 的前n 项和为n S ,且112,0,3,2m m m S S S m -+=-==≥,则n nS 的最小值为( ) A.-3B.-5C.-6D.-911.在等比数列{}n a 中,已知151,20192019a a ==,则3a =( ) A.1B.3C.±1D.±312.设{}n a 是首项为1a ,公差为2-的等差数列,n S 为其前n 项和,若124,,S S S 成等比数列,则1a =( ) A.2B.-2C.1D.-113.已知等比数列{}n a 的前n 项和为n S ,103010,130S S ==,则40S =( ) A.-510B.400C.400或-510D.30或4014.已知数列{}n a 是等比数列,2511,8a a ==,则*12231...(N )n n a a a a a a n ++++∈的最小值为( ) A.83B.1C.2D.315.已知数列{}n a 的前n 项和为n S ,若*1111,(N )3n n a S a n +==∈,则7a =( ) A. 74B. 534⨯C.634⨯D. 641+16.已知等比数列{}n a 中,2346781,64a a a a a a ==,则5a =( ) A .2±B .2C .2-D .417.已知等比数列{}n a 中,公比1q >,且168a a +=,3412a a =,则20192014a a = ( ) A .2 B .3 C .6 D .3或618.已知正项等比数列{}n a 满足7652a a a -=.若存在两项,m n a a14a =,则9n mmn +的最小值为( )A .83 B .114 C .145 D .17619.2+2的等比中项是( ) A .1 B .2 C .1± D .2±20.中国古代数学名著《九章算术》中有这样一个问題:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马、“马主曰:“我马食半牛,”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟、羊主人说:“我羊所吃的禾苗只有马的一半,”马主人说:“我马所吃的禾苗只有牛的一半,“打算按此比例偿还,他们各应偿还多少?该问题中,1斗为10升,则马主人应偿还( )升粟? A.253 B. 503 C. 507D. 100721.若1既是2a 与2b 的等比中项,又是1a 与1b 的等差中项,则22a ba b++的值是( ) A .1或12B .1或12-C .1或13D .1或13-22.如果等差数列{}n a 中34512a a a ++=,那么7S =( ) A.28 B.21 C.35D.14二、填空题23.在等比数列{}n a 中,若7944,1a a a ⋅==,则12a 的值是 . 24.设数列{}n a 是递减的等比数列,且满足2712a a =,3694a a +=,则1232n a a a a ⋅⋅⋅的最大值为__________.25.已知等比数{}n a 中, 171,2727a a ==,求n a = 26.设数列{}n a 的前n 项和为n S ,且11a =,13n n a S +=,*N n ∈,则n a =_____________. 27.设数列{}n a 满足121,3a a ==,且112(1)(1)(2)n n n na n a n a n -+=-++≥,则20a 的值为___________.28.已知n S 为数列{}n a 的前n 项和,且*2log (1)1(N )n S n n +=+∈,则数列{}n a 的通项公式为___________.29.等比数列{}n a 的公比大于1,514215,6a a a a -=-=,则3a =_______. 三、解答题30.已知数列{}n a 是等差数列,且1212,()a a a a <分别为方程2650x x -+=的两个根. 1.求数列{}n a 的前n 项和n S ; 2.在1中,设n n S b n c =+,求证:当12c =-时,数列{}n b 是等差数列.31.已知等差数列{}n a 中,1242,16a a a =+=. 1.设2n an b =,求证:数列{}n b 是等比数列; 2.求{}n n a b +的前n 项和.32.已知等比数列{}n a 的前n 项和为n S ,满足443321,21S a S a =-=-. 1.求{}n a 的通项公式; 2.记161n n b S =+,求12...n b b b +++的最大值. 参考答案一、选择题1.答案:A 解析:2.答案:D 解析:3.答案:B解析:由题意知:等差数列中,从第1项到第2005项是正数,且从第2006项开始为负数, 则()()40101401020052006200520050S a a a a =+=+>,14011401120064011()401102a a S a +==<故n 的最大值为4010. 故选B 4.答案:B解析:因为等差数列{}n a 中, n S 为其前n 项和, 348153(4)325a a a a d a ++=+==,所以131225a d +=,所以512543a a d =+=,所以()9195925997523S a a a =+==⨯=.故选B. 5.答案:B解析:因为{}n a 为等比数列,所以23211,a aq q a a ==,故原方程可以化为220x q x q -+=.又该方程有两个相等的实数根,故440q q -=,解得0q =(舍)或34q =,所以9933116421114S q S q --===--,故选B. 6.答案:C解析:∵4841281612,,,S S S S S S S ---成等差数列,∴由4848,12S S S =-=,得128161216,20S S S S -=-=,即1314151620a a a a +++=.故选C.7.答案:D解析:由1(1)n n n a a a +=+,得11n n n n a a a a ++-=且0n a ≠,所以1111n n a a +-=,即1{}na 是以2为首项,1为公差的等差数列,所以11nn a =+,所以20030011201,301a a ==,从而200300301201a a =. 8.答案:C解析:根据题意设每天派出的人数组成数列{}n a ,它是首项164a =,公差为7的等差数列,则第二天派出的人数为2a ,且264771a =+=,第三天派出的人数为3a ,且3642778a =+⨯=.又每人每天分发到3升大米,则第三天共分发大米(647178)3639++⨯=(升),故选C.9.答案:B解析:设等差数列共有n 项,记该数列为{}n a , 则123440a a a a +++=,12380n n n n a a a a ---+++=, 相加得14()120n a a +=,所以130n a a +=.1()152102n n n a a S n +===,解得14n =.故选B. 10.答案:D解析:由112,0,3,2m m m S S S m -+=-==≥,后式减前式知12,3m m a a +==.设等差数列{}n a 的公差为d,则1d =.∵0m S =,∴12m a a =-=-,则3n a n =-,(5)2n n n S -=,2(5)2n n n nS -=.设22(5)3(),0,'()5,022x x f x x f x x x x -=>=->, 则当1003x <<时, ()f x 单调递减,当103x >时, ()f x 单调递增, ∴()f x 的极小值点为103x =,在此处()f x 取得最小值. 又(3)9,(4)8f f =-=-,∴n nS 的最小值为-9,故选D. 11.答案:A解析:由等比数列的性质可得23151201912019a a a ==⨯=,解得31a =±.又2310a a q =>,所以31a =.故选A.解析:由题意得111212(1),,22n a a n S a S a =--==-,41412S a =-.∵124,,S S S 成等比数列,∴2111(22)(412)a a a -==-,解得11a =-.故选D.13.答案:B解析:设等比数列{}n a 公比为q,∵等比数列{}n a 的前n 项和为n S ,∴10201030204030,,,S S S S S S S ---也成等比数列,∴21030202010()()S S S S S -=-,即2202010(130)(10)S S -=-,解得2040S =或2030S =-.∵10100S =>,10201030203,90S S q S S =+=-=,4030270S S -=,∴40400S =.故选B.14.答案:C解析:由已知得数列{}n a 的公比满足35218a q a ==,解得12q =,∴1312,2a a ==,∴数列1{}n n a a +是以2为首项,公比为231214a a a a =的等比数列.由于数列1{}n n a a +各项均为正,∴12231...n n a a a a a a ++++的最小值为122a a =.故选C.15.答案:B 解析:由113n n S a +=,可得11,23n n S a n -=≥,两式相减可得111,233n n n a a a n +=-≥,即14,2n n a a n +=≥.又113n n S a +=,所以2133a S ==,所以数列{}n a 是从第2项起的等比数列,公比为4.所以72572434a a -==⨯,故选B.16.答案:B 解析: 17.答案:B 解析: 18.答案:B 解析: 19.答案:C 解析: 20.答案:D 解析: 21.答案:D 解析:解析:二、填空题 23.答案:4解析:24.答案:64 解析:25.答案:43n n a -=或()43.n n a -=--解析: 26.答案:21,134,2n n n a n -=⎧=⎨⨯≥⎩解析:当1n =时,211333a S a ===. 当2n ≥时,∵13n n a S +=,∴13n n a S -=,两式相减得113()3n n n n n a a S S a +--=-=,即14n n a a +=,当2n ≥时,{}n a 是以3为首项,4为公比的等比数列,得234n n a -=⨯.综上,21,134,2n n n a n -=⎧⎨⨯≥⎩. 27.答案:245解析:因为112(1)(1)(2)n n n na n a n a n -+=-++≥,所以数列{}n na 为等差数列,首项为1,公差为2125a a -=.所以1(1)554n na n n =+-⨯=-,则204245,54205n n a a =-=-=. 28.答案:3,12,2n n n a n =⎧=⎨≥⎩解析:由2log (1)1n S n +=+,得112n n S ++=.当1n =时, 113a S ==;当2n ≥时,12n n n n a S S -=-=.则数列{}n a 的通项公式为3,12,2n n n a n =⎧=⎨≥⎩.29.答案:4 解析:三、解答题30.答案:1.解方程2650x x -+=得其两个根分别为1和5, ∵1212,()a a a a <分别为方程2650x x -+=的两个根,∴121,5a a ==,∴等差数列{}n a 的公差为4, ∴2(1)1422n n n S n n n -=⋅+⋅=-. 2.当12c =-时, 22212n n S n n b n n c n -===+-, ∴112(1)22,2n n b b n n b +-=+-==, ∴{}n b 是首项为2,公差为2的等差数列. 解析:31.答案:1.设等差数列{}n a 的公差为d .由2416a a +=可得11()(3)16a d a d +++=,即12416a d +=. 又12a =,可得3d =.故1(1)2(1)331n a a n d n n =+-=+-⨯=-. 依题意, 312n n b -=,因为3231312282n n n n b b ++-===(常数),所以{}n b 是首项为4,公比为8的等比数列. 2.因为{}n a 的前n 项和为1()(31)22n n a a n n ++=, {}n b 的前n 项和为313324221421877n n -+-⋅=⋅--.所以{}n n a b +的前n 项和为32(31)142277n n n +++⋅-. 解析:32.答案:1.设等比数列{}n a 的公比为q , 由434S S a -=得43422a a a -=, 所以432a a =,所以2q =. 又因为3321S a =-,所以11112481a a a a ++=-,所以11a =.所以12n n a -=.2.由1知122112nn n S -==--,所以416()2821n n n b n S -===-+,所以12n n b b +-=-,所以{}n b 是首项为6,公差为-2的等差数列, 所以12346,4,2,0b b b b ====,当5n ≥时, 0n b <,所以当3n =或4n =时, 12...n b b b +++有最大值,且最大值为12. 解析:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列综合测试题第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是( )A.12B .1C .2D .32.设等比数列{a n }的前n 项和为S n ,若8a 2+a 5=0,则下列式子中数值不能确定的是( )A.a 5a 3B.S 5S 3C.a n +1a nD.S n +1S n3.(理)已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *)且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5D.154.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为正偶数时,n 的值可以是( )A .1B .2C .5D .3或115.已知a >0,b >0,A 为a ,b 的等差中项,正数G 为a ,b 的等比中项,则ab 与AG 的大小关系是( )A .ab =AGB .ab ≥AGC .ab ≤AGD .不能确定6.各项都是正数的等比数列{a n }的公比q ≠1,且a 2,12a 3,a 1成等差数列,则a 3+a 4a 4+a 5的值为( )A.1-52B.5+12C.5-12D.5+12或5-127.数列{a n }的通项公式为a n =2n -49,当该数列的前n 项和S n 达到最小时,n 等于( ) A .24 B .25 C .26D .278.数列{a n }是等差数列,公差d ≠0,且a 2046+a 1978-a 22012=0,{b n }是等比数列,且b 2012=a 2012,则b 2010·b 2014=( )A .0B .1C .4D .89.已知各项均为正数的等比数列{a n }的首项a 1=3,前三项的和为21,则a 3+a 4+a 5=( )A .33B .72C .84D .18910.已知等差数列{a n }的前n 项和为S n ,若a 1=1,S 3=a 5,a m =2011,则m =( ) A .1004 B .1005 C .1006D .100711.设{a n }是由正数组成的等差数列,{b n }是由正数组成的等比数列,且a 1=b 1,a 2003=b 2003,则( )A .a 1002>b 1002B .a 1002=b 1002C .a 1002≥b 1002D .a 1002≤b 100212.已知数列{a n }的通项公式为a n =6n -4,数列{b n }的通项公式为b n =2n ,则在数列{a n }的前100项中与数列{b n }中相同的项有( )A .50项B .34项C .6项D .5项第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.已知数列{a n }满足:a n +1=1-1a n,a 1=2,记数列{a n }的前n 项之积为P n ,则P 2011=________.14.秋末冬初,流感盛行,荆门市某医院近30天每天入院治疗流感的人数依次构成数列{a n },已知a 1=1,a 2=2,且a n +2-a n =1+(-1)n (n ∈N *),则该医院30天入院治疗流感的人数共有________人.15.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 3+a 10a 1+a 8=________.16.在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,且从上到下所有公比相等,则a +b +c 的值为________.三、解答题()17.设数列{a n }的前n 项和为n S =2n 2,{b n }为等比数列,且a 1=b 1,b 2(a 2 -a 1) =b 1。
(1)求数列{a n }和{b n }的通项公式; (2)设c n =nnb a , 求数列{c n }的前n 项和T n .18.设正数数列{n a }的前n 项和n S 满足2)1(41+=n na S . (I )求数列{n a }的通项公式; (II )设11+⋅=n n n a a b ,求数列{n b }的前n 项和n T19.已知数列{b n }前n 项和为S n ,且b 1=1,b n +1=13S n .(1)求b 2,b 3,b 4的值; (2)求{b n }的通项公式;(3)求b 2+b 4+b 6+…+b 2n 的值.20.已知函数)(x f =157++x x ,数列{}n a 中,2a n +1-2a n +a n +1a n =0,a 1=1,且a n ≠0, 数列{b n }中, b n =f (a n -1)(1)求证:数列{na 1}是等差数列; (2)求数列{b n }的通项公式; (3)求数列{n b }的前n 项和S n .21.数列{a n }的前n 项和为S n ,且S n =n (n +1)(n ∈N *).(1)求数列{a n }的通项公式;(2)若数列{b n }满足:a n =b 13+1+b 232+1+b 333+1+…+b n3n +1,求数列{b n }的通项公式;(3)令c n =a n b n4(n ∈N *),求数列{c n }的前n 项和T n .22.已知数列{n a }满足11=a ,且),2(22*1N n n a a nn n ∈≥+=-且(1)求证:数列{n na 2}是等差数列;(2)求数列{n a }的通项公式; (3)设数列{n a }的前n 项之和n S ,求证:322->n S n n。
数列综合测试题答案一 选择题1-6CDADCC 7-12 ACCCCD二 填空题13__2__. 14____255____.15____223+____.16___22_____. 三.解答题17. 解:(1)∵当n=1时 ,a 1=S 1=2;当n ≥2时,a n =S n -S n -1=2n 2 -2(n -1)2=4n -2. 故数列{a n }的通项公式a n =4n -2,公差d=4.设{b n }的公比为q ,则b 1qd= b 1,∵d=4,∴q=41.∴b n =b 1q n -1=2×141-⎪⎭⎫ ⎝⎛n =142-n ,即数列{ b n }的通项公式b n =142-n 。
(2)∵114)12(4224---=-==n n nn n n n b a c∴T n =1+3·41+5·42+······+(2n -1)4n-1∴4T n =1·4+3·42+5·43+······+(2n -1)4n两式相减得3T n =-1-2(41+42+43+······+4n -1)+(2n -1)4n =]54)56[(31+-nn∴T n =]54)56[(91+-nn18.解:(Ⅰ)当1=n 时,2111)1(41+==a S a ,∴ 11=a . ∵ 2)1(41+=n n a S , ① ∴ 211)1(41+=--n n a S (n )2≥. ②①-②,得 2121)1(41)1(41+-+=-=--n n n n n a a S S a ,整理得,0)2)((11=--+--n n n n a a a a ,∵ 0>n a ∴ 01>+-n n a a .∴ 021=---n n a a ,即)2(21≥=--n a a n n .故数列}{n a 是首项为1,公差为2的等差数列. ∴ 12-=n a n .(Ⅱ)∵ )121121(21)12)(12(111+--=+-=⋅=+n n n n a a b n n n ,∴ n n b b b T +++= 21)121121(21)5131(21)311(21+--++-+-=n n )1211(21+-=n 12+=n n .19. [解析] (1)b 2=13S 1=13b 1=13,b 3=13S 2=13(b 1+b 2)=49,b 4=13S 3=13(b 1+b 2+b 3)=1627.(2)⎩⎨⎧b n +1=13S n①b n=13S n -1②①-②解b n +1-b n =13b n ,∴b n +1=43b n ,∵b 2=13,∴b n =13·⎝⎛⎭⎫43n -2(n ≥2)∴b n =⎩⎪⎨⎪⎧1 (n =1)13·⎝⎛⎭⎫43n -2(n ≥2).(3)b 2,b 4,b 6…b 2n 是首项为13,公比⎝⎛⎭⎫432的等比数列, ∴b 2+b 4+b 6+…+b 2n =13[1-(43)2n ]1-⎝⎛⎭⎫432=37[(43)2n -1].20.解:(1)2a n+1-2a n +a n+1a n =0 ∵a n ≠0, 两边同除a n+1a n21111=-+n n a a ∴数列{n a 1}是首项为1,公差为21的等差数列 (2)∵n a 1=21)1(11+=-+n d n a∴a n -1=)(,11N n n n∈+- ∵b n =f (a n -1)=f (11+-n n)=-n+6 (n ∈N)(3) -n+6 (n≤6, n ∈N)n b = n -6 (n>6, n ∈N)2)11(2)6(1n n n b n -=-+ (n≤6, n ∈N) ∴S n =260112))(6(276+-=+-+n n b b n S n (n>6, n ∈N)21.[解析] (1)当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n (n +1)-(n -1)n =2n ,知a 1=2满足该式 ∴数列{a n }的通项公式为a n =2n .(2)a n =b 13+1+b 232+1+b 333+1+…+b n3n +1(n ≥1)①∴a n +1=b 13+1+b 232+1+b 333+1+…+b n3n +1+b n +13n +1+1② ②-①得,b n +13n +1+1=a n +1-a n =2,b n +1=2(3n +1+1),故b n =2(3n +1)(n ∈N *). (3)c n =a nb n4=n (3n +1)=n ·3n +n ,∴T n =c 1+c 2+c 3+…+c n =(1×3+2×32+3×33+…+n ×3n )+(1+2+…+n ) 令H n =1×3+2×32+3×33+…+n ×3n ,① 则3H n =1×32+2×33+3×34+…+n ×3n +1②①-②得,-2H n =3+32+33+…+3n -n ×3n +1=3(1-3n)1-3-n ×3n +1∴H n =(2n -1)×3n +1+34,∴数列{c n }的前n 项和T n =(2n -1)×3n +1+34+n (n +1)222解.(1)),2(22*1N n n a a n n n∈≥+=-且)2......(..........2)21(2252232212)1....(..........2)21(225223221)3(2)21(,211)1(21)1(212)1()2(,212,1,}{),2(122,12214323211*1111+----⋅-++⋅+⋅+⋅=∴⋅-++⋅+⋅+⋅=⋅-=∴-=⋅-+=-+===∴∈≥=-+=∴n n n n nn nn nn n n n n n n n n n S n S n a n n d n a a d a N n n a a a a 得由首项公差为是等差数列数列且即 12)21(22222)21(221)2()1(132132-⋅--++++=⋅-++++=--++n n n n n n S 得322,2)32(32)32(.32)23(12)21(21)21(21->∴⋅->+⋅-=-⋅-=-⋅----=+n S n S n n n nn n n n n n。